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ABSTRACT 

 

Fuzzy logic is a form of multi-valued logic derived from fuzzy set theory. Its methodology 

aims to provide a definitive solution from information that may be construed as ambiguous, 

imprecise or noisy. Classical set theory studies the properties of sets, while fuzzy set theory 

investigates the degree to which an element can be related to a set. The aim of this project is 

to develop a control strategy for a specific technical challenge relating to the food processing 

sector based on the deployment of fuzzy logic control concepts. Specifically, in this paper the 

author is concerned with the ability to control the density input of a variable feed product 

stream by automatically adjusting the „thermo pressure‟ & „feed flow‟ within desired limits. 

For the purpose of this study, the expert knowledge of both senior automation engineers and 

process operators was procured in order to develop an understanding of the dynamics and the 

limitations of the manufacturing process. The focus of this study is the development of a 

fuzzy logic control system for the production of “Whey Permeate Concentrate” in the 

production facilities of Glanbia plc. in Ballyragget, County Kilkenny.  
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CHAPTER  1  INTRODUCTION 

 

1.1 Introduction 

Manufacturing may be defined as the use of machines and labour to produce a product from 

raw material(s). Traditionally, manufacturing processes were highly dependent on human 

management and intervention in order to ensure that the product was produced in a safe, 

efficient and timely manner. As technology evolved, so did the methods for controlling 

manufaturing processes. Advancements in technology and micorprocessor based control 

equipment, and associated software systems, have  resulted in a massive reduction in human 

control dependency, leadings to major  increases in manufacturing efficiencies relating to 

volume, yield, cost, energy consumption, waste reduction and time. Globalisation and 

competition in the marketplace continue to drive an ever increasing demand for low cost, 

highly efficient production systems and therefore more sophisticated and more robust 

production planning and process control systems are becoming more and more important for 

manufacturers.  

 

Process control theory is the branch of engineering and mathematics that is concerned with 

understanding the dynamic behaviour of complex systems so that alogorithms can be 

developed to control the response of the system to changes in the system inputs.  By 

observing how the output from a system reacts  to a change in input(s), process engineers can 

design algorithms and control  responses to ensure that the output(s) of the system are 

managed and controlled in a manner which maximises the performance of the process. . The 

dynamics of any system will be unique to the system and will vary depending on the process 

in question.  Thus, a study of how the process behaves must be performed in order to 

determine the best control strategy for the process. For the purpose of this study, the expert 

knowledge of both senior automation engineers and process operators was procured in order 

to develop an understanding of the dynamics and the limitations of the manufacturing 

process. The focus of this study is the development of a fuzzy logic control system for the 

production of “Whey Permeate Concentrate” (WPC) in the production facilities of Glanbia 

plc. in Ballyragget, County Kilkenny.  This plant is the largest integrated milk processing 

facility in Western Europe. 
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1.2 Significance of Study 

Wang suggests that “the desire to make controllers more autonomous and intelligent” (1) has 

led to the introduction of control systems that incorporate many of the approaches which 

underpin artificial intelligence based systems, namely fuzzy control which is supported by 

fuzzy theory. Fuzzy theory is designed to deal with ambiguous concepts that lack crisp 

definition, for example;„water is too cold make it hotter‟, and it applies logical reasoning as a 

means to correct the problem e.g. “turn on the hot tap until an appropriate temperature is 

reached”. Fuzzy control theory is designed to replicate human reasoning, thinking and 

response mechanisms. It is intended to mirror the behaviour of operators or experts to 

perform effective and timely control over a process. 

 

The study of this topic was chosen as it is based on an existing manufacturing process and the 

particular challenge presented by the need to control whey permeate concentrate in the dairy 

manufacturing facility. This particular process has an intrinsically long process delay time of 

approximately 9 or 10 minutes. For this process, a change in process input will take up to 10 

minutes to manifest a change in the process output, due to the fact that the process involves 4 

stages and a long residence time. In a less complex, fast response type system, a change in the 

measured variable would result in a feedback controller making an immediate adjustment to 

the system‟s control parameter(s) in order to mitigate the change, and restore the measured 

variable to the desired level i.e. the setpoint.  

 

However, in the case which forms the basis for this study, a change in the desired system 

output is in fact a function of change(s) which will have occurred in the process up to a 

maximum of 10 minutes prior. For example, if material(s) is fed into a multi-step process and 

a critical control property (e.g. density) changes through the process steps and the sensor is 

located at the end of the process stages, then the change will not be detected until the material 

has completed its passage through all of the stages. Therefore in such a case, a simple 

feedback control strategy will not be viable or robust. 
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The literature relating to fuzzy logic control in manufacturing industry is sparse on 

applications and solutions for complex processes, with intrinsic delays, such as the case under 

consideration in this thesis. More research has been conducted in the area of continuous and 

discrete dynamic systems using less complex feedback control systems. Karimi and 

Jahanmiri (2), investigated the control of a process output for  multi-effect falling film 

evaporators using cascade control. However, the process that Karimi and Jahanmiri were 

dealing with had a relatively small process delay time (100 seconds) in comparison to the 

case described in this study.  

 

In short, research in this area is still ongoing; Perrot; Ioannou; Allais; Curt; Hossenlopp and 

Trystram (3) investigate the vast field of study related to fuzzy logic and the different tools 

that have been developed over a decade up to the year 2003. In short, Perrot et al, discuss the 

need for advanced “quality control” in the food industry and that applications involving fuzzy 

control “are still limited and few reviews on this topic are readily available” (3).  Figure 1.1 

below, illustrates the few articles already published in the field of fuzzy control for the food 

processing industry. 

 

Figure 1.1: Number of articles published in the field crossing the fuzzy logic and the control of the food 

processes (3). 
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1.3 Aim of study 

It is the aim of this study, through the research of existing literature and experimentation 

related to the field of fuzzy logic and fuzzy control systems, to develop a ‘closed loop’ 

control system that is based on the control methodology of fuzzy logic to achieve a target 

density output for a highly variable density input by controlling feed flow and thermo-

pressure in the system. At present, the manufacturing process for whey permeate concentrate 

is heavily reliant on operator (manual) control. The control in this particular production line 

is an „open loop‟ system by which an operator will react to a change in output density, and 

make an adjustment to the system‟s feed flow and thermo-pressure accordingly.  

 

Corrective response, in this case, is dependent entirely on an operator‟s reaction to a 

deviation in the measured output. Any corrective measure is predicated on the experience of 

the specific operator and observations have confirmed that there is significant variation in 

response between different operators. Therefore, the control system proposed in this study 

will implement a logic based control system that mimics the observed response of a range of 

operators to changes in the measured  output of the system. The aim is to control the density 

output of the product to with +/- 2 kg/m
3
 of the setpoint, 1230 kg/m

3
. 

 

1.4 Summary  

The focus of this study is the development of a fuzzy logic control system for the production 

of WPC in the production facilities of Glanbia plc. in Ballyragget, County Kilkenny. This 

study was chosen as it is based on an existing manufacturing process issue. In the next 

chapter, literature detailing classical sets; fuzzy sets ; fuzzy systems and models used in fuzzy 

systems is reviewed. 
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CHAPTER 2  LITERATURE REVIEW 

 

2.1 Introduction 

Huub H.C. Bakker, Clive Marsh, Shabeshe Paramalingam and Hong Chen (4) discuss the 

issues regarding “tight control” for product concentration in multi-effect falling-film 

evaporators. They state that achieving quality control “in evaporators is difficult due to 

disturbances, large time delays and other plant constraints”. Furthermore, Huub H.C. Bakker 

et al (4) suggest that “the use of a single feedback PI (Proportional Integral) control is not 

sufficient for this application”. Experience has shown that PI control has a limited 

disturbance rejection bandwidth (4). Therefore, an alternative control operation method must 

be investigated in order to obtain consistent performance in these styles of evaporators. 

 

Fuzzy control operates on a continuous value basis (between 0 and 1) by means of converting 

a linguistic control strategy, based on human expert knowledge, into an automatic control 

strategy (5). Fuzzy logic is used by the controller to apply reasoning to an error and attempts 

to rectify it through a rule based algorithm. Rules are often formatted using „if-then‟ 

statements to perform corrective action based on the ‘measured input error’ or ‘change in 

error‟ of a system (6). 

 

Fuzzy systems, more often than not, are found to be nonlinear and so the concept of 

stabilising a system like this is more difficult. Jantzen states that it is possible “to 

approximate a fuzzy controller with a linear controller and then apply the conventional linear 

analysis and design procedures on the approximation” (6). The theory based on this control 

system centres around the following control rules: 

 

a) Expert experience and control engineering knowledge – this approach ascertains a 

collection of rules based on carefully organised answers from experts and operators in 

the field (6). 
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b) Based on the operator‟s control actions – fuzzy „if-then‟ rules are established from an 

operator‟s control action or learned from previous issues logged (6). 

c) Based on a fuzzy model of the process – linguistic rules are considered to be the 

inverse model of a controlled process. Instead of using numerical values to represent 

control actions for a disturbance, logical statements are preferred. Unfortunately, this 

method can only be applied to low order systems  assuming that fuzzy models of the 

open and closed systems are available (6). 

d) Based on learning – the controller will determine the rules itself based on a neural 

network of information (6). 

 

2.2 Classical sets 

Fuzzy logic is a concept that is founded on classical, or crisp set theory. Crisp set theory 

defines a universe, say Z, in which a collection of objects, also known as elements, exist 

within this universe. Often these elements share a similarity that allows them to be grouped 

together for simplicity or convenience. For example, in a universe whose characteristic 

elements are whole numbers ranging from one to ten inclusive; there exists a set titled „prime 

numbers‟. Therefore the elements that are unique to this set are two, three, five and seven. 

Every other number would fall outside the boundary of this set. This is classified as a 

classical or crisp set, as we know „without-a-doubt‟ that these four numbers belong to this set. 

However, a fuzzy set will contain elements whose membership will evoke a certain level of 

ambiguity.  

In other words, they are sets with indistinct boundaries or „fuzzy‟ boundaries. By all rights, 

fuzzy logic is an extension of classical, or crisp, set theory and so it would be pertinent to 

briefly review the rules and notation that exemplify crisp set theory. Classical set theory 

studies the properties of sets. Its methods span over vast fields in mathematics and are applied 

to a variety of applications (e.g. fuzzy logic). Set theory uses a language based on a single 

fundamental relation called membership, denoted „∈‟. If an element „x‟ is a member of set 

„A‟ then the relationship can be expressed as follows: 

  ∈   
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In classical set theory the membership of elements in a set is assessed in binary terms (1 or 0) 

according to a bivalent condition
1
 (7).   

 

In addition, both sets and elements are located in a region known as a universe. The total 

number of elements in a universe Z is denoted by the symbol „nz‟, and is referred to as the 

cardinal number (7).  Discrete universes that contain a countable finite number of elements 

will have a finite cardinal number. It follows, that a continuous universe that comprises an 

infinite collection of elements will have an infinite cardinality (7).  

 

A set can be defined as a collection of elements within a universe that are related by a 

common characterisation that can be attributed to that set specifically. A subset is classified 

as a collection of elements within a set. Sets and subsets are terms that can be used 

synonymously, since any subset of a set is also a member of the universal set Z. A whole set 

describes the collection of all possible sets within the universe (7). For a crisp set A that 

contains a range of elements in a universe X, the following notation is used to define the 

relative membership: 

   Table 2.1: Crisp set notations and definitions (7). 

Notation Definition 

x ∈ Z x is a member of Universe Z 

x ∈ A x is a member of set A 

x  A   x does not belong to set A 

  

A characteristic function also known as a membership function, µA (x), is defined as an 

element in the universe Z having a crisp value of either 1 or 0. This is the premise of the 

bivalent condition, mentioned previously (8). By way of explanation, an element x that 

belongs to set A will have a crisp value of 1. However, an element x that does not belong to 

set A will have a crisp value of 0. For every element in the universe Z, each can be defined in 

accordance with their degree of membership relative to a set A as follows (8): 

                                                 
1
 Is a term used in classical logic to express if a proposition is either true (1) or false (0). 
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          ∈  
             

  

 

The null set, denoted Ø, is a unique set that contains no elements within its boundary. In 

contrast, the whole set is considered comparable to a certain event whereas the null set is 

comparable to an impossible event (7).  

 

2.2.1 Classical Set Operations 

Having discussed the important aspects of classical set notation that will later be applied to 

fuzzy logic, it would also be significant to consider how sets can also operate in relation to 

one another. The following example takes two sets, A and B, which exist in a Universe Z, as 

seen in Figure 2.1 below. 

 

 

Figure 2.1: Set A and set B in universe Z. 

 

Example: Figure 2.2 below, illustrates the union between the two sets, often denoted in 

classical set theory as A  B. The union of two sets, such as the Venn diagram depicted 

below, represents all elements in the universe Z that  reside in either set A, set B or both sets 

A and B. 
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Figure 2.2: Union of set A and set B in universe Z. 

 

Figure 2.3 below, portrays the intersection of the two sets A and B, often denoted A  B in 

classical set theory. The intersection principle represents all elements in the universe Z that 

belong to both sets A and B. In other words, the elements of the intersection must 

simultaneously belong to both set A and set B, like an overlap. 

 

Figure 2.3: Intersection of set A and set B in universe Z. 

 

The complement of a set is defined as the collection of all elements in the universe that do not 

reside in that set. In other words, everything outside that set as portrayed by the grey shading 

in Figure 2.4 below. The complement of set A below is often denoted in classical set theory 

as Ā . 
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Figure 2.4: Complement of set A in universe Z. 

 

The three operations described above can be written as follows (7): 

 Union               ∈       ∈      

 Intersection               ∈        ∈      

 Complement                      ∈      

 

2.2.2 Properties of classical sets 

There exist certain properties of sets that occupy a role of great importance due to their 

influence on the mathematical manipulation of sets. In effect, these properties define the 

classical set and provide the fundamental stepping stones for the development of fuzzy logic 

rules. Some of these properties operate as follows (7): 

 Commutativity           

 Associativity                      

                             

 Distributivity                           
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 Idempotency         

             

 Identity          

             

              

             

 Transitivity                                  

 Involution           

  

The relevance of these mathematical operators with regards to fuzzy logic are further 

discussed at a later stage in the next section. 

 

2.3 Fuzzy Sets 

The notion of „fuzzy sets‟ was first introduced by Lofti A. Zadeh. They were derived from the 

concept of classical set theory. Fuzzy sets can be considered as an extension of crisp sets. As 

discussed in the previous section, objects within a set are referred to as members or elements 

of a set. For a fuzzy set A, the function µA represents the membership function for which µA 

(x) measures the degree to which an absolute value x, of the universal set Z, belongs to set A 

(8). For a classical set, the membership function follows conventional Boolean logic in that 

an element either does or does not belong to a set. Therefore, its membership value will either 

be 1 (true) or 0 (false).  

 

However for a fuzzy set, the membership function can take a value in the interval ranging 

between 0 and 1. This interval is referred to as the membership grade or the degree of 

membership. A fuzzy set A can be represented as follows (8): 
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The degree of membership can also be described as a degree of measurability of which „x‟ is 

described by set A. The process of deriving the measurability values for a given value of „x‟ 

is known as fuzzification, which is discussed in section 2.4. Fuzzy sets can be categorised as 

either continuous or discrete. If a discrete set A, has a member „x‟, to which there is a relative 

membership „µ‟ then „x‟ is a member of the set to degree „µ‟ and can be represented as µ/x 

(7). Discrete sets can be written as follows:  

 

   
 

 

  
  

 
 

  
       

 
 

  
  

Or 

    
 

 

  
     

 

 

Where x1, x2 ... xn, are members of discrete set A and µ1, µ2 ... µn, are the degrees of 

membership. However, a continuous fuzzy set is infinite and can be expressed as follows (7): 

    
    

 
 

 

The following terms are used to describe various features that relate to membership 

functions: 

 Core: the core of a membership function for a fuzzy set A can be defined as the 

region of the universe that is characterised by complete and full membership in the 

fuzzy set A (7). In other words, the core comprises of those elements „x‟ within the 

universe; such that µA(x) = 1. 

 Support: the support of a membership function for a fuzzy set A can be defined as 

the region of the universe that is characterised by all non-zero memberships in the 

fuzzy set A (7). In other words, the support comprises of those elements „x‟ within the 

universe; such that µA(x) > 0. 
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 Boundaries: the boundaries of a membership function for a fuzzy set A are defined as 

a region of the universe containing elements that have a non-zero membership but not 

complete membership (7). In other words, the boundaries comprise of those elements 

„x‟ within the universe; such that 0 <  A(x) < 1. The elements that fall within this 

classification are elements with some degree of fuzziness, or partial membership 

within the fuzzy set A. 

 

Figure 2.5: Membership features of a fuzzy set (7). 

 

 Normal: a normal fuzzy set is one whose membership function contains at least one 

element „x‟ whose membership value is equal to one. In a fuzzy set where there is 

only one element that has a membership of one, it is typically referred to as the 

prototype of the set, or the prototypical element (7). 

 Sub-normal: a subnormal fuzzy set is one whose membership function contains no 

element „x‟ and whose membership value is equal to one. 

 

 

Figure 2.6: Fuzzy set Normal & Sub-normal (7). 
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 Convex: A convex normal fuzzy set is defined by its membership function whose 

values increase or decrease monotonically, or increase then decrease while the 

elements in the universal set increase only. In other words, a convex set contains 

elements x, y, and z; where the relation x < y < z implies that µA(y) ≥ min [ A(x), 

µA(z)] (9). 

 

Figure 2.7: Convex & non-convex normal fuzzy sets (9). 

 

One of the primary issues with regards to developing a fuzzy set is determining the 

associative fuzzy membership function. The membership function provides a measure of the 

degree of similarity of an element to a fuzzy set. Membership functions can be chosen in one 

of two ways: 

 

1. Userdefined: the membership functions are chosen arbitrarily based on the users 

experience, but this is often quite subjective and can be very time consuming. 

 

2. Learned: an adaptive learning system can be designed to automatically choose the 

most accurate parameters by observing the relationship between a series of 

input/output data that has been collected using artificial neural networks (this will be 

discussed further in section 2.6).  
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2.3.1 Types of membership functions 

There are different shapes of membership functions, such as triangular, Gaussian, bell-shaped 

etc. Membership functions can have a variety of different forms to describe the same 

function; however the membership functions used in this study will be standardised 

throughout. The simplest membership functions are those who are formed using straight 

lines. 

 

Triangular Membership Functions 

One of the most basic piecewise linear function is the triangular membership function. 

Figure 2.8 below, illustrates the membership function where a, b and c represent the x 

coordinates of the three vertices of µA(x) in the fuzzy set A. The coordinate „a‟ is defined as 

the lower boundary in set A whose degree of membership is zero. The coordinate „c‟ is 

defined as the upper boundary whose degree of membership is also zero. Finally, coordinate 

„b‟ is the third apex of the triangle whose degree of membership is one (7). 

 

Figure 2.8: Triangular Membership Function (10) 

 

The following equation represents the mathematical formula used to calculate the degree of 

membership for any element „x‟ in a fuzzy set A (11):   
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Gaussian Membership Function 

Another fuzzy membership function that is used in fuzzy logic is the Gaussian membership 

function, which is represented according to the following equation (7): 

        
 

 
 
   

 
 

 

  

Where x is the input variable, b is the centre of the membership function and σ is the constant 

that represents the width of the membership function. Gaussian fuzzy membership functions 

are quite common with regards to fuzzy logic systems. Figure 2.9 below, illustrates a typical 

Gaussian membership function. 

 

Figure 2.9: Gaussian Membership Function (10). 
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2.3.2 Fuzzy Set Operations 

Fuzzy set operations are derived from classical set theory, as discussed in the previous 

section. Over the past forty five years, since Dr. Lofti Zadeh first introduced the notion of 

fuzzy logic in his seminal paper, fuzzy logic has developed a well-established theoretical 

base. However, for practical implementations there are a reasonably small amount of 

operations required to develop a fuzzy system.  This section investigates the necessary 

operations required to successfully implement a computer system that utilises fuzzy logic. 

Furthermore, this provides the foundation for the implementation of the design model 

developed in this study and discussed in Chapter 3.  

 

Three particularly important operations that are frequently utilised in a fuzzy logic system are 

the union, intersection and complement. Specifically, the union and intersection operators are 

often described as the fundamental building blocks that compute the fuzzy if-then rules. Both 

these operators operate in a similar fashion as Boolean logic to perform a calculation. The 

union operator uses the Boolean term „OR‟, where as the intersection operator uses the term 

„AND‟ when executing the fuzzy rules (7). The following example describes the fuzzy set 

operations for three fuzzy sets A, B and C: 

Example: For a given element, x, of the universe Z the operations union, intersection and 

complement are defined for fuzzy sets A, B and C as follows (9): 

 Union (OR)     
      

      
  

      
  

      

 Intersection (AND)    
     

      
  

      
  

      

 Complement (NOT)    
   

        
  

      

Venn diagrams for these fuzzy operations are shown below in Figures 2.10 – 2.12. The 

operations shown in these diagrams are based on a triangular membership function, as 

discussed in the previous section. 
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Figure 2.10: Union (OR) of fuzzy set A and B (7). 

 

 

 

Figure 2.11: Intersection (AND) of fuzzy set A and B (7). 

 

 

 

Figure 2.12: Complement (NOT) of fuzzy set A (7). 
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Any fuzzy set (A, B or C) defined in the universe Z is a subset of that universe. According to 

classical set theory, the membership value of any element (x) that exists in the null set ( ) is 

0. Also, any element (x) that exists in the whole set Z will have a membership value of 1. The 

acceptable notation for these ideas can be defined as follows (7): 

            
  

       
  
   , For all,  ∈    

  
      

For all,  ∈    
  
      

 

2.3.2.1 Fuzzy Intersection 

In fuzzy logic, the intersection (AND) is calculated using t-norms. A t-norm operator is a 

form of binary operation used in the multi-valued logic. The term t-norm is an abbreviation 

for triangular norm, which is used to generalise triangle inequality of ordinary metric spaces. 

In other words, a t-norm is a function of the type (7): 

                     

Where the following conditions are satisfied (7): 

 Commutativity:                   

 Associativity:                             

 Monotonicity:                                      

 Identity: the number 1 acts as an identity element so that t(a, 1) = a . 

The most commonly adopted t-norm in fuzzy logic is the minimum. In other words, the 

intersection of two fuzzy sets A and B both with respective membership functions µA(x) and 

µB(x) can be represented as follows (7): 
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2.3.2.2 Fuzzy Union 

The union (OR) is calculated using t-conorms, also referred to as s-norms. A t-conorm, or s-

norms, are dual to t-norms under the order-reversing operation which assigns 1 – x on [0, 1]. 

S-norms are used to represent logical disjunction in fuzzy logic and union in fuzzy set theory. 

Given a t-norm, the complementary conorm is defined as (7): 

                     

Where the following conditions are satisfied (7): 

 Commutativity:                 

 Associativity:                            

 Monotonicity:                                       

 Identity: the number 0 acts as an identity element so that s(a, 0) = a . 

The most commonly adopted s-norm in fuzzy logic is the maximum. In other words, the 

union of two fuzzy sets A and B both with respective membership functions µA(x) and µB(x) 

can be represented as follows (7): 
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2.4 Fuzzy Systems 

A fuzzy system is a control system that utilises the fundamental principles of fuzzy logic to 

deliver a definitive conclusion to a problem that is characterised by vague, ambiguous, 

imprecise, noisy, or even missing information. Systems of this nature are often referred to as 

fuzzy systems (FS), fuzzy knowledge based systems (FKBS) and fuzzy inference system 

(FIS); all of which are relatively interchangeable and amount to the same thing. Fuzzy 

systems use fuzzy sets and fuzzy if-then rules as a part of a computer systems‟ decision 

making process in order to draw conclusions.  

 

According to Jantzen (6), in a fuzzy system there exist specific steps fundamental to the 

design procedure. The diagram below, Figure 2.13, illustrates the steps taken during this 

procedure. The steps are listed and discussed as follows: 

1. Pre-processing 

2. Fuzzification 

3. Rule Base 

4. Inference Engine 

5. Defuzzification 

6. Post-processing 

 

 

Figure 2.13: Structure of a fuzzy controller (6). 
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2.4.1 Pre-processing 

In this step, the measured or control variable from the process (often a crisp value) becomes 

the controllers input. This value is conditioned in the pre-processor block before it enters the 

controller. In a linear system, the control variable is converted to a crisp discrete figure (6). In 

other words, an error value of 3.8 is rounded to 4 to fit it to the nearest discrete level. In a 

non-linear system, it is necessary to process the value using non-linear scaling. Taking three 

measurements where each value represents a small, medium and large (i.e. fuzzy sets) 

process condition that occurred at some point; a curve is then constructed. These 

measurements become the break-points on curve that scales future measurements. The pre-

processor then passes the conditioned data on to the controller (6). 

 

2.4.2 Fuzzification 

The first block inside the fuzzy controller is fuzzification. Fuzzification uses the concepts of 

fuzzy set theory and specificallly fuzzy set operations, mentioned earlier. The fuzzification 

block is used to transform the crisp values obtained from the input signal into grades of 

membership for linguistic terms of fuzzy sets (6). For example, the fuzzification of a man 

who is six feet in height may belong to two fuzzy sets „average‟ and „tall‟. The membership 

functions µA and µB are the terms used to characterise the two fuzzy sets „average‟ and „tall‟, 

respectively. The man‟s height, 6 feet, belongs with a grade of 0.75 to the fuzzy set „average‟ 

and with a grade of 0.25 to the fuzzy set „tall‟. The fuzzification step involves transforming 

the input value (6 feet) into the grades of membership (0.75 for „average‟ and 0.25 for „tall‟). 
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2.4.3 Rule Base 

This step involves regulating a process output around a desired setpoint or reference value. 

There are a variety of different methods available for presenting the if-then rule format. The 

following examples are presented by Jantzen (6), in a technical report titled “Design of Fuzzy 

Controllers”. The first example is the most common, and basic, of any of the linguistic rule 

structures and is used for the design of the fuzzy controller in Chapter 3 of this study (6): 

 

1. If error is Neg and change in error is Neg then output is Negative Big (NB). 

2. If error is Neg and change in error is Zero then output is Negative Medium  (NM). 

3. If error is Neg and change in error is Pos then output is Zero. 

4. If error is Zero and change in error is Neg then output is NM. 

5. If error is Zero and change in error is Zero then output is Zero. 

6. If error is Zero and change in error is Pos then output is Positive Medium  (PM). 

7. If error is Pos and change in error is Neg then output is Zero. 

8. If error is Pos and change in error is Zero then output is PM. 

9. If error is Pos and change in error is Pos then output is Positive Big (PB). 
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In the example above, the names Zero, Pos, Neg, NB, NM and PM are labels given to fuzzy 

sets. This information can be presented in the following relational format (6): 

 

Table 2.2: Fuzzy rules presented in a relational format (6). 

Error Change in Error Output 

Neg Pos Zero 

Neg Zero NM 

Neg Neg NB 

Zero Pos PM 

Zero Zero Zero 

Zero Neg NM 

Pos Pos PM 

Pos Zero PM 

Pos Neg Zero 

 

Each column in the table above represents the variables associated with this process. The first 

two columns represent inputs, while the third column is the output. Each row corresponds to 

a rule. This layout is useful in order to gain a concise overview of the rule base. A third 

format, even more compact than the last, is the tabular linguistic format. 

Table 2.3: Fuzzy rules in a tabular linguistic format (6). 

  Change in Error 

  Neg Zero Pos 

E
rr

o
r
 

Neg NB NM Zero 

Zero NM Zero PM 

Pos Zero PM PB 

 

The input variables are laid out along the outside of the table, while the output variable is 

located inside the table. This method is quite useful for identifying any missing information. 

This would appear in the form of an empty cell indicating that a rule is missing (6). 
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2.4.4 Inference Engine 

The inference engine is the core of the controller. As discussed in the previous section, the 

rules of the fuzzy controller map the strategy course to be undertaken by the inference engine. 

Should an error exist, the inference engine looks up the corresponding membership values as 

defined by the condition of the rule and maps it to the appropriate output membership 

function to be defuzzified (i.e. converted to a crisp output) (6). 

 

2.4.5 Defuzzification 

Without defuzzification, the final output from the inference stage would remain a fuzzy set. 

In most process applications, there is a requirement for a crisp control signal. In this step a 

fuzzy set is reduced to a single numbered output. There are a number of defuzzification 

techniques available for this operation, some of which are described below (6): 

 

a) Centre of Gravity (CoG) Method 

The CoG, also known as the centre of area, method is a technique for finding a crisp value (u) 

from the mid-point of the output fuzzy set using a weighted average of the membership 

grades. Suppose, there exists a fuzzy set within a discrete universe, and µ (xi) is its 

membership value in the membership function. The following expression can be used to 

represent the weighted average of the elements in the support set (6): 

 

   
          

       
 

For a continuous universe, the summation symbols are replaced by integrals. 
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b) Mean of Maximum (MoM) Method 

The MoM method is an approach used to find the average z where the membership of the 

fuzzy set is at a maximum. It may occur that several maximum points exist and so, a common 

practice is to take the mean of all maximum values. This particular method disregards the 

shape of the fuzzy set entirely, but the computational complexity is simpler than other 

methods and yields relatively good results. 

 

As mentioned previously, fuzzy systems use fuzzy rules and fuzzy reasoning to draw upon a 

conclusion for a given scenario. Fuzzy reasoning is based on a principle that allows a 

systems‟ developer to map a function between two fuzzy sets, this is known as the extension 

principle. For a given scenario there exists a fuzzy set A in a universe Z. The extension 

principle states that if there is a function, f, then the fuzzy set B is given by (6): 

         
      

     
 

 

The extension principle operates at the most fundamental level of all fuzzy inference systems. 

However, due its complexity and vast mathematical detail, this paper will only deal with its 

practical effect in computer systems.  

 

2.4.6 Post-processing 

Post-processing is used to scale the output of the controller into its operational engineering 

units. Not every control signal sent from the controller to the post-processing block will 

require scaling, therefore this block would be defined by a process engineer according to the 

process dynamics of the system (6). 
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2.5 Models used in Fuzzy Systems 

2.5.1 The Mamdani Model 

The mamdani model uses rules where by the antecedent and the consequent are both fuzzy. 

Consider the following two rule system: 

  Rule 1: IF x is A1 and y is B1,  

  Rule 2: IF x is A2 and y is B2,  

where A1, A2, B1, B2, C1 and C1 from the expression above are fuzzy sets. Figure #.# below, 

illustrates how a Mamdani model takes two inputs x and y, applies the two rules in order to 

come to a logical solution based on these inputs.  

 

Figure 2.14: Mamdani model for two inputs x and y 
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The following steps were taken from John R‟s paper “Fuzzy Logic and Knowledge Based 

Systems” (12). In this paper, he lists the steps of the procedure performed by the Mamdani 

model for a two rule system. For the given values x and y (as depicted in Figure 2.14 above), 

the following procedure was carried out (12): 

a) For the value x find the membership values associated with fuzzy sets A1 and A2. 

b) For the value y find the membership values associated with fuzzy sets B1 and B2. 

c) For each rule, stated above, take the minimum of the membership values in Ai and Bi. 

d) Use this value to „truncate‟ the fuzzy set Ci(i = 1, 2) to produce a new set C‟i(i = 1, 2). 

e) For each value of z in the truncated sets, take the maximum to produce the final 

output fuzzy set. 

f) Optionally, „defuzzify‟ the output set to produce a single, or crisp, number.  

 

2.5.2 The Takagi-Sugeno Model 

This particular model type is discussed in greater detail in section 2.6.1. However, to 

illustrate the use of the Takagi-Sugeno approach in fuzzy systems, a brief explanation is 

described below. The Takagi-Sugeno model also uses if-then rules similar to the Mamdani 

model. They are presented in the following form (12): 

IF x is A and y is B, THEN z = f(x, y) 

where A and B are fuzzy sets and z is a crisp function in x, y. The antecedent is quite often 

more complicated than it appears above, normally containing more AND statements. The 

function in the consequent can be any function. However, in a first order Tageaki-Sugeno 

model the function normally takes the form (12): 

f(x, y) = px + qy + r 

where p, q and r are constants. In this particular model, the fuzzy rules contain a fuzzy 

antecedent and a crisp consequent. The two rules appear in the form (12):  
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 Rule 1: IF x is A1 and y is B1, THEN f1 = p1x + q1y + r1 

 Rule 2: IF x is A2 and y is B2, THEN f2 = p2x + q2y + r2 

For each input, x and y, the membership values are found in A1, A2, B1 and B2. For each rule, 

the antecedent „AND‟ is then found by taking the minimum of the membership grades in 

each rule (any t-norm would suffice). This operation yields two weighting values, w1 and w2, 

both of which are associated to each function f1 and f2. A weighted average of the two 

functions, f1 and f2, produces the following final output (12): 

   
          

      
 

 

2.6 Adaptive Neuro-Fuzzy Inference System 

Adaptive Neuro-Fuzzy Inference Systems (ANFIS) are a class of adaptive networks that use 

a given input/output data set to construct a fuzzy inference system (FIS) whose membership 

functions are tuned using either an algorithm that operates on a „backpropagation‟ principal 

alone, or in combination with a least squares estimation method (7). Adaptive neuro-learning 

systems are a highly efficient means for developing a learned fuzzy model structure, as this 

technique can develop membership function parameters that best allow the associated FIS to 

track the input/output data over a large operating range. Ultimately, ANFIS operates on the 

principle that a fuzzy systems can be formulated, or learned, via a data set obtained from an 

existing process model.  

 

Using a network structure that operates similar to that of a neural network (a computational 

model consisting of an interconnected group of artificial neurons to process information), the 

input data values are mapped across a layered network; through input membership functions 

and their associated parameters, and then through output membership functions and their 

associated parameters in order to obtain a desired conclusive output (7). The parameters 

associated with both input and output membership functions will change through the adaptive 

learning process. 
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The ANFIS approach is designed to replicate human-like experience within a specific 

domain. ANFIS is capable of adapting itself in order to better its control capabilities in 

changing environments. Quite often, the majority of manufacturing processes have complex 

reaction mechanisms and non-linear, time-variant process dynamics that make their 

modelling, monitoring and control challenging. According to Jang et al. (8), ANFIS has 

shown significant results in modelling non-linear functions. Adaptive networks can cover a 

vast range of different approaches but for the purpose of this study, the „Two Rule Sugeno 

ANFIS‟ method proposed by Jang will be discussed. 

2.6.1 Two Rule Sugeno Model 

Figure 2.15 below, represents a „Two Rule Sugeno‟ ANFIS architecture model. Assume that 

the fuzzy inference system has two inputs „x‟ and „y‟, and only one output „z‟. Takagi, 

Sugeno and Kang
 
proposed that “in an effort to develop a systematic approach to generating 

fuzzy rules from a given input – output data set for such a model” (9), then the following 

rules can be applied to a first-order Sugeno fuzzy model: 

 Rule 1: IF x is A1 and y is B1, THEN f1 = p1x + q1y + r1 

 Rule 2: IF x is A2 and y is B2, THEN f2 = p2x + q2y + r2 

 

Figure 2.15: An ANFIS structure for a two rule Sugeno system (13). 
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In the diagram above, the circular nodes in Layer 2, 3 and 5 represent nodes that are fixed and 

the square nodes in Layer 1 and 4 represent nodes that require parameter that are learnt. In 

order to train this particular network both a forward pass and a backward pass is performed 

over the system. The forward pass propagates the input vector through the network layer by 

layer in ascending order. The backwards pass, takes the error and sends it back through the 

network using backpropogation. The following describes how each layer operates: 

 Layer 1: this layer comprises of square nodes with a node function of either (10): 

        
                        

Or, 

          
                    

Where x (or y) is the input to node ‘i’ and Ai (or Bi-2) is a linguistic label (e.g. small, 

medium, large) associated with this node function. O1,i represents the membership 

grade, or the membership function, of a fuzzy set that contains the elements A1, A2,  

B1, B2. The membership function can vary from triangular, trapezoidal, S-shaped or 

L-shaped, as long as it a characteristically continuous and piecewise differentiable 

function. However, for illustration purposes the Gaussian (bell-shaped) function will 

be used. This is demonstrated by the following equation (10): 

 
  

     
 

   
     

  
 
   

 

In the equation above, characters ai, bi and ci are a parameter set known as the premise 

parameters. These particular values will vary over time and so; the bell-shaped 

function will vary accordingly. As a result, a variety of membership functions on the 

linguistic label Ai will be formed to accurately develop an output for each node ‘i’ 

(10). 
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 Layer 2: Each node in this layer is a circular (or fixed) node, labelled prod. An 

incoming signal from the previous layer is multiplied with another signal from the 

previous layer to produce the output of the second layer. This can be seen in the 

equation below: 

            
          

   , where: i = 1, 2 

 Each node in this layer represents the so called „firing strength‟ of the rules (10). 

 Layer 3: Again, each node in this layer is a circular or fixed node, labelled norm. 

Here, the i
th

 node calculates the ratio of the i
th

 rule‟s firing strength to the sum of all 

rules‟ firing strengths. The outputs of this layer are represented according to the 

following equation: 

             
  

      
,, i = 1, 2 

The outputs, O3,i, are called the „normalized firing strengths‟ as they play a 

normalisation role to the firing strength from the previous layer (10). 

 

 Layer 4: All nodes in this layer are square (variable) nodes with a node function of 

the form: 

                             

In this layer the nodes are adaptive nodes. From the equation above, the output of 

each node in this layer is the product of the normalised firing strength (from layer 3) 

and a first order polynomial (for a first order Sugeno model). The characters pi, qi and 

ri are a parameter set referred to as the consequent parameters (10). 

 

 Layer 5: There is only one circular (fixed) node, labelled ∑ that computes the overall 

output as the summation of all incoming signals. The overall output, O5,i in this layer 

is calculated according to the following equation (10): 
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Having discussed each layer in detail, it can be observed that there are two adaptive layers to 

this ANFIS method, specifically the first and fourth layers. In the first layer the premise 

parameters, identifiable by the set: {ai, bi, ci}, and in the fourth layer the consequent 

parameters, identifiable by the set { ai, bi, ci }, are tuned continuously to make the ANFIS 

output match the training data (10). 

 

Scenario 1: When the premise parameters of the membership function are fixed, the output 

of the ANFIS model can be written as follows (14): 

   
  

     
    

  

     
   

Substituting the equation from layer 3 into the equation above gives (14): 

                

Substituting the fuzzy „if-then‟ rules defined at the beginning of this section, namely Rule 1 

and 2, the equation now becomes (14): 

                                   

Rearranging, the output becomes (14): 

                                                          

This yields a linear combination of the modifiable consequent parameters p1, q1, r1, p2, q2 and 

r2. The least squares method is then used to identify the optimal values of these parameters. 
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Scenario 2: According to S.J. Iqbal and S.A. Miratashi (14), “when the premise parameters 

are not fixed, the search space becomes larger and the convergence of the training becomes 

slower”. In this case, a hybrid algorithm combining the least squares method and the gradient 

descent method is utilised to solve this issue. The forward pass operates using the least 

squares method to optimise the consequent parameters with the premise parameters. Once the 

optimal consequent parameters are found, the backwards pass begins immediately (14).  

 

The gradients decent method is used to adjust optimally the premise parameters that 

correspond to the fuzzy sets in the input domain. The output of the ANFIS is then calculated 

by employing the consequent parameters found in the forward pass. The output error is used 

to adapt the premise parameters by means of a standard back-propagation algorithm. 

According to S.J. Iqbal and S.A. Miratashi (14), “It has been proven that this algorithm is 

highly efficient in training the ANFIS”. The precise computation of both the forward pass and 

the backward pass can be very complicated and not entirely relevant to the overall theme of 

this study. Therefore, it will not be discussed.  
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CHAPTER 3   METHODOLOGY   

3.1 Introduction 

This chapter aims to provide an overview of the methodological approach and design 

implementation selected for the development of a fuzzy control system that is supported by 

fuzzy theory. In this chapter, the methodology applied to the development of the control 

consists of the following stages: 

1. Method of delivery 

2. Basis for design model 

3. Analysing data 

4. Generating membership functions 

5. Fuzzy control system 

The design criteria for this fuzzy system are reliant on the control of both the flowrate of the 

feed stream and the thermo-pressure in the evaporator in order to achieve a desired density 

output. For this particular design the following process conditions are assumed: 

 

a) The manufacturing process has completed its initial start-up phase and is operating 

within normal operating parameters. This implies that the storage tank is at sufficient 

operating level, that the plant has been sufficiently cleaned prior to production and 

that the evaporators are at sufficient temperature and wetness.  

b) All process instrumentation devices (such as valves, flow meters and temperature 

controls) are operating at normal capacity and without complications. 
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3.2 Method of Delivery 

 

The design of this control system is simulated entirely using a sophisticated language and 

interactive environment known as „Matlab‟, which enables the user to perform 

computationally intensive tasks and to implement numerical algorithms for a variety of 

process applications. Matlab is a technical computing environment that incorporates its own 

programming language similar to C or C++. Matlab is a programming language often used 

by control engineers “to model physical plants, to design control systems, and to evaluate 

their performance by simulations” (15).  

 

The software offers the capability to simulate real-time control systems whose process 

dynamics may be intrinsically discrete, continuous, linear or non-linear. Matlab offers 

numerous applications such as signal and image processing, communications, control design, 

test and measurement etc. Add-on toolboxes (used specifically in the design of the control 

system in this paper) are a collection of specific functions used to extend the Matlab 

environment to solve a particular problem class relative to the application area.   

 

The fuzzy logic system designed in this thesis was developed using a collection of data 

obtained from an information technology system called „Manufacturing Execution System‟ 

(MES). MES is designed to monitor the production processes in a manufacturing facility. 

This includes:  

 Presentation of schedules to work-centres 

 Collection of production information, including time, quantity, quality and operator 

behaviour 

 Analysis of production information, such as volume of product produced over a 

specified time frame 

 Shipping and dispatch records and 

 Product traceability 
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Using the MES information system, a collection of data was obtained from the Glanbia plc 

dairy manufacturing facility located in Ballyragget, Co. Kilkenny (see Appendix B). Density 

input, feed flow (i.e. flowrate), thermo-pressure and density output are continuously 

measured during production. The MES system records this data for analysis. Also, any 

alterations made by the operators to the controlled variables „feed flow‟ and „thermo-

pressure‟ were recorded by this system. Therefore, the data was collated and analysed to 

develop a fuzzy control strategy based on the behaviour of process operators. 

 

3.3 Basis for Design Model 

The aim of this study is to design a control strategy that reads a measured variable in the 

process and makes adjustments to the comparative process parameters accordingly. As 

mentioned in Chapter 1, this study is founded on an existing process issue found in 

Glanbia‟s dairy production facility, located in Ballyragget, Co. Kilkenny. The process 

parameters that this design is concerned with are as follows: 

1. Density input, measured in kilograms per meter cubed (kg/m
3
), is an uncontrolled 

process parameter. Throughout the process, this value can typically range from 1,080 

kg/m
3
 → 1,180 kg/m

3
, according to the data. The value of this parameter will 

determine the assessment of appropriate settings for both  the thermo-pressure and 

feed flow parameters in order to achieve the desired density output. 

2. Density output, measured in kilograms per meter cubed (kg/m
3
), is the process output 

that the control system is required to control within the range 1,180 kg/m
3
 → 1,280 

kg/m
3
, according to the data. 

3. Thermo-pressure, measured in bar, is a controlled parameter. 

4. Feed flow or flowrate, measured in meter cubed per hour (m
3
/hr), is a controlled 

parameter and must be maintained within specified operating limits to prevent dry 

spots (caused by low flow) or flooding (caused by high flow). Therefore, the 

minimum and maximum limits are 27 m
3
/hr and 32 m

3
/hr, respectively

2
.    

                                                 
2
 These values represent actual operating conditions and were set by senior process engineers in Glanbia. 
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Figure 3.1 below, is a „screen shot‟ of the operators supervisory control and data acquisition 

(SCADA) screen used to control the process in the Glanbia plant. The feed material is stored 

in the tank, situated on the left-hand side of the image and titled permeate tank. Upon 

completion of the „start-up phase‟, the operator inputs the desired feed flow (located on a pop 

up window designed for parameter control) from the storage tank. The feed enters the system 

and passes through a density meter to calculate the density of the feed. 

 

 

Figure 3.1: Operators SCADA screen with relevant (circled) process parameters. 

  

During “start-up”, the evaporators (labelled 1 – 4) are brought up to operating temperature 

and sufficiently „wetted‟ to cook the feed material upon entering the evaporators. The term 

„thermo-pressure‟ is used to describe the pressure of the steam that resides in the evaporator. 

The thermo-pressure is directly related to the temperature in the evaporator so, an increase in 

pressure results in an increase in temperature. Ultimately, this affects the density of the final 

product. Once the feed has passed through the system, its density is calculated using another 

density meter. 
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3.4 Analysis of Manufacturing Data  

 

The data collected from Glanbia plc were grouped according to the following process 

measurements: 

 Density input 

 Feed flow 

 Thermo-pressure and 

 Density output 

 

Using MES, the process operating values for each of the parameters mentioned above were 

collected and listed in an excel file. All density output values that occurred over a specified 

operating period were collated for analysis. For each density output value, its corresponding 

thermo-pressure, feed flow and density input
3
 were also collected. This data was then 

analysed to determine how the operator reacted should the measured variable rise or fall 

above the setpoint.  

 

Once an understanding of the operators‟ behaviour was developed, the data was filtered
4
 

further to only include values that fell within a range of +/- 2 kg/m
3
 of the setpoint, 1,230 

kg/m
3
. This significantly reduced the level of data and provided a clearer representation of 

the values required to control the process at its optimal operating range. Appendix B 

illustrates a data set that lists a varying density output and its corresponding operating 

parameters over a large difference range with respect to the setpoint. The data featured in the 

table below, is a representation of an increasing density input and the corresponding thermo-

pressure and feed flow that gave the desired density output. Subsequently, this reference data 

                                                 
3
 Process delay times had to be accounted for when selecting the data, this operation was carried out by senior 

process engineers who are familiar with the process. 

 

4
 The range of +/- 2 kg/m

3
 was included to the filter criteria as operators have stated that little to no change is 

made if the density output deviates from the setpoint by this much. 



40 

was used to formulate the membership functions for the fuzzy control system developed in 

Section 4.6 below. 

Table 3.1: MES data illustrating required operating parameters to achieve desired density output. 

Parameters: 

Density  

Input 

Feed  

Flow 

Thermo  

Pressure 

Density  

Output 

Set 

Point Difference 

Units: (kg/m
3
) (m

3
/hr) (bar) (kg/m

3
) (kg/m

3
) (kg/m

3
) 

V
a
r
ia

b
le

s:
 

1110 28 9.3 1230 1230 0 

1112 28 9.3 1230 1230 0 

1114 28 9.3 1230 1230 0 

1116 28.5 9.3 1230 1230 0 

1118 28.5 9.3 1230 1230 0 

1120 28.5 9.3 1230 1230 0 

1122 29 9.2 1230 1230 0 

1124 29 9.1 1230 1230 0 

1126 28 8.7 1230 1230 0 

1126 29.5 9 1230 1230 0 

1128 29.5 8.9 1230 1230 0 

1129 30 8.6 1230 1230 0 

1130 30 8.7 1230 1230 0 

1131 29 8.3 1230 1230 0 

1131 30 8.5 1230 1230 0 

1132 30 8.6 1230 1230 0 

1134 30 8.5 1230 1230 0 

1136 30 8.4 1230 1230 0 

1138 30.5 8.3 1230 1230 0 

1140 30.5 8.2 1230 1230 0 

1142 31 8.1 1230 1230 0 

1144 31 8 1230 1230 0 

1146 31 7.9 1230 1230 0 
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3.5 Generating Fuzzy Membership Function 

 

As previously discussed, the membership functions used in this fuzzy system are constructed 

from the data set above, obtained from Glanbia plc. Two types of membership functions were 

used to generate the fuzzy system: the triangular membership function and the trapezoidal 

membership function. In the proposed fuzzy system, there are two fuzzy controllers required 

to control the process. The first controller was designed to control the feed-flow. This 

required a total of sixteen membership functions for the input block and thirteen membership 

functions for the output block. The second controller was designed to control the themo-

pressure. This required a total of fourteen functions for the input block and fourteen 

membership functions for the output block. 

 

According to Jantzen (6), fuzzy set theory suggests that there is no one practiced method for 

determining the shape and width of a fuzzy membership function. It is a subjective process 

that will vary with the designer of the control system. However, a few rules of thumb should 

be considered when trying to formulate the membership functions for a design model: 

 

 Each set should be wide enough to allow for measurement noise. 

 A certain amount of overlap should exist between membership functions; this 

prevents the controller from returning a poorly defined manipulated variable (output). 

 Start with triangular sets, as these are the most basic form of membership function 

and the easiest to design. Should it not offer the desired control, then more 

complicated membership functions be considered. 

 

The membership functions developed for the control strategy in this paper are illustrated in 

the tables below. The tables below list the following information: the name of the 

membership function used in the Matlab programme; the membership function type (i.e. 

triangular, trapezoidal, Gaussian etc.) and the parameters that define the membership 

function. This is done for both controllers titled „feed flow‟ and „thermo-pressure‟. 
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Table 3.2: Membership functions for the feed flow controller. 

Feed Flow Controller 

Input (Density Input) Output (Feed Flow) 

Name: 

Function  

Type: Parameters: Name: 

Function  

Type: Parameters: 

MF1 Trapezoidal [1080 1080 1112 1112] MF1 Triangular [28 28 28] 

MF2 Triangular [1112 1114 1116] MF2 Triangular [28  28.25 28.5] 

MF3 Triangular [1114 1116 1118] MF3 Triangular [28.25 28.5 28.75] 

MF4 Triangular [1116 1118 1120] MF4 Triangular [28.5 28.75 29] 

MF5 Triangular [1118 1120 1122] MF5 Triangular [28.75 29 29.25] 

MF6 Triangular [1120 1122 1124] MF6 Triangular [29 29.25 29.5] 

MF7 Triangular [1122 1124 1126] MF7 Triangular [29.3 29.6 29.8] 

MF8 Triangular [1124 1126 1128] MF8 Triangular [29.5 29.75 30] 

MF9 Triangular [1126 1128 1130] MF9 Triangular [29.75 30 30.25] 

MF10 Triangular [1128 1130 1132] MF10 Triangular [30 30.25 30.5] 

MF11 Triangular [1130 1132 1134] MF11 Triangular [30.25 30.5 30.75] 

MF12 Triangular [1132 1134 1136] MF12 Triangular [30.5 30.75 31] 

MF13 Triangular [1134 1136 1138] MF13 Triangular [31 31 31] 

MF14 Triangular [1136 1138 1140] - - - 

MF15 Triangular [1138 1140 1142] - - - 

MF16 Trapezoidal [1142 1142 1180 1180] - - - 
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Table 3.3: Membership functions for the thermo-pressure controller. 

Thermo-Pressure 

Input (Density Input) Output (Thermo-Pressure) 

Name: 

Function  

Type: Parameters: Name: 

Function  

Type: Parameters: 

MF1 Trapezoidal [1080 1080 1120 1120] MF1 Triangular [7.8 7.8 7.8] 

MF2 Triangular [1120 1122 1124] MF2 Triangular [7.8 7.9 8] 

MF3 Triangular [1122 1124 1126] MF3 Triangular [7.9 8 8.1] 

MF4 Triangular [1124 1126 1128] MF4 Triangular [8 8.1 8.2] 

MF5 Triangular [1126 1128 1130] MF5 Triangular [8.1 8.2 8.3] 

MF6 Triangular [1128 1130 1132] MF6 Triangular [8.2 8.3 8.4] 

MF7 Triangular [1132 1134 1136] MF7 Triangular [8.3 8.4 8.5] 

MF8 Triangular [1134 1136 1138] MF8 Triangular [8.4 8.5 8.6] 

MF9 Triangular [1136 1138 1140] MF9 Triangular [8.6 8.7 8.8] 

MF10 Triangular [1138 1140 1142] MF10 Triangular [8.8 8.9 9] 

MF11 Triangular [1140 1142 1144] MF11 Triangular [8.9 9 9.1] 

MF12 Triangular [1142 1144 1146] MF12 Triangular [9 9.1 9.2] 

MF13 Triangular [1144 1146 1148] MF13 Triangular [9.1 9.2 9.3] 

MF14 Trapezoidal [1148 1148 1180 1180] MF14 Triangular [9.3 9.3 9.3] 

 

The two aforementioned tables were developed using the information obtained from the 

tabled data in Table 3.1.  The membership functions were constructed by comparing the 

density of the feed material coming into the plant with the output density. When there was a 

difference of zero between the actual density output and the setpoint density output, then all 

values were recorded. These values represented the required settings for both feed flow and 

thermo-pressure that achieved a density output of 1230 kg/m
3
. 
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3.6 Fuzzy Control System 

 

Based on the analyses of the original data set in Appendix B, three vague linguistic 

statements were developed to illustrate the appropriate corrective measures that the control 

system should perform if the measured density output varies from the target setpoint: 

a) IF density is lower than the setpoint THEN decrease the feed flow and increase the 

thermo-pressure. 

b) IF density is within operating range THEN no alterations are performed to the 

controlled parameters. 

c) IF density is higher than the setpoint THEN increase the feed flow and decrease the 

thermo-pressure. 

The above statements are characteristic of a typical Mamdani fuzzy system, discussed 

previously in Section 2.5.1. Figure 3.2 and Figure 3.3 below, illustrate a basic schematic 

diagram of the two fuzzy controllers, for both feed flow and thermo-pressure. Using Matlab‟s 

toolbox function for fuzzy logic, two controllers were designed on the principle of the 

linguistic statements defined above. The illustrations below depict the constructed fuzzy 

system (as represented by the Matlab programme) developed using the membership 

functions. It contains two fuzzy controllers for controlling feed flow and thermo-pressure 

separately. The input block, „Density Input‟, is slightly different in each case. The input block 

utilised by the feed flow controller contains a total of thirteen
5
 membership functions.  The 

input block in utilised by the thermo-pressure controller contains fourteen membership 

functions.  

 

                                                 
5
 In this case, some of the membership functions overlapped when being mapped to the resultant output.   
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Figure 3.2: Basic fuzzy control system for the control of feed flow. 

 

 

Figure 3.3: Basic fuzzy control system for the control of thermo-pressure. 
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Using a similar logic based rule structure outlined by the three ambiguous statements 

mentioned at the beginning of this section, the controller rules for this control strategy can be 

defined using the membership functions from Table 3.2 and Table 3.3. These rules are 

formulated in the middle block of the control system depicted in the images above, and read 

as follows: 

 

a) For the feed flow controller: 

IF density input reads MF1 THEN desired feed flow is MF1. 

IF density input reads MF2 THEN desired feed flow is MF2. 

IF density input reads MF3 THEN desired feed flow is MF3. 

IF density input reads MF4 THEN desired feed flow is MF3. 

IF density input reads MF5 THEN desired feed flow is MF4. 

IF density input reads MF6 THEN desired feed flow is MF5. 

IF density input reads MF7 THEN desired feed flow is MF6. 

IF density input reads MF8 THEN desired feed flow is MF7. 

IF density input reads MF9 THEN desired feed flow is MF8. 

IF density input reads MF10 THEN desired feed flow is MF9. 

IF density input reads MF11 THEN desired feed flow is MF9. 

IF density input reads MF12 THEN desired feed flow is MF9. 

IF density input reads MF13 THEN desired feed flow is MF10. 

IF density input reads MF14 THEN desired feed flow is MF11. 

IF density input reads MF15 THEN desired feed flow is MF12. 

IF density input reads MF16 THEN desired feed flow is MF13. 
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b) For the thermo-pressure controller: 

IF density input reads MF1 THEN desired feed flow is MF14. 

IF density input reads MF2 THEN desired feed flow is MF13. 

IF density input reads MF3 THEN desired feed flow is MF12. 

IF density input reads MF4 THEN desired feed flow is MF11. 

IF density input reads MF5 THEN desired feed flow is MF10. 

IF density input reads MF6 THEN desired feed flow is MF9. 

IF density input reads MF7 THEN desired feed flow is MF8. 

IF density input reads MF8 THEN desired feed flow is MF7. 

IF density input reads MF9 THEN desired feed flow is MF6. 

IF density input reads MF10 THEN desired feed flow is MF5. 

IF density input reads MF11 THEN desired feed flow is MF4. 

IF density input reads MF12 THEN desired feed flow is MF3. 

IF density input reads MF13 THEN desired feed flow is MF2. 

IF density input reads MF14 THEN desired feed flow is MF1. 
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3.7 Summary 

 

In this chapter the methodology was described with emphasis on the method of delivery, the 

basis for design model, analysis of manufacturing data, generating fuzzy membership 

function and fuzzy control system. The next chapter review the results attained using the 

above methodology. 
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CHAPTER 4  RESULTS 

 

4.1 Introduction 

 

The hypothesis of this study was tested using a computational, simulation software called 

Matlab. Using a fuzzy logic toolbox, one of the many applications available with this 

software, a simple input/output control strategy was developed. The control strategy consists 

of two fuzzy logic controllers designed to control the feed flow and thermo-pressure for a 

variable density input. Each controller uses a single-input, single-output design mechanism. 

In this section the results are discussed as follows: 

 

1. Modelling of the feed flow controller 

2. Modelling of the thermo-pressure controller 

3. Analysis of results 

 

4.2 Modelling of the Feed Flow Controller 

 

In this test an array of density input operating values, ranging from 1,080 to 1,180 kg/m
3
, 

were evaluated by the controller to test what feed flow output signal would be sent to the 

plant. In this test a density input series was considered (containing 101 points) where all 

values for the input variables are increasing at a constant rate of 1 kg/m
3
. Using the „surface 

viewer‟ function of the fuzzy logic toolbox, a two-dimensional curve was constructed as 

illustrated in Figure 4.1 below. This diagram represents the mapping from density input to 

feed flow within the controller over the entire series of variables.  

 

From the diagram, it can be observed that there is a strong linear relationship between the 

input and output parameters of the controller. For an increasing density input, the process 



50 

requires an increase in flowrate of the material entering the process. However, this increase 

can only operate within the minimum and maximum process limits of 27 m
3
/hr and 32 m

3
/hr, 

respectively, to prevent dry spots resulting from low flow rates or flooding resulting from 

excessivley high flow rates. The derivation of the maximum and minimum limits are the 

product of years of process knowledge and experience on the part of process engineers and 

operators. The membership functions designed in the previous section had to adhere to these 

constraints. 

 

 

Figure 4.1: Controller output for the mapping of density input with feed flow. 
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4.3 Modelling of the Thermo-Pressure Controller 

 

The second controller in the fuzzy control system is modelled in the same fashion as the first. 

Again, an array of density input operating values, ranging from 1,080 to 1,180 kg/m
3
, were 

evaluated by the controller to test what thermo-pressure output signal would be sent to the 

plant. The test used a density input series (containing 101 points) where all values for the 

input variables are increasing at a constant rate of 1 kg/m
3
. As stated before, the „surface 

viewer‟ function of the fuzzy logic toolbox was used to construct a two-dimensional curve for 

the input/output relationship (illustrated in Figure 4.2 below). The diagram represents the 

mapping from density input to thermo-pressure within the controller over the entire series of 

variables.  

 

From the diagram, it can be observed that there is a strong linear relationship between the 

input and output parameters of the controller. For an increasing density input, the process 

requires a decrease in thermo-pressure in the evaporators. The optimum thermo-pressure 

output ranges from 7.9 to 9.3 bar, according to the data collected by Glanbia. The diagram 

below illustrates a maximum value of 9.6 bar and a minimum value of 7.9 bar. In the case of 

low density input (sub 1120 kg/m
3
) and high density input (greater than 1148 kg/m

3
), no 

variation in thermo pressure should occur and the maximum and minimum levels should be 

used. This is conclusive in the illustration below which is represented by the horizontal blue 

lines that run parallel with the density input axis. 
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Figure 4.2: Controller output for the mapping of density input with thermo-pressure. 

 

 

4.4 Analysis of Results 

 

The table below, represents a selected portion of the results for the output of the controller 

compared to its setpoint for a varying flow (for full results, see Appendix C). In most cases, 

the output from the controller matches the set point exactly. And in the cases where the 

controller output does not match the output setpoint, there is a small difference of less than 

one percent. The data below exemplifies an accurate control strategy for this particular 

manufacturing issue. 
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Table 4.1: Results obtained from testing the fuzzy logic control system 

Density 

Input 

Thermo- 

Pressure Setpoint 

Feed 

Flow Setpoint 

kg/m3 bar bar m3/hr m3/hr 

1080 9.3 9.3 28 28 

1092 9.3 9.3 28 28 

1104 9.3 9.3 28 28 

1110 9.3 9.3 28 28 

1114 9.3 9.3 28.2504 28.25 

1116 9.3 9.3 28.4996 28.5 

1118 9.3 9.3 28.4996 28.5 

1120 9.3 9.3 28.75 28.75 

1122 9.1997 9.2 29.0004 29 

1124 9.1003 9.1 29.2496 29.25 

1126 9 9 29.5662 29.5 

1128 8.8997 8.85 29.7504 29.75 

1130 8.7 8.7 29.9996 30 

1132 8.55 8.6 29.9996 30 

1134 8.5003 8.5 29.9996 30 

1136 8.4 8.4 30.25 30.25 

1138 8.2997 8.3 30.5004 30.5 

1140 8.2003 8.2 30.7496 30.75 

1142 8.1 8.1 31 31 

1144 7.9997 8 31 31 

1146 7.9003 7.9 31 31 

1148 7.8 7.8 31 31 

1160 7.8 7.8 31 31 

1166 7.8 7.8 31 31 

1178 7.8 7.8 31 31 

1180 7.8 7.8 31 31 
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4.5 Summary 

 

In this section, testing was conducted on the designed fuzzy logic control system to determine 

if the controller produced the required feed flow and thermo-pressure output for a varying 

density input. It was clear from the results obtained that relatively tight control around the 

setpoints was achieved. It was also evident from the two diagrams produced in this section 

that a linear relationship was found to exist between the input and two output parameters.  
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CHAPTER 5  Conclusion 

 

5.1 Introduction 

 

In this study, a fuzzy system was implemented using fuzzy logic theory to obtain a target 

„density output‟ from a variable „density input‟ by varying the feed flow into the process and 

thermo-pressure of the evaporators. Using Matlab and its associated fuzzy logic toolbox to 

simulate the process control system, it was concluded that the triangular and trapezoidal 

membership functions offered precise control for a varying density input.  

 

5.2 Implications of study 

 

The findings of this study allow for the research to conclude, with certainty, the assertion that 

fuzzy logic control offers favourable results for processes with large dead times.  The 

hypothesis of this study was tested with the aim of developing a control strategy that 

replicated the rationale of human behaviour. Results showed that for a varying density input, 

both feed flow and thermo-pressure changed to the desired operating condition accordingly. 

A density input of 1080 kg/m
3
 yielded an output of 9.3 bar in the thermo-pressure controller 

and an output of 28 m
3
/hr in the feed flow controller. This met the required operating 

conditions expected by both operators and process engineers for this process. 

 

Furthermore, the results illustrated excellent control for a varying density input over a range 

of 1,080 kg/m
3
 to 1,180 kg/m

3
 yielded. One of the objectives of this study was to develop a 

controller that manipulated the thermo-pressure AND feed flow for a change in feed density. 

Instead, two controllers were designed to control both parameters separately. A single 

controller alone could not determine an accurate response for both thermo-pressure and feed 

flow due to the number of membership functions associated with the density input in each 

controller. The density input block for the feed flow controller required 16 membership 
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functions. Whereas, the density input block for the thermo-pressure block only necessitated 

14 membership functions. 

 

This level of complexity was a direct consequence of the analysis of the data collected from 

the Glanbia system. The design of the control strategy for the feed flow controller was more 

complex due to the high number of unique membership functions required to achieve the 

desired output. Based on the data from Glanbia the thermo-pressure required significantly 

less adjustment during the manufacturing process, thus the control strategy required less 

membership functions. The recommendation of the operators stated that for a density input 

ranging from 1,080 – 1,118 kg/m
3
 a thermo–pressure setting of 9.3 bar should be used. 

However, for the same density range, a feed flow range of 28 - 28.75 m
3
/hr was required to 

achieve a density output of 1,230 kg/m
3
. 

 

5.3 Limitations of study 

 

At this point, it may seem that fuzzy logic it is the answer to all control issues with the 

attributes of  this type of manufacturing process. This is not the case. Fuzzy logic can best be 

described as “a convenient way to map an input space to an output space” (16). Other than 

trying to understand the concepts of fuzzy theory, there is no one right way to develop a 

fuzzy system. However, for this particular study the drawback and limitations of the design 

can be described as follows: 

 

 The control strategy required a vast amount of data to produce an accurate data set 

that accurately represents the ideal operating conditions being modelled.  

 Defining fuzzy sets and membership functions can be an extremely tedious task. It is 

normally performed by a collaborative effort of both operators, process engineers and 

those who posses expert knowledge in the relevant  process field. Even then, there is a 

reasonable chance of debate among each party when attempting to formulate the 

fuzzy sets and membership functions. 
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 There is no one correct design procedure for developing a fuzzy system. Selecting a 

system type, Sugeno or Mamdani, comes down to the designer‟s interpretation of and 

preference for a particular form of fuzzy theory. 

 

No process is ever perfect and there will always be unpredictable disturbances that may cause 

the dynamics of the process to change suddenly. The major issue regarding a process such as 

this one is its inherent process delay time, approximately 9 – 10 minutes in the case of 

Glanbia‟s process. As discussed in chapter 1, simple feedback control systems alone are not 

suitable for this manufacturing system. The proposed control approach is developed on the 

interpretation of „expert knowledge‟ and operator experience for the existing manufacturing 

process. Should the process change in any major manner, the control strategy in place may be 

rendered obsolete and may require re-engeneering.  

 

5.4 Future Developments 

 

Therefore, it is important to identify the limitations of design in order to establish future 

issues that still require a resolution. Based on the limitations discussed in the previous section 

above, further work is required in the development of fuzzy control systems that have the 

capability of controlling more than one controller e.g. a single controller with the capability 

to vary both the feed flow and/or the thermo-pressure within the same device.  Therefore, one 

controller would be required instead of two. 

 

For this particular manufacturing process, further investigations could be performed in the 

area of ANFIS, mentioned in Chapter 2. Combining the MES system that is already in place, 

along with an adaptive neuro-fuzzy interference system would assist in defining the fuzzy 

sets and associative membership functions thus, reducing the dependency on expert 

knowledge from the operators and process engineers. This would also offer a more accurate 

means of developing the membership functions associated with the process, as the data 

obtained would be analysed by this online system.  
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APPENDICES 

 

Appendix A: A table related to annotations used to exemplify classical set theory notation in 

Chapter 2: Literature Review. 

Table A: Annotations related to classical set theory 

Set Notation Pronunciation Explanation 

x ∈ A. object „x‟ is a 

member of set „A‟ 

object „x‟ is a 

member of set „A‟ 

Ø “null set” A set with no objects 

in it 

A U B “A union B” All members of both 

sets A & B 

A ∩ B "A intersect B" only the things  

that are in  

both of the sets 

A\B, or 

A - B 

“A complement B”, 

or “A minus B” 

Everything in A that 

is not a member of B 

also 

~ (A U B)  “not (A union B)” Everything outside A 

& B 

~ (A ∩ B) “not (A intersect B)” Everything outside 

the overlap of objects 

relative to sets A & B 
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Appendix B: A table containing the data set procured from Glanbia‟s MES system. 

Table B: Operating data listing density input, feed flow, thermo pressure, density output, density setpoint 

and setpoint difference. 

Density  

Input 

Feed  

Flow 

Thermo  

Pressure 

Density  

Output 

Set 

Point 

Setpoint 

Difference 

1086 28 9.5 1187 1230 -43 

1110 28 9.3 1230 1230 0 

1110 28.5 9.3 1221 1230 -9 

1112 28 9.3 1230 1230 0 

1113 29 9 1207 1230 -23 

1114 29 8.8 1205 1230 -25 

1114 29 9 1207 1230 -23 

1114 28 9.3 1230 1230 0 

1115 28 9 1215 1230 -15 

1115 31 8.5 1189 1230 -41 

1116 28.5 9.3 1230 1230 0 

1116 28 8.7 1211 1230 -19 

1117 29 9 1216 1230 -14 

1117 28 8.8 1227 1230 -3 

1118 28.5 9.3 1230 1230 0 

1118 29 9 1214 1230 -16 

1118 29 9.1 1215 1230 -15 

1118 29 9.5 1221 1230 -9 

1119 30 8.52 1197 1230 -33 

1120 28.5 9.3 1230 1230 0 

1122 29 9.5 1246 1230 16 

1122 29 9.2 1230 1230 0 

1123 29 8.8 1234 1230 4 

1124 29 9.1 1230 1230 0 

1125 30 8.7 1225 1230 -5 

1126 28 8.5 1227 1230 -3 

1126 28 8.7 1228 1230 -2 

1126 28 8.7 1230 1230 0 

1126 29.5 9 1230 1230 0 

1126 30 8.5 1212 1230 -18 

1127 28 8.7 1234 1230 4 

1127 28 8.7 1233 1230 3 

1127 28 8.7 1228 1230 -2 

1127 29 8.7 1220 1230 -10 

1127 30 8.5 1223 1230 -7 

1128 28 8.5 1233 1230 3 

1128 28 8.7 1232 1230 2 
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1128 28 8.6 1232 1230 2 

1128 29.5 8.9 1230 1230 0 

1128 30 8.23 1218 1230 -12 

1129 28 8.5 1234 1230 4 

1129 28 8.7 1235 1230 5 

1129 28 8.6 1232 1230 2 

1129 30 8.23 1219 1230 -11 

1129 31 8.5 1220 1230 -10 

1129 30 8.6 1230 1230 0 

1130 29 8.35 1225 1230 -5 

1130 30 8.4 1227 1230 -3 

1130 30 8.7 1231 1230 1 

1130 30 9 1240 1230 10 

1130 30 8.1 1221 1230 -9 

1130 30 8.2 1223 1230 -7 

1130 30 8.5 1227 1230 -3 

1130 30 8.7 1230 1230 0 

1131 29 8.3 1230 1230 0 

1131 29 8.35 1223 1230 -7 

1131 30 8.5 1230 1230 0 

1132 29 8.35 1228 1230 -2 

1132 30 8.2 1224 1230 -6 

1132 30 8.6 1230 1230 0 

1133 30 8.2 1227 1230 -3 

1133 28 9 1252 1230 22 

1133 31 8.5 1225 1230 -5 

1133 31 8.5 1225 1230 -5 

1133 31 8.5 1227 1230 -3 

1133 31 8.5 1228 1230 -2 

1133 31 8.5 1226 1230 -4 

1133 30 8.7 1238 1230 8 

1134 29 8.35 1239 1230 9 

1134 30 8.5 1230 1230 0 

1134 30 8.2 1227 1230 -3 

1135 30 8.5 1237 1230 7 

1135 28 8.8 1250 1230 20 

1136 29 8.6 1242 1230 12 

1136 28 8.8 1252 1230 22 

1136 30 8.4 1230 1230 0 

1137 29 8.4 1241 1230 11 

1137 30 8.3 1220 1230 -10 

1137 30 8.1 1232 1230 2 
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1137 30 8.7 1244 1230 14 

1137 30 8.5 1242 1230 12 

1137 30 8.5 1238 1230 8 

1138 28 8.7 1247 1230 17 

1138 30 8.5 1239 1230 9 

1138 30.5 8.3 1230 1230 0 

1139 28 8.8 1256 1230 26 

1140 30.5 8.2 1230 1230 0 

1142 30 8.5 1241 1230 11 

1142 31 8.1 1230 1230 0 

1142 30 8.3 1238 1230 8 

1143 30 8.1 1223 1230 -7 

1144 31 8 1230 1230 0 

1146 31 7.9 1230 1230 0 

1163 30 8.6 1252 1230 22 

 

  



64 

Appendix C: A table listing the controller output for feed flow and thermo-pressure relative 

to an increasing density input. 

Table C: Results obtained from the designed fuzzy system. 

Density 

Input 

Thermo- 

Pressure Setpoint 

Feed 

Flow Setpoint 

kg/m
3
 bar bar m

3
/hr m

3
/hr 

1080 9.3 9.3 28 28 

1081 9.3 9.3 28 28 

1082 9.3 9.3 28 28 

1083 9.3 9.3 28 28 

1084 9.3 9.3 28 28 

1085 9.3 9.3 28 28 

1086 9.3 9.3 28 28 

1087 9.3 9.3 28 28 

1088 9.3 9.3 28 28 

1089 9.3 9.3 28 28 

1090 9.3 9.3 28 28 

1091 9.3 9.3 28 28 

1092 9.3 9.3 28 28 

1093 9.3 9.3 28 28 

1094 9.3 9.3 28 28 

1095 9.3 9.3 28 28 

1096 9.3 9.3 28 28 

1097 9.3 9.3 28 28 

1098 9.3 9.3 28 28 

1099 9.3 9.3 28 28 

1100 9.3 9.3 28 28 

1101 9.3 9.3 28 28 

1102 9.3 9.3 28 28 

1103 9.3 9.3 28 28 

1104 9.3 9.3 28 28 

1105 9.3 9.3 28 28 

1106 9.3 9.3 28 28 

1107 9.3 9.3 28 28 

1108 9.3 9.3 28 28 

1109 9.3 9.3 28 28 

1110 9.3 9.3 28 28 

1111 9.3 9.3 28 28 

1112 9.3 9.3 28 28 

1113 9.3 9.3 28.2504 28.25 

1114 9.3 9.3 28.2504 28.25 
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1115 9.3 9.3 28.375 28.25 

1116 9.3 9.3 28.4996 28.5 

1117 9.3 9.3 28.4996 28.5 

1118 9.3 9.3 28.4996 28.5 

1119 9.3 9.3 28.6252 28.75 

1120 9.3 9.3 28.75 28.75 

1121 9.1995 9.2 28.8748 29 

1122 9.1997 9.2 29.0004 29 

1123 9.15 9.1 29.125 29.25 

1124 9.1003 9.1 29.2496 29.25 

1125 9.0502 9.1 29.4053 29.5 

1126 9 9 29.5662 29.5 

1127 8.9498 9 29.6557 29.5 

1128 8.8997 8.85 29.7504 29.75 

1129 8.7997 8.85 29.875 29.75 

1130 8.7 8.7 29.9996 30 

1131 8.7 8.7 29.9996 30 

1132 8.55 8.6 29.9996 30 

1133 8.5005 8.5 29.9996 30 

1134 8.5003 8.5 29.9996 30 

1135 8.4502 8.4 30.1419 30.25 

1136 8.4 8.4 30.25 30.25 

1137 8.3498 8.3 30.3748 30.5 

1138 8.2997 8.3 30.5004 30.5 

1139 8.25 8.2 30.625 30.75 

1140 8.2003 8.2 30.7496 30.75 

1141 8.1502 8.2 30.7496 30.75 

1142 8.1 8.1 31 31 

1143 8.0498 8 31 31 

1144 7.9997 8 31 31 

1145 7.95 8 31 31 

1146 7.9003 7.9 31 31 

1147 7.9005 7.9 31 31 

1148 7.8 7.8 31 31 

1149 7.8 7.8 31 31 

1150 7.8 7.8 31 31 

1151 7.8 7.8 31 31 

1152 7.8 7.8 31 31 

1153 7.8 7.8 31 31 

1154 7.8 7.8 31 31 

1155 7.8 7.8 31 31 

1156 7.8 7.8 31 31 
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1157 7.8 7.8 31 31 

1158 7.8 7.8 31 31 

1159 7.8 7.8 31 31 

1160 7.8 7.8 31 31 

1161 7.8 7.8 31 31 

1162 7.8 7.8 31 31 

1163 7.8 7.8 31 31 

1164 7.8 7.8 31 31 

1165 7.8 7.8 31 31 

1166 7.8 7.8 31 31 

1167 7.8 7.8 31 31 

1168 7.8 7.8 31 31 

1169 7.8 7.8 31 31 

1170 7.8 7.8 31 31 

1171 7.8 7.8 31 31 

1172 7.8 7.8 31 31 

1173 7.8 7.8 31 31 

1174 7.8 7.8 31 31 

1175 7.8 7.8 31 31 

1176 7.8 7.8 31 31 

1177 7.8 7.8 31 31 

1178 7.8 7.8 31 31 

1179 7.8 7.8 31 31 

1180 7.8 7.8 31 31 
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