
Technological University Dublin Technological University Dublin 

ARROW@TU Dublin ARROW@TU Dublin 

Session 6: Applications, Architecture and 
Systems Integration 

IMVIP 2019: Irish Machine Vision and Image 
Processing 

2019 

Development of a Nanodrop Shape Analysis Tool for Installation Development of a Nanodrop Shape Analysis Tool for Installation 

in a Novel Nanodrop Spectrophotometer in a Novel Nanodrop Spectrophotometer 

Colin Monaghan 
Technological University Dublin 

Jane Courtney 
Technological University Dublin, jane.courtney@tudublin.ie 

Follow this and additional works at: https://arrow.tudublin.ie/impssix 

 Part of the Engineering Commons 

Recommended Citation Recommended Citation 
Monaghan, A. & Courtney, J. (2019). Development of a nanodrop shape analysis tool for installation in a 
novel nanodrop spectrophotometer. IMVIP 2019: Irish Machine Vision & Image Processing, Technological 
University Dublin, Dublin, Ireland, August 28-30. doi:10.21427/w1yt-9d51 

This Article is brought to you for free and open access by the IMVIP 2019: Irish Machine Vision and Image 
Processing at ARROW@TU Dublin. It has been accepted for inclusion in Session 6: Applications, Architecture and 
Systems Integration by an authorized administrator of ARROW@TU Dublin. For more information, please contact 
arrow.admin@tudublin.ie, aisling.coyne@tudublin.ie, vera.kilshaw@tudublin.ie. 

https://arrow.tudublin.ie/
https://arrow.tudublin.ie/impssix
https://arrow.tudublin.ie/impssix
https://arrow.tudublin.ie/imvip
https://arrow.tudublin.ie/imvip
https://arrow.tudublin.ie/impssix?utm_source=arrow.tudublin.ie%2Fimpssix%2F7&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/217?utm_source=arrow.tudublin.ie%2Fimpssix%2F7&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:arrow.admin@tudublin.ie,%20aisling.coyne@tudublin.ie,%20vera.kilshaw@tudublin.ie


Development of a Nanodrop Shape Analysis Tool 

for Installation in a Novel Nanodrop Spectrophotometer 

Colin Aidan Monaghan, Jane Courtney 

School of Electrical & Electronic Engineering 

Technological University Dublin, Ireland 

colinaidanmonaghan@gmail.com, jane.courtney@tudublin.ie 

 

 

Abstract 

The rapid identification of liquid composition is an important task integral to a wide range of 

industries including medical, pharmaceuticals, petrochemicals, and vinification. To aid in this identification 

spectroscopy can be utilised, however specialised instrumentation must be developed to deliver quantitative 

information. A spectrophotometer uses spectral data to identify chemical composition of droplets. However, 

to accurately perform this function, prior knowledge of the size and shape of the droplet is essential to 

understand chemical quantity. Whilst image data can be easily captured with a high definition camera, the 

image analysis to translate images into a relevant region of interest (ROI) and to extract usable data 

autonomously has proven challenging. Here we report the autonomous detection of nanodrops and extraction 

of their cartesian co-ordinates facilitating the mathematical approximations that can beget values such as 

volume, contact angle, rate of absorption of spectra, and the length of light paths within the medium. 
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1 Introduction  

This work aims to isolate the curvature of the droplet in the form of cartesian co-ordinates and relevant variables that 

will allow for mathematical analyses. The initial phase was to decide on a suitable setup to acquire photographs from 

which all algorithms would be tested. A Raspberry Pi was connected to a camera module, and also a Sartorius 3-

point scale that would assist in validating mathematical models.  

Using Python with OpenCV the images were then reduced to binary values of black and white where they could be 

further optimised via noise removal. Using these binary images, it was possible to compare images with a rudimentary 

machine learning approach. From this it was possible to accurately isolate the droplet shape in an efficient and clean 

manner. Further variables were then extracted from the ROI that allowed for mathematical derivation that produced 

3D approximations proving axisymmetry and allowed for the calculations of droplet volumes. 

2 State of the Art 

The flowchart shown below in Fig. 1 is the general procedure of Axisymmetric Drop Shape Analysis (ADSA) for 

the determination of characteristics such as the contact angle, surface area, volume, and apex curvature.  ADSA (Saad 

& Neumann, 2016) essentially lays out the process for procuring droplet characteristics via the Young-Laplace 

Equation that can be mathematically manipulated (1). 

 

𝛥𝑃 =  𝛾 (
1

𝑅1
+

1

𝑅2
)            (1) 

 

Where R1 and R2 are the principal radii of curvature, the ΔP is the pressure difference across the interface, and 𝛾 is 

the liquid fluid interfacial tension. 
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Figure 1 – General Procedure of ADSA 

 

A specific application [Tomminen, et al., 2017] was aimed at the reactive extraction of copper in organic droplets, it 

approaches this from a detailed image processing perspective including video capture of moving droplets. They are 

attempting to isolate copper droplets within other liquid mediums. They achieve this by isolating the copper location 

by screening the image for colours in the red channel of the RGB spectrum. They then proceed to crop, binary 

threshold and reduce noise via dilation and erosion. They were additionally able to characterise their shapes by fitting 

ellipses and validating against samples analysed with spectrophotometry.  

  

Calculating the volume of droplets on micro-

grooved/patterned surfaces aluminium surfaces 

that exhibit parallel grooves such as those often 

found in air-cooling apparatus such as air 

conditioners [Sommers & Jacobi, 2008]  also 

delved into volume calculating methods. It 

requires two images taken at 0° and 90° due to 

the elongation of the droplets caused by resting in the troughs between the micro-grooves, and gravity. Fundamentally 

this relies on the parallel-sided nature of water to perform volume approximations from both images to approximate 

a true volume. 

Due to the unusual wetting characteristics of these surfaces the Young Laplace method wasn’t a suitable 

characterisation of the profiles exhibited. For the 0° profile it was possible to use a volume cap method as outlined 

in the equation below (2). 

 

𝑉 =
𝜋𝐷3

24
(

2−3 cos 𝛳 +cos3 𝛳

sin3 𝛳
)             (2) 

 

Where D is the diameter, and ϴ is the contact angle. However, this quickly degenerates the more the droplet elongates. 

Thus the 90° profile is causing the error to increase on an exponential trend. The decided methodology was to treat 

the droplet as a cylindrical element and integrating the cross section of the 90° profile using a series of mathematical 

approaches beyond the scope and application of this project. 

3 Proposed Approach 

The practical considerations in data gathering were an integral component of the project. Firstly, we required in order 

to have both images of sufficient quality to analyse. Secondly, we required accurate gravimetric measurements to 

compare algorithmic calculations to. During the course of our study it was realised that several parameters needed to 

be optimised. It was necessary to reduce disturbances generally while gathering the data, as there were many factors 

that could affect the scales while gathering image samples. Elements such as air conditioning, sudden changes in 

room pressure and temperature caused by the opening of a door all yielded sudden and dramatic fluctuations in the 

scales. Cautions were taken to reduce these stimuli to a minimum during the performance of each hour long 

experiment to ensure an optimal level of accuracy from the Sartorius scales. 

The initial step was to build a database of images with corresponding weights. This would allow empirical validation 

of further methods developed. A Sartorius Analytical Scales 0749C range was used. Although readability of this scale 

is within the 0.1 mg range, however its accurate operational weighing range is unavailable. However more modern 

Figure 2 - 90° and 0° Profile Respectively 



 
 

balances have reported operational ranges above 8.2 mg with a ±0.5 mg error. Minimum and maximum values were 

recorded in order to offset these potential issues. 

 

 
Figure 3 – Plinth 

 
Figure 4 – Plinth Contour 

 
Figure 5 – Bounded Contour 

 

 
Figure 6 – Drop 

 
Figure 7 – Noise Contours 

 

 
Figure 8 – Noise Filled 

 

 
Figure 9 - Bisected 

 
Figure 10 – Drop Contour 

 
Figure 11 – Image Output 

 

Drop staging and positioning was also important in order to create a spherical nature sans meniscus, thus the droplet 

was placed in a sessile constrained position on a plinth. The droplets were weighed by a four point Sartorius scale for 

each photograph taken. However, the droplets of interest were between 0.1 µL and 5µL and weight ranging between 

0.1 mg to 5 mg ±0.5 mg error. 

The most suitable approach to gathering images was to position a lightbulb producing white light behind the droplet 

in order to “drown out” any background spectra. By having a strong light source, it forced the internal mechanisms 

of the camera to scale all light by the strongest light source and weakest light source. This is how cameras produce 

contrast. This resulted in a ROI that was sufficiently black, with a background that was sufficiently white. Effectively 

this method overloads the ability of the camera to create real contrast over a range of spectra and reduced the image 

to two extreme parallels. 



 
 

In order to process the images an initial methodology was tested that compared two images, one of the plinth sans 

droplet, and another with a picture of a droplet for analysis. This is to allow for comparison and identification of what 

is different between the pictures, i.e. the droplet. 

The images are converted to grayscale (figure 3 and 6 respectively). Due to the high contrast in the images produced 

a wide array of threshold values are suitable. The median between the lightest and darkest pixel is selected, and using 

this a mask is applied to the images. Any bodies of white are then located within the image using a contour function 

within openCV (figure 4 and figure 7), all but the largest contour are filled in (figure 8). The contour co-ordinates of 

the plinth image (figure 5) are then mapped onto the droplet image and a line drawn, this effectively bisects the drop 

from the plinth with a line one pixel wide (exaggerated in figure 9). This line is also shifted to ensure that it bisects 

in the domain of the plinths pixels, and not within the pixels of the droplet itself. This could also be achieved by 

cropping the image to completely remove the plinth from the image. Once bisected there is now two areas that can 

be mapped, of which the co-ordinates from figure 10 are then exported into excel. 

The plinth measured 2mm in diameter, and thus upon measuring the pixels of the plinth it is possible in each image 

to scale that number of pixels by 2mm, giving a real world measurement. This allowed for the height of the drop and 

the length of its chord to be measured in pixels and converted to mm. Once all the XY co-ordinates are recorded they 

are moved to the true origin (0,0) that is central to the chord of the drop. 

3.7 Spherical Cap Volume Calculation 

This method is mathematically exact to the conditions propagated in the images, in that it takes a sphere and can 

remove an amount above or below a chord (where the plinth and the droplet meet). It is essential to find the radius of 

the circle (3) that the droplet would be composed of if it were a full sphere. The radius can be found via the equation 

below, as the image is two dimensional it is easy to treat the data as circular rather than spherical: 

 

𝑟 =
ℎ

2
+

𝑐2

8ℎ
              (3) 

 

It proposes that the volume of a spherical cap equals to the sum or difference of the spherical cap and the circular 

cone depending on whether h < r or h > r (4)(5). 

 

 
Figure 12 – Spherical Cap Method Showing Spherical Arc & Cone 

 

𝑉 = {
𝜋ℎ2 (𝑟 −

ℎ

3
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          (4) 

𝑤ℎ𝑒𝑟𝑒 𝑎 𝑖𝑠 𝑡ℎ𝑒 𝑎𝑟𝑒𝑎 𝑜𝑓 𝑡ℎ𝑒 𝑐𝑖𝑟𝑐𝑢𝑙𝑎𝑟 𝑐ℎ𝑜𝑟𝑑 

 

These two formula can be algebraically reduced and both will equal to the equation below: 

 

𝑉 = 𝜋ℎ2 (𝑟 −
ℎ

3
)           (5) 

 



 
 

3.8 3D Approximation 

A focal point, as discussed in chapter 3.2; needed to be 

isolated to facilitate the 180° rotation of the y co-

ordinates into the z-domain. Using trigonometry, it is 

possible to approximate y and z values as they are 

rotated around the origin (6).  

The following adjustments were made iteratively to 

every co-ordinate and mapped for the length of the 

radians array, while also using the radians array to 

dictate the rotations. In the original Cartesian format, 

the z-domain is at (x, y, 0) as the z-values are realised 

only at value 0. 

 

 

 

 

(𝑥, 𝑦, 𝑧) {

𝑥 =  𝑥[𝑛] − 𝑂𝑥

y =  (sin 𝛳) (𝑧[𝑛]) + (cos 𝛳)(𝑦[𝑛] − 𝑂𝑦)

z =  (cos 𝛳)(𝑧[𝑛]) − (sin 𝛳) (𝑦[𝑛] − 𝑂𝑦)

     (6) 

 

Where Ox and Oy are the Cartesian origin co-ordinates, and [n] all of the values stored in the co-ordinates arrays; 

iterated one at a time. The x and y co-ordinates were adjusted to reflect the true origin that was mapped onto the 

centre of the chord, this was required as the equation above is only suitable for rotations around an origin. 

4 Results & Analysis 

4.1 Contour Approximation for X-Y Co-ordinates 

As demonstrated below from Fig. 14 through Fig. 19 the droplet shape is recognised from the input. Drop shape and 

location has no impact on the algorithm so long as there is a plinth photograph as part of the input for ROI 

identification. 

Figure 13 – 3D Droplet Via Reverse Plotting 



 
 

 
Figure 14 – Typical Input 

 

 
Figure 15 – Unrealistic Input 

 

 
Figure 16 – Shifted Input 

 

 
Figure 17 – Typical Output 

 
Figure 18 – Unrealistic Output 

 
Figure 19 – Shifted Output 

 

4.2 Volume Approximation 

The main mechanism of the algorithm is that it compares a picture of a drop to a picture of a plinth. In order to avoid 

moving the plinth due to the prototype stage of the equipment, the easiest methods to take pictures was to allow them 

to evaporate over time and take images at intervals. The error of the Sartorius scales used in an ideal environment is 

± 0.5mg. However, as the doors on the device were not closed in order to facilitate the camera this error would be 

expected to increase. 

Due to an unideal weighing environment, the scales tended to oscillate ±1mg several times over the course of the 

minute between each image capture. This oscillation adds an additional error to the 0.5 mg which is integral to the 

balance. Halfway through this experiment the min and max values showcased on the scales were recorded for 

analysis. 

 



 
 

 

Graph 1 - Evaporation Data Trend (Scales Weight Vs. Spherical Cap Calculation) 

 

As shown in Graph 1 there is a wide degree of oscillation in weighed values as measured from 1200(s). The origin 

of this increased error is a higher degree of variation caused by measuring these lower weights in a non-ideal 

environment 

At 2280 (s) the trend recording the volume approximations is disrupted. When the pictures produced from this time 

onwards are inspected it is due to uncontrolled slipping of the contact line of the droplet causing the edge of the 

droplet to recede from the edge of the plinth. 

As the droplet shrinks in diameter, its surface area decreases in respect to its overall volume, thus giving it less contact 

with surrounding air to allow evaporation to occur. This would cause the volume to remain constant for longer, as 

graph 1 indicates using the volume approximation methods devised. 

This had to be taken into consideration in the design of the algorithm, as previously the chord and scaling variables 

were identical. It was presumed that the drop would always wet the full plinth. Thus the scaling of the picture was 

adjusted to be iteratively based off of the first contour (the plinth itself), instead of the second longest contour (the 

droplet). 

This also pointed out issue with the plinth itself, while all care was taken to remove any oil, or residue before the 

experiment; if this were done correctly the above droplet trend would not have occurred. While the plinth could be 

coated to make it hydrophobic or oleopathic this would overall affect the data gathering negatively. The plinth is 

designed to be wetted fully by the liquid, making it hydrophobic deters this. While making it oleopathic would reduce 

oil or grease from fingertips, it means these types of liquids couldn’t be measured by the device. 

5 Conclusions & Future Work 

The spherical cap method has been demonstrated as a reliable approximation method for sessile droplets. Allowing 

for the calculation of their shape and volume, calibrated by gravimetric analysis. Whilst these results would benefit 

from a graduated calibration method, this proof of principle study demonstrates the potential for data extraction from 

sessile droplets through image analysis. With these results in hand, future work would seek to combine these 

measurements with spectrophotometry. Such efforts would allow for the calibration of absorption spectra and light 

paths within the medium, providing quantification of the droplets contents. Ultimately we hope that this technology 

will find application and integration with biomedical devices examining real world analytes in a human health 

context. 
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