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Abstract:   

 

Gram negative bacteria have evolved many mechanisms of attaching to and invading host epithelial 

and immune cells.  In particular, many outer membrane proteins (OMPs) are involved in this initial 

interaction between the pathogen and their host.  This review focuses on a number of small pore-

forming OMPs that are all composed of eight-stranded  barrel proteins and include members of the 

OmpA, OmpW and OmpX families of proteins.   These proteins, together with the related OmpA-like 

peptidoglycan associated lipoproteins, are involved in interactions with host cells and are mediators of 

virulence.   In many cases, these proteins interact with host immune cells and can be considered as 

pathogen associated molecular patterns (PAMPS) due to their ability to signal via Toll like receptor 

molecules and other pattern recognition receptors.   The role of these proteins in pathogenesis is 

discussed here, together with the potential for these proteins to be used as immunoprophylactic agents 

to protect against infection.      

 

 

 

Keywords:    cellular interactions ;  host immune response ;   Lipoproteins ; Outer membrane 

proteins;  Pathogenesis ;  immunoprophylaxis.  
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Introduction:    

 

Bacterial pathogens have evolved many mechanisms of attaching to and invading host epithelial and 

immune cells and subverting the host response, including pili and fimbria, type III secretion systems 

and trimeric autotransporters [1-3].     However, integral outer membrane proteins with barrel 

structures are also involved in these processes.   Gram negative bacteria have evolved three major 

classes of outer membrane proteins (OMPs) to facilitate in the transport of nutrients into the cell.  

Many OMPs comprise monomeric or trimeric barrels that are composed of 12 to 22 anti-parallel -

strands.  These include the TonB-dependent active transporters, such as FhuA in Escherichia coli, 

which are involved in the uptake of larger molecules, for example, siderophores.  The second group, 

classed as general porins, including OmpF and OmpC, both of which are present in E. coli and 

Salmonella enterica serovar Typhimurium (S. typhimurium), also form trimeric aqueous channels and 

are involved in non-specific diffusion of small hydrophilic compounds across the outer membrane.  A 

third class of proteins is involved in substrate-specific transport of nutrients.  These form barrels 

that are composed of only eight to ten transmembrane domains and include OmpA, OmpW and 

OmpX.   The classical trimeric bacterial proteins, for example,  OmpF, PhoE and OmpC  which play 

roles in the transport of nutrients and other molecules are well described elsewhere [4] and are not the 

focus of this review.   Rather, the eight- stranded -barrel proteins that link to peptidoglycan will be 

discussed.  These have been shown to have a variety of different functions, including lipid 

metabolism, structural functions and cellular adhesion.     In addition, a number of outer membrane 

lipoproteins have been identified which also bind to peptidoglycan.  These are described as “OmpA-

like” and as a result are also included in this review.    

There is increasing evidence in recent years that these OMPs and lipoproteins interact with 

signalling pathways in host cells and play roles in host response and or host evasion.   Pathogen 

associated molecular patterns (PAMPs) are highly conserved structures on microorganisms that are 

shared by large groups of pathogens and are essential for their survival.   These interact with receptors 

referred to as Pattern recognition receptors (PRRs), including Toll-like receptors and nucleotide 
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binding and oligomerisation domain-like receptors (NLRs).  This review will focus on a selection of 

these integral eight stranded -barrel OMPs and lipoproteins with OmpA-like domains and will 

discuss the role that they play in pathogenesis.  The interactions between both of these groups of 

proteins and host cells will be described and their potential role as vaccine candidates will be 

highlighted.    

 

 

 

OmpA  

Outer membrane protein A (OmpA) is a 38kDa protein that exemplifies the barrel proteins with 

eight transmembrane domains.  It is an integral component of  the outer membrane of Gram-negative 

bacteria and is highly conserved among Enterobacteriaceae and other -Proteobacteria [5] (Table 1).   

Comparisons between E. coli OmpA and Pasteurella multocida, PmOmpA, for example, indicated 

that they share 60% identity [6].   OmpA is also a major antigen which is highly conserved in 

Burkholderia pseudomallei, the causative agent of melioidosis.  It is so well conserved that it has been 

considered  a suitable antigen for the serodiagnosis of melioidosis [7].  It is a major OMP of E. coli 

with about 100,000 copies per cell.   It interacts specifically with the peptidoglycan layer [8] and its 

gene has been shown to be highly regulated and environmentally responsive, as reviewed by Smith et 

al., [9].   

 

OmpA Structure:   The structure of OmpA has been well studied and compared with other porins 

showing an overall barrel structure. Its eight transmembrane domains are connected by short 

periplasmic turns and with four longer extracellular loops (figure 1).   Although early work predicted 

a pore structure, subsequent studies predicted that OmpA was unlikely to form a pore as no 

continuous channel could be detected [10].   More recently, it has been shown that OmpA can 

function as a gating channel.  Salt bridges between Glu 52 and Arg 138 can switch to form alterative 

bridges with other amino acids and function as an ion gate allowing survival of bacteria under osmotic 
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stress [11].    Furthermore, two temperature dependent conformers of OmpA have been identified:  the 

majority of OmpA is observed as a small “closed” pore form which has eight transmembrane regions 

and a globular domain at the C-terminus and a minority of molecules which are in a  larger “open” 

pore form and have 16 transmembrane regions [12].   

Although conserved across species,  diversity has been observed among hypervariable regions  

within the molecule, for example, high variation exists in the surface exposed region of OmpA across 

the 15 serovars of Haemophilus parasuis with hypervariable regions, which did not seem to affect 

antigenicity   [13].  In addition, the identification of amino acid differences in OmpA between 

invasive and non-invasive strains of meningitic strains of E. coli, together with recent studies using 

mutants where individual loops had been deleted, demonstrated that this variation contributes to 

invasive potential and pathogenesis  [14-16].    

 

Physiological function:     A diverse range of functions that have been attributed to OmpA include 

participating in biofilm formation, acting as both an immune target and in immune evasion, serving as 

a receptor for several bacteriophages, and playing a part in bacterial adherence to host tissues [6, 17, 

18].   The N-terminal part of the molecule anchors the protein with the outer membrane, while the C-

terminal portion resides in the periplasm and interacts with peptidoglycan.  This physical link between 

the peptidoglycan layer and the outer membrane suggests that OmpA plays a role in integrity of the 

bacterial surface.   Indeed, over thirty years ago, double mutants of OmpA and another peptidoglycan 

binding lipoprotein (Lpp) led to the formation of spherical cells which showed extensive blebbing of 

the outer membrane and evidence of free-floating murein [19].    OmpA is upregulated in E. coli 

biofilms [20] and increases biofilm formation on abiotic surfaces via repression of cellulose 

production [21].  OmpA also acts as a receptor for bacteriophages and for bacteriocins [22, 23].    It 

has also been shown that E. coli mutants of OmpA were type L colicin resistant and the OmpA 

expressed could no longer function as a phage receptor [24].   

 

Role of OmpA  in virulence of Enterobacteria:   Many studies on the virulence of OmpA have been 

carried out on strains of E. coli strain K1,  the causative agent of meningitis in neonates;  however, 



6 

OmpA family proteins are also associated with a wide range of Gram negative bacteria from 

opportunistic respiratory pathogens to organisms that colonise the urinary tract [14, 25].  Some of the 

earliest studies on virulence of OmpA were carried out by Prasadarao et al., [14] who showed that 

OmpA is essential for the invasion of meningitic strains of E. coli into  human brain microvascular 

endothelial cells (HBMEC).  More recently, it has been demonstrated that OmpA Loops1, 2, and 3 

contribute to binding and invasion of E. coli K1 strain RS218 into HBMEC, while Loop 4 does not 

play a significant role.   Loops1 and 2 of OmpA attached to a HSP90 homologue on HBMECs (gp96) 

and subsequently triggered cytosolic phospholipase A2 (cPLA2) activation which is involved in 

invasion of HBMECs [15].   Inhibition of HSP90 resulted in decreased invasion of bacteria and 

reduced cPLA2 activation, both events orchestrated  by Loops1 and 2  [15].    E. coli OmpA also 

allows survival of the pathogen within macrophages and monocytes, OmpA mutants do not survive in 

macrophages [26].    Furthermore, OmpA expression in E. coli K1 strain also prevented dendritic cells 

from maturation [27].   Recent mutant studies by Mittal et al., have shown that loops 1 and 2 are 

important to the survival inside neutrophils and dendritic cells, while loops 1 and 3 are essential for 

survival in macrophages [28].   It was recently demonstrated that mice that had been depleted of 

macrophages were resistant to meningitis caused by E. coli K1.   In addition, the Fc receptor (FcR1) 

on the surface of macrophages was identified as the ligand to which OmpA binds and it was shown 

that this plays a key role in the development of meningitis [29].    Furthermore, OmpA binding to 

FcR1 induced novel tyrosine kinase signaling patterns which it was suggested may allow E. coli 

expressing OmpA to avoid macrophage antimicrobial responses.    OmpA has also been shown to 

confer serum resistance via binding to complement regulator protein C4bp and it has been recently 

demonstrated that certain regions of loops 1, 2 and 4 that are responsible for this mechanism [28].   

These studies identified that Loop 4 mutants showed higher virulence, recruited more microglia, B 

cells, macrophages and granulocytes in the brains of infected mice and elicited higher production of 

pro-inflammatory cytokines which is likely to be associated with these mutants avoiding serum 

complement activity [28]. 
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OmpA also mediates adhesion of another E. coli strain, enterohemorrhagic E. coli (EHEC).  

Torres et al, have demonstrated that increased expression of OmpA contributes to the adherence of 

EHEC to HeLa cells and were the first to demonstrate the role of OmpA in EHEC binding [18].   

While intimin had previously been identified in the late steps of EHEC adhesion, OmpA appears to be 

involved in the initial step.   The tdc operon which controls the genes responsible for transport and 

anaerobic degradation of threonine also controls OmpA expression in EHEC.      In contrast, OmpA 

does not appear to be involved in either attachment to, or invasion of, uropathogenic E. coli (UPEC) 

into bladder epithelial cells.  Rather, it appears to be upregulated post-infection of bladder tissue in 

vivo where it facilitates the development of intracellular bacterial communities post-invasion and also 

plays a role in persistence  [30].   

 

PmOmpA of Pasturella multocida is another eight stranded barrel protein which has high 

homology with E. coli OmpA (60% identity over 30 N-terminal amino acid residues) and has been 

shown to attach to extracellular matrix components, including heparin and fibronectin [6].  It has been 

demonstrated that PmOmpA on this bovine pathogen bound to the surface proteins of Madin Darby 

canine kidney cells (MDCK) cells and also to fibronectin and heparin.  Anti-fibronectin antibodies 

inhibited binding of PmOmpA to MDCK surface proteins suggesting that P. multocida OmpA may 

use extracellular matrix components to bridge to host cells  [6].   

 

OmpA (together with another eight stranded barrel protein, OMPX, discussed later) were 

found to be essential for invasion of Cronobacter sakazakii into human epithelial cells [31].   This 

pathogen (originally classified as Enterobacter sakazakii) is also associated with outbreaks of 

meningitis and necrotizing enterocolitis in premature infants.   Although both proteins interacted with 

gastrointestinal epithelial cells, OmpA, but not OmpX was also shown to be important for attachment 

to basolateral surface of Caco-2 cells, suggesting that its receptor is in the basolateral side of the cell.    

Invasion of C. sakazakii into HMBEC cells was dependent on microtubule condensation, which was 
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mediated by OmpA, and involved both protein kinase C and phosphoinositide-3 kinase signaling 

[32].  

 

The  OmpA of respiratory and urinary tract pathogen, Klebsiella pneumoniae, which shows 

85% identity with E. coli Omp A (297 of the first 350 amino acids, Blastp[33]) binds to and activates 

dendritic cells and macrophages, triggering cytokine production and subsequent dendritic cell 

maturation [34].    This work on purified OmpA contrasted with more recent work using OmpA 

mutants of clinical K. pneumoniae strains, which demonstrated that OmpA mutants induced higher 

levels of IL-8, Il-6 and TNF- than the clinical wild type strains and were attenuated in the 

pneumonia mouse model [35].  K. pneumoniae OmpA has also been shown to protect bacteria against 

host antimicrobial peptides [36].   Taken together, however,  these data support the suggestion that 

OmpA of K. pneumoniae should be considered as a PAMP [35].   

 

OprF – the OmpA ortholog in P. aeruginosa:  

Major outer membrane protein OmpA of Escherichia coli and major outer membrane protein, OprF of 

P. aeruginosa are orthologs with significant amino acid similarity (56%) and identity (39%) in their 

C-terminal domains.  Even though the N-terminal fragments are considerably less similar (15% 

identity), based on secondary structure predictions, a model for the N-terminal fragment of OprF has 

been suggested that was constructed using homology modeling of the primary sequence onto the 

experimentally determined crystal structure of the N-terminal domain of  OmpA [37].  Classified as a 

major non-specific porin of Pseudomonas species, OprF is also involved in attachment [25].   

 

Structure  and function of OprF:  Modelling studies carried out by Brinkman et al., [38] showed that 

OprF lacks the salt bridges associated with closure of the OmpA channel allowing for a larger 

channel, relative to OmpA.  More recently, it has been shown that both OmpA and OprF exist in two 

conformers, the majority of molecules exist in an eight barrel structure in a closed channel with the C- 

terminus domain in the periplasm interacting with peptidoglycan [39].  In contrast, in the minority 
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more open channel conformer, the C-terminus is exposed on the cell surface.  The conservation of the 

salt bridge gate function of OmpA has been identified mainly in phylogenetically similar organisms, 

but does not appear to be universal among OmpA homologs present in other gamma-proteobacteria, 

such as P. aeruginosa [39].    

In order to determine whether OprF functioned as a porin and to examine the relatively slow 

solute diffusion that has been observed through the channel,  Sugawara et al., carried out elegant 

studies using reconstituted proteoliposomes whereby liposomes containing OprF which was in the 

open channel conformation could be distinguished from those without open channels on the basis of 

density due to sucrose uptake [39].  They showed that the fraction of open channel conformer in the 

OprF population was 5%.     This led them to suggest that although OprF and OmpA both function as 

porins; their main function was to use the N terminal barrel to insert in the OM, thereby connecting 

the OM to the peptidoglycan via the C- terminus.   

Role of OprF in virulence:  When P. aeruginosa chronically colonises the CF lung the 

production of mucin, flagella and pili are lost.  In addition several virulence-associated traits and 

immunostimulatory components of P. aeruginosa are turned off [40].   In contrast, an upregulation of 

outer membrane protein OprF is essential for optimal microaerobic growth allowing P. aeruginosa to 

adapt to the anaerobiosis found within mucus plugs in CF airways [40].  In a proteomic and 

transcriptomic analysis of sequential isogenic isolates from three cystic fibrosis patients, Hoboth et 

al., [41] have shown that OprF expression is increased in lung-selected P. aeruginosa isolates.  

Furthermore, it is indispensable for growth in anaerobic P. aeruginosa biofilms [42].  

 

Interferon gamma binds to OprF, resulting in the upregulation of a number of virulence 

factors, including the lecA gene, a P. aeruginosa adhesin,  which is quorum-sensing (QS)-dependent 

[43].  More recently, it has been shown that OprF is involved a range of virulence characteristics in P. 

aeruginosa, including adhesion to host cells, secretion of toxins through the Type III secretion system, 

production of virulence factors such as pyocyanin, elastase and exotoxin A, in addition to Lectin PA-

1L [25].   It has been shown that in the absence of OprF, mutants showed impaired adhesion to animal 

cells, a lack of secretion of ExoT and ExoS toxins through the type III secretion system (T3SS), and 
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reduced production of the QS-dependent virulence factors pyocyanin, elastase, lectin PA-1L and 

exotoxin A.   In addition, the production of a key signaling molecule, 30-c12-HSL was substantially 

reduced in OprF mutants.  It was suggested that OprF is a host immune system sensor modulating QS 

to enhance virulence when bacteria are in contact with the host [25].  

 

OmpA in other Gammaproteobacteria 

Another OmpA homolog, Omp5 or p5 fimbria of Non-typeable Haemophilus influenzae 

(NTHi) has been shown to adhere to intercellular adhesion molecule 1 (ICAM-1) of respiratory 

epithelial cells, resulting in the upregulation of expression of ICAM [17].   ICAM also acts as a 

receptor for human rhinoviruses and coxsackieviruses, however, in the case of NTHI, not only does it 

exploit ICAM as a receptor, but it also up-regulates the expression of its own cell surface receptor.  

Acinetobacter baumannii is another gamma-proteobacterium which is an opportunistic pathogen, 

causing pneumonia and urinary tract infections.  The outer membrane protein A (AbOmpA) which 

has 24% identity with E. coli OmpA across the entire 362 aa sequence (blastP [33]), is a potential 

virulence factor that induces epithelial cell death and death of dendritic cells due to the production of 

reactive oxygen species [44].      

  

The role of OmpA in adhesion is not exclusive to pathogens, a high frequency of OmpA 

variants of Bacterioidies vulgatus, a predominant organism of the gut microflora, were recently 

observed among isolates of the colons of ulcerative colitis patients.  The variation in OmpA was a 

factor in causing an increase in the adherence of the bacterium  [45].   

 

Immunoprophylatic potential of OmpA:    As discussed above, OmpA interacts with host immune 

cells and behaves as a PAMP in certain pathogens, such as K. pneumoniae.   OmpA is among a 

number of low molecular weight immunogenic proteins in Salmonella-induced reactive arthritis [46].  

In typhoid fever, the immune response is also directed against porins and OmpA [47-49].     This 

immunogenicity has application in the use of OmpA as a vaccine candidate in the protection against 

pathogens where OmpA plays a role in attachment and virulence.   S. typhimurium OmpA induced 
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functional and phenotypic maturation of dendritic cells and the activation of ERK1/2 and p38 MAPK 

via TLR4; activating T cells via a Th1 response  [50].    In addition to the potential use of OmpA 

protein as an immunoprophylactic agent [34], the ompA gene was one of two components  of a DNA 

vaccine that protected against Klebsiella pneumoniae in mice [51].   

 The immunoprotective potential of OmpA is not universal among Gram negative bacteria.  

Immunisation of mice with recombinant P. multocida OmpA (PmOmpA)  stimulated potent serum 

IgG responses but did not protect against subsequent bacterial challenge [52].  Indeed, administration 

of PmOmpA together with unpurified OMPs reduced the protective response obtained when mice 

were immunized with OMPs alone (survival rates of 88% protection reduced to 53%) indicating that 

purified PmOmpA had a deleterious effect on the protective response.    P. multocida is a facultative 

intracellular pathogen and it is likely that the potent serum antibody indicative of a prominent Th2 

response was not sufficient to protect against an intracellular pathogen such as this.  Intracellular 

pathogens generally require a mixed Th1/Th2 response for protection.  It is clear that immunogenicity 

of OmpA alone is not sufficient to protect against pathogens and more research on potential adjuvants 

is required to fully exploit the prophylactic potential of OmpA.   

 

OmpW family 

A different family of eight-stranded barrel proteins have also been associated with host-bacterial 

interactions.  The OmpW family is comprised of small OM proteins and is widespread among Gram 

negative bacteria.  While they do not share sequence homology, they have some structural and 

functional similarities with OmpA.     There are 461 homologs of this family listed in the KEGG 

database  [53].   This protein has been identified in bacteria that colonise the gastrointestinal tract, 

including Vibrio species, Salmonella, E. coli, and in the respiratory pathogen P. aeruginosa, where its 

equivalent, is OprG.    It is a major OMP of P. aeruginosa [53] and of  many Vibrio species [54, 55] 

and is expressed in all known strains of V. cholerae [56].   In contrast, it is considered to be a minor 

OMP protein in E. coli [57].     
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OmpW Structure:  Like OmpA, the structure of the OmpW of E. coli also comprises  an eight-

stranded  -barrel with pore-forming properties (Figure 1), which in the case of OmpW form a long, 

narrow hydrophobic channel [58].   This deep hydrophobic binding pocket distinguishes OmpW from 

the channels of other OMPs which typically have hydrophilic interiors [58].   The homolog in P. 

aeruginosa, OprG, has 49% identity with that of OmpW and a high number of hydrophobic residues;  

it is considered that this also acts as a porin [53].   OmpW has been shown to have a heat-modifiable 

structure resulting in an increase in its apparent molecular weight on SDS-PAGE gels from 19 kDa to 

21kDa.  This is thought to be due to unfolding of the barrel to an -helix structure [54].  OprG also 

has been shown to have a heat-modifiable character, albeit with a larger increase in MW from 20kDa 

to 25kDa [53].   

Touw et al., [59] compared the OmpW orthologs from 5 different species (P. aeruginosa, V. 

cholerae, E. coli, P. putida and Aeromonas hydrophila) and showed that the similarity between these 

proteins was greatest in the barrel regions, but that less than 15 residues were absolutely conserved 

across all species.   Two proline residues were conserved adjacent to the lateral opening in the barrel 

wall and are likely to be responsible for the lateral opening.  It was suggested that the conservation of 

these proline resides indicates that the lateral opening is present in all OmpW family members.   It 

was proposed that OmpW family proteins are involved in the uptake of small hydrophobic molecules 

across the OM [59].   

 

OmpW Function:  To date, very little direct evidence has been provided for the function of OmpW.  It 

acts as a receptor for Colicin S4 in E. coli [57] and also has a role in osmoregulation [55].  Its 

expression in V. cholerae is affected by a range of environmental factors, salinity, temperature, 

availability of nutrients, such as simple sugars,  and oxygen [54].  Recently, it has been shown that the 

OmpW gene in S. typhimurium has a class1 SoxS-dependent promoter suggesting that OmpW is 

involved in the response to oxidative damage [60].   In a stress-sensitive variant of an EHEC strain, 

oxidative stress induced a viable but non-culturable state in which OmpW expression increased by 

2100-fold [61].  It was later shown that this phenotypic change was induced as a genetic alteration 
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during in vivo passage of isolates [62].   It was shown that high levels of OmpW appear to sensitise 

EHEC to oxidative stress and the change in OmpW stress response is a hallmark in the change in 

stress sensitivity that occurs during in vivo colonisation.   In V. cholerae, OmpW is one of a number of 

genes that is modulated by a cyclic AMP receptor protein, including QS genes and other genes that are 

involved in intestinal colonisation [63].    

OmpW also functions as a porin which is involved in the efflux of a diverse range of 

molecules from paraquat (S. typhimurium) [64], to naphthalene (P. fluorescens) [65].   It is involved in 

resistance to a range of antibiotics in addition to antimicrobial peptides.  OmpW was down-regulated 

when E. coli was exposed to chlortetracycline, and deletion of OmpW from E. coli decreased MICs 

for a range of antibiotics [66]  In S. typhimurium, the expression of the ompW gene was increased two-

fold in the presence of paraquat and contributes to paraquat resistance by a different pathway than the 

porin, OmpD [64].   Furthermore, it was demonstrated that paraquat may be effluxed through OmpW 

in this species [64].    The P. aeruginosa homolog, OprG, is induced at high iron concentrations 

(100uM) but does not appear to function either as an iron-uptake system nor in antibiotic resistance 

[53].  It has been demonstrated to function as a  porin, like its homolog OmpW, however the majority 

of the dissimilarity between these two porins are associated with residues involved in substrate 

binding [58].   Structural studies have shown that the majority  of residues (approximately 89%) that 

face the lumen of the barrel on the extracellular side of the molecule are hydrophobic, resulting in a 

hydrophobic funnel, which does not continue all the way down the channel [59].  Polar residues close 

off the channel on the periplasmic side.    

 

Role of OmpW family proteins in pathogenesis:   It has been associated with attachment of, and 

immune response to, a number of intestinal pathogens.      Mutant strains of the  intestinal pathogen,  

Vibrio cholerae, which expressed  no OmpW were shown to have  reduced colonisation of mice by 10 

fold relative to those that expressed OmpW [54].   This dramatic effect was limited to mutants of 

serogroup 139 and were not observed in parallel studies on serogroup 1, ompW mutants of which 

exhibited only a 1.8-fold reduction in colonisation [54], suggesting that OmpW is not the only protein 



14 

involved in colonisation of this species.  McPhee et al. [53], have shown that in the absence of the 

OmpW homolog of P. aeruginosa, OprG, mutants were over three-fold less cytotoxic towards human 

bronchial epithelial cells, 16HBE14o-,  relative to WT within 4 hours of co-culture.  The oprG gene 

was also shown to be down-regulated (9-fold) in P. aeruginosa cells which were adherent to HBE 

cells compared cells which did not adhere in the same experiment after 4 hours of interaction, 

indicating that OprG promotes host cell interactions in the parental strain leading to cytotoxicity and it 

is subsequently down-regulated after initial interaction.  

 

Role of OmpW in host response.  Like OmpA, OmpW is immunogenic in Salmonella induced 

reactive arthritis; all fractions producing immunoproliferative responses contained OmpA and OmpW 

[46].    Sixty percent of Celiac disease patients were seropositive for Bacterioides OmpW antibodies 

[67], and serum levels decreased significantly when patents were on a gluten free diet [68].   It was 

suggested that OmpW may contribute to the pathogenicity of inflammation in celiac disease [67].  

Serum antibodies to OmpW also are elevated in pediatric Crohn’s disease patients [69].   This protein 

has also been identified as being related to the immune response in inflammatory bowel disease 

associated with an oral pathogen:  Porphyromonas gingivalis [70].    

  

Immunoprophylactic potential of OmpW:   Antiserum raised against V. cholerae OmpW was 

moderately protective to suckling mice against in vivo challenge with a V. cholerae O1 classical strain 

(66.6% protection at 1:50 dilution) and an O1 El Tor strain (50% protective) suggesting the potential 

for OmpW as a vaccine candidate [54].  Vibrio alginolyticus, is a marine bacterium that is one of the 

major human Vibrio pathogens, causing wound infections, otitis media gastroenteritis and septicemia 

[71].  Immunisation of fish with recombinant V. alginolyticus OmpW, demonstrated that OmpW  was 

an effective vaccine candidate and was protective to challenged fish with a relative percent survival of 

78% [72].    The effectiveness of OmpW as a vaccine against this marine pathogen further highlights 

the potential of the conserved OmpW as a vaccine candidate for other pathogenic Vibrios.   

 



15 

OmpX family.   

The third family of eight-stranded -barrel proteins that has been associated with cellular attachment 

and neutralization of host defence mechanisms includes OmpX.  It was first described in Enterobacter 

cloacae and has a number of homologues, e.g.  Ail in Yersinia enterocolitica; PagC and Rck in S. 

typhimurium [4], which share between 85 and 32% identity [73].  Although its architecture is similar 

to OmpA, OmpX has a lower shear number (of eight, as opposed to ten), a measure of the stagger of 

the strands in the sheet [4].   It also protrudes further outside the outer membrane than OmpA, as a 

result of having four strands which are significantly longer that those in OmpA [74] (Figure 1).  

These protruding extracellular loops alone suggested that this protein promoted cell adhesion, 

invasion and defence against host complement [74].   It is the smallest of the eight-stranded barrel 

proteins, being only 18kDa in size.    OmpX, like OmpA and OmpW is environmentally regulated,  

and its expression is increased as an early response to drug exposure or to environmental stress, such 

as higher osmolarity and temperature [75].  OmpX is QS regulated in Serratia marcescens  [76].   

 

Role of OmpX in Pathogenesis:  Prior to its discovery in E. coli, it was identified in Y. entercolitica 

and in Y. pseudo-tuberculosis as Ail (adhesion and invasion locus) and its role in serum resistance and 

host cell invasion was demonstrated [77, 78].    Another homologue is a 21.5kDa protein, referred to 

both as OmpX and as Ail, has been identified in Y. pestis, the causative agent of plague.   This 

pathogen invades epithelial cells as one of its mechanisms to avoid the host immune system; however 

it does not express either invasin or YadA, two well-studied adhesins that are essential to the host cell 

interactions of Y. entercolitica and Y. pseudotuberculosis.   OmpX is one of the most abundant 

proteins found in the outer membrane of this organism and is an essential virulence factor of Y. pestis.  

Ail mutants required over 3000-fold more bacteria to attain the 50% lethal dose in mice [79].  Clear 

demonstration of the role that OmpX plays in Y. pestis was demonstrated by its inactivation which 

reduced the interaction of Y. pestis with epithelial cells association and its internalization  by 90 and 

98 %, respectively [80].  Furthermore, expression of OmpX from Y. pestis into E. coli was associated 

with an increase in adhesion to epithelial cells by up to 7-fold and an increase in internalized bacteria 
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by up to 30-fold.  OmpX has recently been shown to bind to fibronectin on host cells and facilitates 

the delivery of cytotoxic Yops to the host cell [81].     Anti-fibronectin antibodies blocked delivery of 

Yop and Ail-mediated cytotoxicity.    It was recently shown that the invasion activity of OmpX in Y. 

pestis and its ability to confer serum resistance depends on the length of the LPS core in the OmpX 

expressing strains [82].   

 

Although OmpX in E. coli is 40% identical to Ail of Y. entercolitica, it is not involved in adherence to 

mammalian cells.  Furthermore unlike Ail and Rck in S. typhimurium, it does not contribute to serum 

resistance.  The largest divergence between OmpX in E. coli and the other proteins is in the surface 

exposed residues, confirming the role for these regions in both complement and host cell interactions 

[73].    

 

OmpX is also a potent immunogen.  Together with OmpA, OmpW and PAL, it has shown 

considerable  immunogenicity and T-cell activation in salmonella-induced arthritis [46].   OmpX from 

E. coli binds to both immature dendritic cells and macrophages and induced both humoral and cellular 

immune responses [83].   However, it did not activate these antigen presenting cells, suggesting that 

OmpX in E. coli does not provide a danger signal to antigen presenting cells.    

 

OmpA-like proteins and lipoproteins:  

There are a diverse and expanding group of proteins which are described as “OmpA-like”, 

predominantly because they share sequence homology with the carboxy terminal of OmpA, and are 

therefore peptidoglycan-binding proteins and lipoproteins.  These proteins also interact with host cells 

and have been shown to play roles in cellular attachment and virulence.   

 

Peptidoglycan associated lipoprotein 

A large group of PAMPs which are related to OmpA include peptidoglycan-associated lipoproteins 

(PAL).  These are ubiquitous in Gram negative organisms and sequence homologs have been 
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identified in over 100 species [84], and associated with the pathogenesis of several organisms [85-87].   

PAL has been identified in B. multivorans, Pseudomonas putida, Campylobacter jejuni, H. influenzae 

and E. coli among other species [84, 85, 88-90].   The C-terminus of PAL has homology with both 

OmpA and OprF and also with other lipoproteins that are tightly but non-covalently bound to 

peptidoglycan [91].  It also has homology with inner membrane proteins Mot B of E. coli and with 

proteins in Gram positive bacteria, e.g.  Bacillus subtilis OrfB.   This homology most likely is due to 

the fact that these proteins share a common function, i.e. binding to peptidoglycan.   PAL (also 

identified as OpcL) has been shown to be conserved among all Burkholderia cepacia complex 

species, an opportunistic pathogen in CF patients,  and contributes to membrane integrity and to both 

detergent and antibiotic resistance  [92].    

 

PAL Structure:    In E. coli, PAL has a MW of 16kDA without acylation and it migrates at 20kDa due 

to acylation at the N-terminus.  Its homolog in H. influenzae is 16kDa, while PAL in C. jejuni is 

18kDa [84, 85].  It is anchored to the outer membrane through its N-terminal lipid attachment (figure 

2).   It forms a tight but non-covalent link with peptidoglycan.   E. coli PAL was shown to have 32% 

sequence identity with E. coli OmpA, while the PAL in H. influenzae shared 68% sequence identity 

over residues 29 to 134 with E. coli PAL [84].   Indeed, 30% sequence identity was observed between 

this region of H. influenzae PAL and RmpM from N. meningitides.  Using NMR spectroscopy, 

Parsons et al., [84] demonstrated that there are six residues that are invariant in the PAL family.  

Three of these are at, or near, the peptidoglycan binding site:  the carboxylate group of D71 forms a 

hydrogen bond with PGN, while hydrophobic interactions between L82 and PGN were observed.  In 

addition to these six residues, a number of surface residues near the Pgn binding site are conserved in 

PAL sequences, but not in sequences of the broader PAL-related family.   This was suggested to be 

due to an additional, non-PG binding function of PAL [84].   

 

PAL Function:    The function of PAL is not fully understood.  As recently reviewed by Godlewska et 

al., [86], PAL interacts with Tol B, a periplasmic protein as well as with outer membrane proteins, 
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OmpA and lipoprotein precursor, Lpp.   PAL forms dimers with OmpA (54kDa) and with lipoprotein 

precursor (30kDa)[89, 91].  All these interactions are independent of each other.   Ray et al.,[93] have 

shown that the region between residue 94 and 121 of PAL is responsible for interactions with both 

TolB and with peptidoglycan, but PAL cannot bind both molecules at the same time.   The interaction 

with Tol B is via an induced-fit mechanism which involves conformational changes in both proteins.  

PAL interacts with OmpA at a site distinct from its TolB/PGN binding site:  Residues 44 to 61.      

 

Role of PAL in pathogenesis:    PALs have been shown to be highly immunogenic lipoproteins in 

Gram negative pathogens including H. influenzae, S. typhimurium, Legionella pneumophila, C. jejuni 

and P. multocida [46, 85, 94-97] (Table 2).  Like OmpA and OmpW, PAL was found to be present in 

all fractions of OMPs from Salmonella-induced arthritis that elicited an immunoproliferative response 

[46].   PAL is among the lipoproteins which are secreted during Gram negative infections resulting in 

septic shock [87].   E. coli PAL is a potent activator of TLR-2 in macrophage, acting synergistically 

with LPS to stimulation inflammation in sepsis [98].   More recently, it has been shown that PAL 

binds to the myocardium and contributes to cardiac dysfunction during sepsis mediated by 

TLR2/MyD88 signalling [99].   PAL of L. pneumophilia also activated TLR-2 mediated signalling in 

murine macrophages, inducing PAL-specific B-cell and T-cell responses in mice [100].   

PAL is crucial for virulence in Haemophilus ducreyi as was demonstrated in human trials 

using PAL mutants [101].   It has been associated with pathogenesis of a number of oral pathogens, 

Porphyromonas gingivalis and Aggregatibacter actinomycetemcomitans.   PAL (AaPAL)  was 

released during  A. actinomycetemcomitans periodontosis infections and has been shown to stimulate 

pro-inflammatory cytokine (Il-6, Il-8 and macrophage inflammatory protein, MIP-1b) responses in an 

ex-vivo model [102].   

 

Immunoprophylactic potential of PAL:     The potential for the application of PAL in vaccines among 

several Gram negative bacteria including Legionella, Haemophilus influenzae and C. jejuni was 

highlighted in a recent review [86].    A protein with significant sequence homology to PAL was 
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identified in Bordetella pertussis as eliciting strong antibody responses [103].  However, the serum 

antibody response to  GST-PAL conjugate alone was not protective against B. pertussis challenge, 

when administered as a vaccine to mice [103] suggesting that PAL was not a strongly protective 

antigen for B. pertussis.   In contrast, the H. influenzae PAL protein, P6, protected mice against 

infection and induced strong specific mucosal antibody responses [84] further demonstrating the 

potential of PAL as a vaccine candidate against certain pathogens.    

 

NspA:  Another eight stranded -barrel OMP with a hydrophobic pocket is Neisserial cell adhesion 

protein, NspA (figure 1, Table 1).  This protein is expressed by Neisseria meningitides, a major cause 

of bacterial meningitis and sepsis globally. Expression of NspA confers serum resistance to Neisseria  

[104] and the shallow hydrophobic pocket is considered to be involved in attachment to host lipids, 

rather than lipid transport [105].    Based on the sequence similarity of NspA to Opa proteins, which 

are adhesins facilitating colonization of the human naso-pharynx, it was suggested that NspA was also 

an adhesin.  When compared to the structures of other -barrel OMPs in E. coli,  OmpA, OmpX and 

PagP, it was found that the crystal structure of NspA most closely resembled that of OmpA  with 144 

C atoms overlaying on OmpA C atoms [105].  OmpX was also structurally homologous to NspA, 

albeit to a lesser degree (139 C atoms overlay on OmpX).   Recent data have indicated that NspA 

also evades the host immune system by binding to complement pathway inhibitor factor H and 

subsequently evading complement-associated bacterial killing [104].   

 

OmpATb:  OmpATb in Mycobacterium tuberculosis shares high sequence identity of its carboxy-

terminal part with the carboxy-terminal domain of OmpA from E. coli [106].   It is expected to be 

located inside the outer membrane of virulent strains.  However, unlike OmpA, the N-terminal 

domain of OmpATb does not fold as a barrel (figure 3), although it  is capable of interacting 

intimately with the membrane to form channels [106].  While the function of OmpATb is not known, 

it was proposed that it could interact with arabinogalactan-peptidoglycan layer of the mycobacterial 

envelope.  It was also observed that OmpATb channels exhibit more frequent and more prolonged 



20 

closure events at acidic pH. This behavior of OmpATb at low pH conditions is beneficial to M. 

tuberculosis survival in the mildly acidic environment encountered in the phagocytotic vacuole of 

host macrophages. Moreover, it was shown that OmpATb appears to be expressed only in pathogenic 

species (i.e., the members of the M. tuberculosis complex) underscoring its role in the virulence of 

these mycobacterial strains [107].   

 

 

Other OmpA-like Lipoproteins:   

Lipotoxin F (LptF):     When P. aeruginosa chronically colonises the cystic fibrosis lung it changes 

phenotype from a non-mucoid to a mucoid form.   Lipotoxin F (LptF, PA3692), is a major OmpA-like 

outer membrane lipoprotein of 27kDa that exhibited increased expression in a mucoid PAO1 mutant 

with dramatically increased alginate production [108].  Deletion of LptF resulted in increased 

susceptibility of P. aeruginosa to hypochlorite and also reduced adhesion to lung epithelial cells to 

70% of controls.  The potentially protective effect of LptF against hypochlorite suggests that it 

protects the organism in the niche of the CF lung.  Lipotoxins such as LptF stimulate inflammatory 

responses via TLR-2 [109].  The anti-inflammatory macrolide azithromycin has been shown to down-

regulate lipotoxin LPtF amongst other P. aeruginosa lipotoxins [110] and may provide a mechanism 

for the one of the observed anti-inflammatory effects of Azithromycin in CF patients.      

 

Loa22:    Another lipoprotein that is reported to be OmpA-like is Loa22, a surface exposed protein in 

Leptospira interrogans, the causative agent of leptospirosis [111].  It is a 22 kDa protein, which like 

PAL, has a large OmpA-like domain at its C terminus, sharing  significant sequence similarity with 

the OmpA family and has a predicted peptidoglycan-associating motif [112].   Its C-terminal 110 

amino acid residues are 49% identical to OprF.   Its N- terminal domain (residue 1 to 77) is not related 

to any other identified protein.   Loa22 has been shown to play an important role in leptospirosis 

infection and was the only antigen to be significantly up-regulated during acute host infection [113], 

suggesting a prominent role in the infection process.  While its role in pathogenesis has yet to be 



21 

determined, it has recently been identified that Loa22 is required for virulence of Leptospira within 

animal models.  Strains of L. interrogans which were defective for Loa22 were attenuated in their 

ability to cause disease and death in guinea pig and hamster models, demonstrating that it is a 

virulence factor in leptosporosis [111].   In the human host, this protein is immunogenic as it is 

strongly recognised by sera from leptosporosis patients [114].   It has recently been shown to be 

involved in nephropathy via direct cytotoxicity on nephronal cells and enhanced inflammatory 

responses  [115].  This lipoprotein also up-regulated TLR2, nitric oxide and the macrophage 

recruitment chemokine MCP-1 within 48 hours of treatment of nephronal cells.  Loa22 is up-regulated 

during the acute phase of infection [114] and is considered to play an important role in inducing 

inflammatory responses through TLR2 which may underlie the pathogenesis of leptopsiral 

nephritis[115].    

 

Conclusion:  

We are entering the post-antibiotic era with limited treatment options for many Gram negative 

bacterial infections.  An anti-virulence strategy has advantages over antibiotic strategies because in the 

absence of biocidal activity, the evolutionary pressure is significantly reduced, thereby reducing the 

potential for resistance [116].  Many Gram negative pathogens are becoming difficult to eradicate due 

to multidrug-resistance and their intrinsic resistance to antimicrobial peptides.  A greater 

understanding of the mechanisms of virulence may lead to the development of new anti-virulence 

drug targets.  In addition, we need to understand the interactions between bacterial OMPs and both the 

host immune system and tissues that are colonised which are crucial to the pathways either controlling 

host inflammation or virulence, with a view to developing new drug targets which will prevent that 

interaction.  A common theme throughout the OMPs and OM lipoproteins discussed in this review is 

their immunogenicity and involvement in host cell interactions.  Therefore, continued investigation of 

these PAMPs offers the potential to develop new immunoprophylactic agents to prevent infection of 

many Gram negative bacteria.    
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Figure Legends: 
 

 

Figure 1:  Ribbon structures of five eight-stranded -barrel outer membrane proteins.  OmpA and 

structurally homologous protein NspA, OprG and related protein, OmpW and OmpX.  Images were 

made in PyMOL with the following files from the Protein data bank:  1G90 (OmpA), 1P4T (NspA), 

2X27 (OprG),  2FLT (OmpW), 1QJ8 (OmpX).  Protein domains of unknown structure, C terminus of 

OmpA represented as an oval shape.   

 

 

Figure 2:   Ribbon structure of peptidoglycan associated lipoprotein from H. influenzae.  Image 

prepared in  PyMOL using the 2aiz file from the Protein Data Bank.   Lipid component shown as 

spheres. 

 

Figure 3:   Ribbon structure of N- terminus of OmpATb from M. tuberculosis.  Image was made in 

PyMOL with using the 2KGS file from the Protein data bank.  
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Table 1:   Examples of eight-stranded barrel outer membrane proteins involved in host cell interactions.  

 

Family / 

name 

Species/ strain Host cell interaction ref 

OmpA family   

OmpA E. coli (K-1) Attachment and invasion of human brain endothelial cells.  Allows survival in macrophages 

and prevents maturation of dendritic cells.    

[14, 27] 

OmpA EHEC Attachment to Hela &  Caco-2 cells [18] 

OmpA Uropathogenic E. coli Post invasion pathogenesis of cystitis, development of persistence, but not invasion.   [30] 

OmpA C. sakazakii Invasion of human Caco-2 cells, microtubule condensation [31, 32] 

OmpA A. baumannii Induces cell death in epithelial cells and dendritic cells [44] 

PmOmpA P. multocida Attach to extracellular matrix components, bridging to host cells.   [6] 

OmpA S. typhimurium Activates dendritic cells, drives polarised Th1 response [50] 

OmpA K. pneumoniae Binds to dendritic cells and macrophages  [34] 

Oprf P. aeruginosa Interferon gamma, attachment to Caco-2 and glial cells [25, 43] 

Omp5 Non-typeable H. 

influenzae  

Adheres to and upregulates ICAM [17] 

    

OmpW family   

OmpW V cholerae Intestinal colonisation [54] 

OmpW E. coli Antibiotic resistance [66] 

OmpW S. typhimurium  Paraquat resistance [60] 

OprG P. aeruginosa OprG mutants less cytotoxic to lung cells [53] 

    

OmpX Family   

OmpX E. coli Not involved in adherence [73] 

OmpX C. sakazakii Invasion into gastrointestinal epithelial cells  [31] 

Ail Y entercolitica Host  epithelial cell invasion [78] 

Ail Y. pseudotuberculosis Attachment to Caco-2 cells [117] 

Ail /OmpX Y. pestis Attachment to and invasion of epithelial cells, binding to fibronectin, facilitation of Yops 

delivery  

[80, 81] 

Pag C S. typhimurium Essential for virulence and survival in macrophages [118] 
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Other OmpA like proteins   

NspA N. meningitides Attachment to host lipids; Evasion of host immune system [104, 

105] 

OmpATB M. tuberculosis Expressed only in pathogenic strains, enables survival in phagocytic vacuole.   [107] 
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Table 2:   OmpA-like lipoproteins involved in pathogenesis.   

 
 
 

 

Lipoprotein  Species/ strain Host cell interaction 

 

reference 

PAL  E. coli,  Released in septic shock; activator of TLR-2 in macrophages, binds to mycardioum [87, 98] 

PAL L. pneumophilia Interacts with murine macrophage; activated TLR-2 mediated signalling [100] 

PAL H. ducreyi Essential for virulence [101] 

PAL A. actinomycetemcomitans  Released during infection and stimulates cytokine production [102] 

Lipotoxin F P. aeruginosa Resistance to oxidative stress;  adhesion to lung epithelial A459 cells [108] 

Loa22 Leptospira interrogans Upregulated during host infection; virulence factor [113, 115] 
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