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Abstract: In March 2012, the Society of Light and Lighting published a new edition of the Code for 
Lighting.  This revision includes a number of changes, which are discussed in detail.  Amongst these 
changes are a recommendation for mean cylindrical illuminance within enclosed spaces and 
increased room surface reflectances.  A method has been proposed by others to perform in-field 
measurement of cylindrical illuminance without a dedicated meter.  Research in a small test space is 
undertaken to validate this proposed methodology and comment on its accuracy and practicality.  
Using the same test space, room surface reflectances are altered to demonstrate their impact on the 
visual environment.  The proposed method for recording cylindrical illuminance is found to be 
accurate, but tedious and time consuming to implement.  Room surface reflectances were increased 
and the effect on illuminance on surfaces, luminance, horizontal illuminance, cylindrical illuminance 
and modelling index was significant. 

Keywords: In-field measurement, cylindrical illuminance, room surface reflectance, visual 
environment. 
 
List of symbols: 
𝐸  Illuminance. 
𝐿  Luminance. 
𝜌  Reflectance. 
𝐸𝑚  Maintained illuminance. 
𝑈𝑜  Illuminance uniformity. 
𝐸(𝑥,𝑦,𝑧)  Illuminating vector specified by the vector components and x, y and z axes, so that 

𝐸(𝑥,𝑦,𝑧) = �′𝐸(𝑥),′𝐸(𝑦),′𝐸(𝑧)�. 
𝐸(𝑥,𝑦)  Illuminating vector component on horizontal plane, so that  

𝐸(𝑥,𝑦,) = �′𝐸(𝑥),′𝐸(𝑦),� . 
𝐸𝑥  Illuminating vector component on x axis. 
|𝐸|  Illumination vector magnitude (lm/m2).  Note that this is a scalar, not a vector.  

Suffixes are as for 𝐸. 
𝑒  Illumination unit vector, defining the direction of the illumination vector and 

specified by components on the x, y and z axes. 
𝐸(𝑥),𝐸(−𝑥)  Opposed pair of cubic illuminances on the x axis. 
𝐸ℎ  Horizontal illuminance. 
𝐸𝑐𝑦𝑙  Cylindrical illuminance. 
′𝐸(𝑥)  Illuminance due to the illumination vector on a plane normal to the x axis (lm/m2). 

′𝐸(𝑥) =  𝐸(𝑥) − 𝐸(−𝑥) and may be positive or negative depending on the direction of 
the vector. 

~𝐸(𝑥)  Symmetric illuminance on a plane normal to the x axis (lm/m2). 
If 𝐸(𝑥) < 𝐸(−𝑥) 𝑡ℎ𝑒𝑛 ~𝐸(𝑥) = 𝐸(𝑥) 𝑒𝑙𝑠𝑒 ~𝐸(𝑥) = 𝐸(−𝑥). 

𝑥, 𝑦, 𝑧  Three mutually perpendicular axes intersecting at a point. 
𝑥𝑥/𝑦𝑦/𝑧𝑧 The percentage reflectance of room surfaces, where 𝑥𝑥 is the reflectance of the 

ceiling, 𝑦𝑦 is the reflectance of the walls and 𝑧𝑧 is the reflectance of the floor. 
 

 

mailto:anna.anas@stuba.sk�
mailto:Kevin.kelly@dit.ie�


 

2 
Session 1 

1. Introduction 
The Society of Light and Lighting (SLL) and its predecessors, The Lighting Division of the Chartered 
Institute of Building Services Engineers (CIBSE) and the Illuminating Engineering Society (IES), have 
published guidance and recommendations on lighting practice since 1936 [1][2].  From the beginning, 
these guidance documents, known as Codes for Lighting, have all contained details of illuminances 
required for different applications and further qualitative guidance on how to best implement these 
recommendations [2].  This revised edition of the Code has taken on a somewhat different role.  The 
2012 Code draws its quantitative guidance and recommendations directly from the new Committee for 
European Standardisation (CEN) standards and now acts as a guide on how to interpret these 
standards and how to implement them in practice. 
 
This paper sets out to identify the changes in the 2012 Code and highlight how some of these 
changes may influence illumination engineers.  It is spilt into three sections, as detailed below: 

 
1. Changes to the 2012 edition of the SLL Code for Lighting 
2. In-field measurement of cylindrical illuminance 
3. Effects of increased surface reflectances 

 
1. Changes to the 2012 edition of the SLL Code for Lighting 
 
1.1 Reflectance of surfaces 
The reflectance of room surfaces is usually a parameter that is outside the control of illumination 
engineers and designers.  However, where possible, the designer should try persuading those 
responsible to aim for reflectances in the range quoted in Table 1 [2].  It is also noted that where 
possible, the reflectance of major objects should be in the range of 20% – 70% [2][3].  Current 
recommendations for reflectances have increased the lower limits for walls and ceilings [2][3].  This 
will increase luminance, help create lighter spaces and reduce energy consumption as the amount of 
inter reflected illuminance will increase. 
 
Table 1: Old and new Society of Light and Lighting recommendations for room surface reflectances [2] 

2009 edition SLL Code 2012 edition SLL Code 
Ceiling 60%–90% Ceiling 70%–90% 
Walls 30%–80% Walls 50% – 80% 
Working Plane 20%–60%   
Floor 10%–50% Floor 20% – 40% 

 
1.2 Illuminance on surfaces 
In all enclosed spaces, there is now a recommendation for all major surfaces to have the maintained 
illuminances indicated in Table 2.  In some enclosed spaces, such as offices, education, health care, 
general areas of entrance, stairs, corridors, etc., the walls and ceiling will need to be brighter.  In 
previous SLL recommendations, requirements for illuminances on room surfaces were given as a 
fraction of the working plane illuminance [4][5][6].  As a rule of thumb, these ratios will deliver higher 
illuminance values on walls and ceilings, and hence a better visual environment [2][4][5][6].  These 
ratios are not required by EN 12464-1:2011, but the Code recommends their use as best practice [2]. 
 
Table 2: Illuminances on room surfaces specified in the Society of Light and Lighting’s Code for Lighting 2012 
edition [2][3] 

Illuminances in enclosed spaces 

Walls 𝐸𝑚 > 50 𝑙𝑥 𝑤𝑖𝑡ℎ 𝑈𝑜 ≥ 0.10 
Ceiling 𝐸𝑚 > 30 𝑙𝑥 𝑤𝑖𝑡ℎ 𝑈𝑜 ≥ 0.10 
 

Illuminances in enclosed spaces where visual communication is important 
Walls 𝐸𝑚 > 75 𝑙𝑥 𝑤𝑖𝑡ℎ 𝑈𝑜 ≥ 0.10 
Ceiling 𝐸𝑚 > 50 𝑙𝑥 𝑤𝑖𝑡ℎ 𝑈𝑜 ≥ 0.10 
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1.3 Illuminance on the task area 
Values detailed in the schedule of lighting criteria in the 2012 edition of the Code now refer to the 
maintained illuminance over the task area of a reference surface, which can be horizontal, vertical or 
inclined [2].  This is a major change from previous editions of the Code.  It is no longer 
recommended to provide task illuminance for the entire space.  Where the location of a task is 
unknown, EN 12464-1:2011 recommends that the entire space be uniformly illuminated to a level 
chosen by the designer [3].  However, the Code recommends that where the location of the task is 
unknown, it is still very wasteful to illuminate the entire space for one particular task carried out in a 
small area [2].  Possible solutions would be the provision of task lighting or individually dimmable 
luminaires that give added flexibility to a lighting control system. 
 

 

Fig 1: Task, immediate surrounding and background area dimensions [2][3] 

 
1.4 Illuminance on the immediate surrounding area 
Large spatial variations in the illuminances surrounding the task area can lead to visual stress and 
discomfort [7].  The Code defines the immediate surrounding area as a band with a width of at least 
0.5m around the task area in the visual field [2].  Values of illuminance in the immediate surrounding 
area can be less than that of the task area, but should not be less than the values indicated in Table 
3. 
 
1.5 Illuminance on the background area 
In indoor workspaces, a large part of the area surrounding an active task needs to be illuminated.  
The Code defines the background area as a border at least 3m wide adjacent to the immediate 
surrounding area within the limits of the space [3].  This area should have a maintained illuminance 
not less than one third of the immediate surrounding area [2][3]. 
 
Table 3: Society of Light and Lighting recommendations for immediate surrounding area illuminances and related 
task area illuminances [2][3] 

Task Area Immediate surrounding area Background area 
>750 500 

33% of immediate 
surrounding area 

500 300 
300 200 
200 𝐸𝑡𝑎𝑠𝑘 
150 𝐸𝑡𝑎𝑠𝑘 
100 𝐸𝑡𝑎𝑠𝑘 
>50 𝐸𝑡𝑎𝑠𝑘 
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1.6 Mean cylindrical illuminance in the activity space 
In addition to lighting the task, the volume of space that is occupied by people should be lit.  This 
illumination is required to highlight objects, reveal texture, improve the appearance of people within 
the space and aid with the integration of daylight and electric lighting [2][3][8].  This is satisfied by 
providing an adequate level of mean cylindrical illuminance in the activity space.  Cylindrical 
illuminance is defined as the total luminous flux falling on the curved surface of a very small cylinder 
located at a specified point, divided by the curved surface area of the cylinder [2].  Values of 
cylindrical illuminance should be taken at 1.2m or 1.6m, dependent upon whether people might be 
sitting or standing the space [2][3].  Values of maintained cylindrical illuminance recommended in the 
Code are not less than 50 lx with Uo ≥ 0.10 [2][3] and for areas where visual communication is 
important (office meeting rooms, teaching spaces, etc.), maintained cylindrical illuminance should be 
not less than 150 lx with Uo ≥ 0.10 [2][3]. 
 
 
1.7 Modelling 
The architectural details of an interior can be enhanced when its structural features, the people and 
objects within it are lit so that form and texture are revealed pleasingly.  Lighting should not be too 
diffuse or it will appear bland and may not reveal necessary detail, nor should it be too directional or it 
will produce harsh shadows [2][3] (Fig 2).  Modelling describes the balance between diffuse light and 
direct light.  The ratio of cylindrical to horizontal illuminance at a point is an indicator of modelling and 
known as the modelling index [3].  The Code suggests that a good indicator of modelling is a 
modelling index between 0.3 and 0.6 [3]. 
 

 

Fig 2: Modelling of a bust by different light distributions.  From left to right, lighting is completely diffuse, strong 
down-lighting and a combination of directional and diffuse lighting [2] 

The impact for illumination engineers? 
From the changes outlined, the author has selected two which are of significant importance to 
illumination engineers.  Research and demonstrations are conducted to highlight the importance of 
each. 
 
2. In-field measurement of cylindrical illuminance 
 
2.1 Introduction 
The introduction of mean cylindrical illuminance to the recommended lighting criteria in the Code will 
provide a new challenge for illumination engineers as there will come a time when they must take in-
field measurements to compare a design against an installation.  Instruments exist for the direct 
measurement of cylindrical illumination, but their cost is high and probably unjustifiable for most 
consulting engineering companies or small lighting design firms.  An alternate method for obtaining 
cylindrical illuminance does exist.  It comprises of mounting a small, solid cube at the measurement 
point and measuring successively the illuminance on each of the faces of this cube.  Rowland’s and 
Loe [9] have used this method previously.  They did not comment on the difficulty of measurement, 
but others have suggested that it may be tedious and more difficult than it sounds [10]. 
 
The premise of this research is that Radiance simulation software is accurate.  This is based on 
previous research [11] - [18].  The aim is to investigate if in-field measurements using the 
methodology described later will be accurate when compared to Radiance simulated values under 
closely controlled parameters. 
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2.2 Background 
In order for illumination engineers to take in-field measurements for cylindrical illuminance without a 
dedicated cylindrical illuminance meter, they must fully understand illumination vectors and in 
particular, cubic illumination [10][19].  This is described in complete detail elsewhere [10][19], but a 
brief overview is given below. 
 
2.2.1 The illumination vector 
The illuminance received at a point may be considered a vector.  Fig 3 shows the illuminance due to 
source S [10][19].  The vector E is the illuminance vector and the distance from the origin of the axes 
and the circle is the relative illuminance falling on a plane, normal to the line joining the origin to the 
circle [10][19].  The situation where there is only one light source illuminating a point is rare and in 
general, there is light falling from a number of different sources onto the point [10][19].  If this is the 
case, then the illumination vector will become the sum of two or more vectors.  As a vector may be 
the sum of more than one component, it is possible to analyse vectors into a series of components. 
 

 

Fig 3: The illumination vector 

 
2.2.2 Cubic illuminance 
Cubic illumination is the specification of the directional distribution of incident luminous flux at a point 
in space, in terms of pairs of opposed planar illuminances, normal to three mutually perpendicular 
axes intersecting a certain point [10].  Put more simply, it is the illuminance falling on the six faces of 
an indefinitely small cube, as indicated in Fig 4. 
 

 

Fig 4: The illuminances on the six faces of a cube 
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When taking in-field measurements, the six values obtained are E(+x), E(-x), E(+y), E(-y), E(+z) and E(-z).  
Using equations (1) - (8), it is possible to calculate the vector (‘E) and the symmetric (~E) 
components. 
 

′𝐸(𝑥,𝑦,𝑧) = �′𝐸(𝑥), ′𝐸(𝑦),′𝐸(𝑧)� (1) 

′𝐸(𝑥)  = 𝐸(+𝑥) −  𝐸(−𝑥) (2) 

′𝐸(𝑦)  = 𝐸(+𝑦) −  𝐸(−𝑦) (3) 

′𝐸(𝑧)  = 𝐸(+𝑧) −  𝐸(−𝑧) (4) 

~𝐸(𝑥,𝑦,𝑧) = �~𝐸𝑥 , ~𝐸𝑦, ~𝐸𝑧� (5) 

~𝐸(𝑥) = 𝑚𝑖𝑛�𝐸(+𝑥),𝐸(−𝑥)� (6) 

~𝐸(𝑦) = 𝑚𝑖𝑛�𝐸(+𝑦),𝐸(−𝑦)� (7) 

~𝐸(𝑧) = 𝑚𝑖𝑛�𝐸(+𝑧),𝐸(−𝑧)� (8) 

 
The symmetric component of the vector is the quantity of light that is equally received on each side of 
the cube and the vector components are the differences between each pair of opposite sides of the 
cube [2][10][19].  From the above values and using equations (9) - (13), it is possible to calculate the 
cylindrical illuminance at a point. 
 

�𝐸(𝑥,𝑦,𝑥)� = �′𝐸(𝑥)
2 + ′𝐸(𝑦)

2 + ′𝐸(𝑧)
2�

0.5
 (9) 

𝑒(𝑥) =
′𝐸(𝑥)

�𝐸(𝑥,𝑦,𝑧)�
 (10) 

𝑒(𝑦) =
′𝐸(𝑦)

�𝐸(𝑥,𝑦,𝑧)�
 (11) 

𝑒(𝑧) =
′𝐸(𝑧)

�𝐸(𝑥,𝑦,𝑧)�
 (12) 

  

𝐸𝑐𝑦𝑙 =
|𝐸|𝑒. 𝑒(𝑥,𝑦)

𝜋
+
�~𝐸(𝑥) + ~𝐸(𝑦)�

2
 (13) 

 
A sample calculation is carried out elsewhere [21]. 
 
 
 
 
 
 
 
 
 



 

7 
Session 1 

2.3. Methodology 
The room shown in Fig 5 was used for all testing.  It is 6.1m long, 4.5m wide and 3.2m high, walls and 
ceiling are painted concrete and it has no windows, so daylight and stray light are excluded.  There 
are four surface mounted luminaires.  Each luminaire contains one 35W T5 linear fluorescent lamp. 
 

1. Room dimensions were measured. 
2. A grid was marked on all room surfaces and reflectances were obtained using an illuminance 

meter, a luminance meter and equation (14). 
3. New lamps were installed to give an accurate estimate of lumen output. 
4. The light loss factor (LLF) in the Radiance model was set to 1.0 to best match the lumen 

output of the new lamps. 
5. Lamp optics, luminaire optics and light output ratio (LOR) were verified by manufacturer. 
6. A grid of nine points (Fig 5) was marked out on the floor. 
7. A small cube was attached to a wooden pole, which was 1.6m in length and had a bracket 

fitted to its base to ensure that the cube remained in the correct location above measurement 
points. 

8. The cube was always positioned with its sides parallel to major room surfaces. 
9. On each face of the cube, a value (E(+x), E(-y), etc.) was marked to allow ease of recording, 

excluding the face of the cube parallel with the floor (E(-z)).  This face of the cube was used to 
attach the pole. 

 
Equation (14) was used for calculating room surface reflectances [20].  It uses the assumption that 
the surface being measured is a perfect diffuser.  This will not be definitively accurate, but it is a 
common pragmatic solution for in-field research measurements. 
 

𝐿 =
𝜌𝐸
𝜋

 (14) 

 

 

Fig 5: Test room layout showing location of luminaires and grid or measurement points 
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2.4 Results 
The reflectance of room surfaces are given in Table 4.  In-field values and simulated values for 
cylindrical illuminance at each grid point are given in table 5. 
 
Table 4: Reflectance values recorded for room surfaces 

Room surface reflectances (%) Ceiling Walls Floor 
44 31 14 

 
Table 5: Comparison of cylindrical illuminance from in-field values against those generated in Radiance 
simulation software 

Grid Point No. Ecyl In-field (lx) Ecyl Simulated (lx) 

1 53 63 
2 77 81 
3 59 65 
4 75 77 
5 59 67 
6 77 81 
7 52 64 
8 72 77 
9 84 80 

Average 68 73 
 
 
 
 
2.5 Discussion and analysis 
 
2.5.1 Cylindrical illuminance: in-field vs. simulated 
Table 5 compares levels of cylindrical illuminance at each of the nine grid points.  It is clear that 
measured in-field values were similar to that generated in Radiance simulation software, which is 
taken as an accurate reference base for this research.  The average percentage error between 
measured values and simulated values was 7%.  The small errors could be due to a number of 
variables.  These include: the presence of a person in the room to record measurements, slight 
inaccuracies in manufacturer lumen output, luminaire optical files or LOR, incorrect alignment of the 
cube used for measurements, inconsistent mounting of the illuminance meter to the faces of the cube 
and possible discrepancies in calibration of instruments.  Despite the large number of variables, the 
results produced give a strong indication that by following the measurement procedure outlined; in-
field measurement of cylindrical illuminance without a dedicated cylindrical illuminance meter can be 
carried out with an appropriate degree of accuracy for verifying an installation, compared to design 
data generated in Radiance simulation software. 
 
2.5.2 Difficulties and nuances in measurement 
The cube and the apparatus used to mount the cube were constructed from standard household 
items.  Specifically, a small rubix cube and a wooden pole with a bracket attached to its base.  This 
bracket had adjustable legs and was used to ensure that the cube remained at correct height and 
parallel with room surfaces while measurements were recorded.  A spirit level was used to ensure 
that the measurement cube was at the desired, precise orientation each time it was moved to a new 
location.  All of these actions were taken to ensure that variables were reduced and measured values 
would best reflect simulated values.  The downsides to this are the extensive time taken and the 
tedious nature of recording results.  An approximate timeframe for each grid point was about 15-20 
minutes, a little over two and a half hours for nine grid points. 
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3. Effects of increased surface reflectances 
 
3.1 Introduction 
Room surface reflectances have a direct impact on the quantity of luminous flux within a space and 
how the visual environment is perceived.  Although most illumination engineers are familiar with the 
concept that increasing reflectances will increase luminance, it is believed by the author that there is a 
lack of understanding of how significant the impact of room surface reflectances is on the appearance 
of a space. 
 
3.2 Methodology 
To demonstrate the importance of appropriate room surface reflectances, the test room was cleaned 
and then painted to increase reflectances.  Colours used previously were dark yellow/browns and 
when painted, the new colours chosen were bright white for the ceiling and light white/yellow for the 
walls.  By changing surface colours, reflectances were increased as indicated in Table 6.  Once the 
new surface reflectances had been established, all necessary steps set out in the methodology were 
carried out again. 
 
3.3 Results 
Table 7 gives a summary of the effects that increasing surface reflectances had on the illuminance on 
walls, luminance from walls, horizontal illuminance, cylindrical illuminance and modelling index.  All 
values are the mean of measured values over nine grid points. 
 
 
 
Table 6: Room surface reflectances before and after painting 

Before painting (%) Ceiling Walls Floor 
44 31 14 

After painting (%) Ceiling Walls Floor 
81 64 14 

 
Table 7: Effects of increased reflectances on illuminance on walls, luminance from walls, horizontal illuminance, 
cylindrical illuminance and modelling index 

  Reflectances at 
44/31/14 

Reflectances at 
84/65/14 

Percentage increase 
(%) 

Average illuminance on 
walls (lx) 43 84 95 

Average luminance 
from walls (cd/m2) 8.5 26 206 

Average horizontal 
illuminance (lx) 223 276 24 

Average cylindrical 
Illuminance (lx) 68 115 69 

Modelling Index 0.30 0.42 37 

 
 
3.4 Discussion and analysis 
 
3.4.1 Illuminance on walls 
Increased surface reflectances will increase luminance within a space, as defined in equation (14).  
When surface reflectances were increased, the average illuminance on the walls of the test room 
moved from 43 lux to 84 lux, a 95% increase.  The 2012 edition of the Code recommends that 
illuminance on walls should be greater than 50 lux.  It can be seen that before reflectances were 
changed, the mean illuminance on the walls of the test room were below this value, but once 
reflectances were increased, the mean illuminance on the walls was in excess. 
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3.4.2 Luminance 
Luminance is defined as luminous flux per unit solid angle transmitted by an elementary beam 
passing through the given point and propagating in the given direction, divided by the area of a 
section of that beam normal to the direction of the beam and containing the given point [2].  More 
simply, it is the illuminance produced by the beam of light on a surface normal to its direction, divided 
by the solid angle of the source as seen from the illuminated surface.  Luminance is used as it 
represents a measurable physical quantity that relates to the perceived sensations of brightness and 
lightness.  Increasing surface reflectances as indicated in Table 6 showed a resulting 206% increase 
in luminance measured on the walls of the test room.  This would produce a visual environment that is 
perceived to be much brighter, despite having the same amount of luminous flux emitted from the 
luminaires. 
 
3.4.3 Horizontal illuminance 
Table 7 shows the increase in horizontal illuminance after room surface reflectances were increased.  
Increasing reflectances as indicated in Table 6 produced a 24% increase in mean horizontal 
illuminance, from 223 lux to 276 lux. 
 
3.4.4 Cylindrical illuminance 
Mean cylindrical illuminance increased from 68 lux to 115 lux, an increase of 69%.  As given in 
equation (14), room surface reflectance has a direct impact on the luminance of room surfaces.  This 
in turn effects quantities of luminous flux emitted from room surfaces and falling upon objects, 
peoples’ faces and task surfaces within the space. 
 
3.4.5 Modelling index 
Modelling is the ratio of diffuse light against the direct light at the same point.  Modelling index 
provides an indicator of modelling within a space and is defined by the ratio of horizontal illuminance 
to cylindrical illuminance (Eh:Ecyl).  The Code recommends that a good indicator of modelling is a 
modelling index between 0.3 and 0.6 [2].  It stands to reason that as levels of cylindrical illuminance 
experienced a larger percentage increase than horizontal illuminance, modelling index also increased.  
Values rose from 0.3 to 0.42, an increase of 37%.  From results, it can be concluded that where 
luminaires are ceiling mounted, increasing room surface reflectances will generally increase modelling 
within a space. 
 
Conclusions 
Changes in the CEN standard EN 12464-1:2011 and the resultant changes to the SLL Code for 
Lighting have been discussed and the main impacts for illumination engineers have been examined.  
Research conducted indicated that using the measurement procedure described, measured in-field 
values of cylindrical illuminance will produce a relatively small percentage error compared to those 
generated in Radiance simulation software.  This would indicate that this method is acceptable for the 
verification of a design in Radiance software against a real world installation.  The tedious nature of 
recording results has been discussed and the time implications demonstrated.  These were found to 
be problematic.  Room surface reflectances within a test room were increased from 44/31/14 to 
81/65/14.  This was done solely by cleaning and painting.  Illuminance on walls increased by 95%, 
luminance emitted from walls increased by 206%, horizontal illuminance increased by 24%, cylindrical 
illuminance increased by 69% and hence, modelling index increased by 37%.  Consequently, the 
impact of room surface reflectances on the visual environment of a small space has been shown to be 
very significant.  As such, it is suggested that if it is within the scope of the illumination engineer to 
influence room surface reflectances and exact values are known at design stage, then there is 
potential for substantial energy reduction with nothing more costly than a coat of high reflectance 
paint. 
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