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Abstract 

The principles of Universal Design developed at North Carolina State University in 1997 are 

well-known and frequently cited. When teaching Universal Design in Computer Science the 

principles are frequently used, and the focus is generally on the user interface elements of 

design, as the principles can easily be appreciated in the context of ideas such as User 

Experience (UX), Human-Computer Interaction (HCI), or Visual Design (which uses Wizard 

of Oz prototyping). User interface design considers how a user will experience the software, 

and recommends that programmers ensure that the interface is as simple and efficient as 

possible, in terms of accomplishing the users' goals. An often overlooked element of 

Universal Design in software design is to consider the software itself, on how it is built, and 

how it is formatted, using the lens of Universal Design. Given that the reality is that most 

code will be modified by a developer who may be unknown to the original developer, it is 

important that code is designed (both in terms of build and format) in such a way that it is 

future-proofed and therefore universally designed. 

 

Introduction 

This research was initiated as a result of a new programme of study started in Dublin Institute 

of Technology’s School of Computing in September 2015. The new programme is a BSc in 

Information Systems and Information Technology (Course Code: DT255), and uses a 

blended learning (Oliver and Trigwell, 2005) delivery model. In this case, some modules will 

be taught in a traditional bricks-and-mortar classroom, whereas other lectures will be 

delivered fully on-line. 

Delivering lectures fully on-line presents significant challenges for both lecturer and student. 

Diana Laurillard’s Conversational Framework (1993) suggests that lecturer-student 

interaction is of paramount importance in teaching, and that is important to recognise that 

both the lecturer and student has a wide-ranging existing set of concepts in their heads, and 

the greater the difference between their sets of concepts, the more difficult the teaching 

process becomes, and the more consideration that the lecturer has to give both to the 

construction of the learning environment, and the nature of the activities that they get the 

students to do (see Figure 1). 
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Figure 1. Laurillard’s Conversational Framework 

 

An on-line module also requires a significant degree on intrinsic motivation and maturity on 

behalf of the participating students. Gilly Salmon (2002) proposed a Five-Stage Model of 

eLearning to describe the levels of maturity a student goes through in an eLearning 

environment which will be very important in this program: 

 Stage 1: Access and Motivation – At this stage the student is new to a learning 

environment, and there will be a few technical issues at first, therefore the lecturer 

must be welcoming and encouraging.  

 Stage 2: Online Socialization – At this stage the student is starting to learn more 

about their learning environment and is linking with fellow students, therefore the 

lecturer must act as a moderator and facilitator. 

 Stage 3: Information Exchange – At this stage the student is confidently sending 

and receiving messages from other students, and acting as their own moderator, 

therefore the lecturer focuses on delivering learning materials and e-tivities.    

 Stage 4: Knowledge Construction – At this stage the student is generating their own 

knowledge and contributing it to the group, therefore the lecturer acts as the overall 

architecture of the contributions into a cohesive whole. 

 Stage 5: Development – At this stage the student have taken ownership of their work, 

and are able to apply them in their own context, therefore the lecturer steps back, but 

is available for questions and answers. 

Thus, in this programme the students will be guided through the on-line aspects of the 

programme in a manner that will allow them to develop and mature their online learning 

skills.  

Pam Moule (2007) extends and challenges Salmon’s model in developing the eLearning 

Ladder, which acknowledges a wider range of learning activities, and considers the level of 

ICT skills of all the parties involved have, as well as considering issues such as technical 

support and access (see Figure 2). 

 



 

Figure 2. Moule’s Ladder of eLearning 

 

To bring together all of the above, Robert Gagné's Nine Events of instructional Design will be the 

framework used for each of the on-line lessons. Gagné suggests that the first stage of the instructional 

design process is to formulate a clear learning goal, following that he provides a step-by-step model 

of how to undertake a lesson, including; how to present the knowledge, how to demonstrate the skills, 

and how to assess the learning.  

The steps Gagné suggests start with requiring the lecturer gaining the attention of the students (stage 

1); this will be done differently in a traditional classroom than it will be in an on-line environment.   

Next the lecturer must describe the learning goals of the lesson (stage 2); this will be similar in the 

traditional and online settings. Following this the lecturer must highlight previous lessons that tie in 

with the current lesson (stage 3); this will be similar in the traditional and online settings. The next 

stage will be to present the learning materials to the students (stage 4); this will be done differently in 

a traditional classroom than it will be in an on-line environment. The lecturer will then provide 

guidance to the students as to how to understand the material (stage 5); this will be done differently in 

a traditional classroom than it will be in an on-line environment. Next the lecturer will ask the 

students to perform a relevant task (stage 6); this will be done differently in a traditional classroom 

than it will be in an on-line environment. From here the lecturer will provide feedback (cf. Hattie) 

(stage 7); this will be done differently in a traditional classroom than it will be in an on-line 

environment. For this the lecturer will assess the overall learning the students have achieved (stage 8); 

this will be similar in the traditional and online settings. Finally the lecturer will check what the 

students have retained after a long period of time (stage 9); this will be similar in the traditional and 

online settings. 

 

  



On-line Module: Programming and Algorithms 

One of the modules whose lectures will be delivered fully online is called “Programming and 

Algorithms” and focuses on an introduction to the design and development of software. The module is 

designed so that at the end of the module, the students will be able to: 

 Design and write computer elementary programs in a structured procedural language. 

 Use a text editor with command line tools and simple Integrated Development Environment 

(IDE) to compile, link and execute program code.  

 Divide a computer program into modules.  

 Test computer programs to ensure compliance with requirements.   

 Implement elementary algorithms and data structures in a procedural language. 

The students visit the module webpage1 (see Figure 3) and view each week’s videos, and read that 

week’s PowerPoints and Code Samples (see Figure 4). Following this they are required to do 

activities on the discussion board, and do a Laboratory once a week that will include exercises on 

topics that they have reviewed in that week. 

 

 

Figure 3. Module Website 

                                                           
1 http://www.damiantgordon.com/python 



 

 

Figure 4. Lesson Webpage 

 

Since the design of software is an integral part of the module, one of the key topics being taught and 

being discussed in this module is Universal Design, focusing particularly on the principles of 

Universal Design, as presented by researchers at North Carolina State University in 1997, which 

represent a clear and coherent set of ideals for the design of products, services and environments (The 

Center for Universal Design 1997). Rather than being an end-point, these principles should be 

recognised as a starting point, providing the first generally agreed set of principles defining Universal 

Design (See Appendix A). Over time the principles have been questioned and challenged, as should 

be the case for any set of principles, with competing versions emerging occasionally from the 

literature, most notably Erlandson’s principles (Erlandson 2007).  

The sixth and seventh principles are clearly less relevant to software development than the others, but 

in a bricks-and-mortar classroom setting, with discussion,and reflection, it is possible to situate these 

principles in a Computer Science setting, whereas in the on-line delivery, it is necessarily to be more 

directed, therefore a new perspective on the principles had to be developed, including seeing the 

principles both from a users’ and a developers’ point-of-view. 

 



 

Layering the Principles  

The authors have argued previously that the principles can be viewed as consisting of three 

semiotically distinct layers, with principle 1 (Equitable Use) residing in a layer by itself as the overall 

philosophy of Universal Design. Following this, principles 2-5 (Flexibility in Use, Simple and 

Intuitive, Perceptible Information, and Tolerance for Error) in a separate layer which describes some 

of the principles that must be considered to achieve the overall philosophy. Finally principles 6-7 

(Low Physical Effort, Size and Space for Approach and Use) are domain-specific principles in the 

Built Environment which describe how to achieve the previous layer’s goals (O'Leary and Gordon, 

2009; Gordon and O’Leary, 2011). 

 

Layer Principle Description 

Layer 1 Equitable Use Overriding Philosophy 

Layer 2 

Flexibility in Use 

General Principles for Realising Philosophy 
Simple and Intuitive 

Perceptible Information 

Tolerance for Error 

Layer 3 

Low Physical Effort 

Principles for Realising Philosophy within the 

Built Environment Domain Size and Space for Approach 

and Use 

Table 1. The Principles of Universal Design 

 

Level 1 is comprised of a single principle which describes the overriding philosophy of Universal 

Design. Any design should be evaluated for its adherence to this principle, across all domains. It is a 

high level summary and clear explanation of the philosophy of Universal Design. 

Level 2 is comprised of the next four principles. These remain, in our consideration and again without 

considering the guidelines which accompany them, domain general, and serve as specific means to 

arrive at the promise of the first principle. Anything which is designed in any domain for any problem 

should be flexible in use, be simple and intuitive, present perceptible information and incorporate 

tolerance for error. These domain general principles may require a moderate rewording, but as they 

stand at present, they represent useful principles against which any designs can be evaluated. 

Level 3 from the above list are domain specific. Low physical effort and size and space for approach 

and use are applicable only to specific problems, most notably in the design of products and 

environments. These represent principles for realizing the Level 1 principle in a specific domain. 

 



Visually we can place Principle 1 as the overall goal, Principles 2-5 as the pillars, and Principles 6-7 

as the foundations within a specific discipline: 

 

Figure 5. The Seven Principles of Universal Design  

 

Situating the Principles in the Computer Science Discipline 

To ensure that the principles are relevant and useful to Computer Science students, it is clear that 

Principles 6 and 7 need to be changed (localised) to issues in the Computer Science domain. To 

achieve this we will examine the notions present in defensive programming (or secure programming) 

which focuses on improving software and source code under three principles: (1) General quality, (2) 

Making the source code comprehensible, and (3) Making the software behave in a predictable 

manner. The first Principle is a general one, whereas Principle 2 will be recast to the more general 

goal of “Consideration for Users”, and Principle 3 will be similarly recast as “Use of Patterns”, 

therefore the Computer Science seven principles are as follows. 

Layer Principle Description 

Layer 1 Equitable Use Overriding Philosophy 

Layer 2 

Flexibility in Use 

General Principles for Realising Philosophy 
Simple and Intuitive 

Perceptible Information 

Tolerance for Error 

Layer 3 
Use of Patterns 

Principles for Realising Philosophy within the 

Computer Science Domain  
Consideration for Users 

Table 2. The Principles of Universal Design (in Computer Science) 



As before visually we can place Principle 1 as the overall goal, Principles 2-5 as the pillars, and 

Principles 6-7 as the foundations within a specific discipline: 

 

Figure 6. The Seven Principles of Universal Design (in Computer Science)  

 

To add a bit more detail to these principles, it is worthwhile to suggest some guidelines that would be 

used to represent these principles in a Computer Science context, as follows: 

Layer Principle Guidelines 

Layer 1 Equitable Use 
One product designed well for everyone. 

Layer 2 

Flexibility in Use 
Configurable interface, adapts to user needs, 

variety of ways of achieving the same thing (e.g. 

hotkeys) 

Simple and Intuitive Navigation pathways, metaphor, number of clicks, 

breadcrumbs, etc. 

Perceptible Information 
The use of colours, use of clear language, etc. 

Tolerance for Error 
Catching, preventing error, clear error messages. 

Layer 3 

Use of Patterns Repeated themes in terms of navigation and 

functionality 

Consideration for Users Understand the users’ needs, consider personas, 

speak their language 

Table 3. The Principles with Guidelines 

In particular of note is the consideration of the use of personas, which is an increasingly popular 

approach to the design of interactive products and interfaces (Cooper, Reimann, and Dubberly 2003; 

Cooper 2004) as well as the software development process (Zimmermann and Vanderheiden 2005), 

primarily according to the modern agile development movement (Fowler and Highsmith 2001). 

Personas have also been explored by the author as a specific form of teaching approach (Gordon, et 

al., 2013). 



However, this formulation fails to account for the difference between two distinct kinds of users – the 

End-Users and the Developers. The End-Users use the software in a very distinct way to the 

Developers who will have to modify, correct, and extend the existing software (in the same way that 

an extension on a house may not be undertaken by the original builder, or the features of a product 

might be extended by a new designer).  

The End-Users only get to see the software executing, and therefore treat it as a black box (i.e. they 

don’t see the computer programs), whereas the developers (who are a special instance of user) have to 

treat the code like a white box (i.e. they have to look into the code to modify it). Thus, we require two 

distinct set of guidelines for these distinct groups. 

 

Layer Principle End-User    Guidelines Developer     Guidelines 

Layer 1 Equitable Use One product designed 

well for everyone. 

Algorithm set out to be 

reused in different 

languages, platforms etc. 

Layer 2 

Flexibility in Use 

Configurable interface, 

adapts to user needs, 

variety of ways of 

achieving the same thing 

(e.g. hotkeys) 

Modular, component 

based code. Well 

designed to be 

configurable etc. 

Simple and Intuitive 
Navigation pathways, 

metaphor, number of 

clicks, breadcrumbs, etc. 

Not using language-

specific tricks, 

Library use. 

Perceptible Information The use of colours, use 

of clear language, etc. 

Documentation,  

Variable naming. 

Tolerance for Error 
Catching, preventing 

error, clear error 

messages. 

Secure, defensive 

programming practice.  

Layer 3 

Use of Patterns 
Repeated themes in 

terms of navigation and 

functionality 

Design patterns, and using 

the same coding 

approaches. 

Consideration for Users 

Understand the users’ 

needs, consider 

personas, speak their 

language 

For the developer-user 

ensure modularity and 

extensibility,  

Table 4. The Principles from the Users’ and the Developers’ point of view. 

 

  



The New Principles in Detail 

Based on these principles, it becomes possible to develop new guidelines for the principles, both for 

the End-user and the Developer. Interestingly a significant majority of the existing guidelines work 

perfectly well as End-User Guidelines (and are shaded grey), whereas the developer guidelines are all 

newly created, but strongly reflect the existing guidelines. 

 

Principle 1: Equitable Use  

End-User Guidelines Developer Guidelines 

A. Provide the same means of use for all 

users: identical whenever possible; 

equivalent when not.  

B. Avoid segregating or stigmatizing any 

users. 

C. Make provisions for privacy, security, 

and safety equally available to all users. 

D. Make the design appealing to all users. 

A. Provide a range of IDEs and 

development environments. 

B. Ensure that all the necessary assistive 

technologies needed are provided. 

C. Provide versioning software, document 

backup facilities, and undelete features. 

D. Ensure the software is as readable and 

clear as possible. 

 

Principle 2. Flexibility in Use 

End-User Guidelines Developer Guidelines 

A. Provide choice in methods of use. 

B. Accommodate right- or left-handed access 

and use. 

C. Facilitate the user's accuracy and precision. 

D. Provide adaptability to the user's pace. 

 

A. Provide a range of IDEs and 

development environments. 

B. Provide a range of input devices, e.g. 

keyboards, voice synthesis 

C. Provide code standards checking tools 

D. Develop in a modular, component based 

approach 

 

Principle 3. Simple and Intuitive Use 

End-User Guidelines Developer Guidelines 

A. Eliminate unnecessary complexity. 

B. Be consistent with user expectations and 

intuition [Navigation pathway, breadcrumbs] 

C. Accommodate a wide range of literacy and 

language skills. 

D. Arrange information consistent with its 

importance.[Metaphors] 

E. Provide effective prompting and feedback 

during and after task completion. 

A. Implement features in common, expected 

ways, don’t obfuscate. 

B. Be consistent with developer expectations. 

C. Accommodate a wide range of literacy and 

language skills. 

D. Arrange information consistent with its 

importance. 

E. Use software libraries when possible. 

 

  



 

Principle 4. Perceptible Information 

End-User Guidelines Developer Guidelines 

A. Use different modes (pictorial, verbal, 

tactile) for redundant presentation of 

essential information. 

B. Maximize “legibility” of essential 

information. 

C. Differentiate elements in ways that can be 

described (i.e., make it easy to give 

instructions or directions). 

D. Provide compatibility with a variety of 

techniques or devices used by people with 

sensory limitations. 

A. Comment the code prolifically. 

B. Use clear variable names and module names. 

C. Build in help features into the code. 

D. Provide compatibility with a variety of 

techniques or devices used by people with 

sensory limitations. 

 

 

Principle 5. Tolerance for Error 

End-User Guidelines Developer Guidelines 

A. Arrange elements to minimize hazards 

and errors: most used elements, most 

accessible; hazardous elements 

eliminated, isolated, or shielded 

B. Provide warnings of hazards and errors. 

C. Provide fail safe features. 

D. Discourage unconscious action in tasks 

that require vigilance. 

A. Develop software using the principles of 

defensive programming. 

B. Catch errors where possible. 

C. Give detailed and clear error messages. 

D. Avoid global variables, and modules that 

cause side-effects. 

 

Principle 6. Use  of Patterns 

End-User Guidelines Developer Guidelines 

A. Provide repeated themes in terms of 

navigation. 

B. Provide repeated themes in terms of 

functionality. 

C. Provide standard screen formats. 

D. Provide visual cues. 

A. Use software design patterns. 

B. Use the same coding approaches. 

C. Use the same naming standards for variables 

and modules. 

D. Use standard library functions. 

 

 

Principle 7. Consideration for Users 

End-User Guidelines Developer Guidelines 

A. Understand the users’ needs. 

B. Consider the use of personas. 

C. Speak the End-users’ language. 

D. Provide help features. 

 

A. Develop modular code to help the developers 

B. Develop easily extensible code. 

C. Adhere to coding standards 

D. Comment complex elements of the code, and 

refer to design documents. 

 

  



Discussion 

If Universal Design can be said to be challenging, then it is challenging because it attempts to 

address a paradox at the heart of human existence. This paradox concerns the essential 

tension between the biology of the human being and their psychology. In terms of human 

biology the key to survival is diversity, the more diverse a species is, the more likely they are 

to be resilient to changes and challenges, this is why there is no one single type of person, we 

have diverse sizes, handedness, abilities, ages, eye colour, dexterity, etc.  But in direct 

contrast to this is human psychology which strives for uniformity; the human mind is 

constantly exposed to a vast array of sensory information, and to cope with this, the mind 

simplifies the incoming information by using pattern-matching and categories to simplify that 

input. This type of simplification is also applied to people and results in viewing groups of 

people as an undifferentiated mass (in-group/out-group dynamics). So as a race biological 

diversity is imperative for survival, but as individuals we strive to find uniformity and simple 

categories, this Dualistic paradox is what makes Universal Design difficult, we know that 

there is massive diversity in the human population, and yet our brain tends to interact with the 

world in simplified, categorical ways, so for example when designing tools we tend to design 

for ourselves, (or our clan or our tribe) as opposed to designing for the evident diversity of 

the human population.   

As stated in the abstract of this paper, we see the principles of Universal Design as fitting into three 

distinct layers. The first principle (Equitable Use) is an overriding philosophy statement; it is the goal 

of Universal Design. The next four principles (Flexibility in Use, Simple and Intuitive Use, 

Perceptible Information, Tolerance for Error) can be seen as the specific issues that should be 

addressed to achieve the first principle of Equitable Use. The final two principles (Low Physical 

Effort, Size, and Space for Approach and Use) are really not general principles, but rather refer 

specifically to the domain of architecture and built environment and would have less relevance in, for 

example, the field of the Universal Design of software. 

From this simple analysis it is clear that the principles are an excellent starting point, but nonetheless 

only a starting point, for the design process it is important to consider the specific domain in which 

the principles will be utilised. In this research to scaffold the principles we extended and modified the 

principles to direct the development of a series of principles and guidelines for software development. 

The current version of the principles are merely another step along the way, the development and 

refinement of these principles and their guidelines is a continuous and living process, as more people 

contribute the them, they will grow to accommodate a wider range of perspectives. 

 

Summary and Conclusions 

In this research the development of a series of concrete guidelines based on a modified set of 

principles to address the needs of end-users and developers of software. The principles of Universal 

Design were used as the essential element to begin developing these new guidelines; from there the 

input of secure programming was incorporated into the concrete guidelines that were designed to be 

coherent and readable while at the same time addressing the needs of the diverse users of these 

guidelines. This approach proved to be highly successful and has resulted in a set of guidelines that 

are currently stable, but may result in additions or alterations to the existing guidelines after user 

testing. 
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Appendix A: The Principles of Universal Design and their Guidelines 

 

The Seven Principles of Universal Design, as identified by the Centre for Universal Design. 

These seven principles are as follows: 

1. Equitable Use 

2. Flexibility in Use 

3. Simple and Intuitive Use 

4. Perceptible Information 

5. Tolerance for Error 

6. Low Physical Effort 

7. Size and Space for Approach and Use 

These principles provide a checklist against which a final product can be evaluated, and a 

guide for a designer throughout the design process. The principles are further fleshed out by 

an abstract description, and a set of four of five guidelines, as provided below: 

 

Principle 1: Equitable Use 

The design is useful and marketable to people with diverse abilities. 

A. Provide the same means of use for all users: identical whenever possible; equivalent when 

not.  

B. Avoid segregating or stigmatizing any users. 

C. Make provisions for privacy, security, and safety equally available to all users. 

D. Make the design appealing to all users. 

 

Principle 2. Flexibility in Use 

The design accommodates a wide range of individual preferences and abilities. 

A. Provide choice in methods of use. 

B. Accommodate right- or left-handed access and use. 

C. Facilitate the user's accuracy and precision. 

D. Provide adaptability to the user's pace. 

 

Principle 3. Simple and Intuitive Use 

Use of the design is easy to understand, regardless of the user's experience, knowledge, language 

skills, or current concentration level. 

A. Eliminate unnecessary complexity. 

B. Be consistent with user expectations and intuition. 

C. Accommodate a wide range of literacy and language skills. 

D. Arrange information consistent with its importance. 

E. Provide effective prompting and feedback during and after task completion. 

 

 



Principle 4. Perceptible Information 

The design communicates necessary information effectively to the user, regardless of ambient 

conditions or the user's sensory abilities. 

A. Use different modes (pictorial, verbal, tactile) for redundant presentation of essential 

information. 

B. Maximize “legibility” of essential information. 

C. Differentiate elements in ways that can be described (i.e., make it easy to give instructions or 

directions). 

D. Provide compatibility with a variety of techniques or devices used by people with sensory 

limitations. 

 

Principle 5. Tolerance for Error 

The design minimizes hazards and the adverse consequences of accidental or unintended actions. 

A. Arrange elements to minimize hazards and errors: most used elements, most accessible; 

hazardous elements eliminated, isolated, or shielded 

B. Provide warnings of hazards and errors. 

C. Provide fail safe features. 

D. Discourage unconscious action in tasks that require vigilance. 

 

Principle 6. Low Physical Effort 

The design can be used efficiently and comfortably and with a minimum of fatigue. 

A. Allow user to maintain a neutral body position.  

B. Use reasonable operating forces. 

C. Minimize repetitive actions. 

D. Minimize sustained physical effort. 

 

Principle 7. Size and Space for Approach and Use 

Appropriate size and space is provided for approach, reach, manipulation, and use regardless of 

user's body size, posture, or mobility. 

A. Provide a clear line of sight to important elements for any seated or standing user. 

B. Make reach to all components comfortable for any seated or standing user. 

C. Accommodate variations in hand and grip size. 

D. Provide adequate space for the use of assistive devices or personal assistance. 
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