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______________________________________________________________________________ 
Abstract— Although much research has been completed on finding features for instrument 

recognition systems, little work has focused on the violin’s timbre space. Suitable features from which a 
computer can assess the quality of a violinist’s playing have been sought and the classification of violin 
note sound quality is investigated in this paper. The eventual outcome of this work can be applied in 
various systems including the development of a violin or bowed string instrument teaching aid, in 
automatic music transcription and information retrieval or classification systems. 
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I  INTRODUCTION 
The development of a computer based violin 

teaching aid was proposed in [1]. In order to begin to 
define a violin timbre space, the relationship between 
playing technique and sound produced must be 
understood and quantified. This is to allow for 
guideline ‘boundaries’ to be associated with not only 
good violin sound but also with poorer or beginner 
violin playing. The more general area of quantifying the 
qualitative and subjective nature of violin playing using 
signal processing techniques was presented in [2, 3]. 
This has enabled the representation of violin sounds by 
suitable descriptors. Fifteen features are used to define 
the violin sounds in this work. Violin playing faults 
have been identified and are limited to nine faults [2]. 
This paper considers the classification of violin notes. 
Two tasks are put to the classifier: the first is the 
detection of beginner note from professional standard 
note and the second is much more specific involving 
individual fault detection. The aim of this work is to 
test the feasibility of developing a home computer 
based violin teaching tool.  

 
II  EXISTING RESEARCH 

Within the broad area of automatic audio 
classification, much work has been done in speech 
recognition, in discriminating between speech and non-
speech sounds, and in instrument and environmental 
sound identification and synthesis. Much of the existing 
research to do with violins has been carried out to in 
order to better understand and emulate the making of 
top quality sounding instruments. Many methods have 
been applied to gain insight into the complex 
interactions between the various components of 

stringed instruments. Work exploring the effect a violin 
player has on the sound produced is limited. Many 
features, although very useful in determining one 
instrument from another [4, 5], are not appropriate for 
catching the subtleties due to playing technique or for 
use within the violin’s timbre space. Current advances 
in signal processing and interactive computing have 
enabled the development of much more sophisticated 
systems and learning aids, such as that which has been 
demonstrated by Hämäläinen et al. [6]. This successful 
real-time singing aid involves pitch-based control of a 
game character by the user’s voice. Little work has 
been conducted on characterizing or describing the 
violin’s timbre space let alone exploring the 
relationship between timbre and playing technique.  

 
III  DATA TEST SET 

As no suitable data set was readily available, one 
had to be made. Much thought was given in creating 
this data set in terms of what was needed, obtainable 
and viable. The ideal data set would be a type of violin 
timbre real sound continuum. Unfortunately, this would 
be very time consuming, if not near impossible to 
obtain. The first bow stroke a beginner must learn is 
called legato, which literally means ‘tied together’ or 
smoothly connected [7]. Mastering this ensures enough 
bow control upon which the student can develop other 
bow strokes, such as staccato (‘disconnected’). Since 
the style or type of bow stroke used effects the readings 
obtained, only professional standard player legato notes 
will be used and the beginner notes will be compared to 
these.  

 
The data test set was created in a controlled 

environment, and consists of two same sized groups, 
one with beginner notes and the other with professional 



standard ‘good’ player legato notes. The samples all 
contain one note and are of varying lengths and pitches. 
The pitch range of the data set is any note played in the 
‘first position’, which is the lowest possible position on 
the violin, i.e. open G3 to B5, fourth finger on the E 
string. Two professional standard players and three 
beginner players made recordings from which the data 
set was collected. A player will never play two notes 
exactly the same although they may be perceived by a 
listener as being the same. A beginner does not have the 
control necessary to achieve this level of accuracy in 
playing. Hence, it is more appropriate to use features 
which do not dependent on ether note length or pitch. 
The data samples were made in a recording studio using 
four microphones, a directional stereo pair, and two 
omni directional microphones. The tracks were 
recorded onto DAT, mixed and saved as monophonic 
wav files. It should also be noted that the recordings 
were all made using the same set up and the same violin 
and bow. There are eighty-eight beginner note samples 
and eighty-eight legato ‘good’ note samples.                            
 

IV  DATA SET FEATURE VECTORS  
Each sample in the data set is represented by its 

feature vector. The features selected to characterise the 
samples are based on their ability to separate the data 
into distinct groups within their respective domains [2, 
3]. The fifteen features chosen are numbered as shown 
in Table 1. 

 
Number Feature

1 time domain mean
2 Mel cepstrum variance
3 real cepstrum coefficients mean
4 real cepstrum coefficients variance
5 real cepstrum coefficients kurtosis
6 1st real cepstrum coefficient
7 2nd real cepstrum coefficient
8 5th real cepstrum coefficient
9 spectral contrast measure

10 spectral flatness measure
11 spectral flatness variance
12 spectral flatness std deviation
13 spectral flatness skew
14 signal average power
15 autocorrelation coefficient T

able 1: Features Used. 
 
The data set is represented by a 176 x 15 array, 

where 176 is the number of samples. 
 

V  LISTENING TESTS 
Listening tests have been included to remove the 

subjective nature of this research by showing that other 
trained string players can hear and recognize the faults 
and sound quality descriptions. From the results of 
these listening tests, it is hoped that a relationship can 
be established between what people perceive and any 
quantitative features for the sound samples. These tests 
are aimed at professional standard violinists in 
particular but, to increase numbers, cellists and violists 

have also been included. The listening group consisted 
of twenty-one string players. The listeners received no 
training, only a copy of the testing process steps and an 
explanation of the terms. A play list which includes all 
the beginner and legato good note samples, 176 
samples in total, exists. As soon as the listener activates 
the testing/listening program, a random play list is 
generated consisting of all samples from the list. After 
having heard the note, the listener selects the terms 
which best characterise the sound and grades the overall 
quality. The sound characteristics list includes 
descriptions of playing faults and the overall sound 
quality is a grade between 1 (very poor) and 6 
(excellent). The faults or sound characteristics are 
described and numbered in Table 2. 

 
Number Fault Name
Fault 1 crunching
Fault 2 skating
Fault 3 nervousness
Fault 4 intonation
Fault 5 bow bouncing
Fault 6 extra note
Fault 7 sudden end to note
Fault 8 poor start to note
Fault 9 poor finish to note  

Table 2: Fault Descriptions. 
 
The listener was also left space to add their own 

comments. The exact play list for each listener only 
becomes available at the end of the listening test. The 
test progresses at a speed controlled by the user and 
each sample can only be played once. AKG K240 
‘Monitor’ (600 Ohms) headphones were used and 
samples were accessed and played through Matlab. The 
consistency of the results obtained from this test were 
checked and found to be acceptable. Normalising these 
results allowed for an ‘average listener’ to be 
established. This ‘average listener’ is what is used for 
investigating how violin timbre is perceived and for a 
priori sample labelling. 
 

VI A PRIORI SAMPLE LABELLING 
Two groups of labels have been obtained: one 

considering the overall sound quality and the other for 
individual faults perceived. These labels reflect the 
normalised listeners’ perception, which has been 
obtained from the listening tests. The listeners had to 
evaluate the overall sound quality of all samples by 
giving a grade between 1 (very poor) and 6 (excellent) 
and by indicating playing faults perceived. As only two 
clusters are required, class labels of 1 for professional 
player notes and 2 for beginner notes need to be 
assigned, reflecting the listeners’ perception. This was 
done by finding all the samples which had been given a 
grade of 5 or above and re-labelling them as 1s and the 
remaining samples as 2s. Grading level 5 was taken and 
not 4 because only the good to excellent sounds should 
be classified as professional sounds and not those with 
quality perceived as being ‘reasonable’. The data set 



consists of eighty-eight beginner notes and eighty-eight 
legato professional standard notes and certain notes 
which had been played by the beginner were perceived 
as good sounds by the listeners. 82 of the 176 samples 
were perceived as good and consequently have been 
labelled ‘1’ and the remaining 94 have label ‘2’. Using 
the information obtained about fault perception, labels 
were assigned according as to whether a fault had been 
perceived or not. Samples perceived to have a specific 
fault have been labelled with 2s and for the fault not 
having been perceived, 1s. However, faults rarely occur 
in isolation and many of the beginner player samples 
contain more than one fault.  

 
VII CLASSIFICATION 

Classification is the general term given to 
organizing or grouping similar data together according 
to selected characteristics or some common feature. 
Grouping data together based on similar patterns or 
descriptive features allows a class label to be associated 
with the group. The most significant aims of 
classification relate to data simplification and 
prediction, increasing the efficiency of tasks such as 
information retrieval [8]. In this paper, the classification 
of note samples into beginner or professional and fault 
identification are tested. The aim is to provide objective 
and stable classification for the subjective nature of 
violin sounds for possible ultimate use in a computer 
based teaching aid.  

 
The first stage of the classification process 

involves clustering which is used to find centres that 
reflect the distribution of data points [9]. Running the k-
means clustering algorithm provides the prototype 
vectors which are then used in the k-NN classifier. 
Although many clustering methods exist, k-means is 
one of the most often used because of its simplicity and 
converges well with the Euclidean distance which is 
given in equation 1 [9].  
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One advantage of using the Euclidean distance is 

that each feature remains equally important and no 
correlations between variables influence the outcome. 
The k-means clustering code, taken from the 
Somtoolbox [10], uses the iterative partitional 
clustering algorithm put forward by Jain and Dubes, a 
description of which can be found in [9]. An advantage 
of this algorithm is that it automatically assigns items to 
clusters. The disadvantages are that the number of 
clusters must be pre-selected and that all items are 
forced into a cluster, making it very sensitive to 
outliers. The squared Euclidean distance metric is used 
which is computationally faster for clustering than the 
Euclidean distance shown in equation 1. The clustering 
algorithm remains unaffected by this change, as it is a 

partitional clustering method, as opposed to a 
hierarchical one.  
 

For the first task, two clusters are sought: one for 
poorer quality sounds and another for professional 
violinist notes. The ‘beginner’ and the ‘professional’ 
clusters provide the k-NN classifier with its prototype 
vectors. They are two 15 x 1 vectors. For the fault 
identification task, clusters are formed according to the 
presence or absence of a particular fault as perceived by 
the listener. Prior to use in the classifier, these cluster 
vectors were checked by comparing their values with 
the means of all samples for each feature associated 
with its respective cluster. The algorithm converged 
well and no alterations had to be made.  

 
The data set’s features are stored in a 176 by 15 

array, where 176 is the total number of samples and 15, 
the number of features. A proximity matrix is then 
calculated using the squared Euclidean measure 
between the prototypes and each feature vector. This 
matrix is inputted into the k-NN classifier, to which 
class labels are assigned.  These labels are then 
compared with the a priori labels to obtain the classifier 
accuracy reading. Classifier accuracy is the probability 
of correctly labelling a randomly selected sample. The 
k-NN rule classifies a sample by assigning it the label 
which is most often associated with its k-nearest 
samples. When k=1, every sample is assigned to the 
class of the nearest cluster or pattern. In practice, k=1 is 
often used, as it is in this work.  

 
Should the classification process be carried out 

on the entire data set, very specific model building 
information will be obtained. Cross-validation 
techniques are methods for detecting and preventing 
classifier over-fitting, checking classifier accuracy 
estimation and generalisation potential. It is a way of 
ensuring that a classifier can perform in an 
unsupervised situation. To conduct cross-validation, the 
data set is put in a random order after which, a portion 
of the data set is put aside as a ‘training’ set and leaving 
the rest for testing. Two well established cross-
validation techniques are n-folds and leave-one-out 
cross-validation (LOOCV). In n-fold cross-validation, 
the data set in put into n equal sections where n-1 
sections are used for training and the remaining section 
for testing. In LOOCV, as the name implies, each 
sample is removed one at a time and used for testing 
and the rest of the samples are used for training. This 
makes LOOCV an almost unbiased method but high 
variance can be a problem which can lead to unreliable 
estimates [11]. From a purely practical perspective, 
LOOCV is computationally intensive and is better used 
on smaller data sets and also the deciding factor in 
using four-fold cross-validation in this work.  

 
IX RESULTS 

Classification results obtained are based on four-
fold cross validation to minimise classifier over-fitting. 



In four-fold cross validation, the randomly ordered 
samples are divided into four equal parts. Radomising 
the data set prior to dividing it up reduces the 
possibility of biasing the cross-validation. Three 
quarters of the data set is used for training and the 
remaining quarter for testing the classifier. This is done 
in rotation so that each quarter is used as the test set 
once. The results are compared and the error readings 
are checked. The error readings indicate the difference 
in classifier performance between the training and 
testing sets. The smaller the error, the better the 
associated conditions or feature choice suits the 
classification task. This procedure can be repeated 
using different initial random data set orderings for 
further verification. Four-fold cross validation has been 
applied to both tasks and all possible feature 
combinations. The training and testing set means across 
all four folds are used and are shown below. Successful 
result summaries for the beginner versus professional 
task can be seen in Table 3 and for individual fault 
detection in Table 4.  

 
No. features used Train Test Features

3 95.45% 95.45% 1, 6, 9 
3 95.45% 95.45% 6, 8, 9  

Table 3: Training and Testing Set Means for Detection of 
Beginner Notes from Professional Notes. 

 
Fault No. features used Train Test Features

5 3 84.28% 86.08% 3, 8, 14
3 2 76.57% 77.84% 1, 2 
3 4 76.52% 76.14% 3, 7, 8, 10 T

able 4: Successful Fault Detection Training and Testing Set 
Means. 

 
These tables provide only a brief summary of the 

most successful and efficient results. The results will be 
dealt with in greater detail in their respective sections 
next. 

 
a) Overall Sound Quality Detection 
The first task is to detect good sound from 

poorer sound quality such as that associated with a 
beginner. This involves looking at the accuracy 
achieved by both training and testing sets for every 
possible feature combination, a summary of which is 
shown in Table 5, where the leftmost column indicates 
the number of features used. The next two columns 
show the top accuracy readings achieved for training 
and testing sets. The fourth column gives the number of 
combinations achieving the relevant accuracy scores. 
The rightmost column compares the combinations 
obtained for the testing and training sets which have 
returned top accuracy readings.   

 

No. Top Train Top Test No. Combinations Train = Test?
1 75.57% 75.57% 14(train), 15 (test) inclusive
2 93.75% 93.75% 1 yes
3 95.45% 95.45% 2 yes
4 95.45% 95.45% 2 yes
5 95.45% 95.45% 11 yes
6 95.45% 95.45% 13 yes
7 95.45% 95.45% 33 yes
8 95.45% 95.45% 18 yes
9 95.45% 95.45% 19 yes
10 95.45% 95.45% 10 yes
11 95.45% 95.45% 2 yes
12 75.57% 75.57% 15(train), 17(test) inclusive
13 75.57% 75.57% 4(train), 5(test) inclusive
14 75.57% 75.57% 1 yes
15 75.57% 75.57% 1 yes
Table 5: Summary of Top Results for Training and Testing 

Sets According to Number of Features Used for Task I. 
 
According to these results, automatic detection between 
good and beginner notes can be done effectively and 
easily using three up to eleven features. A small drop in 
accuracy readings is reported when less than two 
features are used and a drop of ≈20% is observed when 
twelve or more features are used.  

 
The results providing the top accuracy reading 

using the least amount of features are of greatest 
interest and can be seen in Table 6.  

 
no. features used train test combination

2 93.75% 93.75% 1, 12
3 95.45% 95.45% 1, 6, 9
3 95.45% 95.45% 6, 8, 9
4 95.45% 95.45% 1, 2, 6, 9 
4 95.45% 95.45% 2, 6, 8, 9 T

able 6: Top Performing Feature Combinations Using Two, 
Three and Four Features Only. 

 
In Table 6, only the top results obtained using 

two, three or four features are shown. The successful 
three and four feature combinations only differ by the 
addition of one feature, feature two. This makes feature 
two redundant when four features are used. Features 
numbered six and nine are present in both 
combinations. Using these two features only in the 
classifier returned a reading of ≈54% accuracy. So 
adding feature one or feature eight greatly improves the 
accuracy reading. There is no evident relationship or 
interdependence between features one and eight. 
Feature one has been shown to be 100% accurate in 
detecting these two groups on its own [3] but slightly 
less efficient at 75.57% through a classifier with 
monothetic clusters. The top performing combination 
when using two features obtained 93.75% accuracy, 
using features one and twelve.  

 
Using five to ten feature combinations increases 

the number of successful combinations and feature 
overlap needs to be considered. A first general 
comment about all the top scoring combinations is that 



they contain features six and nine. When considering 
only feature combinations obtaining accuracy results 
greater than 90%, there are one hundred and eleven 
successful combinations using from two to eleven 
features inclusively. Of these combinations when the 
redundant combinations have been removed, there are 
but eighteen combinations. With redundancy 
eliminated, it is possible to use two, three, five, six, 
seven, or eight feature dependent combinations to 
achieve greater than 90% accuracy. Apart from the four 
feature exception, it is only after adding a ninth feature 
that redundant features are present in every top scoring 
combination. It is more efficient to use the smallest 
number of features to achieve classification. The task of 
detecting beginner from professional standard notes is 
possible at 95.45% accuracy and using three features is 
the most efficient way of determining good from 
beginner notes.  

 
b) Individual Fault Detection

The second task involves individual fault detection. 
Table 7 shows the best scores achieved for detecting 
each fault. Some feature combinations are successful at 
fault detection but the same combinations often 
detected more than one fault successfully, making 
individual fault detection difficult to achieve. Using 
four, five or six feature combinations return the best 
accuracy scores for all faults except for fault three. The 
same feature combinations are returned and can be seen 
in Table 8.  

 
Fault Train Test No.  features used

1 78.88% 77.56% 4, 5, 6
2 80.59% 82.67% 4, 5, 6
3 76.52% 76.14% 2
4 82.20% 81.25% 4, 5, 6
5 87.12% 86.36% 4, 5, 6
6 87.12% 89.20% 4, 5, 6
7 81.91% 79.26% 4, 5, 6
8 82.58% 81.82% 4, 5, 6
9 75.76% 74.43% 4, 5, 6  

Table 7: Top Detection Scores for Each Fault. 
 

No. features used Features
2 1, 2
4 1, 8, 10, 13
5 1, 3, 8, 10, 13
6 3, 4, 8, 11, 12, 13
6 4, 8, 10, 11, 13, 15  

Table 8: Successful Feature Combinations from Table 7. 
 
A summary of the top results achieved according to the 
number of features used can be seen in Table 9 where 
the leftmost column gives the number of features used.  
 

No. Train Test Fault Features
1 ≈ 50% ≈ 50% no n/a
2 76.52% 86.08% 3 1, 2 
3 84.28% 86.36% 5 3, 8, 14 
4 87.12% 89.20% 5 1, 8, 10, 13 
4 87.12% 86.36% 6 1, 8, 10, 13 
5 87.12% 89.20% 5 1, 3, 8, 10, 13 
5 87.12% 86.36% 6 1, 3, 8, 10, 13 
6 87.12% 89.20% 5 3, 4, 8, 11, 12, 13 
6 87.12% 86.36% 5 4, 8, 10, 11, 13, 15 
6 87.12% 89.20% 6 3, 4, 8, 11, 12, 13 
6 87.12% 89.20% 6 4, 8, 10, 11, 13, 15 
7 84.38% 86.08% 5 1, 4, 6, 7, 9, 14, 15 
7 84.38% 86.08% 5 3, 4, 9, 11, 12, 14, 15 
7 84.38% 86.08% 5 3, 7, 8, 11, 12, 13, 14 
8 84.38% 86.08% 5 3, 6, 7, 8, 9, 11, 13, 14 
9 84.38% 86.08% 5 1, 2, 3, 4, 6, 7, 8, 14, 15 
9 84.38% 86.08% 5 1, 2, 3, 6, 8, 9, 10, 12, 14 
9 84.38% 86.08% 5 1, 6, 7, 8, 9, 10, 12, 13, 14 
9 84.38% 86.08% 5 3, 4, 6, 7, 8, 10, 11, 12, 14 
9 84.38% 86.08% 5 3, 4, 6, 7, 9, 11, 12, 14, 15 

10 84.38% 86.08% 5 4, 7, 8, 9, 10, 11, 12, 13, 
14, 15 

11 84.38% 86.08% 5 1, 2, 3, 6, 7, 8, 10, 11, 12, 
13, 14 

12 76.33% 76.99% 5 1, 2, 3, 6, 7, 8, 9, 10, 11,
12, 13, 14 

13 75.76% 78.13% 5 1, 2, 3, 4, 6, 7, 8, 9, 10, 
12, 13, 14, 15 

14 ≈ 50% ≈ 50% no n/a
15 ≈ 50% ≈ 50% no n/a  

Table 9: Faults Detected According to the Number of Features 
Used. 

 
From Table 9, fault detection is not possible using one, 
fourteen or fifteen feature combinations as the results 
obtained for all of these combinations are inconclusive 
at ≈50% accuracy. The results of greatest interest are 
those obtained when using two, three, seven, eight, 
nine, ten and eleven feature combinations. From 
inspection of all the top scores obtained, fault five is the 
easiest to detect. Whether using three through to 
thirteen features, fault five is consistently detected with 
the highest levels of accuracy. Using four, five or six 
feature combinations also detects fault six with the 
same high accuracy and features as fault five as can be 
seen in Table 9. Faults five and six are bow bouncing 
and extra note respectively.  

 
Using three, seven, eight, nine, ten or eleven 

feature combinations all provide solutions for detecting 
fault five with mean accuracy above 80%. A summary 
of these results is given in Table 10. 
 

No. Train Test Total no. No. dependent
3 84.28% 86.08% 1 1
7 84.38% 86.08% 3 2
8 84.38% 86.08% 1 0
9 84.28% 86.08% 5 2
10 84.38% 86.08% 1 1
11 84.28% 86.08% 1 1  

Table 10: Fault Five Detection Results. 
 

In Table 10, the leftmost column indicates the number 
of features used. Feature combinations which have 
performed poorly or overlap in the detection of another 
fault have been omitted. The training and testing set 
mean scores are shown in the next columns. The fourth 



column gives the total number of useful combinations 
and the last column has the number of successful 
combinations without overlapping samples. Although 
fault five can be detected using seven, nine, ten or 
eleven feature combinations, the most efficient way to 
detect fault five uses three features, three, eight and 
fourteen.  
 

Fault three is the next easiest fault to detect as it 
all but once returns completely different feature 
combinations than any other fault. Fault three is most 
readily detected when using two features. The training 
and testing sets achieved 76.52% and 76.14% accuracy 
respectively. These are the top accuracy readings 
obtained for any two feature combination. The other 
faults which returned their top scores with the same 
combination are all at least ≈10% lower. The next best 
performance using two features was for detecting fault 
five with readings of 69.41% and 66.19% for the 
training and testing sets respectively. These results 
though are achieved with a different combination, one 
which uses features four and fourteen. Looking at how 
successfully fault three is detected by other 
combinations revealed an interesting pattern. It was one 
fault which achieved its highest accuracy rates using 
completely different feature combinations to all other 
faults. 

 
X CONCLUSIONS 

Detecting good sound from beginner sound can 
be achieved by any one of a hundred and ten different 
feature combinations, using from three to eleven 
features, returning accuracy results of just below 96%. 
On further investigation, much feature redundancy is 
present. Removing overlapping feature combinations 
leaves only eighteen all feature dependent 
combinations. The most efficient way to detect a 
beginner from a professional violin sound is to use 
three features.  

 
The presence of playing faults can be detected 

successfully as can be seen in the results shown Table 
7. Individual faults though are harder to isolate. Only 
two specific faults are easy to detect. They are fault 
three, which is ‘nervousness’ and fault five which is 
‘bow bouncing’. The detection accuracy rates for the 
other faults are all closely grouped together, and return 
the same feature combinations, implying a certain 
qualitative proximity from a quantitative perspective. 
This is due in part to a sonic similarity between certain 
faults and that the fault samples in the data set often 
contain more than one fault. One possible way around 
this would be to use samples which contain only one 
fault at a time. Difficulties relating to data set creation 
have already been mentioned in Section III. An 
alternative to changing the data set would be to pay 
greater attention to the naming of faults, making them 
more specific. Another point to investigate would be to 
find new features. Location dependent features, such as 

those pertaining to the attack and end of note periods 
could be more informative.  

 
The results for both tasks have been obtained via 

cross validation on one data set. It remains to be 
confirmed whether they hold on a different data set.  
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