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A Monocular Marker-Free Gait Measurement System
Jane Courtney, Member, IEEE, and A. M. de Paor

Abstract—This paper presents a new, user-friendly, portable
motion capture and gait analysis system for capturing and an-
alyzing human gait, designed as a telemedicine tool to monitor
remotely the progress of patients through treatment. The system
requires minimal user input and simple single-camera filming
(which can be acquired from a basic webcam) making it very
accessible to nontechnical, nonclinical personnel. This system
can allow gait studies to acquire a much larger data set and
allow trained gait analysts to focus their skills on the interpre-
tation phase of gait analysis. The design uses a novel motion
capture method derived from spatiotemporal segmentation and
model-based tracking. Testing is performed on four monocular,
sagittal-view, sample gait videos. Results of modeling, tracking,
and analysis stages are presented with standard gait graphs and
parameters compared to manually acquired data.

Index Terms—Automated tracking, gait analysis, human move-
ment, motion analysis.

I. INTRODUCTION

A. Motivation

C URRENT gait measurement methods involve complex
marker systems, multiple cameras, a dedicated gait

laboratory and trained personnel. This paper presents a simple
single-camera system which has low processing time and is
usable remote from the filming location and without the need
for qualified gait analysts at the data acquisition stage. While
this system is not intended to replace marker-based systems, it
allows the study of gait to broaden beyond the gait laboratory
while providing results comparable to those achievable with
standard systems. It has been used, for example, to analyze gait
in video clips filmed in another country. It is hoped that its
simplicity will encourage therapists and patients to participate
in gait studies and make the most of the technology available.

B. Marker-Based Systems

Marker-based systems are still the most reliable and widely
used. However, they require specific equipment and expertise,
not accessible outside a gait laboratory. This can be a significant
issue when patients are too unwell to travel or when large data
sets are required for study. Also, as demonstrated in [1], gait
facilities are not readily available to many potential users.

Within a gait laboratory, marker placement is still difficult.
Marker positions have a significant effect on system output.
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Slight inaccuracies, particularly around the joints, can cause
failure. Reliability can be improved, though this requires added
cameras, added expense and restriction to a fixed filming loca-
tion. Passive marker systems are less intrusive than active but re-
quire more markers to compensate for vulnerability to occlusion
[2]. This happens during walking as the subject’s arms swing
back and forth, occluding the pelvic region. Many studies on
trends in gait analysis, e.g., [3], have predicted that future de-
velopments in gait analysis will tend away from marker-base
systems.

C. Marker-Free Gait Analysis

Many research groups are striving to develop the first fully
automated marker-free gait analysis system. There are already
some commercially available marker-free motion capture
systems, e.g., [4]. To date however, none is completely auto-
mated and all require a gait laboratory environment, several
measurements of the subject and/or manual intervention at
various stages. These systems sometimes suffice, but have
not been readily embraced by therapists as an alternative to
marker-based systems in monitoring pathological gait. Some
portable gait measurement systems are available, e.g., [5] and
[6], but these concentrate on velocity measurements and do
not acquire full kinematics. Here, this task is tackled using
computer vision based techniques.

The greatest challenge for computer vision lies in analysis
of the lower limbs in the sagittal plane. The difficulties in the
sagittal plane stem from the similarity and proximity of the two
legs and from speed change during the swing phase. Many at-
tempts at marker-free systems have been based on feature de-
tection and tracking [7] or on apparent motion [8]. However,
on crossover of the legs, during swing, image features become
less well defined and it is difficult to identify any apparent mo-
tion. Although this is not technically occlusion, the result is the
same: tracking cues are lost. As the legs cross, the image of the
moving leg becomes blurred and indistinguishable from the sta-
tionary leg. With standard techniques, this can lead to motion
vectors having erroneous zero values. Marker-free techniques
are still being investigated in this area. Review paper [9] looks
at the various tasks involved in motion analysis of the human
body from a computer vision perspective and discusses recog-
nition of human activities from image sequences. Survey [10]
presents recent developments, focusing on whole-body motion
and discussing various methodologies. These reviews should be
consulted for a thorough summary of current research.

D. Design Goals

With patients and therapists in mind, the following goals were
set for this design.

• The system must be completely automated.

1534-4320/$26.00 © 2010 IEEE
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• The system must be simple to use, requiring minimal
training.

• The output will be a comprehensive set of sagittal plane
gait graphs and parameters, sufficiently accurate for clin-
ical diagnosis.

• The input will be a single video file of the patient walking.
• The gait video can be filmed in any reasonable environment

without significant restrictions.
• The subject can be fully and appropriately clothed.
• The subject can walk freely.
While accuracy is important, this design is intended as a first-

stop gait measurement system and is not intended, at this stage,
to compete with marker-based systems in terms of accuracy. In
addition, because of the specific application, expectations are
restricted to the following.

• It is reasonable to expect adequate lighting and contrast in
the filming environment.

• The data will be filmed from a stationary camera.
• The subject will walk approximately fronto-parallel to the

camera.
• The subject will be fully visible in all frames from head to

toe.
• Clothing will not hide the subject’s leg outline, for ex-

ample, skirts may not be worn.
• The height of the subject is known.
An initial design attempt was made previously but the diffi-

culty at leg crossover could not be overcome and the untracked
leg had to be manually removed from each frame [11]. Since
then, a method based on spatiotemporal image analysis has
been developed which outlines the tracked leg in each frame,
distinguishing it from the untracked leg, thus overcoming the
problem. This results in fully automated tracking and a robust
gait measurement system.

II. MOTION TRACKING

Because this system focuses solely on the motion of the lower
limbs, it is helpful to use known information in the design. This
reduces the ability to measure alternative movements, but allows
us to achieve the greatest accuracy and reliability for our partic-
ular application.

Model-based methods can be divided into appearance mod-
eling and motion modeling. The former allows us to interpret
the image of the human body as a set of connected moving ob-
jects. Each limb segment can be tracked either dependent on
the motion of its connected segments or completely indepen-
dently, allowing a considerable amount of freedom of motion.
Motion modeling allows us to restrict behavior to known or rea-
sonable movements and can be used to make good predictions
when image measurements become unreliable. This can be par-
ticularly useful when measuring a defined motion.

The main advantage of model-based methods is that they are
reasonably insensitive to the problems that cause other methods
to fail—image noise, occlusion, lost edge cues, lack of image
features, varying appearance, etc. In a simple example, if the
thigh is approximated as a rectangle in a sagittal plane view and
the arm swings in front of it, thereby occluding one of the edges,
the correct position will still give the best fit result as most of
the other three sides are still visible. Modeling methods can be

combined with direct template matching techniques, e.g., cor-
relation matching, to take advantage of the best available tech-
niques.

By knowing about the shape of the object and its motion,
the system can decide which type of model to use at each
stage. Visual measurements such as edges and textures can be
trusted when the leg is in stance so the structural model can
be used. However, in swing, the image of the leg becomes
blurred, edges are lost, and textures vary, so motion predictions
are used for greater reliability. While model-based methods
can be very helpful in interpreting image data and restricting
the search space, it is important not to excessively constrain
the motion. The system described here is aimed at measuring
pathological gait, so it is important that model-based methods
are not restricted to normal gait. Similarly, the structural or
appearance-based model must not exclude limb deformations
and artificial limbs.

In many motion systems, hidden Markov models (HMMs), or
equivalent sorting systems, are used to attach the gathered data
to predefined poses or motion models, e.g., [12] and [13]. These
approximate the motion well and can be used to reconstruct a
video scene or identify a person by gait. They are not, how-
ever, direct measurements and so not accurate enough to pick
up on the nuances of pathologies. On the other hand, if no re-
strictions to motion interpretation are applied at all, nonsensical
results can occur, such as unnatural joint angles and detachment
of limbs.

Without the addition of model-based tracking, energy mini-
mization techniques stray when the energy cues (edges, corners,
or textures) are weak or transient as is often the case in lower
limb movement. When mistakes are made, such systems go
astray and cannot recover easily. In the CONDENSATION al-
gorithm devised by Blake and Isard [14], a more robust method
is presented for tracking. However, it requires all possible states
to be retained at each stage, thereby decreasing efficiency and
computational speed. Also, as revealed by Deutscher et al. [15],
it still strays easily and takes several frames to recover.

In designing a model-based system, it is important to de-
cide which restrictions are universally applicable and which are
overly constricting and exclusive of certain pathologies. In this
design, model restrictions have been kept to a minimum. In
order to allow for variations in body shape due to deformations
or artificial limbs, a basic structural model is used that simply
represents the position and orientation of the limb segments at
each point in time, remaining reasonably independent of dimen-
sions or actual shape.

III. SYSTEM DESIGN

If the region of interest (in this case, the tracked leg) is iden-
tified, the task reduces to a shape-fitting problem. The approach
taken here is divided into two parts: model fitting and segmen-
tation.

A. Model Fitting

The model used here is an ellipse-based hierarchical tree
structure. The body is divided into segments of coherent motion
from the head down, each segment dependent on the position
and orientation of the previous one. For example, once the
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thigh is located and oriented, this restricts possible positions
and orientations of the shank and so on. Then, each segment is
represented by a shape containing information about position
and orientation at each time frame. From sequential positions
and orientations, motion vectors are deduced.

Ellipses were found to be the best choice for all body seg-
ments. They are similar in shape to the segments of interest
and have well-defined positions and orientations. Also, they are
easily attached directly to segment outlines, making them fast
and efficient to use. A novel ellipse-fitting algorithm [16] was
devised for this task.

B. Segmentation

In fitting the model, it is assumed that the region being mod-
eled is clearly defined and outlined. Therefore, a method of seg-
menting the region being modeled from the rest of the image
must be designed. Many moving images can be segmented into
areas of coherent motion and these modeled as independently
moving objects. However, human bodies consist of parts that
are not only similar in appearance but also similar in movement
and position, making them difficult to separate. In addition, in-
dividual segments do not move independently but are connected
and affect each other’s motion. This problem is most exagger-
ated in the lower limbs where the moving parts on the leg being
tracked have counterparts on the other leg. The two legs are gen-
erally very similar in appearance and texture and so there may be
little or no apparent change in the image as they move in front of
one another. Particularly at crossover, the outline can be blurred
and significant edges lost. At this point, model-fitting methods
can give erroneous results, which propagate through the image
sequence. A segmentation method is needed which can recover
from erroneous matches and can approximate the position of the
outline when edge cues are lost.

Many methods were tested for achieving this segmentation,
including optical flow vectors, clustering methods and energy
functions cued by segment features. None of these were reli-
able enough over long video sequences or from a monocular
viewpoint and few were able to recover from straying. How-
ever, a method presented by Nyogi and Adelson [17] examines
the video sequence in a novel way that allows the outline to be
tracked robustly. In this method, spatiotemporal images are an-
alyzed to track the outline of the body. Gait recognition results
were presented showing the success of the method in tracking
human gait. However, for full gait measurement, the algorithm
proved sensitive to some parameter values and, though the out-
line was quite robustly traced, when it did stray, the gait data
were badly affected. This method has been extended here to
make it fully automatic and reliable enough for gait measure-
ment with the introduction of some automated measurement
techniques outlined in Section IV. In addition, the segmenta-
tion technique is coupled with the model-based tracking, using
our fast ellipse-fitting method, to generated reliable gait data.

IV. IMPLEMENTATION

A. The Block

In the spatiotemporal image analysis method, video frames
from a stationary camera are stacked to create a 3-D block with

Fig. 1. The ��� block for the gait laboratory sequence.

two of its dimensions representing horizontal and vertical direc-
tions and the third representing time (see Fig. 1). An image of
the movement in the video is obtained by slicing the block in the

direction. This image is particularly useful for recognizing
and analyzing walking because of an interesting characteristic
of leg motion. In the case of a sagittal view of a human walking
in fronto-parallel to a stationary camera, a distinct, braided pat-
tern is observed in slices around the leg. The braids are formed
by periodic motion of the legs through swing and stance. While
the legs appear close to each other in the plane, causing oc-
clusion and interference, in the plane they are clearly sepa-
rate. If these two patterns can be outlined separately in the slice,
the two legs would be distinct from one another throughout the
video sequence. In order to automate the initialization of this
outlining process, the parameters that define the braided shape
must first be identified.

B. Walking Path

The walking path shows the subject’s progress through the
video sequence. This is used to guide contour initialization, cal-
culate the bounding rectangle and determine the velocity of the
walker. In order to determine the walking path of the subject,
the block is collapsed into a single image . The intensity
of the pixel at location in this image is given by

(1)

where is the height of the block (the same as the height of the
video frames) and is the intensity at point .

This image is thresholded to highlight the region of most ac-
tivity. By gathering all points from the diagonal pattern image

, a simple least-squares minimization (LSM) algorithm is
used to find the parameters of the line which defines
the path of the walker. While a similar method is used in [18] for
finding human walkers, the replacement of LSM for the Hough
Transform here increases the speed of computation and gives a
more exact result for the case of a single walker. Using these
parameter values, the velocity of the walker is calculated. The
frame rate of the video, and the projection ratio, is approxi-
mated. In a complete 3-D system, the projection matrix could be
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Fig. 2. The ��� block sliced along the path of the walker, � � �� � �, and
the image acquired from this slice.

used to give more accurate results for but because the camera
is stationary and the subject keeps at a reasonably constant far
distance from it, comparing the subject’s height in centimeters
to their height in pixels in the video frame gives a good approxi-
mation of the ratio in pixels per centimeter. The velocity is then
calculated as

(2)

C. Bounding Rectangle

The bounding rectangle is the approximate rectangular area
occupied by the subject in each video frame. Determining the
bounding rectangle minimizes further calculations, gives limits
to the outlining algorithm and helps divide the body into seg-
ments.

The width and horizontal position of the rectangle change as
the walker moves across the camera plane so, while an average
value for the head and toe heights, and , will suffice, a se-
quence of horizontal bounds, and , are required. In order
to identify and , the walking path of the subject is first de-
termined. By slicing the block along this path, the image shown
in Fig. 2 is obtained. Here it is seen that the vertical bounds of
the subject change slightly along the path so average values for
these bounding heights must be determined.

First, the stance positions are identified. This is done by cal-
culating the projection of the intensity on the horizontal axis
and examining it for peaks. Next, the vertical projection is cal-
culated, projecting only the columns at the peaks, since these
are the only locations where the subject is visible along their
entire height. Horizontal projection and vertical projec-
tion is seen in Fig. 3.

From , the mean vertical projection, is calculated and
mean-crossing points identified. The lowest crossing point is
taken as the toe height, and highest as the head height, .
Having determined the vertical bounds, the height of the sub-
ject is segmented into approximations of individual body seg-
ments by using reasonable average body ratios. Ratios were
tested from studies of the human body in medicine, art, and com-
puter vision to choose reasonable approximations for the joint
locations.

To determine horizontal bounds, the horizontal projection of
each frame is examined. Sample bounding rectangles including
body segmentations are shown in Fig. 4. The same vertical
bounds and joint approximations are used throughout the se-
quence so in some frames they are slightly higher or lower than

Fig. 3. The horizontal and vertical projections of the walking path image slice.

Fig. 4. Sample frames showing the bounding rectangle of the subject complete
with body ratio segmentation.

the real positions. However, these bounding rectangles are only
an approximation for initializing and terminating the outlining
algorithm, reducing computational costs and approximating
the segmentation of the body. Imperfect segmentation does not
significantly affect the results.

Finally, the average step length is calculated. This is de-
termined by examining the changing width of the subject’s
bounding rectangle in the video frames. This rectangle broadens
and narrows as the walker passes through the periodic phases of
gait. The peak width is the walker’s step length. By identifying
these periodic peaks and obtaining their mean, the average step
length, , is obtained.

D. Outlining

At ankle height (determined in the bounding rectangle phase),
an slice is obtained. An initial approximation of the snake is
fitted to the braids by searching this image for peaks along the
direction of the walking path but at a distance of half the step
length from this path in either direction. Once these peak points
are found, they are connected together to form the initial zigzag-
shaped template. This initial template is then warped to follow
the pattern’s edges using snakes [19]. Because of the similarity
of the braided patterns at locally connected slices, snake fitting
is initialized only once. After that, the process is repeated at
each slice from ankle to head using the result of the snake fitting
from the previous to initialize the next. This results in a complete
outline of the tracked region throughout the video sequence (see
Fig. 5).

E. Ellipse Fitting

Once the outline of the area being tracked has been obtained
and the body has been segmented, the outline segments are used
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Fig. 5. The outline of the area of interest in a sample frame.

as inputs for the ellipse-fitting algorithm. The outline obtained
from the slice-by-slice snake algorithm is divided, using seg-
mentation, into the tracked body parts: head, torso, thigh and
shank. An ellipse is attached to each of these parts indepen-
dently.

Body parts in each frame have now been positioned indepen-
dent of each other and of their locations in previous frames.
This could cause anomalies in results. In many human motion-
tracking algorithms, segments are positioned subject to con-
straints and each depends on the location of its predecessor in
the hierarchical tree structure of the body. This is a good way of
avoiding unlikely positioning but is prone to straying. One bad
fit would propagate through the image and through the image
sequence causing tracking to fail.

This algorithm rarely suffers from straying and recovers
quickly when it does, but can potentially result in nonsensical
conclusions. Using our direct ellipse-fitting method, the result
will be the best-fit ellipse with no limitations. While this gives
a good estimate of the position and orientation of the body
part, the size of the part may vary from frame to frame and the
relative angles with other body parts could be unreasonable.

To overcome this, constraints are applied after the initial ap-
proximate fit. Firstly, the dimensions of each ellipse are set to the
average over the sequence, on the basis that changes should not
occur. Next, the angles of the ellipses are temporally smoothed
using a 1-D Gaussian filter. This ensures that body parts are not
rotating at unreasonable speeds from frame to frame and it im-
proves gait graphs. Lastly, relative angles are checked to ensure
that joint angles are reasonable.

The final stage of system design is extraction of gait data from
the tracked body model. While visual results clearly show the
success of the algorithm, the purpose of a gait analysis system
is to accurately measure human walking with respect to certain
standardized benchmarks. Various useful data can be extracted
from the output of this algorithm but for the purposes of valida-
tion, sagittal view gait graphs and some significant gait param-
eters are presented here.

V. RESULTS

A. System

The system was implemented on a PC with 2.66-GHz Pen-
tium 4 processor and 1 GB of RAM. The implementation was
coded in Microsoft Visual C++ v6.0 and results graphed in
MATLAB. Test videos used are 320 240, 24-bit RGB AVI.

Fig. 6. Sample frames from clips 1–4, showing the simple ellipse model at-
tached to the images of the subjects.

Higher resolution is possible. The sequences are all approxi-
mately four seconds long ( frames). Processing time is
less than one minute per clip.

Clip 1 was filmed in a gait laboratory using a high quality
camcorder and captured uncompressed at 30 frames per second
using an ATI All-in-Wonder 128 Pro video capture card. The
subject was wearing fitted sportswear with her legs mostly bare
and walking without arm swing. This clip was used to perform
preliminary tests and also to test the accuracy that could poten-
tially be achieved given minimal obstacles.

Clip 2 was filmed with minimal restrictions placed on the sub-
ject’s appearance and motion, i.e., the subject is wearing normal
clothes and walking naturally with arm swing. This video was
filmed with a USB2.0 webcam at a low frame rate (15 frames per
second) in a reasonably uncontrolled environment, although the
background was kept dark to ensure reasonable contrast. The
video file was uncompressed. Picture quality and lighting are
poor, thus testing the system’s sensitivity to these issues. The
low frame rate tests the system’s ability to interpolate in the
presence of missing data.

Clip 3 shows a subject with pathological gait. The frame rate
is 30 frames per second and the file was compressed using Indeo
video five compression. The background is reasonably homoge-
neous in this clip, but loose clothing and poor lighting make it
difficult to see the outline of the subject’s leg throughout. This
clip tests the system’s ability to measure pathological gait under
difficult conditions.

Clip 4 shows a subject with a prosthetic limb using a crutch
and walking in a cluttered environment. The frame rate for this
clip is 15 frames per second and the file was compressed with
IR32 compression. This clip is the toughest test for the system.
Difficulties include lighting, contrast, clothing, arm swing,
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Fig. 7. Gait data acquired from clips 1–4 plotted alongside manually acquired data.

frame rate, background clutter, nonstandard limb shapes and
walking aids.

In order to test the results of this automated system, a pro-
gram was designed to measure limb segment orientations man-
ually in which the user approximates locations of hip, knee and
ankle. Limb segment orientations are calculated from these ap-
proximations and saved to a data file. Outputs are then graphed
alongside system output for comparison. This method is similar
to that used in [20].

B. Visual Results

Visual data are useful for gauging the success of the algo-
rithm and could be used to create an avatar to mimic gait in a
virtual environment. This is a very tangible form of output but is
only fully realizable with complete 3-D gait data, i.e., including
transverse and coronal planes of movement and pelvis and ankle
data. Here, focus is on the sagittal plane and particularly on the
main lower limb area, as this is the most challenging region in
the acquisition of gait information.

Fig. 6 shows frames from the four video sequences with the
ellipse body model attached. Despite significant differences in
sequence quality and contrast, there is little difference in the

accuracy of the model fitting. However, because the leg is not
directly visible in the second sequence, there is an unavoid-
able ambiguity with regard to the dimensions of the limb seg-
ments. In the graphical results, the orientation of the segments
throughout the sequence is plotted and so this ambiguity does
not affect gait measurements—another advantage of this ellipse-
based method.

C. Gait Data

As this system concentrates on the main lower limb sections,
graphs are presented for rotation of thigh and shank. All angles
are relative to the global coordinate system but could be easily
adapted to use embedded coordinates. These graphs are typical
of gait kinematics. Results shown in Fig. 7 are presented from
foot-contact to foot-contact.

In order to test these results, they are compared with manually
approximated angles. Because of poor picture quality in some
of sequences, it can be difficult to determine the orientation of
some segments and so the manual approximations sometimes
introduce their own inaccuracies. Manually obtained data are
graphed in red. As can be seen, the system output remains close
to the manual results. Except in the pathological case, Clip 3,
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Fig. 8. Simple user-friendly interface.

TABLE I
GAIT PARAMETERS ACQUIRED FROM THE FOUR VIDEO SEQUENCES

all outputs exhibit expected shapes and ranges for all graphs.
The pathological gait shows stiffness in the hip. Although more
exaggerated in the manual results, the same diagnosis would be
made from either graph. In clip 2, low frame rate has caused
information loss, seen in the stance phase (0%–30% of the gait
cycle) where the typically sinusoidal shape of the knee flexion
graph is lost. The same error occurs in the manually obtained
results. In clip 4, the measurement system performs better than
the manual method, as it provides smoother outputs allowing
the shape to be more easily recognized.

A simple user interface has been designed and demonstrates
the ease of use of the system. This is seen in Fig. 8. Along with
visual and graphical results, significant gait parameters are nor-
mally acquired. These are walking velocity, stride length and ca-
dence. The values for the sample video sequences are presented
in Table I.

VI. DISCUSSION

Few commercial marker-free systems are in current use in
gait analysis. They are becoming more common in areas such
as sports science, animation and surveillance but the accuracy
and detail required for gait analysis makes system design
challenging. The greatest obstacles to visual systems such as
marker-free systems lie in sagittal-plane acquisition. Thus, this
work focuses on designing a reliable marker-free system for
monitoring sagittal-plane movement in the gait cycle.

The system was tested on four different video clips made
under very different conditions. In all cases, the system com-
pares well with manual measurements and with other published

results for equivalent systems, e.g., [21]. While our system
shows the potential of an automated marker-free system, a
number of improvements have been identified. In the future,
the snake algorithm will incorporate learning so that it can
automatically set its parameters. Also, 3-D position extraction
would also add robustness and accuracy to the measurement
and avoid inaccuracies introduced by straying from the fron-
toparallel path.

This system will allow patients’ gait to be recorded in a re-
laxed and convenient environment without the need for a trained
therapist to be present. Thus, therapists can use their expertise
to diagnose and treat gait rather than spending time mastering
and using marker systems. This system will be used in the Na-
tional Rehabilitation Hospital, Dublin where it was developed,
and will become part of a more complete gait laboratory design
in the future.
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