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Abstract

The work hereby presented was born from a desire to find how modern machine

learning methods can be applied to improve scheduling in the maintenance industry.

Efficient scheduling is a daily challenge in the maintenance industry. This industry

deals with planned maintenance and daily requests for repairs. Commercial building

maintenance work is regularly needed due to deterioration, accidents on the premises or

legal requirements for building compliance. Efficient scheduling is a daily challenge in

this industry. The scheduling must account for variable workload, variable workforce

and variable task duration. In our research, we leverage recent developments in

Machine Learning to provide additional information that can aid human operators

to make informed decisions when scheduling. We take the approach of using AI to

improve human lives instead of replacing human workers. To this end, we propose

two methods:

• Forecasting workload.

• Task classification into short/long duration based on the task’s text description.

Solving these tasks would aid the human operator to create a more efficient work

plan, optimizing human resources and reducing overwork due to poor scheduling. Our

results show that we were able to train skilful models for forecasting workload, which

greatly improved on the baselines. We employ recent innovations in Natural Language

Processing such as word vectors and attention mechanisms to achieve notable results

in classifying tasks, creating models capable to outperform human performance at the

task.
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Chapter 1

Introduction

This study was motivated by a collaboration between the industry and the academic

community. Creating an efficient schedule is a challenge in the maintenance industry.

The industry has a variable daily workload due to daily requests for repairs from

customers. The workforce capacity is variable as well, with the company needing to

ensure that appropriate human resources are allocated each day.

Each maintenance engineer works on a variable number of tasks each day and his

remuneration is based on the total work hours completed. The work may involve

hazards (i.e. heights, machinery, electricity), so each engineer needs to be allocated

enough time to assess risks and complete the task safely.

Planning and allocating tasks correctly is of major importance for efficiency and

safety. Making sure that employees have an appropriate number of tasks for each day

and enough time for each task benefits both the organization and its employees.

In this study, we approach the challenge of helping human operators to make more

informed decisions when scheduling. We take the approach of using recent develop-

ments in artificial intelligence and deep learning to build models that collaborate with

the human operator. Instead of trying to replace human decision making, we aim to

use artificial intelligence to inform human decision making.



2 Introduction

1.1 Background

The maintenance industry operates the maintenance of commercial facilities. It pro-

vides services of repairs and maintenance of various nature. Common maintenance

tasks can be from different areas such as electrical, plumbing, mechanical, drainage,

fabric. To complete the maintenance work the company need employees with a diverse

skill set.

The customer can request these services in a planned maintenance contract, quoted

work, reactive tasks and emergency tasks. In a planned maintenance contract the work

is scheduled to take place on a regular basis. This contract agrees for a number of

monthly visits to the facilities for regular maintenance. Quoted work refers to work

requested by customer initiative or engineer advice. This work can pertain repairs or

renovations that require budgeting and customer approval. Reactive and Emergency

work is the classification given when a repair of some urgency is required (ie. lights

are out). Emergency tasks are reactive tasks that require immediate attention and take

precedence over others.

The general workflow of this industry consists of an operations team based on an

office and a mobile workforce of engineers and subcontractors of flexible size.

The operations team is responsible for the creation and assignment of tasks. The

engineer’s team is responsible for travelling to each store to execute the repairs.

1.2 Research questions

The purpose of this study is to provide information that can aid the decision-making of

operations teams in charge of scheduling.

When it comes to scheduling tasks the human operator must consider a variety of

aspects both objective and subjective. The maintenance engineer must have the right

skill set for the task, be within reasonable travel distance, be available. The customer

may take priority due to history with the company or a task requires urgency. The

customer can have a preference for a particular person due to familiarity or personality
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traits. The maintenance engineer may be particularly skilled at the task required, have

the necessary materials at hand, or a particularly friendly demeanour that helps in

stressful situations.

Due to the need for a human touch for this job, a lot of subjective decisions and

a lot of information that is hard to capture, an automatic scheduling system would

be a poor substitute for it. We tackled the research from the point of view of aiding

the human operators, not replacing them with automatic scheduling. To this end, we

identified two objectives that would aid the human operator on his scheduling.

- Providing a forecast for workload in the following day, so that appropriate resources

are allocated.

- Identify and group tasks that take less time to complete and longer to complete as to

facilitate scheduling.

Based on these objectives we formulated our research questions. The aim of this

study is to answer the research questions:

How can historical data be used to forecast the workload for the next day?

How can a task text description be used to identify short tasks and long tasks?

These questions present a set of challenges. There is a natural random behaviour

when it comes to human activity. A text description of a task is often ambiguous, since

it is based on natural language and at times incomplete instructions. Predicting the

duration based on a text description will likely not be completely deterministic. The

description of a task is not a precise account of every step needed to complete a task.

Complications can arise during the execution of a task. And humans are not precise

machines that perform the same task in the same time. The same task can take more or

less time depending on the person performing it or even the same person at different

times.
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1.3 Significance

Forecasting is a task that helps organizations with resource allocation, improving

efficiency and setting goals. Producing accurate forecasts is a challenge even for

personnel with years of experience working in the company. Predicting the future

is not an easy task. Customer’s demands vary daily and unexpected accidents will

drive up the demand for maintenance. Having a reliable forecasting model helps

organizations prepare for the future. It improves planning for capacity, ensuring that

the necessary resources are allocated to complete the tasks in a safe and timely way.

When managing projects and activities with a variable workload an accurate task

duration estimation is essential. Failing to do so can easily lead a project to fail, to

miss its deadline or to go over budget. Even experienced project managers struggle

at this task and complex methods of estimation have been developed (Institute, 2013)

(Karner, 2010).

In our study, we propose a method to estimate a task duration using machine

learning models given a text description. This method has the potential of helping

other organizations to improve their planning process by employing similar models.

1.4 Scope and limitations

This study was based on the data provided by the Civic Group, a company operating

on the maintenance area. The forecasting of workload is based on the maintenance

company data, not on the customer’s data on maintenance needs. The data collected

for this study refers to a period of operation of 22 months.

The text description of the tasks and time to complete them are limited to this

company’s data. Other organisations may describe tasks in a different way or operate

in different areas.
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1.5 Chapter summary

This dissertation is organized in the following sections:

Chapter 2: Literature Review

In this chapter, we go over previous work that relates to the objectives of this study.

The chapter is divided into two sections that mirror our two research questions. One

section covers the task of time series forecasting and how previous related work has

approached similar challenges. The second section discusses related work in the area

of text classification and recent development on the area of natural language processing.

Chapter 3: Forecasting Workload

The experiment created for the first research question, forecasting the daily work-

load. We present the methodology to create and evaluate the dataset. We explain the

test methodology used, evaluation metric and the results obtained, followed by a brief

discussion.

Chapter 4: Task Duration Classification

The second research question is covered here. Task classification based on text

description. We present the data analysis, the metric chosen and discuss the methodol-

ogy employed for the experiment. Finally we present the results obtained, with a brief

discussion of the results obtained.

Chapter 5: Conclusion

A brief final chapter outlining the results of this study, their significance and

potential future work.





Chapter 2

Literature Review

2.1 Introduction

This chapter is divided into three sections. The first section reviews the field of

Machine Learning and Deep Learning. In the second section, we will review the task

of time series forecasting and the current state of the art. The third section is dedicated

to the task of text classification as part of the field of natural language processing. We

will explore previous work in the field and the techniques that have achieved state of

the art results in studies that tackle similar problems.

2.2 Machine Learning and Deep Learning

Machine learning (ML) is a field that concerns itself with algorithms capable of learning

automatically from data. A simplified explanation would be that if in traditional

programming we combine data and a programmed mathematical model to create a

wanted output, in machine learning we combine data and the output we want to create

a mathematical model. Machine learning algorithms are able to given data and an

objective to construct a model capable of achieving that objective to the best of its

ability.

Each algorithm takes a different approach to learning. For example, Naive Bayes

(NB) calculates the probability of a result given a set of variables. Support Vector
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Fig. 2.1 SVM hyperplane in a two dimensional space example

Machines (SVM) builds a hyperplane so that the margin between classes is maximised

(fig 2.1). Artificial neural networks (ANN) are built of artificial neurons, loosely based

on the human brain. Artificial neural networks learn by means of function approxima-

tion using backpropagation (Hecht-Nielsen, 1989) to progressively minimize the error

value.

Deep learning (DL) is the field that studies deep neural networks. The word deep

comes form the way neural networks can stack simple elements to learn complex

Fig. 2.2 Multi-layer perceptron
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concepts (Goodfellow et al., 2016). The idea of stacking simple elements to learn

complex relationships is inspired by the structure of neurons on the brain.

A neural network can stack layers of neurons to build new representations of the

inputs as is illustrated in fig 2.2. This stacking allows an artificial neural network to

create deep networks and learn hierarchical concepts and representations from the

inputs. The driving idea that each additional hidden layer can learn a higher abstraction

from the previous layers.

In recent years, Deep Learning has gained a lot of popularity. The growth of

computing power enabled researchers to explore deeper neural networks and create

new architectures that have proven capable of achieving state of the art results in areas

such as computer vision, natural language processing and Time Series Forecasting

(Chollet, 2017). The quintessential example of a deep learning model is the multi-layer

perceptron (MLP) (fig 2.2). The MLP maps a set of input values to a set of outputs

values. Each node in an MLP is a neuron (a simple function) and the MLP can form

complex mappings by building on this simple functions.

The way that neural networks learn is through a method called backpropagation

and stochastic gradient descent (Hecht-Nielsen, 1989), (Amari, 1993). While training

a neural network, this method uses the error value to update the parameters of our

model so that a better mapping of inputs to outputs is found. Over time more complex

architectures of neural networks were introduced, such as convolutional neural net-

works (CNN) (Fukushima, 1980) and recurrent neural networks (RNN) (Rumelhart

et al., 1988).

Convolutional neural networks revolutionized the field of image classification in

2012 when AlexNet (Krizhevsky et al., 2012), a convolutional neural network created

by Alex Krizhevsky competed in the ImageNet challenge and won the challenge with

an error 10% lower than the second place contestant. Convolutional neural networks

have since become a popular architecture for processing images and natural language

(Brownlee, 2017). In a CNN convolution layers are used to apply filters to the inputs

and generate internal representations that are influenced by neighbour inputs. For the

case of image processing, this means neighbour pixels. In natural language (text data)
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this means neighbour words. Convolution layers are typically followed by pooling

layers that select a subsample of the inputs to pass to the following layers.

Recurrent neural networks are a class of neural networks that explore the sequential

nature of the input. They are a popular approach to model data that is sequential in

nature such as time series and text Goodfellow et al. (2016). RNN networks have a

hidden state that is learnt based on the previous time steps of the data. These networks

are trained with the backpropagation algorithm, but in the case of RNNs the gradient

depends not only on the current step but also on the previous time steps. Due to this

backpropagation through time recurrent neural networks face two main challenges

when training. The problems caused by vanishing gradients and exploding gradients

(Gulli and Pal, 2017). If the value of the hidden state is small, as it backpropagates it

becomes smaller and smaller meaning that the contribution of previous time steps gets

closer and closer to zero and the network learns nothing from the previous time steps.

This problem is known as the vanishing gradient. If the value of the hidden state is

large, as it backpropagates it becomes larger and larger and become so large that the

computer has no representation for it, causing errors. This problem is known as the

exploding gradient. These problems make recurrent neural networks harder to train

than multi-layer perceptrons or convolutional neural networks (Pascanu et al., 2013).

Over the years several approaches have been attempted to overcome these problems.

The most popular implementations of RNNs in use today are the Long short-term

memory (LSTM) neural networks first proposed by Hochreiter and Schmidhuber

(1997) and Gated recurrent units (GRUs) introduced in Cho et al. (2014). Both

approaches implement mechanisms to deal with the vanishing gradient problem.

When creating a neural network model it is possible to combine different archi-

tectures in the same network. By using different architectures it becomes possible to

explore different characteristics of the dataset. This method provides improvements in

performance when tackling certain datasets (Sainath et al., 2015).
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2.3 Time Series forecasting

Capturing the daily workload data from a maintenance company forms what is consid-

ered a time series dataset. Time Series refers to data that is captured in sequence at

different time intervals. It has long been studied and it has applications in multiple

and diverse areas. Measuring a value every hour or every day, for example, generates

sequential data that is a time series. The call centre industry faces similar challenges

to the maintenance industry, having to plan for capacity based on workload (Aldor-

Noiman et al., 2009). We can find studies in the medical field, with methods to forecast

patient workload (Olya et al., 2018). Even more traditional organizations such as the

manufacturing industry benefit from workload forecasting (Albertetti and Ghorbel,

2020). The usefulness of accurate forecasting is not merely limited to organizations

dealing with human activities. In computing, planning for cloud computing capacity

based on workload forecasting is an important topic (Fliess et al., 2019). Even when it

comes to lower level problems such as application parallelism (Laberge et al., 2019)

workload forecast to find the optimal multithreading schedule plays an important role.

In our research, we found a gap of studies dealing with forecasting workload in the

maintenance area.

The task of time series forecasting is quite general on its applications. This study

focus on workload forecasting but the methods used are not limited to workload

forecasting. With similar methods, we find applications in familiar areas such as

weather forecasting (Karevan and Suykens, 2018), pandemic spread forecast (Perone,

2020) and stock price prediction (Mehtab and Sen, 2020). There is a wide range of

applications for time series forecasting.

There is no universal model or method to forecast every problem (Wolpert and

Macready, 1997). In the literature, we found two major schools of thought for mod-

elling time series. Models created specifically for time series data (Box and Jenkins,

1970), (Hyndman and Athanasopoulos, 2018) and general purpose models that can be

applied to time series (Brownlee, 2018a).

Classical literature on time series like Box and Jenkins (1970) and Winters (1960)

proposed the methods Auto Regressive Integrated Moving Average (ARIMA) and

Exponential Smoothing (ES) as time series forecasting methods. Despite their age,
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ARIMA (and its variants) and ES are still widely used today (Hyndman and Athana-

sopoulos, 2018), Perone (2020). Both ARIMA and ES methods are focused on time

series data. A more recent model created for time series data is the Prophet model,

created and released by the Facebook Core Data Science team in Taylor and Letham

(2017). The Prophet model aim is to provide a fast and accurate forecasting method

able to scale with large datasets. These three methods approach time series forecasting

in different ways, but they have certain expectations on the behaviour of the data. They

tend to favour recent observations and variations as predictors over older ones and

expecting features such as trend and seasonality.

A second approach to time series forecasting is to transform the time series fore-

casting problem into a supervised learning problem and then apply general purpose

regression methods. In this approach, the model applied can come from classic ma-

chine learning or from the most recent developments in deep learning. There are

numerous studies that take this approach. For example in Mei et al. (2014) the ensem-

ble method Random Forest is employed to forecast the price in New York electricity

market or Support vector machines in the work of Sansom et al. (2003). The recent

popularity of Deep Learning has created an interest in exploring Deep Learning for

time series forecasting. A lot of recent publications such as Brownlee (2018a), Lai et al.

(2017) and Gamboa (2017) explore the use of Deep Learning and neural networks

such as Multi-layer Perceptrons (MLP), Convolutional Neural Networks (CNN), and

Recurrent neural networks (RNN). Recurrent neural networks have been particularly

explored for their capability to handle sequences of data due to their design (Fu et al.,

2016). Specifically, Long Short-Term Memory Networks (LSTM) and Gated recurrent

units (GRU) (Goodfellow et al., 2016) are popular choices for sequence modelling.

From simple methods like linear regression to advanced recurrent neural networks,

time series forecasting is a fertile field being explored by researchers and industry

alike.
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2.4 Text Classification

Natural language processing (NLP) is the field of automatic analysis and processing

of human language. It is a vast field that draws from knowledge linguistics, com-

puter science, statistics and artificial intelligence. Natural language processing tasks

range from text classification to relationship extraction, language translation, speech

recognition and many more.

For our research question, we want to develop a method that given a task description

is able to classify it as a short duration task or a long duration task. This task falls in

the text classification task of natural language processing. Text classification concerns

itself with the classification of text samples into classes or categories. In recent years

this area has seen numerous innovations both in methods and applications (Young

et al., 2017). The growing amount of data available motivates the research, with much

of the generated data being in text form.

Natural language processing has a long history behind it. Its beginnings can be

traced to at least the 1950s. Alan Turing famously proposed the Turing test in Turing

(1950). Of the first experiments, the most famous is the Georgetown experiment by

Georgetown University and IBM. At this time, researchers searched for models capable

of representing knowledge in computers such as knowledge graphs and ontologies.

Researchers tried to map real world objects and their relations in a computer with

complex structures. Roger Schank introduced the Conceptual dependency theory

in Schank and Tesler (1969) with the goal of representing the meaning of a phrase

independent of the words used. There were also efforts made to decompose phrases by

syntactic rules and parts of speech (Woods, 1970). In these early years, most of the

research was based on expert systems, complex sets of handwritten rules and decision

trees to emulate intelligent behaviour.

In the 1980s and 1990s we start to see the use of machine learning methods and

statistical text representation in natural language applications (Biebricher et al., 1988),

Crawford et al. (1991). Text representations such as bag of words (BOW) and term

frequency inverse document frequency (tf–idf) represent individual words as a long

vector and the occurrence for each word in a text see fig 2.3c. Some of the first machine

learning methods used for text classification use the Naive Bayes model with the bag of
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words representation (Lewis et al., 1996), (Heckerman et al., 1998). It is still common

to use this method as a baseline today.

Support Vector Machines (SVM) became a widely used text classification model

achieving good results even in recent work (Van-Tu and Anh-Cuong, 2016).

(a) Word vector representation projected to
a two dimensional space

(b) BERT Attention example

(c) Bag of Words example for two short text documents

Fig. 2.3 Different Word Representations

In more recent years Deep Learning has become the dominant approach in text

classification Young et al. (2017). One of the innovations brought by Deep Learning

were neural representations of words. Deep learning enabled multi-level representation

learning. Word2Vec (Mikolov et al., 2013b) was one of the first methods that made
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neural representations popular. Mikolov et al proposed CBOW and skip-gram models

for representation learning. CBOW calculates the probability of a word given a context

and skip-gram calculates the probability of a context given a word. The resulting word

embedding represents words as multi-dimensional word vectors (fig 2.3a ).

While simple in concept Word2Vec proved extremely powerful (Young et al., 2017)

achieving state of the art performance in multiple problems. Word2Vec representations

also exhibit interesting proprieties such a distributional semantics and meaningful

syntactic and semantic relations between vectors as explained in Mikolov et al. (2013c).

Over the years other word vector representations have been proposed and became

popular such as GloVe (Pennington et al., 2014). Transfer learning of word vectors

became widely used. Word vectors such as Word2Vec and GloVe were pre-trained over

a large corpus of unlabeled text. These trained word vectors became publicly available

and could then be incorporated into problem specific models, transferring the learned

representations and giving the models a head start. Neural network architectures such

as CNN and LSTM combined with word vectors became popular for text classification

(fig 2.4).

Fig. 2.4 CNN text classification example

In more recent works we saw the rise of attention mechanisms and the transformer

architecture (Vaswani et al., 2017). Attention mechanisms can use multiple layers to

let a word pay a weighed "attention" to surrounding words in its representation (see

2.3b). The models BERT (Devlin et al., 2019) and XLNet (Yang et al., 2019) have been
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introduced based on these innovations. They have achieved state of the art performance

in text classification tasks as can be seen in Ruder (2020) and Paperswithcode (2020).

The model fastText (Joulin et al., 2017) incorporated attention mechanisms combined

with CBOW and skip-grams and achieved great results.

Text classification sees practical application in the fields of spam filtering, sentiment

analysis, opinion mining, contextual search and topic modelling (Dalal and Zaveri,

2011). One of the most popular tasks in text classification is sentiment analysis, often

framed as a binary classification problem (Thongtan and Phienthrakul, 2019). The

objective of sentiment analysis is to classify a given text into positive or negative

sentiment. This has wide applications in marketing, where customer’s reviews and

opinions in relation to products and services can be automatically analysed (Indurkhya

and Damerau, 2010) (Samuels and Mcgonical, 2020). Document classification is

another common task. In this case, the objective is to identify the topics or subjects

when given a text document. Practical application can be seen in classifying news

articles into topics or research papers into subjects as can be seen in Yang et al. (2018).

In our research, we found no previous works that applied machine learning models

to estimate a task duration from a text description. This is likely to the unavailability

of this type of dataset since it typically involves sensitive company data. And also

likely due to the relation between a text description and a task duration not being as

clearly identifiable as a topic or sentiment. It is the objective of this study to establish

that such a relationship can exist and that machine learning models can be used to

predict task duration from text description.



Chapter 3

Forecasting Workload

3.1 Introduction

In this chapter we will look at the task of forecasting the workload for the next day

based on historical data. Using a mathematical model to describe real-world behaviour

is a widely used practice as it is well put by Box and Jenkins in their classical book

Time series analysis, forecasting and control.

"The idea of using a mathematical model to describe the behaviour of a physical

phenomenon is well established. In particular, it is sometimes possible to derive

a model based on physical laws, which enables us to calculate the value of some

time-dependent quantity nearly exactly at any instant of time."

- Box and Jenkins (1970)

The model that we propose to create is about modelling workload, an aspect of

human activity. Which is safe to assume that is not completely deterministic. There

is more uncertainly involved with human activity than with physical laws. Humans

often present complex and non-deterministic behaviour. But by using a rigorous

methodology to test and evaluate models, it is possible to measure and identify the

ones that provide the best predictions.

"All models are wrong, but some are useful"
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- George Box

3.2 Methodology

3.2.1 Dataset creation

The data that we are analysing in this study comes from a production SQL database

of a company operating in the maintenance industry. From the database, we obtain

a list of all completed tasks. For the purpose of this study, we need to transform this

data into a fixed step time series. After retrieving the list of tasks we observe that

some tasks contain null dates. When dealing with missing data, there are two options

to approach the problem, to remove the data or to impute the data (Hyndman and

Athanasopoulos, 2018). We opted to remove those tasks that have null dates since it

would be impossible to know when they took place. The final dataset covers the period

of February 2018 to the end of November 2019, for a total of 668 days.

We then calculated each task duration based on the start date and completion

date timestamps. Examining the calculated task’s duration we see that there are

some oddities in the dataset. The minimum task duration is under -153 days and the

maximum over 365 days. Given the nature of the data and knowledge of the industry,

we know these outliers to be impossible. Every task was completed on the same day,

for a maximum length of 10 hours (8 normal hours and 2 hours of overtime). These

values are likely due to user input error. For every task with zero duration, negative

duration, and duration over 10 hours, we assumed that the duration is invalid.

Then we imputed the tasks with invalid task duration with the mean value for task

duration (fig 3.1). This is an important step, because removing the tasks would

cause a drop in the corresponding day’s workload value. The tasks were completed,

merely reported with an invalid duration. So imputing it with the mean gives them a

representation on the dataset without changing the overhall distribution dramatically

(fig 3.1).

A total of 25,092 tasks constitute this dataset, of which 3,486 were imputed

(13.9%). Finally, we sum all the task duration’s per day using a rolling window of one
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(a) original (b) after imputing

Fig. 3.1 Task duration histogram

Fig. 3.2 Workload hours per day

day to obtain the total daily workload. The plot of the final dataset, representing the

workload per day can be seen in fig 3.2. This graph represents the total number of

hours of work completed per day, for all maintenance engineers.

3.2.2 Data Analysis

This section will present the data analysis done to the dataset to better understand it,

the statistical characteristics it presents and detectable patterns.

Looking at the plot of the workload time series (fig 3.2) it is possible to detect

some patterns. There seems to be a distinct cycle of the workload, with a steep dip on

the weekends that see a much lower workload than weekdays. The workload seems

to have some monthly variation, with a dip after July and an increased workload in

the weeks leading to Christmas. This matched the maintenance industry expectation

where the stores request more maintenance due to the Christmas shopping season.

And there is a noticeable gap just before January, this corresponds to the Christmas

week. This week is celebrated in Ireland with businesses slowing down work. All of
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Fig. 3.3 Box-plot of daily workload distribution on each month

Fig. 3.4 Daily workload histogram

this is great news. They indicate that the workload time series does not have a random

behaviour, so there is the potential for skilful forecasting.

In fig 3.3, we present the box-plot of the distribution of the daily workload per

month. In this plot, we see a variation of the daily workload distribution from month

to month. Industry knowledge can explain some of the monthly variance, such as a

higher workload is expected in the month of November due to the stores needing more

maintenance work to prepare for the holiday season and a dip of foot traffic in the first

months of the year.

In fig 3.4, we show a histogram of the overall distribution on the daily workload.

The plot seems to follow a normal distribution on the right side. The left group of bars

correspond to the workload on the weekends and holidays. The company still operates

on those days, but only performs emergency works and has limited employees on duty,

resulting in a much lower workload values.
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Fig. 3.5 Auto-correlation plot

Fig. 3.6 Auto-correlation plot (detail)

A common practice in time series forecasting is to draw an auto-correlation plot

(Brownlee, 2018b). This is a plot where a time step t is tested for correlation with

the previous time steps (t − timelag). In our dataset, we can think of it as testing for

correlation of the current day’s observation against yesterday’s observation, the day

before yesterday, and so on.

In fig 3.5, we show the auto-correlation plot tested over 600 days and in fig 3.6

we have a more detailed view of the correlation of the previous 14 days. We can see

that there is a strong correlation in time lag 7, of approximately 0.8 and a similar but

slightly lower correlation in time lag 14. What this means is that the workload of

the current time step t is correlated to the workload of the time step t −7. In a more

practical example, this means that the workload on this Monday is strongly correlated

to the workload of the previous Monday (last week) and a somewhat lower correlation

with the Mondays in the preceding weeks.
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Fig. 3.7 Correlation between time step t and previous time steps (days)

In the auto-correlation plot, we see that there also seems to exist some correlation

between other previous days but to a much lower degree. This is expected due to the

dip in workload on the weekends. The value on Monday will be much higher than

the value on Sunday. We plot the correlation for time steps -1 to -8 in fig 3.7. While

not quite as obvious as in the auto-correlation plot, time step t and t −7 present the

strongest correlation.

In more classical works on time series like in Hyndman and Athanasopoulos (2018),

it is common to see time series as a combination of components. The components are

the trend (Tt), the seasonal component (St) and the residual component or remainder

(Rt). The components are then combined as an additive model or a multiplicative

model based on the dataset characteristics.

additive model: yt = St +Tt +Rt

multiplicative model: yt = St ×Tt ×Rt

It is possible to perform classical time series decomposition based on an additive

or multiplicative model. For our dataset, the additive model was the better fit. The

relation between trend, seasonality and residuals in our dataset are better represented

by adding them together. The multiplicative model is better suited to datasets where

the effect of trend and seasonality get exaggerated over time. We performed a classical
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Fig. 3.8 Decomposed time series using additive model and frequency of 7

decomposition based on the additive model and present it in fig 3.8. We can see that

the additive decomposition captured the weekly seasonality in the seasonal component

and the general trend of the dataset. While this method is not perfect, it still manages

to capture a pattern in the dataset. This is a good indication that there is information to

be captured by our forecasting models. The data presents some recognizable patterns

and not merely random variation.

3.2.3 Evaluation metric

To evaluate the quality of the models in this experiment we must first decide on a metric.

We are interested in how close the predicted value is to the real value, so we will

need to measure the difference between the predicted and actual value and minimize

the error. The most commonly used metrics are MAE (Mean Absolute Error), MSE

(Mean Square Error), RMSE (Root Mean Square Error) and MAPE (Mean Absolute

Percentage Error) (Hyndman and Athanasopoulos, 2018). The different metrics have

different advantages and drawbacks.

MAE has the advantage of presenting the error value on the same metric as the

dataset. As a drawback MAE treats small error and big error values equally, not
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penalizing models that on occasion produce wildly inaccurate predictions. MSE has

the advantage of penalizing high error values more than low errors. MSE has the

disadvantage of presenting the error as a value that does not have a frame of reference

for interpretation. RMSE has the advantage of bringing the error value to the same

units as the values, making it intuitive to interpret the results. Additionally, it keeps

the advantage of benefiting consistently low error models. MAPE has the advantage

of presenting its error value as a percentage value in relation to dataset. MAPE has

the drawback that in data sets where the values reach zero encounters a division by

zero error. In our dataset the workload value reaches zero in some weekends, making

MAPE an invalid choice of metric.

After looking at the advantages and disadvantages of each metric Root Mean

Square Error stands out as the best choice for a metric. RMSE is widely used as a

metric to evaluate forecasting problems (Hyndman and Athanasopoulos, 2018) and we

can see why. It penalises models where the forecast deviates too far from the actual

value and presents the result in the same unit of measure as the data. The target of the

experiment is to find a consistent, accurate model so we chose RMSE as the metric as

our evaluation metric. Since RMSE gives us the error in hours we will try to find the

model that produces the lowest error.

3.2.4 Experiment design

For this experiment, we are interested in forecasting the workload for the next day

based on workload history.

A typical method of evaluation of time series models is using a training-test set

split. In this evaluation, the data is divided into a training set and into a test set. The

model is then trained on the training set and evaluated on the test set. No part of the

test set is used to train the model. This has the disadvantage of reducing the size of the

data to be trained. Since a lot of time series problems have a relatively short sample

size (because they are dependent on time) this may make the training set too small to

capture more complex patterns. Ideally, the model would be trained in as much data as

possible for a better estimate of real-world performance.
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Fig. 3.9 Walk-forward validation diagram

Traditional cross-validation use for testing time series is controversial since we

would be using data from the future to test the past. In the real world, we don’t have

access to information from the future.

A more sophisticated method is the method of walk-forward validation. This

method can also be called time series cross-validation in some sources like in Hyndman

and Athanasopoulos (2018). To avoid confusion with the k-fold cross-validation

method, we will refer to it as walk-forward validation in this study as is referenced

in Brownlee (2018b). Both sources credit this method as the most sophisticated and

reliable estimation of the performance of a time series forecasting model. It is also

the method that more closely approximates a real-world application, where the model

would be updated as more data is created thought the passage of time.

Walk-forward validation works by reserving the last entries of a dataset for test-

ing purposes and progressively training, testing in one observation, and adding the

observation to the training set. So in a dataset of size n and a test size t the first test

iteration would be trained on samples 0 to n− t and tested on the observation n− t +1
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and then observation n− t +1 is added to the test set, the model is retrained and tested

on observation n− t +2 until the final observation n and the average of the errors is

calculated. A visual representation of this can be seen in fig 3.9. The final error value

E is obtained by calculating the mean of the error value of each run ( Ei).

We use the RMSE metric to calculate the error between the forecasts and the actual

values for each forecasted day. For our experiments, we reserved the last 60 time

steps to be tested with Walk-forward validation. We present the results as RMSE error

values since this is the metric that better fits our objective and dataset. The lower the

RMSE value, the better the model performance.

3.3 Results

The results section is divided into three main experiments. On the first experiment we

tested the models using only the historical data of workload in the Univarible section.

We performed a second experiment where we tested models using the historical

data of workload and date information in the Multivariable with date features. We

performed one last experiment where we added weather features in addition to the

date information in the section Multivariable with date and weather features. In the

last section, we discuss the results of the experiment.

3.3.1 Models tested

Naive models

Naive models are meant to be used to establish a baseline on a time series forecast

problem. They are simple in nature but serve as a reference for comparison with more

complex models to better evaluate their skill.

Persistence: The persistence model is a naive model that merely uses the previous

observation ti−1 as the forecast for the time step ti being predicted. It is a naive method

that in the case of our dataset assumes that what happened today is going to happen

tomorrow.
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Persistence -7: From the data analysis performed on the dataset we saw a strong

correlation on the time lag -7. We decided then to create a second persistence model

with a time lag of -7 instead of -1. The Persistence -7 predict the previous observation

ti−7 as the forecast for the time step ti. In practical terms for our dataset, we can say

that if the day to be predicted is a Monday, the model we created predicts the workload

value of the last week’s Monday.

Mean: In datasets that do not show a strong growing or declining trend, the mean

value can provide a naive but useful forecasting method. We include a naive model

that uses the mean value of the training data as the prediction.

Time Series models

These are models that have been created for the purpose of forecasting time series data.

They are based on a statistical background and tend to do some assumptions on the

behaviour of the time series.

Autoregressive (AR): The AR model uses the values from previous time steps as

input to a linear regression model to predict the next value (Box and Jenkins, 1970).

Moving Average (MA): The moving average model uses the current error and

previous errors as predictors for the next time step to smooth the data points (King,

1912).

Autoregressive integrated moving average (ARIMA): ARIMA combines the Autore-

gressive (AR) model with the Moving Average (MA) model and a differencing factor

(I) for a more complex model for time series forecasting. ARIMA and Exponential

smoothing are the two most widely used forecasting model for time series (Hyndman

and Athanasopoulos, 2018).

Seasonal Autoregressive integrated moving average (SARIMA): This model is

similar to the ARIMA but with the inclusion of a seasonal component. SARIMA is

commonly used to model seasonal time series (Hyndman and Athanasopoulos, 2018),

(Manayaga and Ceballos, 2019).

Exponential Smoothing (ES): Exponential smoothing models time series by per-

forming weighted averages os previous time steps. The weights are higher for recent
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time steps and lower for older time steps. It is a widely use method for time series

forecasting (Hyndman and Athanasopoulos, 2018), De Gooijer and Hyndman (2006)).

prophet: This model was introduced by a Facebook researcher team in Taylor and

Letham (2017). It was designed with performance in mind, to forecast time series at

scale. The prophet model is based on an additive model with support of yearly, weekly,

and daily seasonality.

Machine learning models

It is possible to use regression models from the area of machine learning to produce a

forecast by framing the problem as a supervised learning problem. We can transform

the historical time series data into supervised learning dataset where the inputs are

previous time lags and the output is the value to be forecasted.

Linear Regression LR: A classical statistical model that finds the best fitting line.

Polynomial Regression: A regression method that fits a polynomial of the nth de-

gree to the dataset (Gergonne, 1974).

Support Vector Regression (SVR): Support Vector Machine based regression model

first introduced in Drucker et al. (2003).

XGBoost: Optimized distributed gradient boosting decision tree ensemble (Chen

and Guestrin, 2016).

Random Forest: Regression ensemble model that calculates the mean predictions

of the individual trees (Breiman, 2001).

K Nearest Neighbors Regression (KNN): find the k closest training samples and

uses them for prediction (Altman, 1992).
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Neural network models

Neural networks can similarly be used to forecasts time series by framing the problem

as a supervised learning problem. They have seen a growing interest and popularity

in recent years to tackle a multitude of problems, time series among them. For this

experiment, we created and tested different neural network architectures. We created

and performed a grid search for network topology initialization parameters and opti-

mization algorithm.

MLP: Multi-Layer Perceptron.

CNN: One dimensional Convolutional Neural Network.

LSTM: Long short-term memory recurrent neural network (RNN).

GRU: Gated recurrent unit recurrent neural network (RNN).

Bi-LSTM: Bi-directional Long short-term memory neural network.

CNN LSTM: Convolutional LSTM Network implementation as per Shi et al. (2015).

3.3.2 Univariable

For the univariable experiment, we tested a wide range of models from classical time

series models like ARIMA to more recent models like the CNN LSTM neural network.

Due to the technical differences between models, the data preparation varied slightly

between models.

Models based on neural networks showed better results when the data was nor-

malized (converting the data to a 0 to 1 range). This was achieved by dividing the

workload by a fixed value n to reduce the scale to 0 to 1 and the forecast was then

multiplied by n before testing.
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The models we present on table 3.1 were optimized with a hyperparameter grid

search and the best model is presented.

Table 3.1 Univariable models results

Model RMSE

Persistence 70.006
MA 60.064

Mean 60.012
LR 59.810

Persistence -7 32.721
AR 28.431

ARIMA 27.810
SVR 24.566

LSTM 23.969
ES 23.067

XGBoost 22.953
Polynomial Regression 22.596

SARIMA 22.451
Random Forest 22.208

prophet 21.811
GRU 21.131
KNN 20.476

Bi-LSTM 20.244
CNN 20.105
MLP 19.451

CNN LSTM 18.757

The best model of this experiment was the CNN LSTM model with an RMSE of

18.757. This value improved greatly on the naive models. Neural network models

performed remarkably well in the univariable experiment. The best four models found

were all based on neural networks.

3.3.3 Multivariable with date features

In this experiment, we added date features to the original dataset. The date features

added were:

• day of the week

• day of the month
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• day of the year

• week of the year

• month

• year

• yearly quarter

• is a bank holiday

For this experiment, we selected the models that performed well in the previous

experiment and support multivariable input. Some models like Auto Regression have

the limitation of only supporting a one variable time series as input. A note on the

multivariable prophet model. The prophet model does not support multivariable inputs.

But it supports the addition of a calendar of holidays, yearly seasonality and daily

seasonality (Taylor and Letham, 2017). Because of this, the data preparation for the

prophet model was different from the other models. It still includes date features, but

technically the input data is not the same as the other models. The prophet model

shown here included the original dataset and a calendar of Irish holidays.

The results are presented on table 3.2. The best model of the experiment was the

Random Forest forest model with an RMSE of 15.810.

Table 3.2 Multivariable models with date results

Model RMSE

CNN LSTM 18.784
KNN 18.432
CNN 18.202

LSTM 16.964
prophet 16.804
GRU 16.540

XGBOOST 16.215
Bi-LSTM 16.096

MLP 15.810
Random Forest 15.215
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3.3.4 Multivariable with date and weather features

In this final experiment we tested if the best models from the previous experiment

showed improvements when trained with the addition of weather features. Weather

is a potential exogenous variable for the need for maintenance work so it was worth

investigating. We obtained historical acquired weather data from Met Éireann (the

Irish National Meteorological Service). We processed the weather data and added the

following features to the dataset:

• Precipitation Amount

• Maximum Air Temperature

• Minimum Air Temperature

• 09 utc Grass Minimum Temperature

• Mean 10cm Soil Temperature

• Mean Wind Speed

• Highest 10 minute mean wind speed

• Highest Gust

• Sunshine duration

Table 3.3 Multivariable models with date and weather features results

Model RMSE

Bi-LSTM 19.574
GRU 16.641

XGBOOST 16.576
MLP 16.071

Random Forest 15.487

The results of this experiment can be seen in table 3.3. Most of the models tested

performed slightly worse with the addition of weather features. This suggests that the

weather did not provide useful information for the forecast.
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3.3.5 Results Compiled

This section compiles the results for the experiment of workload forecasting. We

present all the results in the table 3.4 and fig 3.10 for easy comparison. The table

3.4 presents all the models tested. The models are grouped into 3 sections. The top

section of the table contains the results for the univariable models, that only use the

workload historical data as training. The best model in this section was the CNN

LSTM with an RMSE of 18.757. A neural network introduced by Shi et al. (2015)

that uses Convolutions in combination with Long short-term memory for forecasting.

The middle section of the table shows the results for the models that use workload

historical data and date features as training data. Here the best model was the Random

Forest introduced in Breiman (2001) with an RMSE of 15.215, improving on the

univariable models.

The last section of the table presents the results for the models trained using

workload historical data, date features and weather features. Once again, the best

model was Random Forest with an RMSE of 15.487. Obtaining slightly worse

score than in the previous section. The additional weather data did not provide an

improvement on any of the models tested when compared to the models trained with

historical data and date features. In fig 3.10 we show the results in graphical form.
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Table 3.4 Workload forecasting models results compiled

Model RMSE

Univariable Models (Historical data)

Persistence 70.006
MA 60.064

Mean 60.012
LR 59.810

Persistence -7 32.721
AR 28.431

ARIMA 27.810
SVR 24.566

LSTM 23.969
ES 23.067

XGBoost 22.953
Polynomial Regression 22.596

SARIMA 22.451
Random Forest 22.208

prophet 21.811
GRU 21.131
KNN 20.476

Bi-LSTM 20.244
CNN 20.105
MLP 19.451

CNN LSTM 18.757

Multivariable Models (Historical and Date data)

CNN LSTM 18.784
KNN 18.432
CNN 18.202

LSTM 16.964
prophet 16.804
GRU 16.540

XGBOOST 16.215
Bi-LSTM 16.096

MLP 15.810
Random Forest 15.215

Multivariable Models (Historical, Date and Weather data)

Bi-LSTM 19.574
GRU 16.641

XGBOOST 16.576
MLP 16.071

Random Forest 15.487
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Fig. 3.11 Random Forest forecast

3.3.6 Random Forest forecast

The Random Forest model that used historical data and date features as input was the

most accurate found in the experiment. In fig 3.11 we plot the forecast values obtained

by the random forest model (dashed line) to the actual workload value (solid line). We

can see that this model provided a forecast that closely matches the ground truth and

does not deviate far.

We can also analyse the residuals to check if there are indications of information

that was not captured. The residual values are the values not captured by the model

and can be obtained by subtracting the forecast from the ground truth.

Fig. 3.12 Random Forest residuals

The residuals plot (fig 3.12) does not suggest a particular pattern to the residuals.

By plotting their distribution (fig 3.13) we see that they seem to follow a fairly normal
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Fig. 3.13 Random Forest forecast error distribution

Fig. 3.14 Random Forest forecast residuals auto correlation plot

distribution. Most values are close to zero and no particular pattern emerges. This

is an indication of a good fit of the model as per Brownlee (2018b). Performing an

auto-correlation test on the residuals we see that it shows very small correlation values

(fig 3.14). This is another good indication of a good fit (Brownlee, 2018b) since we

want any correlation to be captured by the model.

Given that we know the residual distribution, it is possible to calculate a confidence

interval on the predictions as per Reilly (2019). We calculate a confidence interval

of 80% and present the resulting plot in fig 3.15. The orange area represents the

confidence interval. We can observe that the forecast is well behaved, rarely falling

outside the confidence interval.
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Fig. 3.15 Random Forest forecast with a 80% confidence interval

3.4 Discussion

In this experiment, we found that the most accurate model tested was the Random

Forest when used as a multivariable model using past data and date features. It is not

unusual to see an ensemble model to perform so well Mei et al. (2014). But it was still

a bit of a surprise to see it outperforming the models based on neural networks. Recent

studies in time series tend to focus on neural network approaches. These studies tend

to ignore older methods of machine learning. But the results of this study suggest that

models such as Random Forest may outperform them in certain datasets. This is not to

say that the neural models performed poorly. They consistently achieved a low error

and showed as top performers.

The MLP model performed remarkably well, obtaining the second-best perfor-

mance in all three experiments. MLP was also more a consistently high performer

unlike the CNN LSTM for example, that obtained top performance in the univariable

experiment and the worse performance in the multivariable experiment. In the mul-

tivariable experiment, the CNN LSTM model obtained roughly the same RMSE as

the univariable model, failing to take advantage of the additional data. This is likely

due to recurrent neural networks such as LSTMs being difficult to train as explained in

Pascanu et al. (2013). LSTMs and other recurrent neural network models have to deal

with the exploding and vanishing gradients problem which makes the training process

more complex than MLP and CNN.
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The ARIMA family of models and Exponential smoothing revealed some of their

limitations in this experiment. These models make some strong assumptions on the

time series behaviour while models like MLP make little assumptions on the data.

MLP networks are considered universal approximators (González-Díaz et al., 2019)

making them capable of approximating any function. Furthermore, neural networks

are notably flexible and can easily support additional data and outputs.

In our results, the models showed improved performance when date features were

added to the historical. This suggests that the day when the work is carried appears

to have an influence on the results. The influence of weekends seems fairly obvious

when analysing the plot, but the difference between weekdays is not so obvious.

Based on this supposition, we can test a null hypothesis that the day of the week

does not influence the workload. We test both in the case of the full week (Monday

to Sunday) and weekdays (Monday to Friday) using a one way ANOVA test on the

dataset. The p-value represents the probability of obtaining test results assuming that

the null hypothesis is correct. The smaller the p-value, the stronger the evidence that

we should reject the null hypothesis. Assuming a confidence level of 99% the p-value

needs to be lower than 0.01 to reject the null hypothesis. In table 3.5 we test these

Table 3.5 One-way ANOVA day of the week

Model F-value p-value

full week 354.6336 0.0000
weekdays 6.6632 0.0003

two null hypothesis. That the day of the week has no influence on the workload value

when considering the full week (Monday to Sunday). And that the day of the week

has no influence on the workload value when considering the weekdays (Monday to

Friday).

We can see the results in table 3.5. The p-value is lower than 0.01 for both cases.

We can reject the null hypothesis for both cases and conclude that the day of the week

has an influence on the workload. The workload on Mondays shows a statistically

significant difference from the workload on Tuesdays and the other days of the week.
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In the results, we can also see that adding weather features to the models tested

did not improve performance. All models tested with the additional weather data

performed slightly worse when compared to the models using historical data and date

features. Suggesting that the weather data was merely introducing noise.

Overall our models improved greatly over the naive baselines, taking advantage

of the historical data and date features to provide more accurate forecasts. While not

perfect, they are certainly useful. On the final chapter, we present our conclusions.



Chapter 4

Task Duration Classification

4.1 Introduction

In this chapter, we will look at the task of classifying tasks as long or short based on

their text description. We explore a wide variety of machine learning models, classical

and state of the art. Our models achieve strong performance with a few models being

able to outperform human performance. Then we explain how the dataset was created

and the data preparation in section 4.2.1. We analyse the data in section 4.2.2. We go

over the evaluation metric in section 4.2.3 and the experiment design in section 4.2.4.

Finally, we present the results of the experiment followed by a brief discussion of the

results.

4.2 Methodology

4.2.1 Dataset Creation

The objective of the research question was to find if it was possible to identify a task

duration given a task text description. To this end, we needed to first establish how to

approach this task. Treating this problem as a binary classification problem between

small tasks and long tasks allow us to test this hypothesis and present it in a familiar

context.
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Fig. 4.1 Task duration distribution median point

We created two classes of tasks based on their duration. Short task and long tasks.

We could then treat it as a classification problem and employ modern methods for

text classification. To decide on the division point we looked at the data distribution

of duration the tasks. Since the objective was to evaluate the skill on the models, a

balanced distribution of the dataset was a natural choice. In a balanced distribution,

each class has an equal number of samples, and no class is favoured. To this end, we

found the median point of the task duration as can be seen in fig 4.1. The median point

was of 2 hours and 13 minutes. Using this value as the division point the tasks were

split into 10803 short tasks and 10803 long tasks.

Having now the base dataset, we cleaned the text to help the classification problem.

All words were converted to lowercase, and multiple spaces were removed as is

common practice as per Brownlee (2017) and Kowsari et al. (2019).

In our experiment, we tested additional text processing techniques that help certain

models such as removing stop words and stemming and present the results.

4.2.2 Data Analysis

In order to better understand the data we performed data analysis on the dataset. The

dataset is divided into two classes (short and long) with 10803 tasks each.



4.2 Methodology 43

Fig. 4.2 Task text description length (characters)

In fig 4.2 we can see the text description length distribution. Most of the task have

a short text description with 99% of the tasks having less than 1000 characters. We

show a few samples of task description here:

• Attend site and carry out emergency lighting test.

• Attend site and install new fire alarm system.

• Attend site: STORE NOT TRADING the shutter at the entrance to the store will

not open, The key will not turn on the outside and the button is not responding

on the inside of the store.

• Attend site :The main door is broken and not locking. Store has a shutter however

someone could put fingers through and open doors etc. Also the threshold is

coming up and requires attention. Someone on site till 7pm.

We also found that in some cases the same description could correspond to short

and long classes. Such as in the case of Attend site - carry out PAT test. that had 12

short tasks and 9 long tasks. This variation is not unexpected since there is a natural

expectation of variation when it comes to human activity. The same task sometimes

took longer to perform than others. This pointed to some of the natural ambiguity of

the dataset, that a perfect accuracy would not be possible.

In the table 4.1, we analyse the most frequent words for each class. We can

observe that there are a lot of common words that appear in both classes, with similar

frequencies. But it is also possible to spot a few words that occur more frequently in

one of the classes. Such as ppm appearing 5050 times in the description of long tasks
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versus 2074 in short tasks.

To better analyse the word frequency in relation to class we plotted the word frequency

Table 4.1 Most frequent 20 words in each class, after removing stop words

Short Long
word count word count

site 10804 site 12154
attend 9190 attend 8843
carry 3636 carry 7182
store 2729 ppm 5050
no 2338 no 4548

ppm 2074 following 4107
following 2060 hr 3765

door 1864 works 3636
area 1683 install 3500

install 1677 new 3465
works 1651 supply 3320
new 1625 area 2754
test 1594 remove 2637
light 1326 recent 2268
alarm 1303 store 2242

emergency 1210 test 2238
remove 1156 emergency 2177
supply 1091 visit 2167

engineer 1087 clean 2142
floor 1084 propose 2049

in short tasks relative to the same word occurring in long tasks in figure 4.3. With

occurrence in short tasks in the x axis and occurrence in long tasks in the y axis it

possible to analyse which word appear more frequently in one class versus the other.

To facilitate this analysis we draw a 45°diagonal line. Words that appear closer to this

line appear equally in each class. Words that appear far from this line appear more

frequently in one class than the other. The further the distance from the line the more

accentuated the occurrence difference. This means that a word that are far from the

45°diagonal line occurs more frequently one of the classes. Particularly in 4.3b, where

we zoom in to the plot, it is possible to observe an occurrence difference of certain

words. The words "ppm" and "hr" clearly appear more frequently in long tasks and the

words "alarm" and "door" in short tasks. That suggests that if a word such as "ppm" is
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present on the task description, it is more likely that the description belongs to a long

task than to a short task.

Some of the models implemented in this study represent the text on a word fre-

quency level. For us to be able to confirm that some words are more frequent in one

class than the other is a good indication that it will be possible to build skilful models.
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Fig. 4.3 Word occurrence plot

(a) 20 most frequent words

(b) Detail view
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4.2.3 Evaluation metric

In the evaluation of classification problem we evaluate the performance by comparing

the predicted class by the models against the the actual class of the sample. It is

common to build a confusion matrix like fig 4.2 (Manning et al., 2008).

We can then calculate performance metrics such as accuracy, precision, recall and F1

Table 4.2 Confusion matrix

Actual class = short True Positive (TP) False Negative (FN)
Actual class = long False Positive (FP) True Negative (TN)

Predicted class = short Predicted class = long

score commonly used in text classification problems (Kowsari et al., 2019).

accuracy = T P+T N
T P+T N+FP+FN

precision = T P
T P+FP

recall = T P
T P+FN

F1 = 2. precision . recall
precision+recall

These metrics assume that we are searching for a specific class (TP). In cases

such as our experiment where we are interested in the overall performance of the

model it is common to aggregate results to a single value by Macro-Averaging or

Micro-Averaging (Kowsari et al., 2019). Macro averaging treats both class equally

performing a harmonic mean of the metric for each class. Micro-averaging favours

bigger classes (Sokolova and Lapalme, 2009). Since in our experiment both classes

have an equal distribution, macro averaging was the method of choice for this dataset.
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Fig. 4.4 k-fold cross-validation

4.2.4 Experiment design

We evaluate the classification models on the dataset created in this study. We use the

k-fold cross-validation which is considered the gold standard for text classification

(Feldman and Sanger, 2006) , (Ingersoll et al., 2013).

The tasks were shuffled as to avoid the influence of external factors related to the

order that they were created. We performed a 10-fold cross-validation with stratified

data. This means that we split the dataset into ten folds, each with the same distribution

of data as the original dataset. Then we trained each model ten times on nine folds and

tested on one fold, rotating the folds each loop. A sample of this can be seen in fig 4.4.

Text classification can be a computationally expensive task. Particularly in cases where

the samples can be in the thousands or more, as is the case of this dataset. So in

addition to the performance metrics, we decided to measure the training times for each

model and present them in table 4.18.

The results presented use Macro-averaged results for precision, recall and F1.
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4.3 Results

4.3.1 1 Rule baseline

The 1 Rule (1R) model a naive model is commonly used to establish a baseline for a

classification problem. This model works by predicting the most common class for

every sample of the dataset, with no regards to each sample information. In our case it

predicts every sample as a short task (see Fig. 4.5a). The 1 rule is useful to establish

if more complex models show skill and are able to leverage the information of each

sample or merely the statistical distribution of the dataset. It achieves a accuracy of

50.0% and an F1 macro score of 33.3%.

(a) 1R (b) Random

Fig. 4.5 Confusion matrices of naive models

4.3.2 Random class baseline

The random class model is another naive model. It predicts a random class for each

sample. This is a model without skill only useful to establish a baseline for the dataset.

It achieves an accuracy of 50.0% and an F1 score of 50.0%.

Table 4.3 Naive models results

Model Accuracy Precision Recall F1

1R 50.0% 25.0% 50.0% 33.3%
Random 50.0% 50.0% 50.0% 50.0%
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The results for both the naive models can be seen in table 4.3. If any model trained

shows similar results we can say it has no skill, since its predictions are as good as

random. For this dataset, only models that achieve more than 50.0% accuracy and F1

score show skill at the task of classification and are better than a random guess.

4.3.3 Human Performance

To establish a human performance baseline, we utilized the scheduling data created

by human operators. We obtained data for each task from the scheduling software

and extracted the expected start time and expected end time for each task as estimated

by the person scheduling. With this information, it was possible to calculate the

expected duration for each task than could then be classified into the short and long

classes. Comparing this to the actual duration class for each task, we can calculate

the performance metrics. The results are shown in table 4.4. In essence, these results

reflect the performance of the human experts in the work environment. How accurate

was their estimation at the time that they were scheduling the tasks.

Table 4.4 Human Performance results

Model Accuracy Precision Recall F1

Human Performance 74.1% 74.2% 74.2% 74.1%

4.3.4 Naive Bayes

Naive Bayes is a classic probabilistic classifier based on Bayes theorem (Bayes, 1763).

It is a commonly used model for baseline classification performance. We decided

to create and train four variations of text representation with the Naive Bayes clas-

sifier. We test two text representations (bag-of-words and tf-idf) and the use of text

pre-processing (removing stop words, stemming) compared to no pre-processing.

NB - BOW refers to the Naive Bayes classifier with the bag-of-words text model.

NB - BOW - P refers to the Naive Bayes classifier with the bag-of-words text model

with pre-processing.

NB - TF-IDF refers to the Naive Bayes classifier with the tf-idf text model.
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NB - TF-IDF - P refers to the Naive Bayes classifier with the tf-idf text model with

pre-processing.

The results obtained can be seen in table 4.5.

Table 4.5 Naive Bayes models results

Model Accuracy Precision Recall F1

NB - BOW 71.8% 71.9% 71.8% 71.8%
NB - BOW - P 72.3% 72.3% 72.3% 72.3%
NB - TF-IDF 72.9% 73.2% 72.9% 72.9%

NB - TF-IDF - P 72.2% 72.6% 72.2% 72.1%

The best performance of the Naive Bayes models was the NB - TF-IDF model

with an accuracy of 72.9% and an F1 score of 72.9%. This model uses tf-idf as text

representation and no text pre-processing.

4.3.5 KNN

The k-nearest neighbors (KNN) algorithm was first introduced in Altman (1992).

We created a model using KNN as a classifier in conjunction with the tf-idf text

representation and no text pre-processing. It achieved an accuracy of 72.1% and an F1

score of 72.1%. Of note is how balanced the confusion matrix for KNN results was, as

can be seen in fig 4.6.

Fig. 4.6 KNN - confusion matrix
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Table 4.6 KNN results

Model Accuracy Precision Recall F1

KNN 72.1% 72.1% 72.1% 72.1%

4.3.6 Gradient boosting

We created a model using Gradient boosting (GB) (Friedman, 2001) as the classifier

and tf-idf as text representation with no text pre-processing. It obtained an accuracy of

73.8% and an F1 score of 73.9%.

Table 4.7 Gradient boosting results

Model Accuracy Precision Recall F1

GB 73.8% 73.9% 73.8% 73.8%

4.3.7 XGBoost

XGBoost (Chen and Guestrin, 2016) is a high-performance implementation of gradient

boosted decision trees. For our experiment we created a model using XGBoost as the

classifier and tf-idf as text representation with no text pre-processing.

Table 4.8 XGBoost results

Model Accuracy Precision Recall F1

XGBoost 73.1% 73.3% 73.1% 73.1%

4.3.8 SVM

The SVM (Boser et al., 1992) model that we created for this experiment was trained

with tf-idf as text representation and no text pre-processing. It achieved an accuracy of

74.6% and an F1 score of 74.5%. This was the first model tested to perform higher

than human performance (F1 score 74.1%). Of note was the long training time in

comparison to the other models in the experiment, being by far the slowest model

tested. We show the comparison of training time in table 4.18.
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Table 4.9 SVM results

Model Accuracy Precision Recall F1

SVM 74.6% 74.7% 74.6% 74.5%

4.3.9 CNN models and transfer learning

In this section we started testing the use of neural networks approaches to the task

classification problem. The use of neural networks in NLP problems is a very active

field.

One of the biggest innovations in recent years is the use of high dimensional,

continuous vectors to represent the statistical probability of a word in a given context.

This results in words with semantically similar value to be close, as well as other

interesting proprieties such as the distance between words representing their relations.

This method was first popularized by the method Word2Vec in the work of Mikolov

et al. (2013a). Another popular word vector representation is GloVe introduced in

Pennington et al. (2014). One of the advantages of these models is the availability

of pre-trained models that have been trained in a large corpus of text to create a

multi-dimensional representation of words. This trained models then can be then used

by the method of transfer learning to augment neural networks models given them an

improved starting point where the model merely has to learn the task at hand and not

the relation between words.

While using pre-trained word vector models is the general advice, it is possible to

begin with untrained word vectors and train the word vectors at the same time as the

classification task. This has the disadvantage of the word vectors model being limited

to the vocabulary in the training corpus and thus not having a good representation

if it encounters new words when deployed after training. The advantage is that the

word vector representation will be optimized for the given task since the error back-

propagates from the classification loss to the word vectors. It is a balance between a

more general model or one that is over-fitted to the task at hand.

Convolutions neural networks (CNN) are commonly used as a model for text

classification (Kowsari et al., 2019) often achieving state of the art results. We used a

CNN neural network with a similar architecture with several variations for the word



54 Task Duration Classification

vector representation. With untrained word vectors, with a pre-trained Word2Vec

model and with a GloVe pre-trained model. We then compare the results on table 4.10.

For the implementation of the different CNN models, we used the Keras framework

(Chollet et al., 2015) in conjunction with Tensorflow (Abadi et al., 2015).

Untrained Word Vectors

For the first CNN model, we used an untrained word embedding layer with 300

dimensions followed by a convolution neural network. The error will propagate from

the CNN to the word vectors, training them at the same time as the CNN. This model

is referenced as CNN - UWV. After optimizing hyper-parameters, the CNN - UWV

model achieved an accuracy of 73.8% and an F1 score of 73.8%.

Word2Vec

For this classification model, we used the Word2Vec model previously trained as a

300 dimensional vectors representation. The Word2Vec used was trained on a Google

News dataset containing approximately 100 billion words.

We refer to this model as CNN - Word2Vec. This model achieved an accuracy of

73.4% and an F1 score of 73.4%.

GloVe

The GloVe model used for this model was pre-trained on the Wikipedia 2014 and

Gigaword 5 datasets, for a total of approximately 6 Billion words. It represents words

as a 300 dimension vector.

We refer to this model as CNN - GloVe. This model achieved an accuracy of 74.0%

and an F1 score of 74.0%.

4.3.10 Neural Networks Architectures and GloVe

The GloVe word representation model provided the best performance of word vec-

tors in the previous section. We decided then to explore different Neural Networks
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Table 4.10 CNN - Different Word Vector models

Model Accuracy Precision Recall F1

CNN - UWV 73.8% 73.8% 73.8% 73.8%
CNN - Word2Vec 73.4% 73.4% 73.4% 73.4%

CNN - GloVe 74.0% 74.1% 74.0% 74.0%

Architectures. In this section, we present the results for different neural networks

architectures tested using the GloVe model.

Multilayer Perceptron (MLP)

Multilayer Perceptron (MLP), sometimes called Feed Forward Neural Network is

one of the simpler neural network architectures. Using the GloVe language model it

achieved an accuracy of 72.1% and an F1 score of 72.1%.

Multi-Headed CNN

Building on our CNN model, we built a Multi-Headed convolution neural network.

By creating three convolution heads, the model is capable of exploring different

convolution sizes, potentially exploring relations between words that are further apart.

The diagram for this model can be seen in figure 4.7. This model slightly improved

the accuracy of the simpler CNN model, achieving 74.1% and an F1 score of 74.0%.

LSTM

The LSTM model is commonly used to model sequences of data, such as words in a

sentence. Our LSTM - GloVe achieved an accuracy if 73.9% and an F1 score of 73.9%

a result close to the CNN model.

CNN LSTM

This model combines convolution layers with LSTM layers for this classification task .

We refer to this model as CNN LSTM - GloVe. It achieved an accuracy of 73.7% and

an F1 score of 73.7%.
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Table 4.11 Different Neural Networks Architectures models and GloVe

Model Accuracy Precision Recall F1

CNN - GloVe 74.0% 74.1% 74.0% 74.0%
MLP - GloVe 72.1% 72.1% 72.1% 72.1%

CNN MH - GloVe 74.1% 74.2% 74.1% 74.0%
LSTM - GloVe 73.9% 74.1% 73.9% 73.9%

CNN LSTM - GloVe 73.7% 73.8% 73.7% 73.7%
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4.3.11 ELMO

ELMO is a model that uses deep contextualized word representation to represent words.

Elmo models both syntax and semantic word value, and how these it can vary across

context, it was first introduced by Peters et al. (2018). In our experiment, we used an

ELMO embedding layer with a dimension of 1024. ELMO obtained an accuracy of

72.0% and an F1 score of 71.9%, one of the lowest performances on this study. This

was somewhat surprising, but it is possible that the dataset of approximately 20000

samples was just not big enough to fully take advantage of ELMO or merely a poor fit

to the current problem and dataset.

Table 4.12 ELMO results

Model Accuracy Precision Recall F1

ELMO 72.0% 72.4% 72.0% 71.9%

4.3.12 BERT

BERT has been one of the top models of choice for NLP tasks in recent years since

it was introduced in Devlin et al. (2019). BERT claims state of the art performance

in various publicly available datasets at the time of the writing. This can be seen

on the state of the art tracker created by the website Paperswithcode (2020). In our

experiment BERT outperformed the models presented so far with an accuracy of 74.6%

and an F1 score of 74.6%.

Table 4.13 BERT results

Model Accuracy Precision Recall F1

BERT 74.6% 74.9% 74.6% 74.6%

4.3.13 XLNet

XLNet was introduced in Yang et al. (2019). XLNet is another great model based on

the transformer architecture that showed strong performance on this experiment with

an accuracy of 74.6% and an F1 score of 74.6%.
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Table 4.14 XLNet results

Model Accuracy Precision Recall F1

XLNet 74.6% 74.7% 74.6% 74.6%

4.3.14 ROBERTA

The ROBERTA model is a variation on the BERT model introduced in Liu et al.

(2019). The name stands for Robustly Optimized BERT Pretraining Approach and

as the name implies it proposes some modification to the original BERT model to

improve performance. In our experiment ROBERTA performed slightly worse than

the BERT model with an accuracy of 74.2% and an F1 score of 74.2%.

Table 4.15 ROBERTA results

Model Accuracy Precision Recall F1

ROBERTA 74.2% 74.4% 74.2% 74.2%

4.3.15 ALBERT

The model ALBERT was introduced in Lan et al. (2020) mainly to deal with the high

memory requirements and slow training speed of BERT. In the original paper this

model was able to outperform BERT while being 1.7 times faster. In our experiment

ALBERT performed slightly worse than the BERT model, but trained 1.7 faster than

BERT as can be seen in table 4.18.

Table 4.16 ALBERT results

Model Accuracy Precision Recall F1

ALBERT 74.1% 74.4% 74.1% 74.0%

4.3.16 fastText

The fastText model was created with efficiency in mind by the Facebook AI Research

group. For this it employs a combination to methods, a "Bag of Tricks" as the authors
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call it. The fastText model aims to provide an efficient and impressive performance

in the task of task classification that sometimes rival state of the art deep learning

classifiers while having faster training times (Joulin et al., 2017).

For our experiment we created two versions of this model. The first version uses

unigrams (single words) as inputs. The second version additionally uses bigrams (the

combination of two words in a sequence). The fastText - bigrams model achieves the

best performance of all models tested with an accuracy of 74.9% and an F1 score of

74.7%.

Of note is the slight imbalanced confusion matrix as seen in fig 4.8. This model

predicted 12435 tasks as short and 9171 as long. This contrasts with the 50%/50% dis-

tribution of the actual classes. It is possible that this merely reflects the characteristics

of the dataset.

Table 4.17 fastText results

Model Accuracy Precision Recall F1

fastText - unigrams 72.6% 72.7% 72.6% 72.6%
fastText - bigrams 74.9% 75.5% 74.9% 74.7%

Fig. 4.8 fastText - bigrams - confusion matrix
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4.4 Results Compiled

This section compiles the results for the experiment of task duration classification task.

We present all the results in the table 4.18 and the graph 4.9 for easy comparison.

All the models here presented were tested with the 10-fold cross-validation method.

The training time presented correspond to the total time of the 10 training cycles on

the same computer hardware.

Table 4.18 Models Results Compiled

Model Accuracy Precision Recall F1 Training Time (s)

1R 50.0% 25.0% 50.0% 33.3% 0.1s
Random 50.0% 50.0% 50.0% 50.0% 0.1s

NB - BOW 71.8% 71.9% 71.8% 71.8% 20.1s
NB - BOW - P 72.3% 72.3% 72.3% 72.3% 20.3s
NB - TF-IDF 72.9% 73.2% 72.9% 72.9% 56.6s

NB - TF-IDF - P 72.2% 72.6% 72.2% 72.1% 50.4s
KNN 72.1% 72.1% 72.1% 72.1% 5876.8s

XGBoost 73.1% 73.3% 73.1% 73.1% 3256.8s
GB 73.8% 73.9% 73.8% 73.8% 14532.8s

SVM 74.6% 74.7% 74.6% 74.5% 40982.2s
CNN - UWV 73.8% 73.8% 73.8% 73.8% 142.9s

CNN - Word2Vec 73.4% 73.4% 73.4% 73.4% 94.0s
CNN - GloVe 74.0% 74.1% 74.0% 74.0% 106.8s

CNN MH - GloVe 74.1% 74.2% 74.1% 74.0% 242.6s
CNN LSTM - GloVe 73.7% 73.8% 73.7% 73.7% 3055.7s

MLP - GloVe 72.1% 72.1% 72.1% 72.1% 266.5s
LSTM - GloVe 73.9% 74.1% 73.9% 73.9% 8305.3s

ELMO 72.0% 72.4% 72.0% 71.9% 9612.1s
BERT 74.6% 74.9% 74.6% 74.6% 5064.4s
XLNet 74.6% 74.7% 74.6% 74.6% 6177.2s

ROBERTA 74.2% 74.4% 74.2% 74.2% 4996.2s
ALBERT 74.1% 74.4% 74.1% 74.0% 3036.4s

fastText - unigrams 72.6% 72.7% 72.6% 72.6% 351.6s
fastText - bigrams 74.9% 75.5% 74.9% 74.7% 1016.7s

Human Performance 74.1% 74.2% 74.2% 74.1% -
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4.5 Discussion

This experiment tested a large number of models from classical to state of the art. It is

not often that the best model is also one of the most efficient, but this was the case in

this experiment. The model fastText - bigrams proved not only the most accurate but

also one with the lowest training times.

In general the results matched with the progression of models in the field of natural

language processing. In the more classical word representation models, TF-IDF

outperformed the simpler BOW model when used with Naive Bayes. It was interesting

to find that TF-IDF offered better performance without the additional text preparation

of removing stop words and stemming.

SVM was one of the surprises outperforming some of the more recent neural

network models. Unfortunately, this came at the cost of high training time. SVM scales

poorly with high dimensional representations and a large number of samples, as is the

case of our dataset. SVM has a computational complexity of O(n f eatures ×n2
samples)

to O(n f eatures × n3
samples) as per Pedregosa et al. (2011). This causes SVM to scale

poorly as the number of samples increase, making it unpractical for problems that have

samples in the thousands or millions. While this result was unexpected since most

modern approaches in NLP are based in neural networks models, this is not an isolated

case. Some research like Van-Tu and Anh-Cuong (2016) were able to achieve a good

performance using SVM in an NLP problem. Young et al. (2017) also shows a strong

performance by SVM when compared with modern neural networks models in a part

of speech tagging problem.

Of the models using neural networks and word vectors as representation, the

models CNN - GloVe and CNN MH - GloVe proved the most accurate. They also

offered an excellent training performance, training an order of magnitude faster than

the best model found. It is interesting that the pre-trained GloVe model outperformed

the pre-trained Word2Vec. The Word2Vec was trained on a larger corpus (100 billion

words) based on Google News articles while the GloVe model trained on a smaller

corpus (6 billion words) of Wikipedia articles and Gigaword. This may be due to the

GloVe model being superior or due to the training corpus of Wikipedia articles being

able to provide more relevant language information.
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The models that were based on the transformer architecture (BERT, XLNet, ROBERTA,

ALBERT) all achieved strong accuracy values, with BERT and XLNet obtaining similar

performance. This seems to suggest that they are superior to the previous dominant

approach of using word vectors and neural networks for text classification.

The best model fastText - bigrams model was able to outperform our human

performance baseline, which was an impressive feat.

These results promise a great future for the field of natural language processing.

The amount of data in text form is vast and growing. Processing such large amounts of

data require an automated way. It is encouraging to see that NLP models are now able

to achieve or even surpass human-level performance in certain NLP tasks. Such was

the case in this study and in other recent works, like in the work of Lan et al. (2020)

on the Stanford SQuAD2.0 dataset.



Chapter 5

Conclusion

This research investigated two main research questions:

- How can historical data be used to forecast the workload for the next day?

- How can a task text description be used to identify short tasks and long tasks?

Based on our results we were able to answer both questions with positive results.

By testing naive, classical forecasting models and modern developments in the area

of forecasting we were able to create models capable of closely capturing the behaviour

of the workload time series in our dataset. We trained and tested machine learning

models and deep learning models with a dataset created from previous time steps and

added additional information about date and weather. By utilizing the historical data

and date information it was possible to greatly improve on our baselines and provide

an accurate forecast. The best model found was the multivariable Random Forest with

date features, obtaining an RMSE error of 15.215. To contextualize this value, the

median day on the dataset has a workload of 114.65 hours and the day of the highest

workload has 206.08 hours. This means that for a typical day this model would be

able to, on average, predict the workload value with approximately 13% error. And for

high workload days with an error of less than 10%.

On the text description task, we were able to obtain great results for the dataset

tested that surpassed the performance of human experts. We used machine learning

and deep learning models to predict tasks as short or long in duration.
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We explored different forms of text representations and different classifiers, from

classic machine learning to state of the art approaches. Given the results presented in

the literature, we expected the fastText model to be one of the top performers. But

to outperform more recent and complex models such as BERT and XLNet was an

interesting result. BERT, XLNet and other transformer based architectures have been

dominating the state of the art in NLP tasks. They were still among the top performers,

closely behind our best model. This shows how strong the transformer architecture is

for NLP tasks.

These results reinforce the idea of how important it is to test more than a few

models. No single model is going to provide the optimal solution for every problem,

as argued by Wolpert and Macready (1997).

One of the contributions of this study is the performance comparison of classi-

cal time series forecasting models with modern machine learning and deep learning

methods. We showed that on the dataset studied, machine learning models outper-

formed the classical models that are still widely popular in the field (Hyndman and

Athanasopoulos, 2018).

This study also showed that using deep learning text classification methods can be

used to estimate a task duration in the maintenance industry, in our case, outperforming

human performance at the task. It also contributes a performance review of the state

of the art text classification models on a real-world industry dataset.

As a final contribution, we show with our results the remarkable flexibility of

neural network models. Neural networks achieved great results in both the forecasting

and text classification experiments. These are two very different tasks and neural

network models showed great results. These are important contributions that have both

industry and academic importance.

For the industry, the company that provided the data for this study can in the future

integrate these models into their workflow. The text classification model created can

be used to automatically classify incoming task requests, facilitating the work of the

human operator. The forecasting model can provide a forecast of the next day workload

on a daily basis, as well as the confidence interval for better resource allocation.
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As for the academic importance, our results showed that machine learning models

provided improved results over classical time series models in the dataset tested.

Similar time series problems may benefit from similar models.

The results of the task classification problem showed that there is a natural ambi-

guity and stochasticity in trying to predict the duration of a task from natural language,

at least in this dataset. The process may not be completely deterministic as is often the

case when studying human activity. But state of the art models were able to achieve

results that outperformed our human baseline performance.

The results presented are limited to the dataset tested, based on one company’s

data. They may not necessarily apply to different datasets. Future work could expand

the experiments with different datasets.

In future work for this project, we are planning to integrate the models created into

scheduling software used in the industry. How to best integrate, distribute and keep

the models up to date. After integration, additional work can be made by measuring

model performance in the live application and how real-world performance compares

to the results obtained in this study.

While this study concerns itself with the workload in the maintenance industry,

any scheduling software has the potential to benefit from the integration of similar

models to the ones presented in this study. The models employed are easily adapted to

other industries since there is no handcrafted knowledge specific to the maintenance

industry. The models merely need to be retrained in datasets specific to the application.

This study trained and tested an extensive range of models. It serves as a great source

to select models likely to succeed in future applications similar in nature.

Our results suggest that models that try to imbue human knowledge or make

assumptions on the data can be outperformed by models that are more generic in

nature. Given enough data and computing power, a general model can find their own

rules and methods to reason about the data. Richard Sutton, researcher at DeepMind

and one of the fathers of Reinforcement Learning, argues so in The Bitter lesson

(Sutton, 2019). Sutton makes the argument that general-purpose methods that can

leverage computation power and have the ability to scale are ultimately the most
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effective. Trying to leverage human knowledge of a problem will be limited by human

understanding. It was so in chess and more recently in Go (Silver et al., 2016).

In today’s world, more data is generated every day than all the data generated in

one year 15 years ago (Guo et al., 2014). The need for automatic processing of data is

growing, and with it, more developments in research.
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Appendix A

Tools

This appendix lists the software and hardware used to create the development environ-

ments used in this research.

Software

Microsoft SQL Server - https://www.microsoft.com/en-us/sql-server/

JupyterLab - https://jupyter.org/

python - https://www.python.org/

scikit-learn - https://scikit-learn.org/

pandas - https://pandas.pydata.org/

matplotlib - https://matplotlib.org/

Tensorflow - https://www.tensorflow.org/

PyTorch - https://pytorch.org/

Keras - https://keras.io/

xgboost - https://xgboost.ai/

https://www.microsoft.com/en-us/sql-server/
https://jupyter.org/
https://www.python.org/
https://scikit-learn.org/
https://pandas.pydata.org/
https://matplotlib.org/
https://www.tensorflow.org/
https://pytorch.org/
https://keras.io/
https://xgboost.ai/
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Hardware

During the research process the AWS and google cloud platforms were used to train

and test machine learning models.

AWS SageMaker - https://aws.amazon.com/sagemaker/

Google Colab - https://colab.research.google.com/

In addition to these cloud platforms, a computer with the following specifications was

used to train models.

12 core CPU

2560 CUDA cores Nvidia GPU

32 Gb Ram memory

https://aws.amazon.com/sagemaker/
https://colab.research.google.com/


Appendix B

Data Set

The datasets created and used for this research contain private company data and

are not publicly available. For access to the full dataset please submit a request to

https://civic.ie. In this section we present sample data from the datasets.

B.1 Daily Workload

date worload

2018-02-01 118.74924215207653

2018-02-02 119.18421552048274

2018-02-03 14.522512580901639

2018-02-04 0.0

2018-02-05 106.11532810138435

2018-02-06 94.40786584408926

2018-02-07 125.53950734895263

2018-02-08 83.65785326318763

2018-02-09 95.58298461700365

2018-02-10 9.106944444444444

2018-02-11 0.0

... ...

https://civic.ie/
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B.2 Date features

date dayofweek quarter month year dayofyear day week holiday

2018-02-01 3 1 2 0 32 1 5 0

2018-02-02 4 1 2 0 33 2 5 0

2018-02-03 5 1 2 0 34 3 5 0

2018-02-04 6 1 2 0 35 4 5 0

2018-02-05 0 1 2 0 36 5 6 0

2018-02-06 1 1 2 0 37 6 6 0

2018-02-07 2 1 2 0 38 7 6 0

2018-02-08 3 1 2 0 39 8 6 0

2018-02-09 4 1 2 0 40 9 6 0

2018-02-10 5 1 2 0 41 10 6 0

2018-02-11 6 1 2 0 42 11 6 0

... ... ... ... ... ... ... ... ...

B.3 Weather features

date rain maxtp mintp gmin soil wdsp hm hg sun

2018-02-01 0.0 6.2 1.6 0.6 3.200 15.0 23 32 5.8

2018-02-02 1.8 6.9 1.0 -0.7 3.075 10.3 17 23 5.9

2018-02-03 0.3 6.2 1.8 0.7 3.725 13.0 20 30 0.8

2018-02-04 2.0 7.0 -1.2 -0.8 3.300 6.2 13 17 2.0

2018-02-05 0.9 5.7 -2.3 -5.5 2.700 4.5 10 14 2.4

2018-02-06 0.8 3.5 -1.6 -5.7 2.325 11.3 21 34 7.6

2018-02-07 0.3 5.9 -2.9 -5.5 1.425 10.0 18 25 0.6

2018-02-08 1.3 8.3 3.2 -0.5 4.425 10.7 25 36 0.1

2018-02-09 0.3 5.5 -0.3 -1.4 3.125 14.2 26 34 7.5

2018-02-10 4.9 10.8 3.1 -0.6 5.100 18.2 34 47 2.6

2018-02-11 0.0 3.9 -0.6 -0.4 3.525 18.1 26 35 6.3

2018-02-12 0.0 6.0 -0.9 -2.1 2.225 14.9 22 33 6.6

... ... ... ... ... ... ... ... ... ...
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B.4 Task Description

Task description Class

-PMR Attend site - fire exit door at the front of the building needs to be
painted cream. the paint has peeled off the door. there is also some scuff
marks around the sales floor that need touch ups - black and red paints

1

Attend site and carry out 8hr air conditioning PPM. 1

Attend site: Please attend to review the lighting to the sign to the enterence
- potential driver missing. Lighting is to main ivy sign. 0522/755

0

Attend site and carry out emergency lighting PPM 1

Attend site : door handle broken - sales floor to stock room. 0

To investigate and repair leaks found during drain jetting works. Must
up-date soon as from store

0

Attend site: Store has called & their shutter was not operating. 0

Attend site and carry out fire alarm ppm. 1

AC Fan Motor Repairs.
Following a recent visit our engineer reported that the bearings in the AC
fan were worn down causing it to trip the overload. We propose to attend
site and strip the unit down. Remove the defective fan. Take the fan to
a specialist contractor to be assessed and see if the fan can be repaired.
Reinstall the fan once repaired. Clean down works area and remove all
debris from site

1

Attend site and carry out monthly 4hr PPM 1

Attend site : HAVING THE SAME PROBLEM AGAIN & THE DOU-
BLE SOCKET AT THE MICROWAVE STATION & 1 OF THE SOCK-
ETS ISNT WORKING & THIS IS LEAVING US WITH JUSY 1 MI-
CROWAVE IN USE

Following you recent request please see below costs to attend and carry
out the following: Move six floor boxes and run in 4 cat 6 circuits from
3rd floor to 2nd floor Assemble new furniture as per plan on 2nd floor
Mirror tv from 1st floor to 2nd floor Fit silent clock in meeting room
Clean down works area and remove all debris from site

1

Lights keep flashing after flood last week getting worse and aircon not
working properly

0

Attend site and carry out Radars installation and other related works. 0

... ...





Appendix C

Publications

Silva, P. and F. Tellez, J. Cardiff (2015) An Univariable Approach for Forecasting

Workload in the Maintenance Industry. Computación y Sistemas. 24 No 2 2007-9737

https://www.cys.cic.ipn.mx/ojs/index.php/CyS/article/download/3399/2851

https://www.cys.cic.ipn.mx/ojs/index.php/CyS/article/download/3399/2851
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