
Technological University Dublin Technological University Dublin

ARROW@TU Dublin ARROW@TU Dublin

Theme 1: Delivering Universal Design in
Technical Subjects Universal Design in Education Conference, 2015

2015

Teaching Universal Design in Computer Science Teaching Universal Design in Computer Science

Damian Gordon
Technological University Dublin, Damian.Gordon@tudublin.ie

Ciaran O'Leary
Technological University Dublin, ciaran.oleary@tudublin.ie

Follow this and additional works at: https://arrow.tudublin.ie/exdesthe1

 Part of the Education Commons

Recommended Citation Recommended Citation
Gordon, D. & O'Leary, C. (2015). Teaching universal design in computer science. Universal Design in
Education, Dublin Ireland, 12-13 November, 2015.

This Conference Paper is brought to you for free and open access by the Universal Design in Education Conference,
2015 at ARROW@TU Dublin. It has been accepted for inclusion in Theme 1: Delivering Universal Design in Technical
Subjects by an authorized administrator of ARROW@TU Dublin. For more information, please contact
arrow.admin@tudublin.ie, aisling.coyne@tudublin.ie, vera.kilshaw@tudublin.ie.

https://arrow.tudublin.ie/
https://arrow.tudublin.ie/exdesthe1
https://arrow.tudublin.ie/exdesthe1
https://arrow.tudublin.ie/exceldes
https://arrow.tudublin.ie/exdesthe1?utm_source=arrow.tudublin.ie%2Fexdesthe1%2F2&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/784?utm_source=arrow.tudublin.ie%2Fexdesthe1%2F2&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:arrow.admin@tudublin.ie,%20aisling.coyne@tudublin.ie,%20vera.kilshaw@tudublin.ie

TEACHING UNIVERSAL DESIGN IN COMPUTER SCIENCE

 Damian Gordon,

School of Computing,

Dublin Institute of Technology,

Kevin Street, Dublin 8, Ireland.

email: Damian.Gordon@dit.ie

Ciarán O'Leary,

College of Sciences and Health,

Dublin Institute of Technology,

Kevin Street, Dublin 8, Ireland.

email: Ciaran.OLeary@dit.ie

Abstract

The principles of Universal Design developed at North Carolina State University in 1997 are

well-known and frequently cited. When teaching Universal Design in Computer Science the

principles are frequently used, and the focus is generally on the user interface elements of

design, as the principles can easily be appreciated in the context of ideas such as User

Experience (UX), Human-Computer Interaction (HCI), or Visual Design (which uses Wizard

of Oz prototyping). User interface design considers how a user will experience the software,

and recommends that programmers ensure that the interface is as simple and efficient as

possible, in terms of accomplishing the users' goals. An often overlooked element of

Universal Design in software design is to consider the software itself, on how it is built, and

how it is formatted, using the lens of Universal Design. Given that the reality is that most

code will be modified by a developer who may be unknown to the original developer, it is

important that code is designed (both in terms of build and format) in such a way that it is

future-proofed and therefore universally designed.

Introduction

This research was initiated as a result of a new programme of study started in Dublin Institute

of Technology’s School of Computing in September 2015. The new programme is a BSc in

Information Systems and Information Technology (Course Code: DT255), and uses a

blended learning (Oliver and Trigwell, 2005) delivery model. In this case, some modules will

be taught in a traditional bricks-and-mortar classroom, whereas other lectures will be

delivered fully on-line.

Delivering lectures fully on-line presents significant challenges for both lecturer and student.

Diana Laurillard’s Conversational Framework (1993) suggests that lecturer-student

interaction is of paramount importance in teaching, and that is important to recognise that

both the lecturer and student has a wide-ranging existing set of concepts in their heads, and

the greater the difference between their sets of concepts, the more difficult the teaching

process becomes, and the more consideration that the lecturer has to give both to the

construction of the learning environment, and the nature of the activities that they get the

students to do (see Figure 1).

mailto:Damian.Gordon@dit.ie
mailto:Ciaran.OLeary@dit.ie

Figure 1. Laurillard’s Conversational Framework

An on-line module also requires a significant degree on intrinsic motivation and maturity on

behalf of the participating students. Gilly Salmon (2002) proposed a Five-Stage Model of

eLearning to describe the levels of maturity a student goes through in an eLearning

environment which will be very important in this program:

 Stage 1: Access and Motivation – At this stage the student is new to a learning

environment, and there will be a few technical issues at first, therefore the lecturer

must be welcoming and encouraging.

 Stage 2: Online Socialization – At this stage the student is starting to learn more

about their learning environment and is linking with fellow students, therefore the

lecturer must act as a moderator and facilitator.

 Stage 3: Information Exchange – At this stage the student is confidently sending

and receiving messages from other students, and acting as their own moderator,

therefore the lecturer focuses on delivering learning materials and e-tivities.

 Stage 4: Knowledge Construction – At this stage the student is generating their own

knowledge and contributing it to the group, therefore the lecturer acts as the overall

architecture of the contributions into a cohesive whole.

 Stage 5: Development – At this stage the student have taken ownership of their work,

and are able to apply them in their own context, therefore the lecturer steps back, but

is available for questions and answers.

Thus, in this programme the students will be guided through the on-line aspects of the

programme in a manner that will allow them to develop and mature their online learning

skills.

Pam Moule (2007) extends and challenges Salmon’s model in developing the eLearning

Ladder, which acknowledges a wider range of learning activities, and considers the level of

ICT skills of all the parties involved have, as well as considering issues such as technical

support and access (see Figure 2).

Figure 2. Moule’s Ladder of eLearning

To bring together all of the above, Robert Gagné's Nine Events of instructional Design will be the

framework used for each of the on-line lessons. Gagné suggests that the first stage of the instructional

design process is to formulate a clear learning goal, following that he provides a step-by-step model

of how to undertake a lesson, including; how to present the knowledge, how to demonstrate the skills,

and how to assess the learning.

The steps Gagné suggests start with requiring the lecturer gaining the attention of the students (stage

1); this will be done differently in a traditional classroom than it will be in an on-line environment.

Next the lecturer must describe the learning goals of the lesson (stage 2); this will be similar in the

traditional and online settings. Following this the lecturer must highlight previous lessons that tie in

with the current lesson (stage 3); this will be similar in the traditional and online settings. The next

stage will be to present the learning materials to the students (stage 4); this will be done differently in

a traditional classroom than it will be in an on-line environment. The lecturer will then provide

guidance to the students as to how to understand the material (stage 5); this will be done differently in

a traditional classroom than it will be in an on-line environment. Next the lecturer will ask the

students to perform a relevant task (stage 6); this will be done differently in a traditional classroom

than it will be in an on-line environment. From here the lecturer will provide feedback (cf. Hattie)

(stage 7); this will be done differently in a traditional classroom than it will be in an on-line

environment. For this the lecturer will assess the overall learning the students have achieved (stage 8);

this will be similar in the traditional and online settings. Finally the lecturer will check what the

students have retained after a long period of time (stage 9); this will be similar in the traditional and

online settings.

On-line Module: Programming and Algorithms

One of the modules whose lectures will be delivered fully online is called “Programming and

Algorithms” and focuses on an introduction to the design and development of software. The module is

designed so that at the end of the module, the students will be able to:

 Design and write computer elementary programs in a structured procedural language.

 Use a text editor with command line tools and simple Integrated Development Environment

(IDE) to compile, link and execute program code.

 Divide a computer program into modules.

 Test computer programs to ensure compliance with requirements.

 Implement elementary algorithms and data structures in a procedural language.

The students visit the module webpage1 (see Figure 3) and view each week’s videos, and read that

week’s PowerPoints and Code Samples (see Figure 4). Following this they are required to do

activities on the discussion board, and do a Laboratory once a week that will include exercises on

topics that they have reviewed in that week.

Figure 3. Module Website

1 http://www.damiantgordon.com/python

Figure 4. Lesson Webpage

Since the design of software is an integral part of the module, one of the key topics being taught and

being discussed in this module is Universal Design, focusing particularly on the principles of

Universal Design, as presented by researchers at North Carolina State University in 1997, which

represent a clear and coherent set of ideals for the design of products, services and environments (The

Center for Universal Design 1997). Rather than being an end-point, these principles should be

recognised as a starting point, providing the first generally agreed set of principles defining Universal

Design (See Appendix A). Over time the principles have been questioned and challenged, as should

be the case for any set of principles, with competing versions emerging occasionally from the

literature, most notably Erlandson’s principles (Erlandson 2007).

The sixth and seventh principles are clearly less relevant to software development than the others, but

in a bricks-and-mortar classroom setting, with discussion,and reflection, it is possible to situate these

principles in a Computer Science setting, whereas in the on-line delivery, it is necessarily to be more

directed, therefore a new perspective on the principles had to be developed, including seeing the

principles both from a users’ and a developers’ point-of-view.

Layering the Principles

The authors have argued previously that the principles can be viewed as consisting of three

semiotically distinct layers, with principle 1 (Equitable Use) residing in a layer by itself as the overall

philosophy of Universal Design. Following this, principles 2-5 (Flexibility in Use, Simple and

Intuitive, Perceptible Information, and Tolerance for Error) in a separate layer which describes some

of the principles that must be considered to achieve the overall philosophy. Finally principles 6-7

(Low Physical Effort, Size and Space for Approach and Use) are domain-specific principles in the

Built Environment which describe how to achieve the previous layer’s goals (O'Leary and Gordon,

2009; Gordon and O’Leary, 2011).

Layer Principle Description

Layer 1 Equitable Use Overriding Philosophy

Layer 2

Flexibility in Use

General Principles for Realising Philosophy
Simple and Intuitive

Perceptible Information

Tolerance for Error

Layer 3

Low Physical Effort

Principles for Realising Philosophy within the

Built Environment Domain Size and Space for Approach

and Use

Table 1. The Principles of Universal Design

Level 1 is comprised of a single principle which describes the overriding philosophy of Universal

Design. Any design should be evaluated for its adherence to this principle, across all domains. It is a

high level summary and clear explanation of the philosophy of Universal Design.

Level 2 is comprised of the next four principles. These remain, in our consideration and again without

considering the guidelines which accompany them, domain general, and serve as specific means to

arrive at the promise of the first principle. Anything which is designed in any domain for any problem

should be flexible in use, be simple and intuitive, present perceptible information and incorporate

tolerance for error. These domain general principles may require a moderate rewording, but as they

stand at present, they represent useful principles against which any designs can be evaluated.

Level 3 from the above list are domain specific. Low physical effort and size and space for approach

and use are applicable only to specific problems, most notably in the design of products and

environments. These represent principles for realizing the Level 1 principle in a specific domain.

Visually we can place Principle 1 as the overall goal, Principles 2-5 as the pillars, and Principles 6-7

as the foundations within a specific discipline:

Figure 5. The Seven Principles of Universal Design

Situating the Principles in the Computer Science Discipline

To ensure that the principles are relevant and useful to Computer Science students, it is clear that

Principles 6 and 7 need to be changed (localised) to issues in the Computer Science domain. To

achieve this we will examine the notions present in defensive programming (or secure programming)

which focuses on improving software and source code under three principles: (1) General quality, (2)

Making the source code comprehensible, and (3) Making the software behave in a predictable

manner. The first Principle is a general one, whereas Principle 2 will be recast to the more general

goal of “Consideration for Users”, and Principle 3 will be similarly recast as “Use of Patterns”,

therefore the Computer Science seven principles are as follows.

Layer Principle Description

Layer 1 Equitable Use Overriding Philosophy

Layer 2

Flexibility in Use

General Principles for Realising Philosophy
Simple and Intuitive

Perceptible Information

Tolerance for Error

Layer 3
Use of Patterns

Principles for Realising Philosophy within the

Computer Science Domain
Consideration for Users

Table 2. The Principles of Universal Design (in Computer Science)

As before visually we can place Principle 1 as the overall goal, Principles 2-5 as the pillars, and

Principles 6-7 as the foundations within a specific discipline:

Figure 6. The Seven Principles of Universal Design (in Computer Science)

To add a bit more detail to these principles, it is worthwhile to suggest some guidelines that would be

used to represent these principles in a Computer Science context, as follows:

Layer Principle Guidelines

Layer 1 Equitable Use
One product designed well for everyone.

Layer 2

Flexibility in Use
Configurable interface, adapts to user needs,

variety of ways of achieving the same thing (e.g.

hotkeys)

Simple and Intuitive Navigation pathways, metaphor, number of clicks,

breadcrumbs, etc.

Perceptible Information
The use of colours, use of clear language, etc.

Tolerance for Error
Catching, preventing error, clear error messages.

Layer 3

Use of Patterns Repeated themes in terms of navigation and

functionality

Consideration for Users Understand the users’ needs, consider personas,

speak their language

Table 3. The Principles with Guidelines

In particular of note is the consideration of the use of personas, which is an increasingly popular

approach to the design of interactive products and interfaces (Cooper, Reimann, and Dubberly 2003;

Cooper 2004) as well as the software development process (Zimmermann and Vanderheiden 2005),

primarily according to the modern agile development movement (Fowler and Highsmith 2001).

Personas have also been explored by the author as a specific form of teaching approach (Gordon, et

al., 2013).

However, this formulation fails to account for the difference between two distinct kinds of users – the

End-Users and the Developers. The End-Users use the software in a very distinct way to the

Developers who will have to modify, correct, and extend the existing software (in the same way that

an extension on a house may not be undertaken by the original builder, or the features of a product

might be extended by a new designer).

The End-Users only get to see the software executing, and therefore treat it as a black box (i.e. they

don’t see the computer programs), whereas the developers (who are a special instance of user) have to

treat the code like a white box (i.e. they have to look into the code to modify it). Thus, we require two

distinct set of guidelines for these distinct groups.

Layer Principle End-User Guidelines Developer Guidelines

Layer 1 Equitable Use One product designed

well for everyone.

Algorithm set out to be

reused in different

languages, platforms etc.

Layer 2

Flexibility in Use

Configurable interface,

adapts to user needs,

variety of ways of

achieving the same thing

(e.g. hotkeys)

Modular, component

based code. Well

designed to be

configurable etc.

Simple and Intuitive
Navigation pathways,

metaphor, number of

clicks, breadcrumbs, etc.

Not using language-

specific tricks,

Library use.

Perceptible Information The use of colours, use

of clear language, etc.

Documentation,

Variable naming.

Tolerance for Error
Catching, preventing

error, clear error

messages.

Secure, defensive

programming practice.

Layer 3

Use of Patterns
Repeated themes in

terms of navigation and

functionality

Design patterns, and using

the same coding

approaches.

Consideration for Users

Understand the users’

needs, consider

personas, speak their

language

For the developer-user

ensure modularity and

extensibility,

Table 4. The Principles from the Users’ and the Developers’ point of view.

The New Principles in Detail

Based on these principles, it becomes possible to develop new guidelines for the principles, both for

the End-user and the Developer. Interestingly a significant majority of the existing guidelines work

perfectly well as End-User Guidelines (and are shaded grey), whereas the developer guidelines are all

newly created, but strongly reflect the existing guidelines.

Principle 1: Equitable Use

End-User Guidelines Developer Guidelines

A. Provide the same means of use for all

users: identical whenever possible;

equivalent when not.

B. Avoid segregating or stigmatizing any

users.

C. Make provisions for privacy, security,

and safety equally available to all users.

D. Make the design appealing to all users.

A. Provide a range of IDEs and

development environments.

B. Ensure that all the necessary assistive

technologies needed are provided.

C. Provide versioning software, document

backup facilities, and undelete features.

D. Ensure the software is as readable and

clear as possible.

Principle 2. Flexibility in Use

End-User Guidelines Developer Guidelines

A. Provide choice in methods of use.

B. Accommodate right- or left-handed access

and use.

C. Facilitate the user's accuracy and precision.

D. Provide adaptability to the user's pace.

A. Provide a range of IDEs and

development environments.

B. Provide a range of input devices, e.g.

keyboards, voice synthesis

C. Provide code standards checking tools

D. Develop in a modular, component based

approach

Principle 3. Simple and Intuitive Use

End-User Guidelines Developer Guidelines

A. Eliminate unnecessary complexity.

B. Be consistent with user expectations and

intuition [Navigation pathway, breadcrumbs]

C. Accommodate a wide range of literacy and

language skills.

D. Arrange information consistent with its

importance.[Metaphors]

E. Provide effective prompting and feedback

during and after task completion.

A. Implement features in common, expected

ways, don’t obfuscate.

B. Be consistent with developer expectations.

C. Accommodate a wide range of literacy and

language skills.

D. Arrange information consistent with its

importance.

E. Use software libraries when possible.

Principle 4. Perceptible Information

End-User Guidelines Developer Guidelines

A. Use different modes (pictorial, verbal,

tactile) for redundant presentation of

essential information.

B. Maximize “legibility” of essential

information.

C. Differentiate elements in ways that can be

described (i.e., make it easy to give

instructions or directions).

D. Provide compatibility with a variety of

techniques or devices used by people with

sensory limitations.

A. Comment the code prolifically.

B. Use clear variable names and module names.

C. Build in help features into the code.

D. Provide compatibility with a variety of

techniques or devices used by people with

sensory limitations.

Principle 5. Tolerance for Error

End-User Guidelines Developer Guidelines

A. Arrange elements to minimize hazards

and errors: most used elements, most

accessible; hazardous elements

eliminated, isolated, or shielded

B. Provide warnings of hazards and errors.

C. Provide fail safe features.

D. Discourage unconscious action in tasks

that require vigilance.

A. Develop software using the principles of

defensive programming.

B. Catch errors where possible.

C. Give detailed and clear error messages.

D. Avoid global variables, and modules that

cause side-effects.

Principle 6. Use of Patterns

End-User Guidelines Developer Guidelines

A. Provide repeated themes in terms of

navigation.

B. Provide repeated themes in terms of

functionality.

C. Provide standard screen formats.

D. Provide visual cues.

A. Use software design patterns.

B. Use the same coding approaches.

C. Use the same naming standards for variables

and modules.

D. Use standard library functions.

Principle 7. Consideration for Users

End-User Guidelines Developer Guidelines

A. Understand the users’ needs.

B. Consider the use of personas.

C. Speak the End-users’ language.

D. Provide help features.

A. Develop modular code to help the developers

B. Develop easily extensible code.

C. Adhere to coding standards

D. Comment complex elements of the code, and

refer to design documents.

Discussion

If Universal Design can be said to be challenging, then it is challenging because it attempts to

address a paradox at the heart of human existence. This paradox concerns the essential

tension between the biology of the human being and their psychology. In terms of human

biology the key to survival is diversity, the more diverse a species is, the more likely they are

to be resilient to changes and challenges, this is why there is no one single type of person, we

have diverse sizes, handedness, abilities, ages, eye colour, dexterity, etc. But in direct

contrast to this is human psychology which strives for uniformity; the human mind is

constantly exposed to a vast array of sensory information, and to cope with this, the mind

simplifies the incoming information by using pattern-matching and categories to simplify that

input. This type of simplification is also applied to people and results in viewing groups of

people as an undifferentiated mass (in-group/out-group dynamics). So as a race biological

diversity is imperative for survival, but as individuals we strive to find uniformity and simple

categories, this Dualistic paradox is what makes Universal Design difficult, we know that

there is massive diversity in the human population, and yet our brain tends to interact with the

world in simplified, categorical ways, so for example when designing tools we tend to design

for ourselves, (or our clan or our tribe) as opposed to designing for the evident diversity of

the human population.

As stated in the abstract of this paper, we see the principles of Universal Design as fitting into three

distinct layers. The first principle (Equitable Use) is an overriding philosophy statement; it is the goal

of Universal Design. The next four principles (Flexibility in Use, Simple and Intuitive Use,

Perceptible Information, Tolerance for Error) can be seen as the specific issues that should be

addressed to achieve the first principle of Equitable Use. The final two principles (Low Physical

Effort, Size, and Space for Approach and Use) are really not general principles, but rather refer

specifically to the domain of architecture and built environment and would have less relevance in, for

example, the field of the Universal Design of software.

From this simple analysis it is clear that the principles are an excellent starting point, but nonetheless

only a starting point, for the design process it is important to consider the specific domain in which

the principles will be utilised. In this research to scaffold the principles we extended and modified the

principles to direct the development of a series of principles and guidelines for software development.

The current version of the principles are merely another step along the way, the development and

refinement of these principles and their guidelines is a continuous and living process, as more people

contribute the them, they will grow to accommodate a wider range of perspectives.

Summary and Conclusions

In this research the development of a series of concrete guidelines based on a modified set of

principles to address the needs of end-users and developers of software. The principles of Universal

Design were used as the essential element to begin developing these new guidelines; from there the

input of secure programming was incorporated into the concrete guidelines that were designed to be

coherent and readable while at the same time addressing the needs of the diverse users of these

guidelines. This approach proved to be highly successful and has resulted in a set of guidelines that

are currently stable, but may result in additions or alterations to the existing guidelines after user

testing.

References

Cooper, A. 2004. The inmates are running the asylum: Why high tech products drive us crazy and

how to restore the sanity. Pearson Higher Education.

Cooper, A., R. Reimann, and H. Dubberly. 2003. About face 2.0: the essentials of interaction design.

John Wiley & Sons, Inc. New York, NY, USA.

Gagne, R.M., Briggs, L.J., Wager, W.F., (1985) Principles of Instructional Design, Wadsworth

Gordon, D., O'Leary C., Universal Design is Sustainable Design, But How is it Measured? Seventh

China - Europe International Symposium on Software Industry Oriented Education - CEIS-

SIOE 2011, Northampton, UK, 23-24 May 2011

Gordon, D., Fennell, A., O'Leary, C., O'Connor, J., Persona-Based Teaching: A New Approach to

Exploring the Dimensions of Universal Design using Personas and Scenarios, AHEAD 2013

Conference, Dublin, Ireland , March 12, 2013.

Erlandson, Robert F. 2007. Universal and Accessible Design for Products, Services, and Processes.

1st ed. CRC Press.

Fowler, M., and J. Highsmith. 2001. The agile manifesto. Software Development 9, no. 8: 28–35.

Laurillard, D.M. (1993) Rethinking University Teaching: A Framework for the Effective Use of

Educational Technology, Routledge, London.

Moule, P, (2007) “Challenging the Five-Stage Model for e-Learning: A New Approach”, Research in

Learning Technology, 15(1).

O'Leary, C., Gordon, D., Universal Design, Education and Technology, In proceedings of the Ninth

Annual Information Technology and Telecommunications Conference, Dublin Institute of

Technology, Dublin, Ireland, 22-23 October, 2009

Oliver, M.,, Trigwell, K. (2005). “Can ‘Blended Learning’be Redeemed?”, E-learning and Digital

Media, 2(1), 17-26.

Salmon, G. (2002) E-tivities: The Key to Active Online Learning, Kogan Page

The Center for Universal Design. 1997. The Principles of Universal Design, Version 2.0. Raleigh,

NC: North Carolina State University.

Webb, N. L. 1997. Criteria for alignment of expectations and assessments in mathematics and science

education. Council of Chief State School Officers and National Institute for Science Education

Research Monograph.

Zimmermann, G., and G. Vanderheiden. 2005. Creating accessible applications with RUP. At

http://www. ibm. com/developerworks/rational/library/jul05/zimmerman/index. html. August

‘09.

Appendix A: The Principles of Universal Design and their Guidelines

The Seven Principles of Universal Design, as identified by the Centre for Universal Design.

These seven principles are as follows:

1. Equitable Use

2. Flexibility in Use

3. Simple and Intuitive Use

4. Perceptible Information

5. Tolerance for Error

6. Low Physical Effort

7. Size and Space for Approach and Use

These principles provide a checklist against which a final product can be evaluated, and a

guide for a designer throughout the design process. The principles are further fleshed out by

an abstract description, and a set of four of five guidelines, as provided below:

Principle 1: Equitable Use

The design is useful and marketable to people with diverse abilities.

A. Provide the same means of use for all users: identical whenever possible; equivalent when

not.

B. Avoid segregating or stigmatizing any users.

C. Make provisions for privacy, security, and safety equally available to all users.

D. Make the design appealing to all users.

Principle 2. Flexibility in Use

The design accommodates a wide range of individual preferences and abilities.

A. Provide choice in methods of use.

B. Accommodate right- or left-handed access and use.

C. Facilitate the user's accuracy and precision.

D. Provide adaptability to the user's pace.

Principle 3. Simple and Intuitive Use

Use of the design is easy to understand, regardless of the user's experience, knowledge, language

skills, or current concentration level.

A. Eliminate unnecessary complexity.

B. Be consistent with user expectations and intuition.

C. Accommodate a wide range of literacy and language skills.

D. Arrange information consistent with its importance.

E. Provide effective prompting and feedback during and after task completion.

Principle 4. Perceptible Information

The design communicates necessary information effectively to the user, regardless of ambient

conditions or the user's sensory abilities.

A. Use different modes (pictorial, verbal, tactile) for redundant presentation of essential

information.

B. Maximize “legibility” of essential information.

C. Differentiate elements in ways that can be described (i.e., make it easy to give instructions or

directions).

D. Provide compatibility with a variety of techniques or devices used by people with sensory

limitations.

Principle 5. Tolerance for Error

The design minimizes hazards and the adverse consequences of accidental or unintended actions.

A. Arrange elements to minimize hazards and errors: most used elements, most accessible;

hazardous elements eliminated, isolated, or shielded

B. Provide warnings of hazards and errors.

C. Provide fail safe features.

D. Discourage unconscious action in tasks that require vigilance.

Principle 6. Low Physical Effort

The design can be used efficiently and comfortably and with a minimum of fatigue.

A. Allow user to maintain a neutral body position.

B. Use reasonable operating forces.

C. Minimize repetitive actions.

D. Minimize sustained physical effort.

Principle 7. Size and Space for Approach and Use

Appropriate size and space is provided for approach, reach, manipulation, and use regardless of

user's body size, posture, or mobility.

A. Provide a clear line of sight to important elements for any seated or standing user.

B. Make reach to all components comfortable for any seated or standing user.

C. Accommodate variations in hand and grip size.

D. Provide adequate space for the use of assistive devices or personal assistance.

	Teaching Universal Design in Computer Science
	Recommended Citation

	tmp.1448564369.pdf.36_1Y

