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Two soliton interactions of BD.I multicomponent
NLS equations and their gauge equivalent

V. S. Gerdjikov1, G. G. Grahovski1,2

1Institute for Nuclear Research and Nuclear Energy
Bulgarian Academy of Sciences

72 Tsarigradsko chaussee, 1784 Sofia, Bulgaria
2School of Mathematical Sciences

Dublin Institute of Technology
Kevin Street, Dublin 8, Ireland

Abstract. Using the dressing Zakharov-Shabat method we re-derive the effects of the two-soliton
interactions for the MNLS equations related to the BD.I-type symmetric spaces. Next we generalize
this analysis for the Heisenberg ferromagnet type equations, gauge equivalent to MNLS.

Keywords: Multicomponent nonlinear Schrödinger equations, gauge equivalence, soliton solu-
tions, reduction group
PACS: 35Q51, 37K40

INTRODUCTION

The multicomponent nonlinear Schrödinger (MNLS) equations related to symmetric
spaces [26, 4] and their gauge equivalent multicomponent Heisenberg ferromagnets
(MHF) systems have been extensively studied during the last decades. A number of
important results such as the spectral theory of their Lax operators [29, 27, 5] and
its equivalence to a Riemann-Hilbert problem [32, 30, 25, 18, 13, 7, 8, 23, 16], their
Hamiltonian structures and the theory of the relevant recursion operators are well known
by now [9, 10, 12, 15, 24, 19].

An important and still unsolved problem which we will address below is the analysis
of the soliton interactions for these MNLS. In [11] we used one the versions of the
dressing Zakharov-Shabat method to derive explicitly the two-soliton solution of BD.I-
type MNLS equations:

i~qt +~qxx +2(~q †,~q)~q− (~q,s0~q)s0~q∗ = 0, (1)

and evaluated their asymptotics for t →±∞.
For n = 3 one can recover MNLS equations describing BEC with spin F = 1 while

n = 5 one recovers similar equations describing BEC with spin F = 2 [21, 17, 28]. The
Hamiltonians for the MNLS equations (1) are given by

HMNLS =
∫ ∞

−∞
dx

(
(∂x~q †,∂x~q)− (~q †,~q)2 +

1
2
(~q †,s0~q∗)(~qT ,s0~q)

)
, (2)

The classical results of Zakharov and Shabat about soliton interactions [35] were gen-
eralized for the vector nonlinear Schrödinger equation by Manakov [26]. For detailed



exposition see the monographs [32, 3] and also [1, 23, 31]. However the soliton interac-
tions for the MNLS related to symmetric spaces [4] remain an open problem. Below, for
the class of BD.I symmetric spaces we provide a tool for solving it.

The Zakharov Shabat approach consisted in calculating the asymptotics of generic
N-soliton solution of NLS for t →±∞ and establishing the pure elastic character of the
generic soliton interactions [35]. By generic here we mean N-soliton solution whose
parameters λ±k = µk± iνk are such that µk 6= µ j for k 6= j. The pure elastic character of
the soliton interactions is demonstrated by the fact that for t →±∞ the generic N-soliton
solution splits into sum of N one soliton solutions each preserving its amplitude 2νk and
velocity µk. The only effect of the interaction consists in shifting the center of mass and
the initial phase of the solitons. These shifts can be expressed in terms of λ±k only; for
detailed exposition for the scalar NLS eq. see [3].

It is well known also, that the Lax representation [L(λ ),M(λ )] = 0 is invariant
with respect to the gauge group action [3]. The first nontrivial example is the gauge
equivalence between the nonlinear Schrödinger (NLS) equation and the Heisenberg
feromagnet (HF) equation.

Our aim in this paper is to rederive the result in [11] using an alternative version
of the dressing method. Here we follow the classical approach of Zakharov, Shabat and
Manakov developed first for the scalar NLS equation [35] and generalize it for the BD.I-
type MNLS. In the next Section we generalize these results for the gauge equivalent
HF-type systems:

i
∂S
∂ t

+
∂
∂x

(
ad−1

S
∂S
∂x

)
= 0 (3)

where ad SX = [S,X ], S3 = S and as a result (see [6])

ad−1
S X =

1
4

(
5ad S− ad 3

S
)

X .

In the conclusions we outline possible extensions of these results.

PRELIMINARIES

It is well known that the MNLS (1) allows Lax representation. The inverse scattering
problem for the corresponding Lax operator can be reduced to a Riemann-Hilbert prob-
lem, see [32, 33] for the general case and [11, 12, 14, 17, 22] for the BD.I-type MNLS.

The MNLS equation (1) possesses Lax representation [L,M] = 0 as follows

Lψ(x, t,λ ) ≡ i∂xψ +(Q(x, t)−λJ)ψ(x, t,λ ) = 0. (4)
Mψ(x, t,λ ) ≡ i∂tψ +(V0(x, t)+λV1(x, t)−λ 2J)ψ(x, t,λ ) = 0, (5)

V1(x, t) = Q(x, t), V0(x, t) = iad−1
J

dQ
dx

+
1
2

[
ad−1

J Q,Q(x, t)
]
. (6)

where

Q(x, t) =




0 ~qT 0
~q∗ 0 s0~q
0 ~q †s0 0


 , J = diag(1,0, . . .0,−1). (7)



Below we use the following definition of orthogonality: X ∈ so(2r+1) if X +S0XT S0 =
0 where

S0 =
2r+1

∑
k=1

(−1)k+1Ek,2r+2−k =




0 0 1
0 −s0 0
1 0 0


 , (Ekn)i j = δikδn j (8)

The soliton solutions can be derived by an appropriate modification [17] of the
Zakharov-Shabat dressing method [34]. Skipping the details we provide the dressing
factor for the N-soliton solution:

u(x, t,λ ) = 11+
N

∑
k=1

(
Ak(x, t)
λ −λ+

k
+

Bk(x, t)
λ −λ−k

)
. (9)

The Lax operator L has a Z2-symmetry due to the fact that Q(x, t) = Q†(x, t). One of
the consequences of this symmetry is that the poles of the dressing factors must satisfy
λ−k = (λ−k )∗; we also assume that λk = µk + iνk is located in C+ – the upper half of the
complex λ -plane, i.e. νk > 0.

The residues of u admit the following decomposition

Ak(x, t) = Xk(x, t)FT
k (x, t), Bk(x, t) = Yk(x, t)GT

k (x, t),

where all matrices involved for simplicity are supposed to be of rank 1 [33, 15]. For the
pure solitonic case the factors Fk and Gk can be expressed by the trivial fundamental
solutions χ±0 (x, t,λ ) = e−iλ (x+λ t)J , corresponding to vanishing potential of L, as follows

FT
k (x, t) = FT

k,0[χ
+
0 (x, t,λ+

k )]−1, GT
k (x, t) = GT

k,0[χ
−
0 (x, t,λ−k )]−1.

The constant vectors 2r +1-component Fk,0 and Gk,0 obey the algebraic relations

FT
k,0S0Fk,0 = 0, GT

k,0S0Gk,0 = 0.

The other two types of vectors Xk(x, t) and Yk(x, t) are solutions to the algebraic system

S0Fk = ∑
l 6=k

XlFT
l S0Fk

λ+
l −λ+

k
+∑

l

YlGT
l S0Fk

λ−l −λ+
k

,

S0Gk = ∑
l

XlFT
l S0Gk

λ+
l −λ−k

+ ∑
l 6=k

YlGT
l S0Gk

λ−l −λ−k
.

(10)

The corresponding N-soliton solution can be recovered from u(x, t,λ ) using the
relation

QNs = lim
λ→∞

λ (J−uJu−1(x, t,λ ))

=

[
J,

N

∑
k=1

Ak +Bk

]
.

(11)



We also introduce the following more convenient parametrization for Fk and Gk:

Fk(x, t) = S0|nk(x, t)〉=




e−zk+iφk

−√2s0~ν0k
ezk−iφk


 ,

Gk(x, t) = |n∗k(x, t)〉=




ezk+iφk√
2~ν ∗0k

e−zk−iφk


 ,

(12)

where~ν0k are constant 2r−1-component polarization vectors and

z j = ν j(x+2µ jt)+ξ0 j, φ j = µ jx+(µ2
j −ν2

j )t +δ0 j,

〈nT
j (x, t)|S0|n j(x, t)〉= 0, or (~ν0, js0~ν0, j) = 1.

(13)

For |Xk〉 and |Yk〉 one can derive a set of algebraic equations (see [11, 33]) which can be
easily solved. In particular for N = 2 we get:

|X1〉=
1
Z

(
f ∗12

λ−1 −λ−2
|n2〉− κ22

λ+
2 −λ−2

S0|n∗1〉+
κ12

λ+
2 −λ−1

S0|n∗2〉
)

,

|X2〉=
1
Z

(
− f ∗12

λ−1 −λ−2
|n1〉+ κ21

λ+
1 −λ−2

S0|n∗1〉−
κ11

λ+
1 −λ−1

S0|n∗2〉
)

,

|Y1〉=
1
Z

(
κ22

λ+
2 −λ−2

|n1〉− κ21

λ+
1 −λ−2

|n2〉− f12

λ+
1 −λ+

2
S0|n∗2〉

)
,

|Y2〉=
1
Z

(
− κ12

λ+
2 −λ−1

|n1〉+ κ11

λ+
1 −λ−1

|n2〉+ f12

λ+
2 −λ+

1
S0|n∗1〉

)
,

(14)

where

Z(x, t) =
( | f12|2
|λ+

2 −λ+
1 |2

− κ12κ21

|λ+
2 −λ−1 |2

+
κ11κ22

4ν1ν2

)
,

κi j(x, t) = 〈n†
i |n j〉, fi j(x, t) = f ji(x, t) = 〈ni|S0|n j〉.

(15)

Inserting this result into eq. (11) we obtain the following expression for the 2-soliton
solution of the MNLS [11]:

Q2s(x, t) = [J,A1 +A2 +B1 +B2] =
1
Z

[J,C(x, t)−S0CT (x, t)S0],

C(x, t) =
κ22

λ+
2 −λ−2

|n1〉〈n†
1|−

κ12

λ+
2 −λ−1

|n1〉〈n†
2|−

κ21

λ+
1 −λ−2

|n2〉〈n†
1|

+
κ11

λ+
1 −λ−1

|n2〉〈n†
2|−

f ∗12
λ−1 −λ−2

|n1〉〈n2|S0− f12

λ+
1 −λ+

2
S0|n∗2〉〈n†

1|.

(16)

Similarly one can derive the N-soliton solutions.



Next we can calculate the asymptotics of the 2-soliton solution [11] along the trajec-
tory of the first soliton. To this end we keep z1(x, t) fixed and let τ = z2− z1 tend to ±∞.
This is possible if µ1 6= µ2, i.e the two solitons have different velocities. For definiteness
we assume that µ2 > µ1.

Therefore it will be enough to insert the asymptotic values of the matrix elements of
M for τ →±∞ and keep only the leading terms:

κ22 ' e±2τ exp(±ν2z1/ν1)+2C1,

κ12 = e±τ exp(±(1+ν2/ν1)z1± i(φ1−φ2))+O(1),

κ21 = e±τ exp(±(1+ν2/ν1)z1∓ i(φ1−φ2))+O(1),

f12 = e±τ exp(∓(1−ν2/ν1)z1± i(φ1−φ2))+O(1),

(17)

After somewhat lengthy calculations we get:

lim
τ→∞

~q2s(x, t;z1,z2;φ1,φ2) =~q1s(x, t;z1 + r+,φ1−α+),

lim
τ→−∞

~q2s(x, t;z1,z2;φ1,φ2) =~q1s(x, t;z1− r+,φ1 +α+),
(18)

where ~q1s is the one-soliton solution

~q1s(x, t;z1,φ1) =− i
√

2ν1e−i(φ1)
(
e−z1s0|~ν01〉+ ez1|~ν∗01〉

)

cosh(2z1)+(~ν†
01,~ν01)

, (19)

and the shifts of its arguments

r+ = ln
∣∣∣∣
λ+

1 −λ+
2

λ+
1 −λ−2

∣∣∣∣ , α+ = arg
λ+

1 −λ+
2

λ+
1 −λ−2

. (20)

are expressed in terms of the discrete eigenvalues λ±j only.

THE TWO SOLITON INTERACTIONS REVISITED

We will re-derive the above results by using an alternative version of the dressing method
[32, 33, 34]. Here we will apply another version of the dressing method, namely we
will do the dressing in two steps, each time adding just one pair of eigenvalues λ±j to
the discrete spectrum of L. Obviously the two-soliton solution can be obtained in two
different ways:

u2s;A = u2,1(x, t,λ )u1(x, t,λ ), u2s;B = u1,2(x, t,λ )u2(x, t,λ ), (21)

where

u j(x, t,λ ) = 11+(c j(λ )−1)Pj +(c−1
j (λ )−1)P̄j, c j(λ ) =

λ −λ+
j

λ −λ−j
,

Pj(x, t) =
|n j〉〈n†

j |
〈n†

j |n j〉
, P̄j = S0PT

j S0,

(22)



and
u2,1(x, t,λ ) = 11+(c2(λ )−1)P2,1 +(c−1

2 (λ )−1)P̄2,1,

u1,2(x, t,λ ) = 11+(c1(λ )−1)P1,2 +(c−1
1 (λ )−1)P̄1,2,

(23)

Here

P2,1(x, t) =
|n2〉〈n†

2|
〈n†

2|n2〉
, P1,2(x, t) =

|n1〉〈n†
1|

〈n†
1|n1〉

,

|n1〉= u2(x, t,λ+
1 )|n1〉, |n2〉= u1(x, t,λ+

2 )|n2〉,
(24)

where

|n1〉= |n1〉+(c2(λ+
1 )−1)

κ21

κ22
|n2〉+(c−1

2 (λ+
1 )−1)

f12

κ22
S0|n∗2〉,

|n2〉= |n2〉+(c1(λ+
2 )−1)

κ12

κ11
|n1〉+(c−1

1 (λ+
2 )−1)

f12

κ11
S0|n∗1〉,

〈n†
2|n2〉=

4ν1ν2

κ11
Z, 〈n†

1|n1〉=
4ν1ν2

κ22
Z.

(25)

The limits for τ →±∞ are given by:

u j(x, t,λ ) = exp(lnc j(λ )(Pj(x, t)− P̄j(x, t)),

C j(λ ) = lim
x→∞

u j(x, t,λ ) =




c j(λ ) 0 0
0 11 0
0 0 c−1

j (λ )


 ,

lim
x→−∞

u j(x, t,λ ) = C−1
j (λ ),

(26)

After all these calculations one is able to show that in fact u2s;A = u2s;B, i.e. the result
of dressing is independent on the order in which one adds up the pairs of eigenvalues to
the discrete spectrum of L. The corresponding two-soliton solution is given by:

Q2s(x, t) = lim
λ→∞

λ (J−u2s;BJu2s;B(x, t,λ ))

= (λ−1 −λ+
1 )[J,P1− P̄1]+ (λ−1 −λ+

1 )[J,P2− P̄2]

= (λ−1 −λ+
1 )[J,P1− P̄1]+ (λ−1 −λ+

1 )[J,P2− P̄2].

(27)

These two results are behind the nonlinear superposition principle for the Bäcklund
transformations [2, 19].

Let us now calculate the limits of u2s;B(x, t,λ ) for z1 fixed and t tending to +∞ and
−∞. In this way we will find out what is the effect of the second soliton on the asymptotic
behavior of the first one. One can easily check that:

z2 =
ν2

ν1
z1 +2ν2(µ2−µ1)t +

ξ01ν1−ξ02ν2

ν1
. (28)

Therefore, since µ2 > µ1 and ν2 > 0, z2 and t tend simultaneously to +∞ (resp., to −∞).
To be more explicit we slightly change the notation for the one-soliton dressing factor



and write it down showing explicitly the relevant soliton parameters:

u j(x, t,λ ) = u1s(λ ;z j,φ j,~ν0 j,λ+
j ). (29)

In this configuration the second soliton moves with velocity µ2 and for t →−∞ (resp. for
t →−∞) is behind (resp. outstands) the slower first one. The corresponding asymptotic
values for the dressing factors are:

lim
τ→−∞

u2s;B = u1s(λ ;z1− r+,φ1 +α+,~ν01,λ+
1 )C−1

2 (λ ),

lim
τ→∞

u2s;B = u1s(λ ;z1 + r+,φ1−α+,~ν01,λ+
1 )C2(λ ),

(30)

where r+ and α+ are given by eq. (20). Inserting these limits into eq. (27) and taking
into account that C2(λ ) commutes with J we get:

lim
τ→−∞

Q2s = lim
τ→−∞

lim
λ→∞

λ (J−u2s;BJu2s;B(x, t,λ ))

= Q1s(z1− r+,φ1 +α+;~ν01)
lim
τ→∞

Q2s = Q1s(z1 + r+,φ1−α+;~ν01).
(31)

Thus we have rederived the eqs. (18) and established that soliton interactions for the
BD.I-type MNLS are very much like the the ones for the scalar NLS. The effect of the
interaction is just shift of the relative center of mass and relative phase. The polarization
vector~ν01 does not change its direction.

Obviously, we can repeat the calculation using u2s;A(x, t,λ ) and considering the limit
for fixed z2. In this way we establish that the second soliton experiences opposite shifts
in the relative center of mass and relative phase.

THE GAUGE EQUIVALENCE

Here we start with a brief description of the Zakharov-Shabat system in pole gauge [33]

L̃ψ̃(x, t,λ )≡ i
dψ̃
dx
−λS(x, t)ψ̃(x, t,λ ) = 0, (32)

where
S(x, t) = Adg · J = g−1Jg(x, t), J = diag (1,0, ...,0,−1), (33)

i.e. S3 = S and the gauge group elements g(x, t) = ψ(x, t,λ = 0) and satisfy the equation:
(

i
d
dx

+Q(x, t)
)

g(x, t) = 0.

The second Lax operator takes the form:

M̃ψ̃(x, t,λ )≡ i
dψ̃
dt
− (

iλad−1
S Sx +λ 2S

)
ψ̃(x, t,λ ) = 0. (34)



Thus the compatibility condition [L̃(λ ),M̃(λ )] = 0 gives the multicomponent HF type
(3) related to BD.I-type symmetric spaces.

The direct scattering problem for the Lax operator (32) is based on the Jost solutions
and the scattering matrix T (λ ):

lim
x→∞

ψ̃(x,λ )eiλJx = 11, lim
x→−∞

φ̃(x,λ )eiλJx = 11, T̃ (λ ) = (ψ̃(x,λ ))−1φ̃(x,λ ). (35)

The fundamental analytic solutions(FAS) χ̃±(x,λ ) of L̃(λ ) are related to the Jost solu-
tions by [32, 18]

χ̃±(x,λ ) = φ̃(x,λ )S̃±(λ ) = ψ̃(x,λ )T̃∓(λ )D̃±(λ ), (36)

where T̃±(λ ) and S̃±(λ ), D̃±(λ ) are elements of the corresponding Lie group and
are factors in the generalized Gauss decomposition of the scattering matrix: T̃ (λ ) =
T̃−(λ )D̃+(λ ) ˆ̃S+(λ ) = T̃ +(λ )D̃−(λ ) ˆ̃S−(λ ). Here the superscript “+” (resp “−”) stays
for denoting upper-triangular (resp. lower-triangular) matrices for the Gauss factors
S̃±(λ ) and T̃±(λ ) while the matrix elements of the block-diagonal matrices D̃±(λ ) are
analytic functions of λ for Imλ > 0 and Imλ < 0 respectively.

On the real axis χ̃+(x,λ ) and χ̃−(x,λ ) are related by χ̃+(x,λ ) = χ̃−(x,λ )G̃0(λ ),
G̃0(λ ) = ˆ̃S−(λ )S̃+(λ ), and the function G̃0(λ ) can be considered as a minimal set of
scattering data in the case of absence of discrete eigenvalues of (32) [32, 18].

The FAS ψ̃ for the MNLS systems on symmetric spaces of BD.I-type are related to
the FAS ψ for the corresponding gauge equivalent MHF systems as follows:

ψ̃(x,λ ) = g(x)ψ(x,λ )g−1
+ , φ̃(x,λ ) = g(x)ψ(x,λ )g−1

− , (37)

where
g(x) = φ(x,λ = 0), g± = lim

x→±∞
g(x)

We request that g± be diagonal matrices. Then, for the corresponding set of scattering
data for the MHF systems and their gauge equivalent MNLS ones we get:

T̃ (λ ) = g+T (λ )g−1
− , T̃±(λ ) = g+T±(λ )g−1

+ ,

S̃±(λ ) = g−S±(λ )g−1
− , D̃±(λ ) = g+D±(λ )g−1

− .
(38)

Similar formulas hold for the renormalised FAS:

χ̃±(x,λ ) = g(x)χ±(λ )g−1
− . (39)

The dressing method proposed by Zakharov and Shabat [34] can be naturally extended
also to the gauge equivalent systems. It allows one starting from a FAS ξ̃±(0)(x,λ ) of

L̃ with potential S(0) to construct a new singular solution ξ̃±(1)(x,λ ) with singularities

located at prescribed positions λ±1 . Then the new solutions ξ̃±(1)(x,λ ) will correspond to
a potential S(1) of L with two discrete eigenvalues λ±1 . It is related to the regular one by
the dressing factors ũ(x,λ ):

ξ̃±(1)(x,λ ) = ũ(x,λ )ξ̃±(0)(x,λ )ũ−1
− (λ ), ũ−(λ ) = lim

x→−∞
ũ(x,λ ), (40)



The one-soliton gauge equivalent dressing factors ũ(x,λ ) are related to those for the
‘canonical’ gauge u(x,λ ) by

ũ(x,λ ) = u−1(x,λ = 0)u(x,λ )g(0)

= 11+
(

c1(λ )
c1(0)

−1
)

P1 +
(

c1(0)
c1(λ )

−1
)

P̄1,
(41)

where P1(x, t) and P̄1(x, t) are the same rank 1 projectors used above. The dressing
factors of the gauge equivalent MHF equations in the pure solitonic case satisfies the
equation:

i
du
dx
−λS1s(x, t)ũ(x, t,λ )+λ ũ(x, t,λ )J = 0, (42)

and as a consequence the projectors P̃±1 satisfy the equations:

i
dP1

dx
+λ−1 P1J−λ−1 S1s(x, t)P1 = 0,

i
dP̄1

dx
+λ+

1 P̄1J−λ+
1 S1s(x, t)P̄1 = 0,

(43)

The "dressed" one-soliton potential can be obtained by:

S1s(x, t) = J + i
λ+

1 −λ−1
λ+

1 λ−1

d
dx

(P1(x, t)− P̄1(x, t)). (44)

The dressing factor can be written also in the form:

ũ(x, t,λ ) = exp
[

ln
(

c1(λ )
c1(0)

)
p(x, t)

]
, (45)

where p(x, t) = P1 − P̄1 ∈ g and consequently ũ(x, t,λ ) belongs to the corresponding
orthogonal group.

One can construct an N-soliton dressing factor ũNs(x, t,λ ) in analogy with eq. (9).
Then the corresponding N-soliton solution of MHF equation will be given by:

SNs(x, t) = lim
λ→0

(
i
λ

dũNs

dx
ũ−1

Ns + ũNsJũ−1
Ns (x, t,λ )

)
. (46)

TWO-SOLITON INTERACTIONS AND GAUGE EQUIVALENCE

For the pure solitonic case g(x, t) = u(x, t,λ = 0). Using the explicit expressions for
the asymptotics of the two-soliton dressing factors of MNLS it is not difficult to derive
the corresponding asymptotics for the two-soliton solutions of the gauge equivalent HF
equation.



We first write down the 2-soliton dressing factor for the MHF equation as follows:

ũ2s;B = u−1
2s;B(x, t,λ = 0)u2s;B(x, t,λ )

= u−1
2 (x, t,λ = 0)u−1

1,2(x, t,λ = 0)u1,2(x, t,λ )u2(x, t,λ )

= u−1
2 (x, t,λ = 0)

(
11+

(
c1(λ )
c1(0)

−1
)

P1,2 +
(

c1(0)
c1(λ )

−1
)

P̄1,2

)
u2(x, t,λ ).

(47)
Next we make use of eq. (30) and obtain the following result for the large time asymp-
totics of ũ2s;B with fixed z1:

lim
τ→−∞

ũ2s;B = C20ũ1s(λ ;z1− r+,φ +α+,~ν01,λ+
1 )C−1

2 (λ ),

lim
τ→∞

ũ2s;B = C−1
20 ũ1s(λ ;z1 + r+,φ −α+,~ν01,λ+

1 )C2(λ ),
(48)

where

C20 = C2(λ = 0) = diag
(

λ+
2

λ−2
,11,

λ−2
λ+

2

)
, (49)

and like in eq. (30) above we use notation with soliton parameters:

ũ1s(λ ;z1,φ ,~ν01,λ+
1 ) = u−1

1s (x, t,λ = 0)u1s(x, t,λ )

= 11+
(

c1(λ )
c1(0)

−1
)

P1 +
(

c1(0)
c1(λ )

−1
)

P̄1.
(50)

Next we insert eq. (48) into eq. (44) and get:

lim
τ→−∞

S2s(x, t) = C20S1s(z1− r+,φ1 +α+,~ν01)C−1
20

= S1s(z1− r+,φ1 + α̃+,~ν01),

lim
τ→∞

S2s(x, t) = C−1
20 S1s(z1 + r+,φ1−α+,~ν01)C20

= S1s(z1 + r+,φ1− α̃+,~ν01),

(51)

where

α̃+ = arg
(

λ+
1 −λ+

2
λ+

1 −λ−2

λ−2
λ+

2

)
= α+−2argλ+

2 . (52)

Thus we have shown that the gauge transformation affects the soliton interaction by
changing the relative phase shift. The relative center of mass shift is gauge independent.

CONCLUSIONS

Using the explicit form of the N soliton solution for the scalar NLS they calculated
explicitly their asymptotics along the soliton trajectories in the generic case, when the



solitons move with different velocities. The important result consists in the following: i)
the N-soliton interactions are purely elastic and always split into sequences of elemen-
tary 2-soliton interactions; ii) the effect of each 2-soliton interaction consists in shifts of
the relative center of mass and relative phases of each of the solitons; iii) there are no
non-trivial 3-soliton interactions. Finally, the soliton interaction for the gauge equivalent
HF equations has the same character. The only effect of the gauge transformation is to
modify the phase shifts of the solitons.
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