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1 INRODUCTION 

A pressure ulcer can be defined as a localised injury 
to the skin or underlying tissue, usually over a bony 
prominence, as a result of pressure, or pressure in 
combination with shear forces or friction (Black 
2007). Pressure ulcers have the potential to diminish 
physical, psychological and social wellbeing and 
cause serious pain and discomfort which drastically 
decreases quality of life (Medicine 2001; Voss et al. 
2005). There are two types of pressure ulcers, super-
ficial and Deep Tissue Injury (DTI). Upon applica-
tion of bodyweight, high pressure radiates outwards 
from bony prominences called the Ischial Tuberosi-
ties which are located on the pelvis. This high pres-
sure can cause the damage termed DTI (Bouten, 
Oomens et al. 2003).Superficial ulcers occur on the 
outer layers of the skin tissue, although generally the 
extent of a superficial pressure sore is not as serious 
as a DTI. Improved understanding of the behaviour 
of the materials used in wheelchair seating can ena-
ble superior designs with improved pressure distri-
bution. This will enhance comfort and support and 
potentially reduce the onset of pressure ulcers.  

Polyurethane foam is an open celled elastomeric 
polymer and its constituent elastomer, polyurethane 
rubber, can undergo large and reversible deforma-
tions. Foamed polymeric material is known to exhi-
bit three regions of different stress-strain behaviour 
in simple uniaxial compression: (i) approximately 
linear behaviour for strains less than about 0.05; this 
linear elasticity arises from the bending of the cell 
edges, (ii) a plateau region in which strain increases 
at constant or nearly constant stress up to a strain of 
roughly 0.6; this plateau arises from elastic buckling 
of the cell edges and (iii) a densification of the col-
lapsed cell edges causing the foam to act as would 
its elastomeric constituent material. In this final re-
gion, known as the densification region, the slope of 
the stress-strain curve increases exponentially with 
strain as the crushed foam’s cell struts and vertices  

 
 
come into contact (Gibson 1997). When the material 
reaches this level of compression, it is clinically re-
ferred to as ‘bottomed out’.  

Viscoelastic materials can be idealised as an in-
termediate combination of elastic solids and viscous 
liquids (Ward 2004). All polyurethane foams exhibit 
some degree of viscoelasticity (Mills 2007). Viscoe-
lastic polyurethane foam is widely used in clinical 
seating as it offers excellent comfort and support due 
to its particular polymeric properties which are de-
pendent on time, temperature and strain rate. The 
work presented in this paper is part of an ongoing 
investigation into improvements in the methodolo-
gies in the specification of viscoelastic polyurethane 
foams in wheelchair seating. 

2 MATERIAL TESTING 

2.1 Materials tested 

Open-celled polyurethane seating foam with a densi-
ty of 40kg/m

3
 was tested in this piece of work. Sev-

eral empirical tests were conducted on foam samples 
and the results were used to represent the behaviour 
of the material using prediction based numerical ma-
terial models, which would later be used for seating 
design optimisation. 

2.2  Uni-axial compression testing 

Uni-axial compression testing was conducted on the 
selected material in accordance with ‘ISO 3386: Po-
lymeric materials, cellular flexible – Determination 
of stress-strain characteristic in compression’. The 
compression tests were performed on a Lloyd LR 
30K materials testing machine which incorporated a 
calibrated 3kN Lloyd instruments load cell as shown 
in Figure 1. The test-piece was inserted centrally be-
tween two horizontal platens in the testing machine. 
For the first test, the sample was compressed by 
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70% of its initial height at a strain rate of 5mm/min. 
This continuous cycle was repeated immediately 
three times and on the fourth compression cycle, 
load-deflection data was recorded. The initial 3 
cycles applied to the virgin foam sample removed 
most of the Mullins effect (Mullins 1969). After re-
cording the load-deflection data, the sample was de-
compressed. This test procedure was then repeated 
at strain rates of 50, 100, 250 and 500 mm/min. 

Fig.1: Uni-axial compression testing set-up 

2.3 Constant displacement stress relaxation testing 

The same test set-up as described in section 2.2 was 
used to conduct constant displacement stress relaxa-
tion testing following the guidelines proposed in 
‘ISO 3384 - Rubber, vulcanized or thermoplastic - 
Determination of stress relaxation in compression - 
Part 1: Testing at constant temperature’. This test 
procedure measured the decrease in counterforce ex-
erted by a test piece of polymer foam which was 
compressed to a constant deformation. Samples 
were compressed at a strain rate of 250mm/min and 
held at 80% compressive strain for extended time 
periods of up to 8 hours. This time was chosen to 
replicate a typical daily occupancy of a wheelchair 
user. The dissipating force was monitored over the 
entire period of the test.  

2.4 Simple shear testing 

Shear (rigidity) modulus testing was conducted in 
accordance with ‘ISO 1827: Rubber, vulcanized or 
thermoplastic - Determination of modulus in shear’. 
Samples were bonded with cyanoacrylate adhesive 
on both sides to the rigid plates during testing. The 
shear load was applied at a rate of 4mm/min until 
sample failure. A minority of the shear tests failed at 
relatively low strain values due to adhesive failure - 
any test that failed at less than 100% shear strain 
was regarded as unrepresentative of material behav-
iour and disregarded. 

 

 

 

 

 

 

 

Fig.2: Shear test set-up, sample on left failed due to shear 

 2.5 Indentation Force Deflection testing  

Indentation Force Deflection (IFD) tests were con-
ducted on the foam. A circular indenter based on 
‘ISO:2439, "Flexible Cellular Polymeric Materials-
Determination of Hardness (Indentation Technique)’ 
but scaled down to 81.2 mm in diameter, to be 
compatible with the 150mm square test-pieces. This 
indenter was axially indented into the foam samples 
up to 65% of sample height using the Lloyd Instru-
ments testing machine. The result of this test is pre-
sented in section 4.1 and compared to the results 
suggested by a Finite Element (FE) simulation. 

3. DEVELOPMENT OF MATERIAL MODEL 
FROM TEST DATA 

3.1 Uni-axial test data fit 

Nominal uniaxial compression test data sets, ob-
tained from the procedure described in section 2.2, 
were used to calculate the constants for the 2

nd
 order 

form of Ogden’s Hyperfoam material model (Ogden 
1972; Simulia 2010) described in Equation 1.  
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where N is the order of fitting, µi, αi, and βi are tem-
perature-dependent material parameters to be deter-
mined by curve-fitting test data to the model and Jel

 
is given by: 
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where λi is the principal stretch ratio, Jel
 
and Jth are 

the elastic and thermal volume ratios respectively 

and can be defined by the following equations 
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J is the total volume 

ratio and the thermal strain, εth, is calculated from 



the temperature and the isotropic therma

coefficient. 
The test data modelled here is taken from a u

iaxial compression test conducted on 
strain rate of 5mm/min. It was assumed that Poi
son’s ratio (ν) = 0 and that the lateral principal 
stretches, λ1 and λ3 can be considered
uation 3 is used to calculate the nominal engineering 
stress, σ2, in the λ2 direction. 
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Abaqus automatically fits the parameters 

β using a non-linear least squares optimisation pr
cedure. The parameters used in the curve fit shown 
in figure 3, are given in Table 1: 

 

N μ (Pa) α 

1 44185.6 21.4556

2 3.7050 -6.8900

Table 1: Coefficients of Ogden Hyperfoam model for uniaxial 

compression case 

Fig.3: Uniaxial compression data for a sample

crosshead speed of 50mm/min, to a compressive strain of 80%

at 20°C compared with Ogden Hyperfoam Model curve

 
Overall the model fits accurately to the exper

mental data in Figure 3. Some slight error is notic
able in the initial elastic region as the test data stiffer 
material than the model predicts. The shape of this 
initial elastic region is strongly dependent on the 
material constant. This error can be eradicated by 
weighting the data towards the lower values of 
strain; however this would introduce error in the 
higher strain range. Error at lower values of strain 
was deemed less important than error at the more 
critical higher strain values.  

3.2  Simple shear test data fit 

Simple shear test data, extracted from the procedure 
described in Section 2.3, was also curve

isotropic thermal expansion 

The test data modelled here is taken from a un-
iaxial compression test conducted on a sample at a 

assumed that Pois-
= 0 and that the lateral principal 

can be considered to be zero. Eq-
is used to calculate the nominal engineering 

5     (3) 

Abaqus automatically fits the parameters µ, α and 
linear least squares optimisation pro-

The parameters used in the curve fit shown 

β 

21.4556 0 

6.8900 0 

Coefficients of Ogden Hyperfoam model for uniaxial 

sample compressed at a 

to a compressive strain of 80% 

Hyperfoam Model curve-fit 

the model fits accurately to the experi-
. Some slight error is notice-

able in the initial elastic region as the test data stiffer 
material than the model predicts. The shape of this 
initial elastic region is strongly dependent on the µ1 
material constant. This error can be eradicated by 
weighting the data towards the lower values of 
strain; however this would introduce error in the 
higher strain range. Error at lower values of strain 
was deemed less important than error at the more 

Simple shear test data, extracted from the procedure 
described in Section 2.3, was also curve-fitted to the 

material model as during service the material will 
deform in both compression and shear.
was fitted using Equation 4
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where γ is the shear strain and 
al stretches in the plane of shearing and are related 
to the shear strain by 
          

�,� � =1 � 8	
� > ?@1 �

 
Abaqus used the same curve

culate representative parameters of the Ogden hype
foam model to best fit th
simple shear data. The parameters calculated and 
shown in Table 2, give a very accurate curve fit for 
the shear loading mode as can be seen in Figure 4. 
 

N μ (Pa) 

1 7242.15 

2 7242.15 

Table 2: Coefficients of Ogden Hyperfoam model for simple 

shear case 

Fig. 4: Simple shear data for 

speed of 4mm/min at 20°C compared to Ogden Hyperfoam 

Model curve-fit. 

3.3  Combination of uniaxial compression data and 
simple shear data 

A compromise was made in the accuracy of the two 
curve fits, uniaxial compression and simple shear to 
ensure the model could predict stress fields under 
complex combinations of both modes of deform
tion. Data sets from both forms of deformation were 
used in the calculation of the Ogden hyperfoam co
stants. This meant that while some accuracy 
when compared to the fits for each separate mode, 
the model was more robust. The derivation of model 

material model as during service the material will 
deform in both compression and shear. Simple shear 
was fitted using Equation 4 

8
A�8	 ∑ ����
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is the shear strain and λj are the two princip-
plane of shearing and are related 

@ � 8	
B          (5) 

Abaqus used the same curve-fit procedure to cal-
culate representative parameters of the Ogden hyper-
foam model to best fit the curve to the experimental 
simple shear data. The parameters calculated and 
shown in Table 2, give a very accurate curve fit for 
the shear loading mode as can be seen in Figure 4.  

α β 

5.99916 0 

-5.99916 0 

Coefficients of Ogden Hyperfoam model for simple 

ig. 4: Simple shear data for a sample sheared at a crosshead 

20°C compared to Ogden Hyperfoam 

Combination of uniaxial compression data and 

A compromise was made in the accuracy of the two 
curve fits, uniaxial compression and simple shear to 
ensure the model could predict stress fields under 
complex combinations of both modes of deforma-
tion. Data sets from both forms of deformation were 
used in the calculation of the Ogden hyperfoam con-
stants. This meant that while some accuracy was lost 
when compared to the fits for each separate mode, 

more robust. The derivation of model 



constants followed best practise guidelines 
2010),  constants were derived from test modes 
which were the most relevant to the materials in
mode of deformation. The accuracy of the model in 
simulating a uniaxial test is demonstrated graphica
ly in Figure 5. Three different curve fits, uniaxial, 
shear and uniaxial plus shear, are plotted against the 
uniaxial compression test data curve in Figure 5. A 
compromise can clearly be seen in the accuracy of 
the curve-fit made in using both modes of deform
tion to derive material parameters when 
with using the uniaxial mode of deformation by i
self. The inaccurate curve fit derived using simple 
shear test data demonstrates the importance of using 
more than one mode of deformation when simula
ing complex modes of deformation. The material p
rameters derived using both deformation mode data 
sets are shown in Table 3. 
 

N μ (Pa) α 

1 12740.4000 7.2810

2 2.7459 -5.7311

Table 3: Coefficients of Ogden Hyperfoam model for comb

nation case 

Fig.5: Uni-axial compression data for foam sample

at a crosshead speed of 50mm/min to a compressive strain of 

80% at 20°C compared with an Ogden Hyperfoam Model 

curve-fit for the uniaxial, shear and combination cases.

 
The accuracy of the model when a shear test is 

undertaken was also studied. The material coeff
cients were determined with uniaxial data, shear data 
and a combination of both data sets. 
each of the curve fits is compared in Figure 6. Again 
the model parameters derived from the mode of d
formation in question generate the most accurate 
model, as was the case for the uni
modelling.  

 

 

 

 

 

constants followed best practise guidelines (Simulia 
,  constants were derived from test modes 

which were the most relevant to the materials in-use 
ccuracy of the model in 

simulating a uniaxial test is demonstrated graphical-
ly in Figure 5. Three different curve fits, uniaxial, 
shear and uniaxial plus shear, are plotted against the 
uniaxial compression test data curve in Figure 5. A 

rly be seen in the accuracy of 
fit made in using both modes of deforma-

derive material parameters when compared 
with using the uniaxial mode of deformation by it-
self. The inaccurate curve fit derived using simple 

es the importance of using 
more than one mode of deformation when simulat-
ing complex modes of deformation. The material pa-
rameters derived using both deformation mode data 

β 

7.2810 0 

5.7311 0 

Coefficients of Ogden Hyperfoam model for combi-

foam sample compressed 

to a compressive strain of 

Ogden Hyperfoam Model 

fit for the uniaxial, shear and combination cases. 

The accuracy of the model when a shear test is 
The material coeffi-

cients were determined with uniaxial data, shear data 
data sets. The accuracy of 

each of the curve fits is compared in Figure 6. Again 
the model parameters derived from the mode of de-

the most accurate 
model, as was the case for the uni-axial test data 

Fig.6: Simple shear data for 

speed of 4mm/min, at 20°C compared 

foam Model curve-fit for shear, uni

es. 

3.4  Modelling viscoelastic behaviour

The foam modelled in this research displayed vi
coelastic behavior which required modelling to s
mulate the foam’s behaviour accurately. Stress r
laxation was a prominent viscoelastic phenomenon 
noted during the compression and hold tests. Since 
bulk modulus is quite weak 
polymer, the viscoelastic portion of the material 
model was dominated by the shear modulus, 
Viscoelasticity was added to the model in the form 
of time based Prony-series constants based on the 
shear modulus of the foam, 

 

CD�E� �  1 � ∑ C̅�G
�� �1
 

where C̅�G is the relaxation modulus, 
tion time. Both are material dependent properties 
and N is the order of the Prony

The normalised shear modulus 

against the log10 time (Figure 7) and ten data points 

(each decade of the log time plot) are extracted for 

use in the curve fitting procedure (3

data points were then used to try and 

curve fit, over 300 data points resulted in the 

converging, with minimal

The data is fitted using a non

procedure to define the Prony

(C̅�G , H��, which are shown in Tables 4 and 5 for the 

respective model orders. 
 

N G(i) 

1 0.0973 

2 0.1740 

3 0.1290 

Table 4: Coefficients of Prony

used to model viscoelasticity

Simple shear data for a sample sheared at a crosshead 

speed of 4mm/min, at 20°C compared with an Ogden Hyper-

fit for shear, uni-axial and combination cas-

Modelling viscoelastic behaviour 

in this research displayed vis-
coelastic behavior which required modelling to si-

the foam’s behaviour accurately. Stress re-
laxation was a prominent viscoelastic phenomenon 
noted during the compression and hold tests. Since 
bulk modulus is quite weak in this type of foamed 
polymer, the viscoelastic portion of the material 
model was dominated by the shear modulus, ID�E�. 
Viscoelasticity was added to the model in the form 

series constants based on the 
shear modulus of the foam, CD�E�: 

1 � J� -K�L�      (6) 

is the relaxation modulus, H�M  is the relaxa-
tion time. Both are material dependent properties 
and N is the order of the Prony-series.  

The normalised shear modulus CD�E� is plotted 

time (Figure 7) and ten data points 

(each decade of the log time plot) are extracted for 

use in the curve fitting procedure (3
rd

 order). More 

data points were then used to try and improve the 

e fit, over 300 data points resulted in the model 

minimal error, after 8 iterations. 

The data is fitted using a non-linear least squares 

procedure to define the Prony-series parameters, 

, which are shown in Tables 4 and 5 for the 

respective model orders.  

Tau(sec) 

 0.30639 

 11.21 

 1011 

Coefficients of Prony-series model for 3
rd

 order case, 

used to model viscoelasticity 



 

N G(i) Tau(sec)

1 6.17E-04 1.01E

2 -1.27E-03 1.89E

3 8.99E-02 0.2928

4 1.15E-01 4.7441

5 8.03E-02 55.234

6 7.72E-02 629.87

7 6.86E-02 8656

8 -3.01E-02 1.74E+08

Table 5: Coefficients of Prony-series model for 

used to model viscoelasticity 

Fig. 7: Normalised shear modulus, CD�E� plotted against log

time. 

 
To incorporate viscoelasticity into the material 

model, the shear modulus of the foam, 
multiplied by the material constant, 
strain energy function (Equation 1) giving 
tion 7). 
 

N�D � N�O�1 � ∑ CP�G
P� Q1 � J� -KRS�
 
The introduction of viscoelasticity using the Prony 

series also enables the accurate prediction of loads 
with variable strain rate as well as the prediction of 
stress relaxation at constant strain.  

4. FINITE ELEMENT SIMUL
STANDARD TESTS 

Standard testing procedures on polyurethane foam 
sample were simulated using Abaqus 
As previously described, Ogden’s material model 
(Equation 1) for describing the behaviour of co
pressible rubber-like materials (Ogden 1972)
chosen as a suitable strain energy function. 
test data sets were fitted to the material model and 
material constants were extracted that gave the most 
accurate and robust fit available. These coefficients 

Tau(sec) 

1.01E-03 

1.89E-03 

0.2928 

4.7441 

55.234 

629.87 

8656 

1.74E+08 

series model for 8
th

 order case, 

� � plotted against log10 

viscoelasticity into the material 
model, the shear modulus of the foam, CD�E�, is 
multiplied by the material constant, N�O, in Ogden’s 
strain energy function (Equation 1) giving N�D (Equa-

S�     (7) 

The introduction of viscoelasticity using the Prony 
prediction of loads 

as well as the prediction of 

FINITE ELEMENT SIMULATION OF 

testing procedures on polyurethane foam 
sample were simulated using Abaqus FE software. 
As previously described, Ogden’s material model 
(Equation 1) for describing the behaviour of com-

(Ogden 1972) was 
ain energy function. Material 

test data sets were fitted to the material model and 
material constants were extracted that gave the most 

fit available. These coefficients 

were examined thoroughly as their accuracy was p
ramount to creating accurate simulations; their st
bility was ensured as they passed Drucker’s criterion 
(Simulia 2010). These modes of deformat
chosen as they were representative of the deform
tion undergone during seating. Only the loading 
curve was considered when evaluating the material 
parameters for the material model. 
were not simulated in the model presented here

4.1 Simulation of IFD testing

An IFD (Indentation Force Deflection) test was co
ducted to demonstrate the accuracy of the material 
model. It can be seen from Figure 
est stress values were in tension along the side of the 
indenter. The accuracy of the model was initially v
lidated by visually comparing material from tests 
and simulations at the sides of the sample and the 
grid deformation on the front face of the sample 
shown in Figure 9. The mesh used in this simulation 
was optimized by undertaking convergence testing. 
Refinement was conducted on the foam material
mesh around the edge of where the indenter came 
into contact, as this is where mesh distortion was 
most likely to occur. The friction coefficient for the 
contact region was set to 0.75 

Fig.8: IFD physical test set-up, ½ size sample compressed 50% 

of initial height 

Fig.9 (a): Deformation plot of IFD test ½ size simulation in 

Abaqus compressed by 65% of initial height (m)

es stress plot of IFD test ½ size simulation in Abaqus co

pressed 65% of initial height (Pa)

were examined thoroughly as their accuracy was pa-
ng accurate simulations; their sta-

bility was ensured as they passed Drucker’s criterion 
. These modes of deformation were 

chosen as they were representative of the deforma-
tion undergone during seating. Only the loading 
curve was considered when evaluating the material 
parameters for the material model. Hysteretic effects 
were not simulated in the model presented here. 

Simulation of IFD testing 

An IFD (Indentation Force Deflection) test was con-
ducted to demonstrate the accuracy of the material 
model. It can be seen from Figure 9(b) that the high-
est stress values were in tension along the side of the 

accuracy of the model was initially va-
lidated by visually comparing material from tests 
and simulations at the sides of the sample and the 
grid deformation on the front face of the sample 

The mesh used in this simulation 
undertaking convergence testing. 

conducted on the foam material 
around the edge of where the indenter came 

to contact, as this is where mesh distortion was 
most likely to occur. The friction coefficient for the 

to 0.75 (Mills 2000). 

up, ½ size sample compressed 50% 

plot of IFD test ½ size simulation in 

% of initial height (m); (b) Von Mis-

es stress plot of IFD test ½ size simulation in Abaqus com-

% of initial height (Pa) 



The simulated force in Figure 10
the reaction forces from the top of the indenter; this 
force was compared to the force from the exper
mental IFD test procedure. The model demonstrated 
good accuracy over the majority of the load curve, 
with some initial elastic region inco
buted to minor inaccuracies in the material model 
that is described by the coefficients in Table 3. This 
curve validated the hyperelastic section of the m
terial model. Figure 11 indicates the accuracy of the 
viscoelastic model. The foam samples response to 
the stress relaxation procedure described in section 
2.3 is demonstrated. The model predicts an instant
neous stress value which is less than that from tes
ing. The shape of the relaxation curve closely corr
lates with the predicted relaxation over the extended 
time period of 8 hours. Hence, the 
model is capable of predicting the viscoelastic r
sponse of the polyurethane foam o
time period. 

Fig.10: IFD test results compared to simulation results

Fig.11: Graph showing accuracy of viscoelastic results over

extended time period. 

5. CONCLUSIONS 

Polyurethane foam samples were tested in uniaxial 
compression and simple shear modes
were used to obtain suitable parameters for a 
second-order hyperelastic material model. This 
model was implemented in a simula
indentation test. Good correlation was found b
tween test results and simulation. The hyperelastic 
section of the validation process illustrated some i
accuracies in the initial strain region; this was due to 
similar inaccuracies within the material model. Co
stitutively modelling the initial elastic region for 

10 was the sum of 
the reaction forces from the top of the indenter; this 
force was compared to the force from the experi-
mental IFD test procedure. The model demonstrated 
good accuracy over the majority of the load curve, 
with some initial elastic region inconsistencies attri-
buted to minor inaccuracies in the material model 
that is described by the coefficients in Table 3. This 
curve validated the hyperelastic section of the ma-

Figure 11 indicates the accuracy of the 
amples response to 

the stress relaxation procedure described in section 
2.3 is demonstrated. The model predicts an instanta-

less than that from test-
. The shape of the relaxation curve closely corre-

xation over the extended 
Hence, the Prony series 

model is capable of predicting the viscoelastic re-
sponse of the polyurethane foam over an extended 

: IFD test results compared to simulation results 

howing accuracy of viscoelastic results over an 

Polyurethane foam samples were tested in uniaxial 
compression and simple shear modes. Test results 
were used to obtain suitable parameters for a 

material model. This 
model was implemented in a simulation of an ISO 

ood correlation was found be-
tween test results and simulation. The hyperelastic 
section of the validation process illustrated some in-

gion; this was due to 
similar inaccuracies within the material model. Con-
stitutively modelling the initial elastic region for 

elastomeric materials is 
region was not of in-service importance, 
this error was not signifi
played some inherent viscoelastic properties, with 
stress relaxation being the most noticeable of these. 
Results of a compression
model the long term reduction of stress, which was 
modelled with good accura
coelastic Prony Series. With both the hyperelastic 
and viscoelastic sections of the model validated, the 
user can accurately interpret displacements and 
stresses throughout the material during loading 
while also being able to monitor stress dissipation 
over a longer time scale. 

Future work will focus on the devel
model to incorporate temperature effects, 
this model will provide 
prescription of wheelchair seating systems.
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