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DIGITAL IMAGE PROCESSING
Mathematical and Computational Methods

“You British asses, who expect to hear ever some new thing, I have nothing to
tell, but what I fear may be a true thing. For Tait1 comes with his plummet
and his line, quick to detect your old stuff, now dressed in what you call a fine
popular lecture.”

James Clerk Maxwell, 1868

“Talking of education, people have now a-days” (he said) “got a strange opinion
that every thing should be taught by lectures. Now, I cannot see that lectures
can do so much good as reading the books from which the lectures are taken.
I know nothing that can be best taught by lectures, except where experiments
are to be shown. You may teach chymestry by lectures - You might teach
making of shoes by lectures!”

Samuel Johnson, 1766

DEDICATION
To all those students with whom I had the good fortune
to work and, in using the material herein, taught me how
to teach it

1An experimentalist and close colleague of Maxwell
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Foreword

Newspapers and the popular scientific press today publish many examples of
highly impressive images. These images range, for example, from those showing
regions of star birth in the distant Universe to the extent of the stratospheric
ozone depletion over Antarctica in springtime, and to those regions of the
human brain affected by Alzheimer’s disease. Processed digitally to generate
spectacular images, often in false colour, they all make an immediate and deep
impact on the viewer’s imagination and understanding.

Professor Jonathan Blackledge’s erudite but very useful new treatise Digi-
tal Image Processing: Mathematical and Computational Methods explains both
the underlying theory and the techniques used to produce such images in con-
siderable detail. It also provides many valuable example problems - and their
solutions - so that the reader can test his/her grasp of the physical, mathemat-
ical and numerical aspects of the particular topics and methods discussed. As
such, this magnum opus complements the author’s earlier work Digital Signal
Processing. Both books are a wonderful resource for students who wish to make
their careers in this fascinating and rapidly developing field which has an ever
increasing number of areas of application.

The strengths of this large book lie in:

• excellent explanatory introduction to the subject;

• thorough treatment of the theoretical foundations, dealing with both elec-
tromagnetic and acoustic wave scattering and allied techniques;

• comprehensive discussion of all the basic principles, the mathemati-
cal transforms (e.g. the Fourier and Radon transforms), their inter-
relationships and, in particular, Born scattering theory and its application
to imaging systems modelling;

• discussion in detail - including the assumptions and limitations - of opti-
cal imaging, seismic imaging, medical imaging (using ultrasound), X-ray
computer aided tomography, tomography when the wavelength of the
probing radiation is of the same order as the dimensions of the scatterer,
Synthetic Aperture Radar (airborne or spaceborne), digital watermarking
and holography;

• detail devoted to the methods of implementation of the analytical schemes
in various case studies and also as numerical packages (especially in
C/C++);

• coverage of deconvolution, de-blurring (or sharpening) an image, maxi-
mum entropy techniques, Bayesian estimators, techniques for enhancing
the dynamic range of an image, methods of filtering images and tech-
niques for noise reduction;

• discussion of thresholding, techniques for detecting edges in an image and
for contrast stretching, stochastic scattering (random walk models) and
models for characterizing an image statistically;
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• investigation of fractal images, fractal dimension segmentation, image
texture, the coding and storing of large quantities of data, and image
compression such as JPEG;

• valuable summary of the important results obtained in each Chapter given
at its end;

• suggestions for further reading at the end of each Chapter.

I warmly commend this text to all readers, and trust that they will find it
to be invaluable.

Professor Michael J Rycroft
Visiting Professor at the International Space University, Strasbourg, France,
and at Cranfield University, England.

In 2003 Jonathan Blackledge published Digital Signal Processing, a book
based on material developed by him for the first semester of the MSc course
in Digital Systems Engineering offered by the Department of Electronic and
Electrical Engineering at Loughborough University. The content of the present
text forms the basis of the second semester of that course, and it completes an
authoritative and comprehensive account of the subject. The requisite mathe-
matical and computational techniques are covered in satisfying detail, but the
really significant feature is the way in which the fundamental physics underly-
ing the generation of data is consistently and thoroughly explored. This is not
simply a transcript of a course of lectures aiming to describe the methods used
to process images but a painstaking study of the principles involved, together
with a generous supply of wide-ranging examples and tutorial problems (all
provided with detailed model answers). The aim, in the author’s own words,
has been to ‘encourage the reader to design some example software solutions
for digital image processing’ and to ‘develop a small digital image processing
library that can be developed further and tailored to his/her learning and/or
research interests’. That aim has been most satisfactorily achieved. Digital im-
age processing is, of course, a most rapidly changing and developing field, but
this book promises to remain a standard and essential guide to its fundamental
ideas and techniques for a considerable time to come.

Professor Roy F Hoskins
Visiting Professor, Loughborough University, England
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Preface

Digital Image Processing complements Digital Signal Processing (Horwood
Publishing 2003) which was based on teaching material developed for the MSc
programme in Digital Systems Engineering at Loughborough University. Digi-
tal Image Processing extends this material further by exploring the character-
istics of imaging systems, the computational techniques used to process digi-
tal images and the interpretation of the information which an image conveys
through an understanding of the physical processes that occur.

Many excellent image processing systems, software libraries and packages
are currently available for low-level general applications whereas others have
been designed for specific applications. Users can process images using either
a command line language (e.g. the MATLAB2 image processing toolbox) or a
graphical user interface (e.g. Adobe Photoshop) to improve the general quality
and fidelity of a digital image and/or to achieve results conveying specific as-
pects of its information content (feature extraction). This can be accomplished
without the user having a thorough understanding of the computational meth-
ods involved or how and why such methods have evolved, e.g. the application
of a particular filter. For those who are only interested in using a particular
processing system to ‘get the job done’ working in a commercial environment
for example, application of a specific commercial package or packages with
an appropriate selection of image processing options is all that is required.
However, for those who wish to contribute to the future development of such
systems and/or develop their own ‘home-spun’ versions for research purposes,
a deeper understanding of the mathematical and computational techniques is,
by necessity, required.

This work provides a study of the computational methods that are used to
process images, but in such a way that there is a direct link (where possible)
between the process that is used, the data to which it is applied and, most
of all, the ‘physics’ that underpins the generation of the data. In order to
do this, it is necessary to spend some time discussing the principles of how
waves and wavefields propagate and interact with objects whose images are
required. Depending on the wavelength of the field, the interactions that occur
are usually in the form of some scattered wavefield. Hence, after a review of
the mathematical and computational background to the subject given in Part I
(which includes material on vector fields, the 2D Fourier transform and the 2D
FIR filter), we provide an introduction to the field equations and wave equations
used to model different types of wavefields and the scattering theory needed
to develop appropriate models for the images that these wavefields produce in
terms of the information on the imaged object that they convey. We formulate
some of the analytical methods and results that are required to compute a
scattered wavefield and provide details on the equations that are used in later
chapters. Some of this material is based on a previous work published by the
author, namely, Quantitative Coherent Imaging (Academic Press, 1989), which
was concerned with the principles of interpreting the structure and material
properties of objects by the way in which they scatter electromagnetic and

2High-level technical computing language by MathWorks Inc.
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acoustic radiation with the aim of exploring the theory, methods and some of
the applications of incoherent and coherent imaging systems.

Having established the principal theoretical background to modelling an
imaging system, we look at a range of imaging techniques which are classified
into two main types, namely, incoherent and coherent imaging. In Part II, in-
coherent optical systems are studied and an introduction given to the method
of projection tomography where it is assumed that the probe (i.e. the radiation
field) used to interrogate an object can be described in terms of a sequence of
rays traceable through the object and ‘back-projected’. Part II includes a study
of coherent imaging methods and investigates the principles of coherent optics,
the imaging of layered media, diffraction tomography and synthetic aperture
imaging. Both electromagnetic and acoustic imaging systems are discussed.
In the case of diffraction tomography for example, the aim is to interpret the
internal structure and composition of an object by the way in which it diffracts
electromagnetic or acoustic radiation. Two types of diffraction tomography are
discussed where the object is illuminated/insonified with a wavefield oscillating
at a fixed frequency (Continuous Wave or CW case) or with a short pulse of
radiation. In the material on synthetic aperture imaging, attention is focused
on the use of Radar for imaging the surface of the Earth and a model presented
to describe the scattering of a pulse of frequency modulated microwave radia-
tion by the ground. This material also includes a case study which develops a
solution to the so called ‘sea spikes’ problem.

In the ‘light’ of the preceding material, Part III introduces the basis of
digital image processing including the problem of image restoration, image
reconstruction and image enhancement. The methods discussed are all related
in one form or another to the physical principles presented in Parts I and II
and forms the basis for Part IV of this work which studies the principles of
pattern recognition and computer vision. This includes an introduction to
statistical modelling and analysis, an extended chapter on fractal images and
fractal image processing, and a chapter on data coding and image compression,
including fractal image compression.

The author has attempted to provide the reader with the mathematical
methods required for image analysis which are then used to develop models and
algorithms for processing digital images and, finally, to encourage the reader
to design some example software solutions for Digital Image Processing (DIP).
In this way, the reader is invited to develop a small DIP library that can then
be developed further and tailored to his/her learning and/or research interests.
This is accomplished by the inclusion of a series of tutorial problems which are
given at the end of each Part with model answers provided in Appendix A.
These problems include theoretical, computational and programming exercises
in the C programming language.

The emphasis throughout is on the mathematical foundations of the subject
which are common to a variety of imaging systems and methods. In some cases,
examples have been provided to illustrate the conversion of a computational
algorithm into a computer program. Either pseudo code, C or MATLAB code
is used for this purpose. The book has been designed to serve the reader with
enough formal detail for him/her to acquire a firm foundation on which to
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build. References to other important texts and/or key scientific papers are
included at the end of each chapter or within the text for this purpose.

The material presented in this book is based on the lecture notes and sup-
plementary material developed by the author as part of an advanced taught
MSc programme in ‘Digital Signal Processing’. This programme was originally
established at Cranfield University in 1990 and modified at De Montfort Uni-
versity in 1994. The programmes are still operating at these universities and
the material has been used by more than 500 graduates since its creation and
development in the early 1990s. The material was enhanced and developed
further when the author moved to the Department of Electronic and Electrical
Engineering at Loughborough University in 2003, and now forms part of the
department’s post-graduate teaching and learning activities. The original MSc
programme was based on taught components covering a period of eight months
and consisting of two semesters, each semester, being composed of four mod-
ules; the third semester focused on a minor research project. The material in
this work covers the second semester and is ‘index-linked’ through this teach-
ing programme to the publication Digital Signal Processing (Horwood, 2003)
which covers the first semester. The classification of this work into four parts
reflects the four modules given in the second semester. It has been necessary
to include some of the material published previously with the view of revising
some of the principal themes such as those concerned with the properties and
computational methods associated with the Fourier transform. This has been
done for reasons of completeness and to provide the reader with an account
of the field that does not necessarily require significant reference to previous
publications (by the author or otherwise).

An attempt has been made to cut through much of the jargon characteriz-
ing different fields of research in imaging science presenting an account of the
fundamental physical principles common to nearly all imaging systems. This is
done by illustrating the similarity of the underlying mathematical models used
to process data on a wavefield in a variety of applications. The approach has
been to unify the principles of different imaging systems and to provide a course
text covering the theoretical foundations of imaging science in an integrated
and complete form.

Finally, while every effort has been made by the author and publisher to
provide a work that is free from error, it is inevitable that in a first edition,
typing errors or ‘typos’ and ‘bugs’ will occur. If the reader starts to suffer from
a lack of comprehension over certain aspects of the material (due to errors or
otherwise) then he/she should not assume that there is something wrong with
him/herself as the fault may lie with the author and his imaging system!

Professor Jonathan M Blackledge
Department of Electronic and Electrical Engineering, Loughborough Univer-
sity.
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Notation

Alphabetical

A(k) Amplitude spectrum
A Magnetic vector potential
b Microscopic magnetic field
B Magnetic field density
c Wavespeed
c0 Wavespeed of free space (e.g. speed of light)
cnm Complex coefficients (e.g. complex 2D Fourier series)
cL longitudinal (compression) wave speed
cR Rotational (shear) wave speed
D Fractal dimension, scale size of an object or Diffusivity
D Electric displacement
1D One-Dimensional
2D Two-Dimensional
3D Three-Dimensional
e Microscopic electric field
E Macroscopic electric field
f(r) Arbitrary real (or complex) function

(typically the object function or system input)
| f(r) | modulus of complex variable or function f
‖f(r)‖ Norm (e.g. a Euclidean L2-norm) of a

continuous function f
fij 2D discrete function (in real space)
‖fij‖ Norm (e.g. a Euclidean �2-norm) of a

discrete function (e.g. 2D array or matrix) fij
F (k) Complex spectrum of function f(r)
Fr Real component of spectrum
Fi Imaginary component of spectrum
Fij Discrete complex spectrum of discrete function fij
g(r | r0, k) Time independent Green function
G(r | r0, t | t0) Time dependent Green function
G Gradient function
Im[f ] Imaginary part of complex variable or function f
H Hurst exponent
H Macroscopic magnetic field
H Hausdorff space
I Unit dyad
j Charge density
k Wavenumber (= 2π/λ)
kx Spacial frequency in the x-direction
ky Spacial frequency in the y-direction
k Wave vector = x̂kx + ŷky
n(r) Noise function
nij Discrete noise function
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n̂ Unit vector
Nij Noise spectrum
O(x, y) Object function
Õ Fourier transform of object function
p(r) Instrument function, or Point Spread Function
p(r, t) Acoustic pressure field
pij Discrete Point Spread Function
P (k) Optical Transfer Function [Fourier transform of p(r)]
Pij Discrete Optical Transfer Function (DFT of pij)
P (x) Probability density function (also denoted by Pr[x(t)])
P (a | b) Conditional probability of obtaining a given b
P (z, θ) Projection function
P (k) Power spectrum (=| F (k) |2)
Ps Scattered pressure wavefield,
P̃s Fourier transform of scattered pressure wavefield
P̃ Fourier transform of projection function, or characteristic function
Pr[x(t)] Probability occurrence of x in x(t)
q Fourier dimension
Re[f ] Real part of complex variable or function f
r General position vector in a 2D or 3D space

(depending on the context)
d2r Surface element dxdy
d3r Volume element dxdydz
s(r) Real or complex (analytic) image
s(r, t) Displacement vector
sij Discrete real or complex image
S Surface
sinc(x) Sinc function (= sin(x)/x)
t Time
T(r, t) Material stress tensor
u(r, t) Solution to a partial differential equation (e.g. a wavefield)
ui Incident wavefield
v Velocity field
vij Value of a pixel at ij
V Volume
V Fourier transform of velocity field
x, y General independent variables
z Complex number of the form a+ ib or spatial variable
z∗ Complex conjugate a− ib of a complex number a+ ib
z0 Free space wave impedance
Z Impedance
∈ In (e.g. x ∈ [a, b) is equivalent to a ≤ x < b)
∀ Forall (e.g. f(t) = 0, ∀t ∈ (a, b])
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Greek

α Chirping parameter, or first Lamé parameter
β Second Lamé parameter, or angle, or spectral exponent
γ General scattering function
γa Scattering function due to parameter a

Γ(q) Gamma function =
∞∫
0

xq−1e−xdx

δn n-dimensional Dirac delta function
δij Kronecker delta
ε Permittivity
ε0 Permittivity of free space
κ Compressibility
κ0 Ambient (homogeneous) compressibility
ζ Bulk viscosity
η Shear viscosity
θ Phase, angle
θ(G) Angle of gradient
λ Wavelength, or Lagrange multiplier
σ Conductivity, or standard deviation of a stochastic function
μ Permeability
μ0 Permeability of free space
φ Longitudinal velocity potential
Φ Acoustic dilatation
ρ Charge density, or material density
ρ0 Ambient (homogeneous) material density
σ2 Variance
ω Angular frequency
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Operators

D̂ Homogeneous linear differential operator
B̂ Back-projection

det
(
a b
c d

)
Determinant of A = ab− dc

F̂1 One dimensional Fourier transform
F̂−1

1 One dimensional inverse Fourier transform
F̂2 Two dimensional Fourier transform
F̂−1

2 Two dimensional inverse Fourier transform
Ĥ Hilbert transform
L̂ Inhomogeneous linear differential operator
R̂ Radon transform
R̂−1 Inverse Radon transform
⊗ 1D or 3D convolution operation - continuous or discrete,

causal or otherwise (depending on the context specified)
⊗⊗ 2D convolution operation - continuous or discrete,

causal or otherwise (depending on the context specified)
� 1D correlation operation - continuous or discrete,

causal or otherwise (depending on the context specified)
�� 2D correlation operation - continuous or discrete,

causal or otherwise (depending on the context specified)
⇐⇒ Transformation into Fourier space
←→ Transformation into some transform space (as defined)
∨, ∧ Logical AND and OR set operators
⊕, � Morphological erosion and dilation operators
◦, • Morphological opening and closing operator
� �, � � Morphological thinning and thickening operators
〈·〉 Expected or mean value for ·(
n
k

)
Binomial coefficient n!

k!(n−k)!
∇2 Laplacian operator
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Glossary

Mathematical and Statistical

AC Arithmetic Coder
ACF Autocorrelation Function
AM Amplitude Modulations (the amplitude envelope)
BHPF Butterworth High Pass Filter
BLPF Butterworth Low Pass Filter
BL Band Limited
CDP Common Depth Point
COTF Coherent Optical Transfer Function
DC Direct Current - Zero Frequency Component
DCT Discrete Cosine Transform
DFT Discrete Fourier Transform
FT Fourier Transform
FFT Fast Fourier Transform
FM Frequency Modulation
FIR Finite Impulse Response
HPF High Pass Filter
IDFT Inverse Discrete Fourier Transform
IFS Iterated Function System
IRF Impulse Response Function
IOTF Incoherent Optical Transfer Function
IPSF Intensity Point Spread Function
LPF Low Pass Filter
MAP Maximum a Posteriori
MEM Maximum Entropy Method
ML Maximum Likelihood
MTF Modulation Transfer Function
OTF Optical Transfer Function
PCTF Phase Coherent Transfer Function
PDE Partial Differential Equation
PDF Probability Distribution or Density Function
PIFS Partitioned Iterated Function System
PSE Power Spectrum Equalization
PSF Point Spread Function
PSDF Power Spectral Distribution or Density Function
PSNR Peak Signal-to-Noise ratio
PTF Phase Transfer Function
RSF Random Scaling Fractal
SNR Signal-to-Noise Ratio
TF Transfer Function
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Computer Science

B-Scan Brightness-mode Scan
CASE Computer Aided Software Engineering
CD Compact Disc
CPU Central Processing Unit
DSP Digital Signal Processing
DIP Digital Image Processing
GUI Graphical User Interface
I/O Input/Output
IT Information Technology
PCNG Pseudo Chaotic Number Generator
PRNG Pseudo Random Number Generator
RAM Random Access Memory

Organizational and Standards

ART Arithmetic Reconstruction Tomography
CT Computed Tomography
CAT Computer Aided Tomography
CW Continuous Wave
DSR Dynamic Spatial Reconstruction
ECT Emission Computed Tomography
EM Electromagnetic
ERS-1 Earth Resources Satellite (of the European Space Agency)
HH Horizontal-Horizontal polarization field
HV Horizontal-Vertical polarization field
JPEG Joint Photographic Expert Group
LZ77, LZ78 Lempel and Ziv Substitution Coders
MPEG Motion Picture Experts Group
MR Magnetic Resonance
MATLAB Highlevel technical computing language by MathWorks Inc.
PIN Personal Identity Number
Radar Radio Detection and Ranging
RAR Real Aperture Radar
RCS Radar Cross Section
SAR Synthetic Aperture Radar
SAS Synthetic Aperture Sonar
UCT Ultrasonic Computer Tomography
VV Vertical-Vertical polarization field
VH Vertical-Horizontal polarization field
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Introduction

Of the five senses that human beings and most other animals have, the visual
system, is arguably the most important and dominant. Compared with the
local areas of the brain used to process signals from our sensors for smell, taste,
hearing and touch, the area required for processing the input from our eyes is
larger by some 30% and is located toward the back of the brain. Thus, the
development in our understanding of the world is, in one respect, determined
by the evolution of our ability to generate images of that world. It is the visual
system which, coupled with appropriate training, provides us with the concept
of dimension. Our three-dimensional perception of the world gives the optimal
interpretation required for the survival of our species and other animals. In
other words, we learn most through sight - ‘a picture paints a thousand words
(ten thousand if you like)’. This three-dimensional interpretation comes from
a sensor that only provides two-dimensional information, albeit in stereo.

The images that we acquire and train our brain to interpret are resolution
limited; there is a limit to the spatial resolution of the information that our
eyes provide. This is determined by the size of the aperture through which the
image is formed and the wavelength of the electromanetic radiation field (light)
that generates the input. In general, the resolution R of an image is given by

R ∼ D

λ

whereD is the diameter of the aperture and λ is the wavelength of the wavefield.
The information we acquire (in terms of the resolution available) through our
own imaging system is determined by the size of our eyes (the pupil) and the
wavelength of light. Thus, our imaging sensors are limited by the frequency
band of the electromagnetic radiation that they can detect, i.e. the visual
spectrum. It is interesting to ask why our visual system should be based on
such a limited portion of the available electromagnetic spectrum (from blue
light through green to red light) with wavelengths λ of the order of 10−7m
which is such a tiny percentage of that spectrum (from gamma rays λ ∼ 10−12m
through to radio waves λ ∼ 103m) One answer may be based on an interesting
relationship between the visual spectrum and the temperature of the surface
of the Sun. As with all stars and most radiating bodies, energy is radiated
at different frequencies or wavelengths and by varying amounts. An important
model for describing a wavelength dependent energy spectrum was first derived
by Max Planck in the early part of the twentieth century. Planck’s radiation

1
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law gives a spectrum with a well defined maximum corresponding to a specific
wavelength. This law, expressed in terms of energy per unit range of wavelength
Eλ, is given by

Eλ =
8πch

λ5[exp(ch/λkT )− 1]

where c is the speed of light, h is Planck’s constant, k is the Boltzmann con-
stant and T is temperature in oK. Now, the wavelength λm at which Eλ is a
maximum occurs when

∂Eλ
∂λ

= 0

or when (
1− x

5

)
ex = 1, where x =

ch

λkT

whose solution is
ch

λmkT
= 4.9651

which is trivial to compute numerically using the iteration xn+1 = 5[1 −
exp(−xn)] with x0 > 0. Taking the surface temperature T of the Sun to
be approximately 6000oK, the above result yields a value for λm of approxi-
mately 4.7× 10−7 metres1 which is in the green region of the visible spectrum,
i.e. in the middle of the visible spectrum where the eye is most sensitive. Is
this relationship purely coincidental or could it be a product of evolution? In
other words, is the fact that we ‘see’ in the visible spectrum due to the chance
that we have evolved on a planet that is orbiting a yellow Sun which radiates
more energy at the wavelength of green light than any other wavelength?

It is interesting to consider what a species such as ourselves would image,
had we evolved on a suitable planet orbiting a hotter or cooler sun. In the
latter case, and based on the discussion above, such a species might interpret
the world through images based on the emission of infrared radiation. If so, then
their image interpretation would be radically different from our own. Common
objects that we take for granted would not necessarily be based on features
with well-defined edges, because infrared radiation scatters from larger scale
objects than light waves. Moreover, the emission of infrared radiation from
such objects tends to saturate the image, i.e. the emission of infrared red
radiation from a body tends to dominate the scattering of this radiation by
the body, the process of thermal diffusion being more significant than infrared
diffraction. Now, edge recognition is particularly important in the human visual
system. This aspect of our image understanding is one of the reasons why early
mathematical developments ‘focused’ on geometry in which lines, curves and
circles were contemplated - hypothetical ‘elements’ which have evolved from
imaging objects through the scattering of waves in the visible spectrum. It is
thus interesting to ponder whether the value of π would exist to a species that
had evolved the same degree of intelligence as ourselves but with an imaging
system based on the detection of infrared radiation due to their sun being cooler
than our own. It is similar to asking the question: If the frequency spectrum

1Using the values: c = 3×108 metres/sec, h = 6.62×10−34 joule sec and k = 1.38×10−23

joules/degree.
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at which we hear, was shifted by 50% above or below middle C, would the
instruments of the orchestra exist along with the techniques that have been
developed to play them? Such arguments are central to the reasoning of the
great eighteenth century Prussian philosopher, Immanual Kant, who was one
the first to propose that human understanding, learning and development is
limited by the bandwidth of our senses. Since the time of Kant, developments in
science and technology have provided images using a wide range of frequencies,
based on observations through detectors that transform the data back into
the visible spectrum, which is not the same as actually ‘seeing’ in a different
spectrum.

Imaging Science

In recent years, there has been a rapid advance in the science and technology
of information processing and analysis. Most of the early research and devel-
opment was stimulated by the need for military intelligence, the ‘space race’
and the cold war. It is now important in all physical and biological sciences.
Many important developments have occurred in information science since the
1940s, due to a dramatic increase in the speed, power and availability of digital
computers which carry out high speed calculations on incoming data samples.
One area of information technology which has consequently grown rapidly is
imaging science. This area has become increasingly important because of the
growing demand to obtain information about the structure, composition and
characteristics of different materials. The use of imaging science for medicine,
remote sensing, astronomy and space exploration, to name but a few, is now
common place.

Many imaging techniques have been developed using different types of ra-
diation over a wide range of frequencies. In each case, the underlying prin-
ciple that is used to construct, model and analyse an image is similar and in
many cases requires solutions to the so called ‘inverse problem’. In simple
terms, and in the context of imaging science, the inverse problem is concerned
with evaluating the structure of an object by observing how it modifies cer-
tain properties of a probe, i.e. the field of radiation used to interrogate an
object. This usually involves finding a method of inverting certain integral
equations. The exact form of integral equation depends upon the details of the
model used to describe the interaction between the probe and the object. This
book is concerned with the variety of mathematical models and reconstruction
methods which are used to provide detailed quantitative information about the
structure and material properties of an object by the way in which it scat-
ters radiation. Some examples of the imaging systems to which this material
applies are as follows: Remote sensing (optical, infrared, microwave); Astron-
omy (optical, X-ray, radio, ultraviolet); Radiology (X-ray radiography, X-ray
tomography, emission tomography, ultrasonic imaging, nuclear medicine, mag-
netic resonance imaging); Microscopy (optical, electron, scanning transmission
mode); Civilian and military reconnaissance (real aperture radar, synthetic
aperture radar, high resolution optical and infrared imaging); Non-destructive
testing (ultrasonic imaging, mm microwave imaging, teraHertz imaging, X-ray
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imaging); Seismic prospecting (seismic reflection imaging, seismic tomography,
vibro-seismic imaging); Industrial tomography (acoustic tomography, capac-
itance tomography, nuclear tomographic imaging); Computer vision (pattern
recognition, automatic inspection, computer integrated manufacturing, biomet-
rics, digital watermarking). In addition to the above, many other applications
exist which involve the construction, processing and analysis of one-, two- and
three-dimensional signals.

Signals and Images

A large proportion of information comes in the form of electrical waveforms or
signals. Information can also be encoded in two-dimensional signals or images,
certain processes being required to provide useful information. The subject
which is concerned with the theory and applications of these processes for the
analysis and interpretation of signals and images is signal and image processing.
The only basic difference between signal processing and image processing is
the dimension. There are other more subtle differences which stem from the
nature of the mathematical techniques used in each case. Nevertheless, many
of the equations and transforms used to process signals can be applied directly
to images: single integrals become double integrals and single sums become
double sums for example, making the mathematics appear more complicated
although conveying the same basic principles and ideas.

Electrical waveforms are usually analogue signals, and methods of process-
ing them were once performed and, to a lesser extent, still are performed using
analogue computers. Another way of processing and analysing signals can be
obtained by converting them into a set of numbers or digits. This is known
as digital conversion and signals of this type are called digital signals. Each
number of a digital signal is a sample of the original analogue signal providing
it has been sampled adequately. Digital conversion can also be carried out on
images. This method provides a two-dimensional array of numbers or a digital
image, in which the individual samples or picture elements are referred to as
pixels. Digital signals can be stored easily (on a CD, memory chip and so on)
and can be processed numerically using a digital computer. This has led to
a close association between digital image processing and many other fields of
interest including computer graphics, machine vision, optics, non-destructive
evaluation, robotics, artificial intelligence and computer science. The issue of
simulating the human visual system on a digital computer and emulating its
capability for decision-making based on feature extraction and pattern recog-
nition is major problem and is likely to remain so for some time.

Many techniques developed for processing and interpreting signals with ap-
plications ranging from telecommunications to the analysis of economic time
series are adopted for image processing. We can think of an image as be-
ing a two-dimensional signal, and digital image processing in terms of two-
dimensional signal processing. Some images are built up from sets of signals
and, in some applications, image processing amounts to processing each signal
before it is used to construct the final image. Hence, signal processing can be
considered to be an essential pre-processing stage. Some special cases also arise
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where the image is separable and can be processed digitally by operating on
each column and each row separately.

Image Formation

There are two principal types of images that are formed from the radiation used
to image an object, namely electromagnetic (EM) images and acoustic images.
Some imaging methodologies make use of such physical properties of a mate-
rial as its capacitance, inductance and resistance. When mechanical radiation
is used to image an object that is to a good approximation, incompressible,
the image that is obtained is based on the characteristics of so called elastic
wavefields. In order to study the way images are formed and interpret their
properties, the physics of EM and acoustic waves and their interaction with
matter must be understood.

Most imaging systems can be divided into two distinct classes: incoherent
imaging and coherent imaging. Coherent images are usually of two types,
either fully or partially coherent. The basic difference between incoherent and
coherent images is determined by a single parameter called the phase. Coherent
imaging is based on recording spatial and/or temporal variations in both the
amplitude and phase of a scattered wavefield as a function of time or space
(partially coherent) or of both time and space (fully coherent). Incoherent
imaging is based on recording fluctuations in just the intensity of the scattered
field which may be an intensity value based on short time integration. Coherent
imaging systems utilize relatively low frequency radiation (i.e. frequencies in
the range of 10-1010 Hz). At these frequencies it is technically possible to
record the time-history of the scattered field. Examples include seismic imaging
(1 − 102Hz), sonar and radio imaging (103 − 104Hz), ultrasonic imaging (∼
106Hz) and microwave imaging (109 − 1010Hz). Many time-resolved coherent
or partially coherent images are formed using a ‘pulse-echo’ type experiment.
Typically, a pulse of EM or acoustic radiation is emitted and interacts with
an object at a distance. The interaction sets up a ‘back-scattered’ field whose
time history is recorded - a signal providing time resolved amplitude and phase
information. Modelling this back-scattered field is important in the physical
interpretation of an image, i.e. image understanding.

Coherent images are also generated from Continuous Wave (CW) fields
with a narrow-band spectrum (e.g. laser optics) when the phase shift rather
than the phase itself associated with the emission/transmission/reflection of
the radiation can be detected, i.e. constructive and destructive interference
patterns.

Incoherent images are time-averaged intensity distributions of very high
frequency wavefields such as light (∼ 1014 Hz), X-rays (∼ 1018 Hz) and γ-rays
(∼ 1020 Hz). They are formed by recording the intensity of a CW or pulsed
field over a given interval of time. The amplitude and phase variations of the
wavefield as a function of time are not recorded: the phase variations or phase
shift is not recorded either. In this case, the frequency of the radiation is too
high for the time variations of the wavefield to be measured. The photograph
is a well known example of an incoherent image.
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If a wavefield is denoted by u(x, y, z, t) which is taken to have both amplitude
A(x, y, z, t) and phase θ(x, y, z, t) information say, then u can be written in the
form

u = A exp(iθ).

With this simple wavefield model in mind, an incoherent (time integrated)
image Iincoherent taken at a point in space z0 say, is given by

Iincoherent(x, y) =

T∫
0

| u(x, y, z0, t) |2 dt

where T is the exposure time. Here, information on the phase function is lost.
Partially coherent (time resolved) image data D recorded at (z0, y0) say is given
by

Dcoherent(x, t) = Re[u(x, y0, z0, t)] = A(x, y0, z0, t) cos θ(x, y0, z0, t)

where both the amplitude and phase contribute to the recording (as a function
of time). Here, signals are recorded at different positions and then ‘staked’
together to construct the image.

Coherent and incoherent imaging systems record and process information
related to the spectral characteristics of an object. It is important to realize
that the characteristic spectrum of an imaged object is not necessarily that
of the object itself but rather the result of a physical interaction between the
incident wavefield and the object. Many images provide information on the
structure of an object according to the way in which it scatters radiation. They
do not necessarily provide information about the properties of the material
from which the object is composed. Different properties of a material can
scatter certain types of radiation in a variety of ways. By using this effect to
provide information on the material properties as well as the structure of an
object, a quantitative interpretation of the object is obtained. This is known
as quantitative imaging and attempts to provide a physical interpretation of
the imaged object to be formulated.

Image Information

Besides varying in space or time (or both), image data may contain random or
unpredictable features known as noise. Such an image will generally contain
information that can be extracted by processing the data in an appropriate way.
The meaning of ‘information’ in a signal or image can vary considerably from
one application to the next and needs to be defined carefully in the context
of an application via some suitable mathematical or computational model. In
practice, the extraction of information usually requires some degree of user
input which affects the performance of the algorithm being executed, from
selecting the parameters of a filter to training an Artificial Neural Network for
example. Methods of automation are often desirable but not always possible.

To extract useful information from a signal or image a mathematical model
for the data must be established. There is one overall governing equation that
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is used extensively for this purpose. This equation is given by

data = (instrument function) convolved (information) + noise

The instrument function describes the way in which an imaging instrument
responds to an input. It has a variety of names which depend on the context
in which the above equation is used. In signal analysis the instrument function
describes the way in which information is spread about an impulse or spike. In
this case the instrument function is usually referred to as the impulse response
function. In image analysis it describes how information is spread about a
point and is therefore known as the point spread function or PSF. Convolution
is a mathematical operation that can be thought of as smearing, smoothing
or blurring the information which is determined by the characteristics of the
instrument function. It is therefore sometimes referred to as a ‘smoothing’
or ‘blurring function’. In addition to this effect, data can be perturbed by
a whole range of external and unwanted disturbances which gives rise to the
noise term. The introduction of the imaging equation at this point has been
done to introduce the reader to one of the more important underlying models of
imaging science. We shall provide extensive detail on the ‘origins of the imaging
equation’ for different imaging systems and establish relationships between the
term information and the physical parameters that control the behaviour of
electromagnetic and acoustic wavefields.

There are two basic problems fundamental to imaging science in general
which, in light of the equation above, can be summarized as follows:

(i) Given the data together with an estimate of the instrument function and a
valid statistical model for the noise, recover the information.

(ii) By employing suitable physical models, interpret the information that is
recovered.

Problems (i) and (ii) above are the basis for a variety of applications. Ex-
amples include the analysis and interpretation of speech signals, imaging the
surface of the Earth with Radar, active and passive sonar, investigating the
internal structure and composition of the earth using seismic waves and using
ultrasound to determine the pathological state of human tissues. In each case,
the act of recording the relevant data involves setting up an experiment with
a given instrument function and certain noise statistics. In both cases, the
problem is to recover and interpret the information in the data.

The information in the data generated by a scatter imaging system is re-
lated to the way in which the radiation is scattered by the imaged object. To
interpret this information, we must establish a mathematical model for the
scattering mechanism that takes place. The behaviour of the scattered field is
compounded in a characteristic function which depends on the type and ma-
terial properties of the object. This function is known generally as the object
function and our fundamental imaging equation can be written in the form

data = (point spread function) convolved (object function) + noise

This equation is known as the imaging equation. It is based on a mathematical
description for a the wavefield that is the result of single or weak scattering
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alone in which multiple scattering is (assumed to be) negligible. This basis for
the imaging equation is explored in Part II. The exact form of the point spread
function depends upon the type and properties of the imaging system whereas
the form of the object function depends upon the type of physical interaction
that takes place. In this book, emphasis is placed on finding a mathematical
expression for the object function in terms of a more fundamental set of material
parameters. Two principal cases are considered:

1. Electromagnetic imaging, where the probe is an electromagnetic wave-
field and the material parameters are the permittivity, permeability and con-
ductivity.

2. Acoustic imaging, where the probe is an acoustic wavefield and the
material parameters are the density, compressibility and the viscosity.

In both cases, the basic problem is the same and involves:

(i) designing an algorithm to compute the object function given appropriate
data on the scattered field, knowledge of the point spread function and noise
statistics;

(ii) finding a way to recover the appropriate set of material parameters from
the object function.

Both (i) and (ii) above are inverse problems. The recovery of the object function
from the data is an inverse problem which is known generally as deconvolution.
In one way or another, deconvolution (together with convolution and correla-
tion) are common to all imaging systems. It is the basis for the large majority
of the reconstruction methods that are presented in this book and is discussed
at length in Part III.

Image Analysis

The analysis of an image can be classified into four principal categories: (i)
resolution; (ii) distortion; (iii) fuzziness; (iv) noise. Resolution is determined
primarily by experimental parameters such as the wavelength of the radiation
that is used to probe an object and scattered by it. Two other important
parameters that affect the resolution are the size of the aperture used to mea-
sure the scattered field and the beam-width of the wavefield used to probe the
object. In terms of the imaging equation, the resolution of an image is deter-
mined by the spread (the local spatial extent) of the point spread function. In
contrast to resolution, distortion and fuzziness are determined by the type of
physical model used to design the data processing algorithm. These effects are
associated with two distinct physical aspects of the imaging system. Distortion
is related to the geometry of the system and, in particular, the type of model
that is used to describe the propagation of the probe from the source to scat-
terer and from the scatterer to detector. If an inversion algorithm that is based
on a model for the probe that is inaccurate, is used to invert data, then distor-
tion will occur. The amount of distortion depends on how well the theoretical
model describes the characteristics of the probe. In turn, this is determined



INTRODUCTION 9

by the accuracy of the point spread function. Image fuzziness is related to the
physical model used to describe the type and material properties of a scatterer.
Fuzziness occurs when the physical model used to design an inversion algo-
rithm fails to describe all the properties of the material and hence the variety
of scattering that can occur. The degree of image fuzziness is determined by
the accuracy of the mathematical model adopted for the object function and
can lead to errors in the way an image is interpreted. The noise in an image
is a combination of effects due to a whole range of unwanted disturbances and
interference. In practice, because the noise is multifaceted, it is not possible
to define it uniquely. For this reason, models are used to construct a suitable
probability density function for the noise which is statistically compatible with
the experiment. In general, noise accounts for all the non-ideal effects that may
occur in an imaging system including multiple scattering events.

In terms of the imaging equation, i.e.

Image = (point spread function) convolved (object function) + noise

we can summarize resolution, distortion, image fuzziness and noise in the fol-
lowing way:

Resolution is determined by the spread of the point spread function.

Distortion is determined by the accuracy of the mathematical model for the
point spread function.

Fuzziness is determined by the accuracy of the mathematical model for the
object function.

Noise is determined by the accuracy of the convolution model for the data.

The aim of an imaging system is to obtain data on the scattered field which
provides an image with minimal noise, fuzziness, distortion and maximum res-
olution.

By studying the physics of each imaging system and using ‘suitable’ approx-
imations and mathematical models, one can formulate the imaging equation
directly rather than introducing it via the phenomenological approach used
here. This approach provides a mathematical description of the point spread
function and the object function which is a central theme of this work.

The convolution operation is a direct consequence of using a linear systems
theory approach. This is demonstrated in Parts I and II where it is shown that
the convolution operation is fundamental to the solution of inhomogeneous
wave equations using a Green function. For example, linear systems theory is
used in the study of Fourier optics which is based on two fundamental results:

(i) The wavefield generated by light scattering in the ‘object plane’ is, in the
‘far field’ (i.e. a long way from the object plane), given by the Fourier transform
of the object function.

(ii) In the focal plane of a well corrected lens, the field pattern can be taken to
be given by the inverse Fourier transform2 of the input.

2A lens can be taken to perform either a forward or inverse Fourier transform - it’s all the



10 INTRODUCTION

Suppose the object plane is denoted by the function f(x, y), then from (i)
above we can say that the scattered field is given by F (kx, ky) = F̂2[f(x, y)]
where F̂2 denotes the 2D Fourier transform operator and kx, ky are the spatial
frequencies. Further, suppose that in the far field, we now introduce an aperture
with an area denoted by P . This aperture will allow only a limited portion of
the wavefield F (kx, ky) to pass through, a portion that is given by PF (i.e. the
aperture becomes a spatial filter). If a well corrected lens is then placed behind
the aperture, then, from point (ii) above, the field pattern in the focal plane
will be given by F−1

2 [PF ] where F−1
2 denotes the inverse 2D Fourier transform

operator. Now, using the convolution theorem,

F−1
2 [P (kx, ky)F (kx, ky)] = p(x, y)⊗⊗f(x, y)

where ⊗⊗ denotes the 2D convolution operation. This principle is the basic
physical model for the way in which the reader is imaging this text, one of
whose aims is to explain how points (i) and (ii) above come to be.

In general, the functions f , p and the noise n will have both am-
plitude and phase information and can therefore be written in the form
Af exp(iθf ), Ap exp(iθp) and An exp(iθn) where A is the amplitude and θ
is the phase of the respective functions. As discussed earlier, the difference
between these imaging systems is determined by whether or not the image
contains information which is phase related. In terms of the imaging equation,
a coherent image is given by

Icoherent =| p⊗⊗f + n |2

whereas an incoherent image is given by

Iincoherent =| p |2 ⊗⊗ | f |2 + | n |2 .
Note that, in an incoherent image, there is no information on the phase of the
functions p, f or n ‘encoded’ in the image whereas, in a coherent image, the
phase information of the functions p and f is ‘mixed’ together through the
convolution operation and additive noise. Also, note that, in the former case,
the data can be of the form p⊗⊗f + n when the image is based on detecting
time resolved signals and it is a matter of convention as to whether an image
is constructed from the amplitude modulations | p⊗ ⊗f + n | or the intensity
modulations | p ⊗ ⊗f + n |2. The phase ‘mixing’ that occurs in a coherent
image yields an effect that is a characteristic of all coherent images and is
called ‘speckle’. A speckle pattern is most easily observed by looking at the
scattering of laser light from a (rough on the scale of a wavelength) surface. It
is a pattern that has a characteristic statistical distribution of grey levels; thus,
coherent images can usually be classified in terms of this unique distribution
unlike incoherent images which have a wide range of different distributions. An
example of an incoherent and coherent image of approximately the same region
is given in Figure 1 which shows an optical image (overhead high resolution
photograph) of a region of Northamptonshire (just south-west of the town of
Northampton), England, showing both urban (e.g. the village of Wootton) and
rural features.
same to a lens!
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Figure 1: An incoherent optical image (above) and a coherent (Synthetic Aper-
ture Radar) image of the same region of Northamptonshire, England.

The major road in the bottom left hand corner of this image is the M1 Motor-
way (which runs from London to Leeds, Yorkshire) in the locality of Junction
15. Figure 1 also shows a ‘microwave photograph’ of the same area taken with
an X-band (2.8cm wavelength) Synthetic Aperture (airborne) Radar or SAR
using vertical polarization. In contrast to the optical image, the SAR image is
dominated by what, at first sight, looks like noise and arguably is noise, but
noise of a special and quantifiable physical type, namely, speckle.

Digital Image Processing

A digital image can be considered to be visual display of a matrix of (inte-
ger) numbers whose value determines a particular shade of grey (for grey level
images) or a specific colour (for colour images). A grey level image can be
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represented by a function of two variables, f(x, y) say, which gives a number
z = f(x, y) corresponding to a grey level at a point (x, y). A grey level digital
image can therefore be considered to be a discrete function

fij where fij ≡ f(xi, yi).

Here, fij is the value of the function at x = xi and y = yi; defines a two-
dimensional array or matrix of numbers, i.e.

fij =

⎛⎜⎜⎜⎝
f11 f12 . . . f1n
f21 f22 . . . f2n
...

...
. . .

...
fn1 fn2 . . . fnn

⎞⎟⎟⎟⎠
which is taken to be an accurate representation of f(x, y). The range of values
which fij is given defines the ‘depth’ of the image. As with any real image
(i.e. a real data field), there must be a brightest and darkest point or point
set in the data which corresponds to the minimum and maximum values of the
matrix respectively and, hence, fij is bounded. If a real image is taken to be
a map of the intensity of light at a particular point, then it must be described
by a non-negative function and we can therefore impose the the condition

fij ≥ 0 ∀ i, j.

The process of converting f(x, y) into fij is called digitization or A-to-D
(Analogue-to-Digital) conversion, or spatial quantization, where the analogue
image is sampled providing a matrix of discrete values typically on a rectan-
gular grid. There are two elements to digitization: (i) sampling or spatial
quantization; (ii) grey level or luminance quantization as illustrated below:

Analogue Image

↓
Sampling (Spatial Quantization)

↓
Grey Level (Luminance Quantization)

↓
Digital Image

Spatial quantization gives rise to an array of numbers which can be taken
to be an approximation to the original image, i.e. fij approximates f(x, y).
A fundamental question which then arises is how well does fij approximate
f(x, y)? If n2 samples are taken at regular intervals (uniform sampling) within
a bounded square, then clearly, the approximation will improve as n increases.
If enough samples are taken, a spatially quantized image is as good as the
original. However, the precise answer to the above question is compounded in
a theorem called the ‘sampling theorem’ which states that an analogue signal
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can be reconstructed exactly from its digital form as long as the sampling
frequency (i.e. samples per linear measure) is at least twice that of the highest
frequency or ‘Nyquist’ frequency present in the signal, i.e.

sampling interval ≤ 1
Nyquist frequency

where
Nyquist frequency = 2× (Maximum frequency)

This ‘sampling at twice the maximum frequency rule’ is usually attributed to
the work of Shannon in the 1940s and is known as the ‘Shannon Sampling The-
orem’. The theorem is concerned with the number of samples needed to recover
the original analogue signal and not with the adequacy of the digitization of
any particular type of process or presentation. For an image f(x, y) in which
the sampling must be undertaken in both the x and y directions with sampling
intervals given by Δx and Δy, respectively, then

Δ ≤ 1
Kx

and Δy ≤ 1
Ky

where Kx and Ky are the Nyquist frequencies in the x and y directions re-
spectively. The ‘readability’ of an image depends on the total number of pixels
(picture elements) that are used to represent the image. Digital images which
are composed of only a few pixels appear ‘boxy’. This is shown in Figure 2
which illustrates the effect of sampling an image with fewer and fewer pixels.
Failure to sample an analogue image correctly (i.e. at the Nyquist frequency)
leads to an effect known as aliasing. This effect leads to low frequency features
distorting a digital image resulting from the under sampling of high frequency
features in the analogue image.

The next step in the generation of a digital image is luminance quantization
where each pixel is assigned a discrete value, i.e. level of greyness or luminance.
The number of steps in the scale available for assignment is called the pixel
depth (in bits). Too little depth results in inaccurate representations and loss
of information as well as false contours. The number of shades of grey that can
be present is related to the number of bits n by 2n. A grey tone is then assigned
to each value, for example, 0=black, 1=dark grey, 2=light grey, 3=white, could
represent the scale assignment for a 2 bit depth image which would result from
22 = 4 shades of grey. A special case arises when images are considered using
just 1 bit and binary image processing becomes applicable which, being based
on 1’s and 0’s, is very fast. Binary image processing is often used in image
segmentation (e.g. edge detection) and pattern recognition where one of the
main tasks is to binarize an image into a data field with a valid information
content for the pattern recognition task that is to be applied. Figure 3 shows
the effect of changing the luminance quantization of an image using 4, 3, 2 and
1 bits.
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Figure 2: A digital image sampled using (from left to right) 128×128, 64×64,
32×32 and 16×16 pixels.

Figure 3: A 128×128 image with luminance quantization using (from left to
right) 4, 3, 2 and 1 bits.

In addition to grey levels, colours can be assigned in the same basic way. Any
colour can be assigned to any chosen value. In some cases, colour coding a dig-
ital image in a predetermined way can provide useful information. This allows
the interpreter to observe features with greater clarity, increasing the visual
performance of the imaging system such as in infrared imaging for example,
where a colour code is designed to distinguish between different temperatures.
Whether a digital image is displayed as a matrix of grey levels or colour coded,
a satisfactory picture representation ultimately depends upon the details and
contrasts in the image. A matrix of say 256×256 pixels with a depth of eight
bits is often satisfactory, where 8 bits provide 28 or 256 shades of grey, and re-
quires 64 kilobytes of memory. Better image quality can of course be obtained
with a larger matrix of pixels. However, more pixels and greater depth in-
crease the storage requirements, data transfer and processing time. Techniques
for data compression are therefore of value not only for storing and transmit-
ting images but in some cases for processing images in ‘compression space’. It
is important to note that, while a digital image can be thought of in terms
of an integer data field, the processing of a digital image is usually based on
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floating point arithmetic. A floating point field can of course be quantized for
display purposes and analysis at any point in a single process or sequence of
processes. However, each process is taken to operate on the floating point field
and not the quantized field.

Digital image processing (DIP) utilizes a number of mathematical tech-
niques. The essential subject areas are computational linear algebra, integral
transforms, statistics and other techniques of numerical analysis (numerical
methods for differentiation and integration for example). Many DIP algorithms
can be written in terms of a matrix equation or a set of matrix equations and,
hence, computational methods in linear algebra become an important aspect
of the subject. Integral transforms and, in particular, the discrete forms of
these transforms, form the basis for a wide range of processing methods. These
include the discrete Fourier transform, the discrete correlation and convolution
sums, the discrete cosine transform and the discrete wavelet transform. The
statistical significance of image data plays a vital role from the suppression
of noise to feature extraction and statistical pattern recognition. Many DIP
algorithms can be classified in terms of a digital filter. There are two principal
types: (i) moving window filters and (ii) transform space filters. Moving win-
dow filters are usually non-recursive filters which are normally linear processes
that operate on the image data directly. Transform space filters operate on the
data by first performing an appropriate transform on the image, processing the
transformed data and then inverting the result.

Image processing is a very demanding task for ‘standard’ serial computers.
Simple processes (point processes) such as the multiplication of each pixel by a
constant takes n2 operations for an n×n image. The total number of operations
required increases rapidly with the size of the image. Parallel computing and
distributed array processing is therefore essential for rapid or real-time image
processing. Ideally, an image processing engine would be composed of an array
of sub-processors - one per pixel. Using this type of approach the processing
time depends very little on the size of the image. Parallel image processing en-
gines have been available for some time, but they are comparatively expensive
and specialist machines. However, valuable image processing can usually be
carried out on conventional serial computers especially with the ever increas-
ing performance of the central processors and memory capacity. Nevertheless,
virtual memory is still useful as it allows images to be processed whose storage
requirements may exceed the internal memory of the computer.

Fundamental Problems

There are three distinct and fundamental problems which are common to most
areas of image processing:

(i) image restoration and reconstruction;

(ii) pattern recognition;

(iii) image understanding.
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The restoration/reconstruction problem is concerned with the recovery of in-
formation encoded in an image. This is an inverse problem compounded by
the performance of a process known as deconvolution. Pattern recognition is
usually concerned with processing data obtained after deconvolution or if de-
convolution is not required. It typically involves the manipulation of data to
improve the ‘readability’ of an image and to identify areas of geometric and/or
textural significance. In particular, we are interested in converting a digital im-
age into a form from which geometric and/or statistically significant features
can be recognized and interpreted by man or machine; the latter case is sig-
nificantly more difficult, and is in general, as yet, an unsolved problem. There
are a number of techniques that can be classified under the general heading
of ‘pattern recognition’ which form one of three basic categories: (i) image
enhancement; (ii) noise reduction; (iii) segmentation. Image enhancement is
concerned with improving the ‘readability’ of an image. Noise reduction al-
gorithms eliminate uncorrelated features from an image while preserving the
resolution of the data. Image segmentation identifies meaningful features in
an image based on some measure of (local) pixel similarity and discontinuity
which includes the detection of self-similar features when a model for an image
is used that assumes self-similar structures (i.e. fractal images)

Pattern recognition identifies physical features in an image leading to our
third categorization which is concerned with physical interpretation. The phys-
ical interpretation of an image is difficult to quantify because objectives and
expectations of this aspect of DIP are inextricably related to the design and
applications of a particular imaging system. We interpret an image in terms of
the ‘physical properties’ of the radiation field from which an image has been
derived and deduce information on the structure and material properties of an
imaged object.

Although image processing can accomplish many tasks and produce excep-
tionally spectacular results, it is a computer based subject that still conforms
to the basic rule of computing, namely, rubbish in gives rubbish out. There are
a number of case studies in which poor quality imaging systems have been the
focus of image processing applications that have attempted to do the impossi-
ble, i.e. get something from nothing. A good example of this was the Hubble
space telescope which, after its initial launch, provided images whose resolution
was significantly less than that for which the system had been designed. This
was found to be due to calibration errors associated with the manufacture of
the primary reflector, i.e. total quality management! It was originally thought
that image restoration and reconstruction methods might be applied using
data provided by the telescope. However, because the deconvolution problem
was ill-posed with numerical solutions that were at best, ill-conditioned, to-
gether with the fact that the point spread function of the Hubble images was
non-stationary, the problem became intractable, irrespective of the computer
processing power. Hence, NASA was forced to use the space shuttle to install
the compensating optics required to bring the Hubble images into focus rather
than rely on digital image processing methods alone.
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About this Book

This book establishes the underlying physical principles linking different imag-
ing methods and systems. In each case, it shows how, starting with an appro-
priate physical model, a solution for the scattered field can be obtained which
provides mathematical expressions for the point spread function and the object
function.

Part I is devoted to the essential mathematical and computational back-
ground to the subject required to comprehend the rest of the work. Part II
discusses the application of the scattering theory to different imaging systems.
Part III covers methods of digital image processing including the problem of
deconvolving the data to recover the object function and methods of image
enhancement. In Part IV, image segmentation, feature extraction and pattern
recognition are used to interpret the information content of an image and apply
decision criteria, including an introduction to statistical image processing and
the application of fractal or self-affine models for image interpretation.

To illustrate the principal results, a number of different imaging methods are
introduced. They include optical imaging, seismic imaging and medical imaging
with ultrasound, two related imaging methods known as projection tomography
and diffraction tomography and also a method of imaging the surface of the
earth using microwaves called Synthetic Aperture Radar or SAR. In each case,
the physical principles involved are discussed with examples illustrating the
phenomena that occur and used to interpret the structure and physical state
of an object.

This book introduces some of the software functions essential for routine
DIP and encourages readers to design and test their own ‘software solutions’
to a range of DIP problems given at the end of Parts I-IV. These questions
relate to algorithms discussed, the solution being compounded in the ‘resolu-
tion’ of a given program. Some questions relate to methods of testing code and
help readers investigate the characteristics and performance of a given DIP
algorithm. This is done by synthesizing specific test data for which certain
characteristics are expected when processed by a given method. This approach
is consistent with the modular nature of image processing software and the way
in which it is designed for research and development. Methods of interfacing
the software through a graphical user interface is not addressed; the book is
concerned with the fundamentals forming the computational basis of an image
processing package, irrespective of the character and sophistication of the user
interface.

The software provided is designed to illustrate the conversion of a given
DIP algorithm into code using either pseudo code, C or MATLAB m-code.
MATLAB has a number of ‘toolboxes’ including a DIP toolbox that provides a
range of facilities for I/O, format conversion, display and image processes. This
toolbox has been used to provide illustrative examples of image processing and
in some cases, the m-code used for that processing. The MATLAB DIP toolbox
provides a valuable resource for rapid prototyping using m-code and is ideal
for research and development. However, in this book, emphasis is placed on
developing ‘software solutions’ from scratch in C/C++. Software is provided
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as solutions to programming questions given at the end of each of the four
main parts of the book. The software has been included to help readers to
build their own prototype DIP library. Prototype I/O and a graphics utilities
based on an X-windows environment are provided in Appendix D, functions
that are used in some of the software solutions that are provided in Appendix
A. Readers are free to use the code provided, modify it and restructure it to
suit their own interests. No warranties are made, expressed or implied that
the software is error free or consistent with any particular standard, or that
it will meet the requirements for any particular application. The software has
been designed for students undertaking primarily postgraduate programmes in
DSP for which this work has been written together with its companion text
Digital Signal Processing, J M Blackledge, Horwood, 2003. In Digital Signal
Processing, graphics utilities were designed using Borland C++ and software
development was assumed to be undertaken using a DOS/Windows operating
system on a PC. In this work, the utilities have been designed for software
development using unix or linux and the graphics functions available under X-
windows, so that students gain experience of working with two different but
equally important operating environments.

In order to reduce the length of this book, graphics has been used spar-
ingly, particularly with regard to illustrating the full range of image processing
techniques that are discussed. Rather, readers themselves are encouraged to
study the effect of applying an image processing algorithm in practice in order
to familiarize themselves with the output associated with a specific function
using m-code or C-code or a mixture of both as undertaken in this work.

Finally, references to other important texts and/or key scientific papers
which have both academic and historical value are included at the end of each
chapter or occasionally within the text. In some special cases, Internet based
references are provided but this has been done sparingly as Internet materials
and data change rapidly and can, in any case, usually be accessed effectively
using a good search engine together with an appropriate set of key words.
Thus, it is left to the reader to supplement the ‘learning curve’ derived (or
otherwise) from reading this book with the wealth of information and data
that the Internet provides.

Summary of Important Results

The imaging equation

image = (point spread function) convolved (object function) + noise

Principles of Fourier optics

(i) In the far field, the scattered radiation pattern is given by the Fourier
transform of the object function that best describes the scatterer(s).

(ii) In the focal plane of a well corrected lens, the field pattern is given by the
(inverse) Fourier transform of the input wavefield.
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Image restoration and reconstruction

Concerned with processes that aim to recover the information contained in the
data. These ‘processes’ are usually directly or indirectly related to the problem
of deconvolution (the inverse of convolution). Many types of degraded images
can be restored but image processing cannot fully restore all degradation.

Image Enhancement

Concerned with processes whose goal is to improve the ‘quality’ or ‘readability’
of an image in some way, i.e. to emphasize features of particular importance
or relevance.

Pattern Recognition

Concerned with the identification or interpretation of an image. It aims to
extract deterministic or statistically significant information (usually at a high
level) that an image conveys.

Image Understanding

Attempts to interpret an image in terms of the ‘physics’ of the imaging system.

Model for an incoherent image

I =| p |2 ⊗⊗ | f |2 + | n |2

where | p |2 is the intensity point spread function, f is the object function and
n is the noise field.

Model for a coherent image

I =| p⊗⊗f + n |2

where p is the point spread function

Amplitude and phase functions

In general, p, f and n may have both amplitude and phase contributions, e.g.

f = Af exp(iθf).

In a coherent image | f |2= A2 and, hence, the phase information on the object
function is lost in an incoherent image.

Speckle

Speckle is a characteristic of coherent images and results from constructive and
destructive interference of wave fronts. This is represented mathematically
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by the phase information of the object function being ‘mixed’ with the point
spread function (via the convolution operation).

Fundamental problems

In terms of the imaging equation, DIP involves finding solutions to the following
problems:

(i) recovering the object function from the data;

(ii) detecting meaningful patterns in the object function;

(iii) interpreting the object function in terms of the ‘physics’ of the imaging
system and the environment in which it operates.

Resolution A characteristic of the point spread function.

Distortion Determined by the accuracy of the mathematical model for the
point spread function.

Fuzziness Determined by the accuracy of the mathematical model for the
object function.

Noise Determined by the accuracy of the convolution model for the data.

Golden rule of digital image processing Rubbish in gives rubbish out.
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Chapter 1

Vector Fields

Vector fields have an algebra and calculus that is used extensively in multi-
dimensional field theory. The essential elements of vector calculus are the
operators grad, div and curl, surface and volume integrals and theorems asso-
ciated with these integrals such as the divergence theorem.

The operators grad, div and curl were originally investigated by the British
(Scottish) physicist, James Clerk Maxwell, in the 1860s to characterize the
properties of electric and magnetic fields and were first used in Maxwell’s equa-
tions. These equations unified the theories of electricity and magnetism and
introduced the ‘physics’ of electromagnetism and, in particular, electromag-
netic radiation. Surface and volume integrals and the divergence theorem are
used in many areas of vector field theory. They are used extensively for mod-
elling the propagation and scattering of electromagnetic and acoustic waves,
e.g. Kirchhoff’s theory for the diffraction of light which forms the basis of
optical imaging theory.

This chapter provides a brief resumé of vector fields and vector calculus
covering those aspects of the subject that are specific to material that is used
later on in this book.

1.1 Scalar Fields

Consider the scalar field u(x, y, z) where x, y, z are rectangular (Cartesian)
coordinates. Suppose that x→ x+ dx, y → y + dy and z → z + dz. How does
the field u change? i.e. what is

du = u(x+ dx, y + dy, z + dz)− u(x, y, z)?

Using Taylor’s theorem,

u(x+ dx, y + dy, z + dz) = u(x, y, z) +
∂u

∂x
dx+

∂u

∂y
dy +

∂u

∂z
dz + ...

and neglecting O(dx2, dxdy, ...) we get

du =
∂u

∂x
dx+

∂u

∂y
dy +

∂u

∂z
dz.

23
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Now, let us introduce the following definitions:

dr = x̂dx+ ŷdy + ẑdz

and
∇ = x̂

∂

∂x
+ ŷ

∂

∂y
+ ẑ

∂

∂z

where x̂, ŷ and ẑ are unit vectors in the x, y and z directions, respectively. We
can then write,

du = ∇u · dr
where ∇ ≡ grad is the ‘gradient’ operator.

Some example properties of the gradient operator are

∇(u+v) = x̂
∂

∂x
(u+v)+... = x̂

(
∂u

∂x
+
∂v

∂x

)
+... =

(
x̂
∂u

∂x
+ ...

)
+
(
x̂
∂v

∂x
+ ...

)
= ∇u+∇v

and

∇(uv) = x̂
∂

∂x
(uv)+... = x̂

(
u
∂v

∂x
+ v

∂u

∂x

)
+... = u

(
x̂
∂v

∂x
+ ...

)
+v

(
x̂
∂u

∂x
+ ...

)
= u∇v + v∇u.

Note that ∇ operates in the same way as ordinary differentiation with respect
to sums and products.

Spherically Symmetric Scalar Fields

Let
u = u(r); r =

√
x2 + y2 + z2,

then
∂u

∂x
=
du

dr

∂r

∂x
,
∂u

∂y
=
du

dr

∂r

∂y
,
∂u

∂z
=
du

dr

∂r

∂z
.

Now,
∂r

∂x
=

∂

∂x
(x2 + y2 + z2)

1
2 =

1
2
(x2 + y2 + z2)−

1
2 2x =

x

r
.

Similarly,
∂r

∂y
=
y

r
and

∂r

∂z
=
z

r
.

Hence,

∇u = x̂
du

dr

x

r
+ ŷ

du

dr

y

r
+ ẑ

du

dr

z

r
=

r
r

du

dr
; r = x̂x+ ŷy + ẑz

or
∇u = n̂

du

dr
; n̂ =

r
r

where n̂ is a unit vector pointing in the direction of r.
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1.2 Vector Fields

A vector field is a vector function of position, e.g.

x̂Fx(x, y, z) + ŷFy(x, y, z) + ẑFz(x, y, z)

and the notation F(r) is used to represent a vector field, i.e.

F(r) = x̂Fx(r) + ŷFy(r) + ẑFz(r); r = x̂x+ ŷy + ẑz.

1.2.1 First Order Differential Operators

Consider the gradient operator

∇ = x̂
∂

∂x
+ ŷ

∂

∂y
+ ẑ

∂

∂z
,

then
∇u = x̂

∂u

∂x
+ ŷ

∂u

∂y
+ ẑ

∂u

∂z

is a vector field and

∇F =
(
x̂
∂

∂x
+ ŷ

∂

∂y
+ ẑ

∂

∂z

)
(x̂Fx + ŷFy + ẑFz)

is a dyadic field.
We can define two other ways of combining ∇ with a vector field F in terms

of the dot product

∇ ·F =
(
x̂
∂

∂x
+ ŷ

∂

∂y
+ ẑ

∂

∂z

)
· (x̂Fx + ŷFy + ẑFz)

and the cross product

∇× F =
(
x̂
∂

∂x
+ ŷ

∂

∂y
+ ẑ

∂

∂z

)
× (x̂Fx + ŷFy + ẑFz).

Expanding the first result,

∇ ·F = x̂ · x̂∂Fx
∂x

+ x̂ · ŷ∂Fy
∂x

+ x̂ · ẑ∂Fz
∂x

+ŷ · x̂∂Fx
∂y

+ ŷ · ŷ∂Fy
∂y

+ ŷ · ẑ∂Fz
∂y

+ẑ · x̂∂Fx
∂z

+ ẑ · ŷ∂Fy
∂z

+ ẑ · ẑ∂Fz
∂z

.

Now, since
x̂ · x̂ = ŷ · ŷ = ẑ · ẑ = 1

with all other dot products being zero, we get

∇ · F =
∂Fx
∂x

+
∂Fy
∂y

+
∂Fz
∂z

.
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The operator ∇· is called the divergence of the field and is also written as div,
i.e.

∇· ≡ div

Expanding ∇× F, we have

∇× F = x̂× x̂
∂Fx
∂x

+ x̂× ŷ
∂Fy
∂x

+ x̂× ẑ
∂Fz
∂x

+ŷ× x̂
∂Fx
∂y

+ ŷ × ŷ
∂Fy
∂y

+ ŷ × ẑ
∂Fz
∂y

+ẑ× x̂
∂Fx
∂z

+ ẑ× ŷ
∂Fy
∂z

+ ẑ× ẑ
∂Fz
∂z

.

For vector products,

x̂× ŷ = ẑ, ŷ × ẑ = x̂, ẑ× x̂ = ŷ, ŷ × x̂ = −ẑ, ẑ× ŷ = −x̂, x̂× ẑ = −ŷ

and
x̂× x̂ = ŷ × ŷ = ẑ× ẑ = 0.

Hence,

∇× F = ẑ
∂Fy
∂x

− ŷ
∂Fz
∂x

− ẑ
∂Fx
∂y

+ x̂
∂Fz
∂y

+ ŷ
∂Fx
∂z

− x̂
∂Fy
∂z

= x̂
(
∂Fz
∂y

− ∂Fy
∂z

)
+ ŷ

(
∂Fx
∂z

− ∂Fz
∂x

)
+ ẑ

(
∂Fy
∂x

− ∂Fx
∂y

)

=

∣∣∣∣∣∣
x̂ ŷ ẑ
∂
∂x

∂
∂y

∂
∂z

Fx Fy Fz

∣∣∣∣∣∣ .
The operator ∇× is called the curl of the vector field F, i.e.

∇× ≡ curl

1.2.2 Second Order Differential Operators

The operator ∇ · (∇u) is an example of a second order differential operator
where

∇ · (∇u) ≡ ∇2u =
∂2u

∂x2
+
∂2u

∂y2
+
∂2u

∂z2
.

The operator ∇2 is called the Laplacian.
There are many results that can be derived for second order operators but

the following are three of the more important that are used later on in this
work.

(i) ∇× (∇u) = 0

(ii) ∇ · (∇× F) = 0

(iii) ∇× (∇× F) = ∇(∇ · F)−∇2F
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1.3 The Divergence Theorem

Let V be a closed volume with surface S in which a surface element dS is char-
acterized by an outward unit normal n̂ which is perpendicular to this surface
element. If

F(x, y, z) = x̂Fx(x, y, z) + ŷFy(x, y, z) + ẑFz(x, y, z)

where Fx, Fy and Fz have continuous first partial derivatives, then∮
S

F · n̂dS =
∫
V

∇ ·FdV

where
∮
S

denotes the ‘closed surface’ integral (i.e. integration over the entire

surface that encloses the volume V ) and
∫
V

denotes the volume integral.

Simple Proof

We want to prove that∮
S

F · n̂dS =
∫
V

(
∂Fx
∂x

+
∂Fy
∂y

+
∂Fz
∂z

)
dxdydz.

Consider the integral ∫
V

∂Fz
∂z

dxdydz

evaluated over a small rectangular volume with its axis of rotation in the z-
direction and with top and bottom surfaces located at z2 and z1, respectively.
In this case,∫
V

∂Fz
∂z

dxdydz =
∫ ∫

[Fz(x, y, z)]
z2
z1
dxdy =

∫ ∫
[Fz(x, y, z2)−Fz(x, y, z1)]dxdy.

The last integral can be written in the form∮
S

Fz(x, y, z)n̂ · ẑdS

because, when n̂ = ẑ, the integral is over the top surface of the rectangle.
When n̂ = −ẑ, the integral is over the bottom surface and, when n̂ �= ẑ, the
dot product is zero and hence the surface integral is zero. Thus, we have∫

V

∂Fz
∂z

dxdydz =
∮
S

Fzn̂ · ẑdS.

By a similar argument, ∫
V

∂Fy
∂y

dxdydz =
∮
S

Fyn̂ · ŷdS
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and ∫
V

∂Fx
∂x

dxdydz =
∮
S

Fxn̂ · x̂dS.

Combining these results, we get∫
V

(
∂Fx
∂x

+
∂Fy
∂y

+
∂Fz
∂z

)
dxdydz =

∮
S

(x̂Fx + ŷFy + ẑFz) · n̂dS

or ∫
V

∇ ·FdV =
∮
S

F · n̂dS.

An important ‘by-product’ of the divergence theorem are Green’s identities
(known collectively as Green’s theorem). For two scalar fields u and v with
continuous first and second partial derivatives, Green’s first identity is∫

V

(u∇2v +∇u · ∇v)dV =
∮
S

u∇v · n̂dS

and Green’s second identity is∫
V

(u∇2v − v∇2u)dV =
∮
S

(u∇v − v∇u) · n̂dS.

1.4 Summary of Important Results

Scalar fields
du(x, y, z) = ∇u(x, y, z) · dr

where
dr = x̂dx+ ŷdy + ẑdz

and
∇ ≡ x̂

∂

∂x
+ ŷ

∂

∂y
+ ẑ

∂

∂z

Vector fields

∇ ·F =
∂Fx
∂x

+
∂Fy
∂y

+
∂Fz
∂z

∇× F =

∣∣∣∣∣∣
x̂ ŷ ẑ
∂
∂x

∂
∂y

∂
∂z

Fx Fy Fz

∣∣∣∣∣∣
∇×∇× F = ∇(∇ · F)−∇2F
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Laplacian operator

∇2u(r) =
(
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2

)
u(x, y, z)

The divergence theorem∫
V

∇ · FdV =
∮
S

F · n̂dS

Green’s theorem∫
V

(u∇2v +∇u · ∇v)dV =
∮
S

u∇v · n̂dS

and ∫
V

(u∇2v − v∇2u)dV =
∮
S

(u∇v − v∇u) · n̂dS

1.5 Further Reading

There are many text books covering vector analysis and vector calculus that
have been published over the years. The following are some examples.

• Phillips H B, Vector Analysis, Wiley, 1933.

• Craig H V, Vector and Tensor Analysis, McGraw-Hill, 1943.

• Marder L, Vector Analysis, Allen and Unwin, 1970.

• Spiegel M R, Vector Analysis, McGraw-Hill, 1974.

• Matthews P C, Vector Calculus, Springer, 1997.



Chapter 2

2D Fourier Theory

The Fourier transform in two-dimensions has many of the same properties
as the Fourier transform in one-dimension and can be studied in terms of
both the classical approach (starting with the Fourier series) or in terms of
a generalized formalism (which relies implicitly on the properties of the delta
function). In this chapter, we consider the complex Fourier series in 2D from
which definitions of the Fourier transform and the discrete Fourier transform are
derived. Important properties of this transform are then considered together
with the computational procedures used for applying it in discrete form as used
for processing digital images. The Fourier transform is the ‘work-horse’ for a
significant number of methods in signal and image processing and has been
discussed at length in Chapters 3 and 4 of the companion work to this book,
namely, Blackledge J M, Digital Signal Processing, Horwood, 2003. Here, we
extend this material further, introducing the reader to the use of the Fourier
transform in two-dimensions.

2.1 The 2D Complex Fourier Series

A Fourier series is just one of a number of linear series which can be used to
‘model’ a piecewise continuous function f(x, y). In general, we may consider
the function f to be composed of a linear sum of ‘basis functions’ Bnm and
coefficients cnm, i.e.

f(x, y) =
∑
n

∑
m

cnmBnm(x, y)

where the range of the summation will vary depending on the characteristics
of the basis functions and/or coefficients.

A complex Fourier series is one in which the basis functions are of the form

Bnm(x) = exp(inx) exp(imy)

where ∑
n

∑
m

≡
∞∑

n=−∞

∞∑
m=−∞

.

30
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The problem is then reduced to finding the coefficients cnm. This series is basic
to all Fourier theory and is used to model signals and images which are periodic.
Let us first consider a periodicity of 2π where −π ≤ x ≤ π and −π ≤ y ≤ π.
To find the coefficients cnm, we multiply both sides of the equation

f(x, y) =
∑
n

∑
m

cnm exp(inx) exp(imy)

by exp(−ipx) exp(−iqy) and integrate over x and y from −π to π giving

π∫
−π

π∫
−π

f(x, y) exp(−ipx) exp(−iqy)dxdy

=
∑
n

∑
m

cnm

π∫
−π

exp[i(n− p)x]dx
π∫

−π
exp[i(m− q)y]dy.

The integral on the RHS is given by

(2π)2
sinπ(n− p)
π(n− p)

sinπ(m− q)
π(m− q) =

{
(2π)2, n = p and m = q;
0, otherwise.

Thus, all terms on the RHS vanish except for the case when n = p and m = q
and we can therefore write

cnm =
1

(2π)2

π∫
−π

π∫
−π

f(x, y) exp(−inx) exp(−imy)dxdy

which provides an expression for computing the coefficients of this particular
series and has been derived by exploiting the orthogonality of the function
exp(inx) exp(imy).

In order to derive an expression for the coefficients cnm in the case when
f(x, y) has a general period 2L say (i.e. −L ≤ x ≤ L; −L ≤ y ≤ L) we
consider

f(x, y) =
∑
n

∑
m

cnm exp(inxπ/L) exp(imyπ/L).

As before, to find the coefficients cnm, we multiply both sides of equation above
by exp(−ipxπ/L) exp(−iqyπ/L) and integrate over x and y from −L to L, i.e.

L∫
−L

L∫
−L

f(x, y) exp(−ipxπ/L) exp(−iqyπ/L)dxdy

=
∑
n

∑
m

cnm

L∫
−L

L∫
−L

exp[i(n− p)xπ/L] exp[i(m− q)yπ/L]dxdy.
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The integral on the RHS is equal to

= (2L)2
sinπ(n− p)
π(n− p)

sinπ(m− q)
π(m− q) =

{
(2L)2, n = p and m = q;
0, otherwise

and all terms on the RHS vanish except for the case when n = m and p = q
leaving us with the result

cnm =
1

(2L)2

L∫
−L

L∫
−L

f(x, y) exp(−inxπ/L) exp(−imyπ/L)dxdy.

Thus, the complex Fourier series for a 2D signal with a period of 2L is

f(x, y) =
∑
n

∑
m

cnm exp(inxπ/L) exp(imyπ/L)

where

cnm =
1

(2L)2

L∫
−L

L∫
−L

f(x, y) exp(−inxπ/L) exp(−imyπ/L)dxdy.

Having derived an expression for the 2D complex Fourier series, let us now
consider a specific example by computing the series for a 2D ‘square wave’
signal with a period of 2π, i.e.

f(x, y) = fx(x)fy(y)

where

fx(x) =

{
−1, −π ≤ x < 0;
1, 0 ≤ x ≤ π.

fy(y) =

{
−1, −π ≤ y < 0;
1, 0 ≤ y ≤ π.

and
f(x+ 2π, y + 2π) = f(x, y).

The complex Fourier coefficients are given by

cnm =
1
2π

π∫
−π

fx(x) exp(−inx)dx 1
2π

π∫
−π

fy(y) exp(−imy)dy

and computing the integral over fx(x) gives

− 1
2π

0∫
−π

exp(−inx)dx+
1
2π

π∫
0

exp(−inx)dx
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=
1
inπ

[1− cos(nπ)] =
1
inπ

[1− (−1)n].

The integral over fy(y) is of same form and thus,

cnm =
1
inπ

[1 − (−1)n]
1

imπ
[1− (−1)m]

and

f(x, y) =

(∑
n

1
nπ

[1− (−1)n] sin(nx)− i
∑
n

1
nπ

[1− (−1)n] cos(nx)

)

×
(∑

m

1
mπ

[1− (−1)m sin(my)− i
∑
m

1
nπ

[1− (−1)m cos(my)

)

=
∞∑
n=1

2
nπ

[1− (−1)n] sin(nx)
∞∑
m=1

2
mπ

[1− (−1)m] sin(my)

=
16
π2

(
sinx+

sin 3x
3

+
sin 5x

5
+ ...

)(
sin y +

sin 3y
3

+
sin 5y

5
+ ...

)
.

Note that the series has ‘zeros’ when x = 0,±π and when y = 0,±π where
f(x, y) is discontinuous. The term 16

π2 sinx sin y is the ‘fundamental’ and the
other terms are the ‘harmonics’. We need many harmonics (i.e. terms in
the series) to obtain a good fit to the discontinuities associated with the 2D
square wave signal (i.e. the ‘sharp corners’). In other words, the Fourier series
representation of an ‘on-off’ type signal such as a square wave requires many
terms to represent it accurately. Truncation of the series leads to ‘ringing’ in
which f(x, y) is approximated by a function that is dominated by the sinusoidal
characteristics of the series. The generalization of this effect is called the Gibbs’
phenomenon. As a general rule of thumb (a rule that is important in all aspect
of image processing) discontinuous or ‘sharp’ features in a image (e.g. a high
definition line) require many Fourier coefficients to be represented accurately
whereas smooth features in an image require fewer Fourier coefficients. Hence,
one way of smoothing an image is to reduce the number of Fourier coefficients
used to represent it. This is the basis for low pass filtering.

2.2 The 2D Delta Function

In two dimensions, the delta function may be defined and used in the same way
as the delta function in 1D which is discussed extensively in Blackledge J M,
Digital Signal Processing, Horwood, 2003 (Chapter 2). In order to distinguish
between different dimensions, it is common to label the 2D delta function with
the superscript 2. Similarly, the superscript 3 is used to denote a 3D delta
function. The dimension of any position vector associated with the delta func-
tion is then inferred from the value of this superscript. Further, the 2D delta
function is a separable function and in Cartesian coordinates, we can written
as

δ2(r− r0) = δ(x− x0)δ(y − y0)
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where
r = x̂x+ ŷy, r0 = x̂x0 + ŷy0

and x̂ and ŷ are unit vectors pointing in the x and y directions, respectively.
In 3D, we have

δ3(r− r0) = δ(x − x0)δ(y − y0)δ(z − z0)
where

r = x̂x+ ŷy + ẑz

and
r0 = x̂x0 + ŷy0 + ẑz0.

The 2D delta function may be defined (symbolically) as the function

δ2(r− r0) =

{
0, r �= r0;
∞, r = r0

for which (fundamental property and strictly consistent definition)

∞∫
−∞

f(r)δ2(r− r0)d2r = f(r0).

If S defines a 2D finite region of space (i.e. a surface), then∫
S

f(r)δ2(r − r0)d2r = f(r0), r0 ∈ S

where ∈ signifies that the position vector r0 is ‘in’ the region of space denoted
by S. If r0 is ‘not in’ S (the notation for this statement being r0 /∈ S), then
the above integral in zero, i.e.∫

S

f(r)δ2(r− r0)d2r = 0, r0 /∈ S.

Because the delta function is so highly discontinuous and is not a ‘proper
function’, it is often useful to define it in terms of the limit of a continuous
or ‘proper’ function. A number of ‘auxiliary functions’ can be used for this
purpose. However, there is one function that is particularly important in this
respect and in the theory of signal and image processing in general, namely,
the sinc function given by 1

sinc(x) =
sin(x)
x

.

Using the sinc function, we can construct the following auxiliary function:

δ(X,x) =
X

π
sinc(Xx)

1Some authors define sinc(x) = sinc(πx)/(πx)
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where X > 0 is a constant. This function has its maximum value at x = 0
where sinc(0) = 1 and δ(X,x) = X/π. As the value of X increases, the sinc
function contracts (its ‘first zeros’ that occur when x = ±π/X move toward the
origin at x = 0 as X increases in value) and the value or amplitude of δ(X,x)
increases. Eventually, as X approaches infinity, we can ‘imagine’ that the sinc
function contracts to a single spike at x = 0 (at least within the resolving power
of our imagination!) where δ(X,x) is infinitely large. Hence, we can consider
the result

δ(x) = lim
X→∞

δ(X,x)

and on noting that

δ(X,x) =
1
2π

X∫
−X

exp(ikx)dk,

we have

δ(x) =
1
2π

∞∫
−∞

exp(ikx)dk.

This is the integral representation for a delta function. In 2D, we have

δ(x)δ(y) =
1

(2π)2

∞∫
−∞

exp(ikxx)dkx

∞∫
−∞

exp(ikyy)dky

or alternatively, using vector notation

δ2(r) =
1

(2π)2

∞∫
−∞

exp(ik · r)d2r

where
k = x̂kx + ŷky.

Similarly, in 3D, we have

δ3(r) =
1

(2π)3

∞∫
−∞

exp(ik · r)d3r

where
k = x̂kx + ŷky + ẑkz.

In terms of a ‘physical picture’ for the delta function, the contraction of a
sinc-based auxiliary function to an infinitely high and infinitely thin spike is
adequate. However, mathematically it is still unsatisfactory because we are
‘imagining’ the contraction of a continuous function to a discontinuous function.
In other words, the limit

δ(x) = lim
X→∞

δ(X,x)
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does not actually define a function with the properties of the δ-function. In-
stead, we should consider the result

lim
X→∞

∞∫
−∞

δ(X,x)f(x)dx =

∞∫
−∞

δ(x− x0)f(x)dx = f(x0).

In other words, the whole problem is overcome if we recognize the generalized
shifting or sampling property of the delta function, i.e.

∞∫
−∞

f(r)δn(r− r0)dnr = f(r0), n = 1, 2, 3

to be a fundamental result, rather than attempting to define the delta function
itself. In other words, we define the delta function in terms of the role that
it plays in a mathematical operation rather than in terms of what it actually
is. Thus, one should always bear in mind that, strictly speaking, the delta
function is not really a function even though it is referred to as one and can be
written as one using the notation δ. It is actually just one of infinitely many
different distributions. However, its shifting property is unique and this is the
principal reason why it has such a wide range of applications.

2.3 The 2D Fourier Transform

If we let cnm = Fnm/(2L)2, then the complex Fourier series can be written as

f(x, y) =
1

(2L)2
∑
n

∑
m

Fnm exp(inxπ/L) exp(inyπ/L)

where

Fnm =

L∫
−L

L∫
−L

f(x, y) exp(−inxπ/L) exp(−imyπ/L)dxdy.

Now, let kn = nπ/L, km = mπ/L and Δkn = π/L and Δkm = π/L so that
we can write

f(x, y) =
1

(2π)2
∑
n

∑
m

Fnm exp(iknx) exp(ikmy)ΔknΔkm,

Fnm =

L∫
−L

L∫
−L

f(x, y) exp(−iknx) exp(−ikmy)dxdy.

Then, in the limit as L→∞, we have

f(x, y) =
1

(2π)2

∞∫
−∞

∞∫
−∞

F (kx, ky) exp(ikxx) exp(ikyy)dkxdky
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F (kx, ky) =

∞∫
−∞

∞∫
−∞

f(x, y) exp(−ikxx) exp(−ikyy)dxdy.

Here, F (kx, ky) is the 2D Fourier transform of f(x, y) where f is a non-periodic
function (i.e. a function where −∞ < x < ∞, −∞ < y < ∞). Using vector
notation, where

r = x̂x+ ŷy and k = x̂kx + ŷky,

the 2D Fourier transform can be written as

F (k) = F̂2[f(r)] =

∞∫
−∞

f(r) exp(−ik · r)d2r

where F̂2 denotes the 2D Fourier transform operator. The parameters kx and ky
are the spatial frequencies of the function (in cycles per metre). Observe that in
Cartesian coordinates, the Fourier transform of a two-dimensional function can
be obtained by generating the one-dimensional transform in x and y separately,
i.e.

F (kx, ky) =

∞∫
−∞

f(x, ky) exp(−ikxx)dx =

∞∫
−∞

f(kx, y) exp(−ikyy)dy.

Hence, if f(x, y) is separable so that we can write

f(x, y) = f1(x)f2(y)

then the Fourier transform is also separable, i.e.

F (kx, ky) = F1(kx)F2(ky).

The inverse Fourier transform in 2D can be derived by multiplying F (k) by
exp(ik · r′) and integrating over k, giving

∞∫
−∞

F (k) exp(ik · r′)d2k =

∞∫
−∞

d2rf(r)

∞∫
−∞

exp[ik · (r′ − r)]d2k

=

∞∫
−∞

d2rf(r)(2π)2δ2(r′ − r) = (2π)2f(r′)

where we have used the integral representation for the 2D delta function, i.e.

δ2(r) =
1

(2π)2

∞∫
−∞

exp(ik · r)d2k

and the sampling property of the delta function, namely
∞∫

−∞
f(r)δ2(r′ − r)d2r = f(r′).
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Hence,

f(r) = F̂−1
2 [F (k)] =

1
(2π)2

∞∫
−∞

F (k) exp(ik · r)d2k

where F̂−1
2 denotes the inverse 2D Fourier transform.

2.4 Physical Representation

The Fourier transform of a function provides a physical representation of the
frequency content of the function. From a mathematical point of view, any
basis function can, in principle, be used to define a series as can the kernel
of an integral transform - depending upon its use. What makes the Fourier
transform so important is that it ‘reflects’ the way in which wavefields arise
in nature, i.e. from the linear superposition of cosinusoidal waves of different
amplitude and frequency. With regard to the transform

F (kx, ky) =

∞∫
−∞

∞∫
−∞

f(x, y) exp(−ikxx) exp(−ikyy)dxdy,

x and y are taken to be distances measured in metres and kx and ky are the
spatial frequencies in cycles per metre. The independent variable r =

√
x2 + y2

is a measure of a point on the 2D plane from the centre of the plane. The
variable k =

√
k2
2 + k2

y is the wavenumber and is related to the wavelength λ
of a wavefield by

k =
2π
λ
.

2.5 The Spectrum

The Fourier transform of a function defines its spectrum which can be written
in the form

F (k) = Fr(k) + iFi(k)

where Fr = Re[F ] and Fi = Im[F ]. If, f(r) is real, then

Fr(k) =

∞∫
−∞

f(r) cos(ik · r)d2r

and

Fi(k) =

∞∫
−∞

f(r) sin(ik · r)d2r.

The spectrum is therefore a complex function which can be written in the form

F (k) = A(k) exp[iθ(k)]
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where
A(k) =| F (k) |=

√
F 2
r + F 2

i

and

θ(k) = tan−1

(
Fi
Fr

)
.

Here, F defines the Complex Spectrum, A is the Amplitude Spectrum, θ is the
Phase Spectrum and

P (k) =| F (k) |2

defines the so called Power Spectrum.
A special case occurs when k = 0 and

F (0) =

∞∫
−∞

f(r)d2r.

The value of F in this case is called DC (after Direct Current) or zero frequency
value.

2.6 Definitions and Notation

There are two principal definitions of the 2D Fourier transform pair given by

F (k) =

∞∫
−∞

f(r) exp(−ik · r)d2r,

f(r) =
1

(2π)2

∞∫
−∞

F (k) exp(ik · r)d2k

and

F (k) =
1
2π

∞∫
−∞

f(r) exp(−ik · r)d2r,

f(r) =
1
2π

∞∫
−∞

F (k) exp(ik · r)d2k.

It is also a matter of convention that F is called the Fourier transform of f
with −i in the exponential and that f is the inverse Fourier transform of F
with +i in the exponential.

In general, if a function is denoted by some ‘lower case’ letter such as f ,
then the function obtained by taking its Fourier transform is denoted by the
associated ‘upper case’ letter F . If a function is denoted by some upper case
letter such as F , then the function obtained by taking its Fourier transform is
denoted by introducing a ‘tilde’ F̃ .
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Although ultimately a personal choice, in optics a kernel of the form
exp(±2πiu · r) is often used with the Fourier transform pair being given by

F (u) =

∞∫
−∞

exp(−i2πu · r)f(r)d2r,

f(r) =

∞∫
−∞

exp(i2πu · r)F (u)d2u.

This is for the following reasons:

(i) Continued use is made of the wavenumber given by 2π/λ, where λ is the
wavelength of light, and, since it is common practice to express results in
terms of the wavelength itself (rather than the wavenumber), the factor of 2π
is unavoidable.

(ii) For the type of equations and functions that occur in optics, this kernel
leads to results with less constants and factors of π.

(iii) The scaling symmetry of the forward and inverse Fourier transforms pro-
vided using this definition of the Fourier transform gives the best possible
comparison with the Fourier transforming properties of a lens for example, i.e.
the intensity of light passing through a lens is not scaled according the direction
in which it travels through the lens.

However, in this text, the first definition of the Fourier transform pair is used
throughout so that it can be applied in the study of different imaging systems
including optics in a manner that is consistent.

To avoid constantly having to write Fourier integrals, it is common to make
use of the symbolic form

f(r)⇐⇒ F (k)

which means that F is the Fourier transform of f and that f is the inverse
Fourier transform of F . This notation is useful when we want to indicate the
relationship between a process (defined by some mathematical operation) on f
in ‘real-space’ or ‘image- space’ and the effect of this operation on F in ‘Fourier-
space’ of ‘k-space’. For example, the gradient of the function f is compounded
in the relationship

∇f(r)⇐⇒ ikF (k)

and the Laplacean of f yields

∇2f(r)⇐⇒ −k2F (k).

2.7 Some Important Results

As with the 1D Fourier transform, there are a number of analytical results com-
pounded in the computation of F (k) given a function f(r) for which there are a
number of published tables. The difficulty or otherwise of these computations
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usually depends on the functional complexity of f(r). However, there are two
important results which frequently occur in imaging and optics, for example,
and are therefore provided here for the sake of completeness.

The 2D Fourier transform of a ‘box’ function

The box function is given by

f(x, y) =

{
1, | x |≤ a

2 and | y |≤ b
2 ;

0, otherwise.

and

F (kx, ky) =

a
2∫

−a
2

exp(−2πikxx)dx

− b
2∫

b
2

exp(−2πikyy)dy

= ab sinc(πkxa) sinc(πkyb).

The 2D Fourier transform of a Gaussian function

The 2D Gaussian function can be defined as (ignoring scaling)

f(x, y) = exp
(
− r

2

a2

)
, where r2 = x2 + y2.

Then,

F (kx, ky) =

∞∫
−∞

exp
(
−x

2

a2

)
exp(−ikxx)dx

∞∫
−∞

exp
(
−y

2

a2

)
exp(−ikyy)dy

=
π

a
exp(−k2/4a), where k2 = k2

x + k2
y.

The 2D Fourier Transform of Rotationally Symmetric Functions

If the function f(x, y) is rotationally symmetric, then we can write

f(x, y) ≡ f(r), where r =
√
x2 + y2.

In this case, the 2D Fourier transform is also rotationally symmetric and can
be written as a transform of a single variable; the result is known as the Hankel
transform. Using polar coordinates:

x = r cos θ; y = r sin θ; kx = k cosφ; ky = k sinφ

where
k =

√
k2
x + k2

y .
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We can then write

F (ω, φ) =

∞∫
0

π∫
−π

f(r) exp[−ikr(cos θ cosφ+ sin θ sinφ)]dθrdr

=

∞∫
0

⎛⎝ π∫
−π

exp[−ikr cos(θ − φ)]dθ

⎞⎠ f(r)rdr.

The integral in the brackets can be written as

π∫
−π

exp[−ikr cos(θ − φ)]dθ = 2πJ0(kr)

where J0 is the zero order Bessel function of the first kind. Hence

F (k) = 2π

∞∫
0

f(r)J0(kr)rdr

This integral transform is a (zero-order) Hankel or Fourier-Bessel transform.
Note that if

f(r) = δ(r − a)
where δ is a delta function, then

F (k) = 2πaJ0(ka),

i.e. the 2D Fourier transform of an ‘infinitely thin ring’ is given by the zero
order Bessel function (ignoring scaling constants).

An important result which will be used later in this work is the 2D Fourier
transform of the 2D ‘tophat’ or ‘circular disc’ function given by

f(r) =

{
1, r ≤ a;
0, otherwise.

In this case,

F (k) = 2π

a∫
0

J0(kr)rdr.

Let

ξ = kr and r =
ξ

k
,

then

F (k) =
2π
k2

ka∫
0

J0(ξ)ξdξ.
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Now, ∫ x

0

J0(ξ)ξdξ = xJ1(x)

where J1 is the first order Bessel function of the first kind. Hence,

F (k) =
2π
k2
kaJ1(ka) =

2πa
k
J1(ka)

or

F (k) = 2πa2

(
J1(ka)
ka

)
The function J1(x)/x is the ‘jinc’ function which, in image processing, plays
an equivalent role to the sinc function in signal processing. Note that at k = 0,
F (k) = 2πa2. The function is a circularly symmetric spectrum composed
of a central lobe surrounded by a sequence of concentric rings separated by
the positions at which the Bessel function approaches zero. The pattern is
a well known result of Fraunhofer diffraction theory. The square modulus of
F (k) describes the intensity pattern produced by the diffraction of light by a
circular aperture under the assumption that the thickness of the aperture is
much smaller than the wavelength of light. This result was first derived by the
Astronomer Royal, George Airy, in 1835.

2.8 Some Important Theorems

The following collection of results are important in the Fourier analysis of
images and are listed here for completeness with regard to later work.

The Addition Theorem

f(r) + g(r)⇐⇒ F (k) +G(k)

The Similarity Theorem

f(ar)⇐⇒ 1
a
F

(
k
a

)
, a > 0

where a is a constant.

The Shift Theorem

f(r− a) ⇐⇒ exp(−ik · a)F (k)

Parseval’s Theorem
∞∫

−∞
f(r)g∗(r)d2r =

1
(2π)2

∞∫
−∞

F (k)G∗(k)d2k
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2.9 Convolution and Correlation

The convolution process and the convolution theorem are absolutely funda-
mental to the theory of imaging and image processing in general. In 1D, the
convolution integral is defined as

f(x)⊗ g(x) =

∞∫
−∞

f(y)g(x− y)dy

where the symbol ⊗ is taken to denote the convolution integral given above.
Note that some authors write the RHS of the above equation as (f ⊗ g)(x) to
stress that the convolution operation produces an output that is a function of
x. In 2D, we have

f(r)⊗⊗g(r) =

∞∫
−∞

f(r′)g(r− r′)d2r′

where the symbol ⊗⊗ denotes the 2D convolution integral. Similarly, the cor-
relation integral - which is also known as cross-correlation - of two 2D functions
f and g is defined by the operation

f(r)��g(r) =

∞∫
−∞

f(r′)g(r′ − r)d2r′.

This is a very similar operation to convolution except that the function g is
not reversed (i.e. g is a function of r′ − r and not r − r′). Note that for real
functions f and g,

f(r)⊗⊗g(r) = f(r)��g(−r).

Physically, the convolution process describes the ‘blurring’ or ‘smearing’ of one
function by another. Convolution integrals arise in a wide range of applications.
They are fundamental to the description of images and image formation. As
shall be shown later on in this work, the Green function is fundamental to mod-
elling image formation processes because of its ability to provides a completely
general solution to a variety of inhomogeneous wave equations, a solution that
is compounded in the convolution integral. Further, an important component
of image processing is often concerned with solving an inverse problem known
as deconvolution which is the inverse of deconvolution and forms the basis for
image restoration and reconstruction techniques.

2.10 Convolution and Correlation Theorems

2.10.1 The Convolution Theorem

The convolution theorem (together with related theorems) is one of the most
important results of Fourier theory which is that the convolution of two func-
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tions in real space is the same as the product of their respective Fourier trans-
forms in Fourier space, i.e.

f(r)⊗⊗g(r)⇐⇒ F (k)G(k).

This theorem is sometimes referred to as the Faltung theorem from the German
word ‘Faltung’ meaning ‘folding’. The theorem also holds (apart from scaling),
if the roles are reversed, i.e. the convolution of two complex spectra in Fourier
space is equal to the product of these functions in real space or

f(r)g(r) ⇐⇒ 1
(2π)2

F (k)⊗G(k).

This result is known as the product theorem.

2.10.2 The Correlation Theorem

In the case of the correlation integral, the correlation theorem takes the form

f(r)��g(r)⇐⇒ F (k)G∗(k).

Note that this result implies that

f(r)��g(r) �= g(r)��f(r)

since
F (k)G∗(k) �= F ∗(k)G(k).

Also note that if g = f then we arrive at the autocorrelation theorem, i.e.

f(r)��f(r)⇐⇒| F (k) |2 .
This theorem has a unique feature which is that information about the phase of
F is missing from the power spectrum | F |2, in contrast to the autoconvolution
integral in which

f(r)⊗⊗f(r)⇐⇒ [F (k)]2

where information on the phase spectrum is retained. Hence, the correlation of
a function f with itself contains no information about the phase of the Fourier
components of f , and is consequently unchanged if the phase changes.

2.10.3 Some Important Properties

There are some particularly important properties of the convolution integral,
all of which can be derived using the convolution theorem. They are as follows:

Convolution is commutative

f ⊗⊗g = g ⊗⊗f

Convolution is associative

f ⊗⊗(g ⊗ ⊗h) = (f ⊗⊗g)⊗⊗h
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Multiple convolutions can therefore be carried out in any order.

Convolution is distributive

f ⊗⊗(g + h) = f ⊗⊗g + f ⊗⊗h

The derivative of a convolution is

∇(f ⊗⊗g) = f ⊗⊗∇g = g ⊗⊗∇f

The Laplacian of a convolution is

∇2(f ⊗⊗g) = f ⊗⊗∇2g = g ⊗⊗∇2f

2.11 Other Integral Transforms

An integral transform F (u) of a function f(x) has the general form

F (u) =
∫
f(x)K(x, u)dx

where K is the kernel. The Fourier and Hankel (Fourier-Bessel) transforms
discussed so far are just special cases of this general form.

2.11.1 The Fresnel Transform

Another integral transform which is discussed in this work (in the study on
‘Fresnel diffraction’) is the Fresnel transform given by

F (x) =

∞∫
−∞

f(x′) exp[ik(x− x′)2]dx′

where k is a real constant. The inverse relationship is

f(x′) =

∞∫
−∞

F (x) exp[−ik(x− x′)2]dx.

2.11.2 The Abel Transform

The Abel transform is given by

F (x) = 2

∞∫
x

f(r)rdr
(r2 − x2)

1
2

where typically, x is a rectangular coordinate and r is a radial coordinate. This
transform is a special case (the case when f is radially symmetric) of the Radon
transform

F (r, θ) =

∞∫
−∞

f(r)δ(r − x cos θ − y sin θ)dxdy
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which forms the theoretical basis for a method of imaging called projection
tomography and is discussed later on in this work. The inverse Abel transform
is

f(r) = − 1
π

∞∫
r

1
(x2 − r2) 1

2

dF (x)
dx

dx.

2.12 Discussion

As with signal processing, there are a number of different integral transforms
that are used to process images. These transforms are often compounded in
terms of some filter or sequential filter processes. However, there are some
transforms such as the Hankel, Fresnel, Radon and Abel transforms that are
unique to image processing. Equally so, there are transforms and filters that
are usually only applicable for processing signals and/or signal analysis, e.g.
the z-transform and the Infinite Impulse Response (IIR) filter2. The IIR filter
is not of any significance in image processing. This is because images are
rarely, if ever, formed from some ‘feed-back’ process. Whereas in some signal
analysis problems, initial conditions are applicable, leading to applications of
the Laplace transform for example, in image analysis, initial conditions are not
relevant. Thus, some integral transforms are specific only to signal analysis or
image analysis but not both. Those transforms which do apply to both include
the Fourier transform, the cosine transform (used in image compression for
example), the wavelet transform (multi-resolution analysis) and of course, the
convolution and correlation integrals. As integral transforms, they are applied
in the development of image analysis models and in discrete form, they provide
a range of image processing algorithms. However, as in signal analysis, of all
the transforms available, the Fourier transform provides us with the principal
link between methods of processing an image and the ‘physics’ through which
the image has been generated and the information it coveys. In this sense, the
Fourier transform ‘reigns supreme’.

2.13 Summary of Important Results

2D complex Fourier series

f(x, y) =
∑
n

∑
m

cnm exp(inxπ/L) exp(imyπ/L)

where

cnm =
1

(2L)2

L∫
−L

L∫
−L

f(x, y) exp(−inxπ/L) exp(−imyπ/L)dxdy.

2see Blackledge J M, Digital Signal Processing, Horwood, 2003.
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2D Fourier transform pair

F (kx, ky) =

∞∫
−∞

∞∫
−∞

f(x, y) exp(−ikxx) exp(−ikyy)dxdy,

f(x, y) =
1

(2π)2

∞∫
−∞

∞∫
−∞

F (kx, ky) exp(ikxx) exp(ikyy)dkxdky.

Integral representation of the 2D delta function

δ2(r) ≡ δ(x)δ(y) =
1

(2π)2

∞∫
−∞

exp(ik · r)d2k

The convolution integral

f(r)⊗⊗g(r) =

∞∫
−∞

f(r′)g(r− r′)d2r′

The correlation integral

f(r)��g(r) =

∞∫
−∞

f(r′)g(r′ − r)d2r′

The convolution theorem

f(r)⊗⊗g(r)⇐⇒ F (k)G(k)

The correlation theorem

f(r)��g(r)⇐⇒ F (k)G∗(k)

The autocorrelation theorem

f(r)��f(r)⇐⇒| F (k) |2
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Chapter 3

The 2D DFT, FFT and
FIR Filter

The application of Fourier theory to processing digital images requires that
the 2D Fourier integral is discretized and algorithms designed that make ex-
plicit use of the Discrete Fourier Transform (DFT). In this Chapter, we review
the DFT and the Fast Fourier Transform (FFT) which provides a method for
computing the DFT with less multiplications and additions than required when
computing a DFT directly. This chapter also discusses the computational back-
ground to the Finite Impulse Response (FIR) filter which is, in effect, a discrete
convolution or convolution sum.

3.1 The Discrete Fourier Transform

The complex Fourier series is given by

f(x, y) =
1

(2L)2
∑
n

∑
m

Fnm exp(inxπ/L) exp(imyπ/L)

where

Fnm =

L∫
−L

L∫
−L

f(x, y) exp(−inxπ/L) exp(−imyπ/L)dxdy

over the range [−L,L]. Consider the case where f(x, y) is uniformly sampled
at points x00, x01, x02, ..., x0(N−1); x10, x11, x12, ..., x1(N−1) etc. giving the dis-
crete function or 2D vector (a matrix)

fpq ≡ f(xp, yq); p = 0, 1, 2, ..., N − 1; q = 0, 1, 2, ..., N − 1

with sampling intervals Δx and Δy. Now, xp = pΔx, yq = qΔy and with
N = 2L/Δx = 2L/Δy we have1

fpq =
1
N2

∑
n

∑
m

Fnm exp(i2πnp/N) exp(i2πmq/N)

1with fpq ≡ fpq/(ΔxΔy) and Fnm ≡ Fnm/(ΔxΔy)

50
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and
Fnm =

∑
p

∑
q

fpq exp(−i2πnp/N) exp(−i2πmq/N)

where the summations are over N points, i.e.

∑
n

∑
m

≡
N−1∑
n=0

N−1∑
m=0

providing the ‘standard form’ of the transform in which the first value of the 2D
array Fnm occurs at F00. This is the the so called DC level which corresponds
to the zero frequency component. This transform, can also be cast in terms of
its ‘optical form’ where

∑
n

∑
m

≡
(N/2)−1∑
n=−N/2

(N/2)−1∑
m=−N/2

.

Here, the DC level occurs at the centre of the array Fnm, i.e. at the point
(N/2+1, N/2+1). The optical form of the DFT produces a more familiar form
of output which places the zero frequency component in the centre of the plane.
This type of output is usually referred to as the ‘optical form’ because this is
the way a spectrum is produced optically (e.g. an optical diffraction pattern).
It is consistent with analysis undertaken using the Fourier transform and is also
consistent with the use of the discrete Fourier transform for simulating optical
systems in which a lens (which can be taken to perform a Fourier transform)
generates a spectrum in the ‘image plane’ where the DC level or zero frequency
occurs in the centre of the plane. The difference between the standard and
optical forms does not present any particular problem because placing the zero
frequency component in the center of the array can be achieved by a simple
rearrangement or ‘shift’ of the output of a DFT computed using the standard
form.

The Fourier transform pair is given by

F (kx, ky) =

∞∫
−∞

∞∫
−∞

f(x, y) exp(−ikxx) exp(−ikyy)dxdy,

f(x, y) =
1

(2π)2

∞∫
−∞

∞∫
−∞

F (kx, ky) exp(ikxx) exp(ikyy)dkxdky

and the discrete Fourier transform pair is given by

Fnm =
∑
p

∑
q

fpq exp(−i2πnp/N) exp(−i2πmq/N),

fpq =
1
N2

∑
n

∑
m

Fnm exp(i2πnp/N) exp(i2πmq/N).
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In order to establish the relationship between these transforms (one continuous
and one discrete), we consider the discretization of the Fourier transform pair
to obtain

F (kn, km) =
∑
p

∑
q

f(xp, xq) exp(−iknxp) exp(−ikmxq)ΔxΔy

f(xp, yq) =
1

(2π)2
∑
n

∑
m

F (kn, km) exp(iknxp) exp(ikmxq)ΔknΔkm

where Δx, Δy, Δkn and Δkm are the sampling intervals. Now, with kn =
nΔkx, km = mΔky, xp = pΔx and yq = qΔy, by inspection (i.e. comparing
the results above with the discrete Fourier transform pair) we see that

ΔkxΔx =
2π
N

and ΔkyΔy =
2π
N
.

Thus, in terms of the discrete Fourier transform, the interval Δkx between
the numbers Fnm (for constant n) is related to the interval Δx between the
numbers fpq (for constant p) by

Δkx =
2π
NΔx

and the interval Δky between the numbers Fnm (for constant m) is related to
the interval Δy between the numbers fpq (for constant q) by

Δky =
2π
NΔy

.

3.2 The Sampling Theorem

When a digital image is generated from an analogue image, an array of num-
bers is obtained which is assumed to be a accurate numerical representation
of the original analogue image. The conversion is called digitization. When
conversion takes place, it is a normally a requirement that all the informa-
tion in the original analogue image is retained in digital form. To do this, the
analogue image must be sampled at the correct rate. So what is the correct
rate? The answer to this question is provided by the sampling theorem. In 2D,
this theorem states that if f(x, y) is bandlimited and has a complex spectrum
F (kx, ky), | kx |≤ Kx, | ky |≤ Ky, then it is fully specified by values spaced
at regular intervals in the x- and y-directions given by

Δx ≤ π

Kx
, and Δy ≤ π

Ky

respectively. The parameters Kx/π of Ky/π are the ‘Nyquist frequencies’. If
the bandwidth of the image is uniform and omni-directional, then the sampling
interval in any direction is given by

Δ ≤ π

K
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where
K =

√
K2
x +K2

y .

To convert an analogue image into a digital image with no loss of informa-
tion, one must choose a sampling rate that is at least equal to the Nyquist
frequency of the image. To show why this is the case, the 2D ‘comb function’
must first be introduced. This function describes an array of delta functions
which, in the Cartesian plane is given by

comb(x, y) =
∞∑

n=−∞

∞∑
m=−∞

δ(x− nX)δ(y −mY ).

Here, each delta function is taken to be equally spaced apart by a fixed length
X in the x-direction and Y in the y-direction respectively.

The sampling a 2D function can be described mathematically by multiplying
it by this comb function. Thus, if f(x, y) is the bandlimited function and g(x, y)
is the sampling function, then we can write

g(x, y) = comb(x, y)f(x, y).

The sampling theorem is obtain by analyzing the spectrum of the sampling
function g(x, y). To do this, we are required to consider the Fourier transform
of the 2D comb function.

3.2.1 Fourier Transform of the Comb Function

The evaluation of F̂2[comb(x, y)] is important generally and is crucial to the
proof of the sampling theorem to follow. Using the definition of comb(x, y), we
can write ∞∫

−∞

∞∫
−∞

comb(x, y) exp(−ikxx) exp(−ikyy)dxdy

=

∞∫
−∞

∞∫
−∞

∞∑
n=−∞

∞∑
m=−∞

δ(x − nX)δ(y −mY ) exp(−ikxx) exp(−ikyy)dxdy

=
∞∑

n=−∞

∞∑
m=−∞

∞∫
−∞

∞∫
−∞

δ(x − nX)δ(y −mY ) exp(−ikxx) exp(−ikyy)dxdy

=
∞∑

n=−∞

∞∑
m=−∞

exp(−ikxnX) exp(−ikymy).

Hence, using the product theorem, the spectrum of the product
comb(x, y)f(x, y) is given by

1
(2π)2

F (kx, ky)⊗⊗
∞∑

n=−∞

∞∑
m=−∞

exp(−ikxnX) exp(−ikymY ).
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Although valid, the above result is not in itself very useful. The ‘key’ to proving
the sampling theorem comes from expressing comb(x, y) as a complex Fourier
series (not a transform). This can be done, because although a special case,
the comb function is just a periodic function and, thus, a Fourier series repre-
sentation can be used. Hence, we consider writing the comb function in terms
of a complex Fourier series given by

comb(x, y) =
∞∑

n=−∞

∞∑
m=−∞

cnm exp(i2πnx/X) exp(i2πmy/Y )

where the coefficients cnm are obtained by computing the integral

cnm =
1
XY

X/2∫
−X/2

Y/2∫
−Y/2

comb(x, y) exp(−i2πnx/X) exp(−2πmy/Y )dxdy.

Substituting the definition for the comb function into the equation above and
noting that comb(x, y) = δ(x)δ(y) when x ∈ [−X/2, X/2] and y ∈ [−Y/2, Y/2],
we get

cnm =
1
XY

X/2∫
−X/2

Y/2∫
−Y/2

δ(x)δ(y) exp(−i2πnx/X) exp(−2iπmy/Y )dxdy =
1
XY

.

Hence, we can represent the comb function by the complex Fourier series

comb(x, y) =
1
XY

∞∑
n=−∞

∞∑
m=−∞

exp(i2πnx/X) exp(i2πmy/Y ).

Consequently, the Fourier transform of the comb function can be written as
∞∫

−∞

∞∫
−∞

dxdy

XY

∞∑
n=−∞

∞∑
m=−∞

exp(i2πnx/X) exp(i2πmy/Y ) exp(−ikxx) exp(−ikyy)

=
1
XY

∞∑
n=−∞

∞∑
m=−∞

∞∫
−∞

∞∫
−∞

exp[−ix(kx − 2πn/X)] exp[−iy(ky − 2πm/Y )]dxdy

=
4π2

XY

∞∑
n=−∞

∞∑
m=−∞

δ(kx − 2πn/X)δ(ky − 2πm/Y ).

We have therefore obtained the fundamental and important result (crucial to
the proof of the sampling theorem)

∞∑
n=−∞

∞∑
m=−∞

δ(x− nX)δ(y −mY ) ⇐⇒

4π2

XY

∞∑
n=−∞

∞∑
m=−∞

δ(kx − 2πn/X)δ(ky − 2πm/Y ).
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3.2.2 Proof of the Sampling Theorem

Suppose we sample a 2D function at regular intervals (Δx, Δy). The sampling
function g(x, y) is then given by

g(x, y) = f(x, y)
∞∑

n=−∞

∞∑
m=−∞

δ(x− nΔx)δ(y −mΔy).

Using the product theorem, in Fourier space, this equation becomes

G(kx, ky) = F (kx, ky)⊗⊗ 2π
Δx

2π
Δy

∞∑
n=−∞

∞∑
m=−∞

δ(kx−2πn/Δx)δ(ky−2πm/Δy)

=
2π
Δx

2π
Δy

∞∑
n=−∞

∞∑
m=−∞

F (kx − 2πn/Δx, ky − 2πm/Δy).

This result demonstrates that sampling the function f , creates a new spectrum
G which is a periodic replica of the spectrum F spaced at regular intervals
±2π/Δx,±4π/Δx,±6π/Δx in the x-direction and ±2π/Δy,±4π/Δy,±6π/Δy
in the y-direction. Since F is a bandlimited function, the total width of
the spectrum is Kx − (−Kx) = 2Kx and Ky − (−Ky) = 2Ky in the x-
and y-directions respectively, i.e. the bandwidth of F . Thus, if 2π/Δx <
2Kx, 2π/Δy < 2Ky, then the replicated spectra will overlap leading to alias-
ing. To ensure that aliasing does not occur, we require that

2π
Δx

≥ 2Kx,
2π
Δy

≥ 2Ky

or a sampling rate where

Δx ≤ π

Kx
, Δy ≤ π

Ky
.

A digital image that has been sampled according to the conditions

Δx =
π

Kx
, Δy =

π

Ky

is called a Nyquist sampled image where Kx/π and Ky/π are Nyquist fre-
quencies (equal to twice the frequency bandwidth of the image). This is the
optimum sampling interval required to avoid aliasing and to recover the infor-
mation of an analogue image in digital form. It is the fundamental result used
in all A-to-D (Analogue-to-Digital) conversion schemes.

3.2.3 Sinc Interpolation

If the conditions given above provide the necessary sampling rate that is re-
quired to convert an analogue image into a digital image without loss of infor-
mation, then one should be able to recover the analogue signal from the digital
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signal also without loss of information (i.e. undertake D-to-A or Digital-to-
Analogue conversion). Assuming that f has been sampled at the Nyquist fre-
quency, the only difference between g and f is that the spectrum of g consists of
F repeated at regular interval 2πn/Δx and 2πm/Δy; n = ±1,±2,±3, ...,±∞.
Thus, f can be obtained from g by retaining just the part of G for values of
| kx | and | ky | less than or equal to Kx and Ky, respectively, and setting all
other values in the spectrum to zero, i.e.

F (kx, ky) = G(kx, ky)

provided we set

G(kx, ky) = 0 ∀ | kx |> Kx and | ky |> Ky.

We can describe this process mathematically by multiplying G with the Tophat
function

H(kx, ky) =

{
1, | kx |≤ Kx, | ky |≤ Ky;
0, otherwise.

Thus, F is related to G by the equation

F (kx, ky) = H(kx, ky)G(kx, ky).

Using the convolution theorem, we then obtain

f(x, y) = 4KxKy sinc(Kxx) sinc(Kyy)⊗⊗g(x, y).
This result describes the restoration of a continuous function f(x, y) from a
sampling function g(x, y) and therefore demonstrates that a function can be
interpolated by convolving it with the appropriate sinc functions. This is
known as sinc interpolation. In practice, a sampled function can be sinc inter-
polated by ‘zero padding’ its complex spectrum (see Section 3.6.2).

3.3 The Discrete Spectrum of a Digital Image

The DFT of an image is given by

Fpq =
N−1∑
n=0

N−1∑
m=0

fnm exp(−2πinp/N) exp(−2πimq/N).

This result yields some important definitions for the spectral characteristics of
an image which are as follows:

Complex Spectrum
Fnm = Gnm + iHnm

where Gnm = Re[Fnm] and Hnm = Im[Fnm]

Amplitude Spectrum

| Fnm |=
√
G2
nm +H2

nm
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Phase Spectrum

φnm = tan−1

(
Hnm

Gnm

)
Power Spectrum

| Fnm |2= G2
nm +H2

nm

Although these definitions are common, methods of displaying a 2D spectrum
vary from one application to the next. The real and imaginary parts (typically
the positive half-space) of a spectrum can be displayed as a grey level or colour
map or alternatively the amplitude or power spectrum can be displayed as
a digital image, the latter case being more common. This requires that the
spectrum (a floating point array) is quantized into an 8-bit integer array.

Because an image is usually taken to be a positive function, its DC level is
typically very much larger than the other frequency components and tends to
‘swamp’ the detailed characteristics available over the rest of the spectrum. It
can therefore become difficult to observe and ‘analyse’ a grey level or colour
coded display of the spectrum. To overcome this problem, the DC component
can be omitted by setting it to zero or assigning it to the value of its nearest
neighbour for example, after the DFT has been computed. Alternatively, a
spectrum can be presented based on a logarithmic scale, i.e. by generating a
display of2

ln(1+ | Fnm |2)
for example, or

log10(1+ | Fnm |2).
The latter case provides a decibel scale analysis of the power spectrum.

3.3.1 Frequency Aliasing

A source of inaccuracy in computing the DFT is due to under sampling which
causes frequency aliasing. Under sampling causes high frequency components in
the original image to be mistaken for low frequency components in the digitized
image. The low frequencies are ‘aliases’ of the high frequencies. The solution to
this problem is to sample the original (analogue) image at rate equal to twice
the highest frequency it contains - the Nyquist frequency (see Section 3.2.2).
In practice, the highest frequency in an image is not usually known exactly,
and either a theoretical upper limit is used or the image is low pass filtered to
impose a limit.

3.3.2 Spectral Leakage

The DFT is an approximation to the Fourier transform of the continuous image
from which a digital image is obtained. This approximation is subject to a
number of effects caused by the nature of the sampling process. One important
effect is due to the fact that an image is of finite support, i.e. it is a data field
with fixed boundaries or edges. This leads to ‘spectral leakage’ which, in turn,

21 is added so that the output is guaranteed to be positive
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generates errors in the values of the spectral components that are computed.
To examine the effect of this, let us consider a digital N ×N image fij which is
a Nyquist sampled version of the analogue image f(x, y). The N2 point DFT
can be taken to be a square ‘windowed’ Fourier transform of f(x, y) given by

Fnm ∼
N/2∫

−N/2

N/2∫
−N/2

f(x, y) exp(−iknx) exp(−ikmy)dxdy

=

∞∫
−∞

∞∫
−∞

f(x, y)w(x, y) exp(−iknx) exp(−ikmy)dxdy

where w is the ‘box’ function

w(x, y) =

{
1, | x |≤ N

2 and | y |≤ N
2 ;

0, otherwise.

Using the product theorem

Fnm ∼ N2

(2π)2

∞∫
−∞

∞∫
−∞

F (kn − kx, km − ky)sinc(kxN/2)sinc(kyN/2)dkxdky.

This result demonstrates that the discrete spectrum Fnm obtained by comput-
ing the DFT of a N×N image is not given by F (kn, km) but by the convolution
of F (kn, ky) with a sinc function. Thus, each spectral component Fnm is an
approximation to F (kn, km) which depends on the influence of the sinc function
associated with one sample ‘bin’ on the next sample ‘bin’. The sinc function
‘leaks’ from one bin to the next producing errors in the values of the neigh-
bouring spectral components causing ‘spectral leakage’. However, note that

Fnm → F (kn, km) as N →∞
because

lim
N→∞

N

2π
sinc(kxN/2)

N

2π
sinc(kyN/2) = δ(kx, ky)

and ∞∫
−∞

∞∫
−∞

F (kn − kx, km − ky)δ(kx, ky)dkxdky = F (kn, km).

Hence, as the size of the digital image increases, the extent of the spectral
leakage decreases.

The DFT assumes that the digital image is just one period of an infinitely
periodic function and, if the values at the opposite edges of the image are not
the same, then these edge discontinuities introduce spurious frequencies into
the spectrum. These spurious frequencies may or may not be troublesome,
depending on the purpose to which the spectrum is to be put. However, they
can be reduced by ‘tapering’ the image toward its boundaries, so producing
‘soft’ rather than ‘hard’ edges. These tapers can be generated by designing a
variety of functions called ‘windows’ which are multiplied by the image before
computing the DFT.
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3.4 The Fast Fourier Transform

The Fast Fourier Transform or FFT is an algorithm for computing the DFT
with fewer additions and multiplications. In this section, we consider the

background to the FFT for processing a 1D array or signal and then apply the
same method for processing a 2D array or image using this 1D FFT. The DFT
(in standard form) of an N -point vector is given by

Fm =
N−1∑
n=0

fn exp(−2πinm/N)

How much computation is involved in computing the DFT of N points? If we
write

WN = exp(−2πi/N)

then
Fm = Wnm

N fn.

This result is a matrix equation which can be written in the form⎛⎜⎜⎜⎝
F0

F1

...
FN−1

⎞⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎝
W 00
N W 01

N . . . W
0(N−1)
N

W 10
N W 11

N ... W
1(N−1)
N

...
...

. . .
...

W
(N−1)0
N W

(N−1)1
N . . . W

(N−1)(N−1)
N

⎞⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎝

f0
f1
...

f(N−1)

⎞⎟⎟⎟⎠
In this form, we see that the DFT is essentially computed by multiplying an
N -point vector fn by a matrix of coefficients given by a (complex) constantWN

to the power of nm. This requires N ×N multiplications. Thus, for example,
to compute the DFT of 1000 points requires 106 multiplications!

3.4.1 Basic Ideas

By applying a simple but very elegant trick, a N -point DFT can be written in
terms of two N

2 -point DFT’s. The FFT algorithm is based on repeating this
trick again and again until a single point DFT is obtained. The basic idea is
compounded in the following result:

N−1∑
n=0

fn exp(−2πinm/N)

=
(N/2)−1∑
n=0

f2n exp[−2πi(2n)m/N ] +
(N/2)−1∑
n=0

f2n+1 exp[−2πi(2n+ 1)m/N ] =

(N/2)−1∑
n=0

f2n exp[−2πinm/(N/2)]+exp(−2πim/N)
(N/2)−1∑
n=0

f2n+1 exp[−2πinm/(N/2)]

=
(N/2)−1∑
n=0

f2nW
nm
N/2 +Wm

N

(N/2)−1∑
n=0

f2n+1W
nm
N/2.
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Fundamental Result

The result above leads to the fundamental result:

DFT of N-point array
= DFT of even components + Wm

N × DFT of odd components.

Using the subscripts e and o to represent odd and even components, respec-
tively, we can write this result in the form

Fm = F em +Wm
N F

o
m.

The important thing to note here is that the evaluation of F em and F om is over
N/2 points - the N/2 even components and the N/2 odd components of the
original N - point array. To compute F em and F om we only need half the number
of multiplications that are required to compute Fm.

Repeating the Trick: The Successive Doubling Method

Because the form of the expressions for F em and F om is identical to the form of
the original N -point DFT, we can repeat the idea and decompose F em and F om
into even and odd parts producing a total four N

4 -point DFT’s as illustrated
below.

Fm
⇓

F em + Wm
N F

o
m

⇓ ⇓ ⇓
F eem +Wm

N/2F
eo
m + Wm

N ×(F oem +Wm
N/2F

oo
m )

We can continue subdividing the data into odd and even components until
we get down to the DFT of a single point. However, because the data are
subdivided into odd and even components of equal length we require an initial
array of size N = 2k, k = 1, 2, 3, 4, ...

Some Simple Examples

Consider the 2 point FFT with data (f0, f1). Then

Fm =
1∑

n=0

fnW
nm
2 = W 0

1 f0 +Wm
2 W 0

1 f1 = f0 + exp(iπm)f1

so that
F0 = f0 + f1

and
F1 = f0 + exp(iπ)f1 = f0 − f1.
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Now consider the 4 point FFT operating on the data (f0, f1, f2, f3). Here,

Fm =
3∑

n=0

fnW
nm
4 =

1∑
n=0

f2nW
nm
2 +Wm

4

1∑
n=0

f2n+1W
nm
2

= f0 +Wm
2 f2 +Wm

4 (f1 +Wm
2 f3).

Thus,
F0 = f0 + f1 + f2 + f3,

F1 = f0 + f2W2 + f1W4 + f3W4W2,

F2 = f0 + f2W
2
2 + f1W

2
4 + f3W

2
4W

2
2 ,

and
F3 = f0 + f2W

3
2 + f1W

3
4 + f3W

3
4W

3
2 .

Further, certain values of Wm
N are simple, for example,

W 0
2 = 1, W 1

2 = −1, W 0
4 = 1, W 1

4 , W 2
4 = −1, W 3

4 = −i.
Also, if we let k = n+N/2, then

exp
(

2πik
N

)
= exp

(
2πi(n+N/2)

N

)
= exp

(
2πin
N

)
exp(πi) = − exp

(
2πin
N

)
and thus,

W
(n+N/2)
N = −Wn

N .

3.4.2 Bit Reversal

Consider the 8-point array

f0, f1, f2, f3, f4, f5, f6, f7

and consider the decomposition of this array into even and odd components as
given below.

Even arguments Odd arguments
f0, f2, f4, f6 f1, f3, f5, f7

Even Odd Even Odd
f0, f4 f2, f6 f1, f5 f3, f7

To use the successive doubling method, the input array must first be expressed
in the form

f0, f4, f2, f6, f1, f5, f3, f7.

The general procedure for re-ordering an input array follows a simple bit-
reversal rule where the position of an element of the original array fi is ex-
pressed in binary form. The bits are then reversed to obtain the position of
this element in the re-ordered array as illustrated below.
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Original Original Bit-reversed Re-ordered
Argument Array Argument Array

000 f0 000 f0
001 f1 100 f4
010 f2 010 f2
011 f3 110 f6
100 f4 001 f1
101 f5 101 f5
110 f6 011 f3
111 f7 111 f7

If the FFT algorithm is applied to an array in its natural order, then the
output is bit-reversed. Bit-reversal of the output is then required to obtain
the correct order. Thus, bit reversal can be applied either before or after the
computations commence. The effect of applying this method is to reduce the
number of multiplications fromO(N2) to O(N logN) which, for relatively small
array sizes, considerably reduces the time taken to perform a DFT.

The method discussed above depends on using array sizes of 2n and is
therefore a Base-2 algorithm. It is natural to ask why this method cannot
be extended, i.e. instead of decomposing the original array into two arrays
(based on the odd and even components of the original) why not decompose it
into three or four arrays and repeat the process accordingly leading to Base-
3 and Base-4 algorithms. The problem with this approach is that, although
it can lead to slightly fewer operations, the reordering of the data required
to establish an appropriate output is significantly more complicated than bit
reversal. The extra effort that is required to establish a re-ordering algorithm
tends to outweigh the reduction in the processing time from adopting a Base-3
or Base-4 approach.

3.4.3 The FFT in C

The following code is a C (void) function called FFT1D which computes the
DFT of a complex input with real and imaginary parts using the method de-
scribed above. In this case, the arrays are re-ordered on both input and output
so that the DFT appears in optical forms in which the DC or zero frequency
component occurs at n/2 + 1, where n is the size of the array. The algorithm
performs either a forward or an inverse DFT using the switch sign. If sign=-1,
then the forward DFT is computed and, if sign=1, then the inverse DFT is
computed.

#include <math.h>

void FFT1D( float a[], float b[], int n, int sign )
{
int l,l1,l2,j,jj,i,ii,k,nh,nm;
float *cr, *ci;
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float den,p,q;
float ur,ui,vr,vi,wr,wi,urtemp;
double pi,x;

/* FUNCTION: This function computes the DFT of a complex
array whose real and imaginary parts are a and b
respectively using the successive doubling method.

NOTES: The function returns the real (a) and
imaginary (b) parts of the DFT.

The size of the arrays n must be an int power of 2

Zero frequency occurs at n/2+1.

By convention, the forward Fourier transform is
obtained when sign=-1 and the inverse Fourier
transform is obtained when sign=1.

If the input is purely real then the imaginary part
(i.e. array b) must be set to zero.

I/O and PARAMETERS

Input: a - real part of signal/spectrum
b - imaginary part of signal/spectrum
n - size of signal

Output: a - real part of spectrum/signal
b - imaginary part of spectrum/signal

EXTERNAL FUNCTIONS: None

INTERNAL FUNCTIONS: None */

/* Allocate space for work arrays. */

cr = (float *) calloc( n+1, sizeof( float ) );
ci = (float *) calloc( n+1, sizeof( float ) );

/* Compute scaling paremeter (den) */

if ( sign < 0 )
den=1.0;

else
den=n;
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/* Setup constants required for computation. */

pi = 4.0 * atan( 1.0 );
p = n;
q = log( p ) / log( 2.0 );
k = q;
nh = n * 0.5;
nm = n-1;

/* Generate switched arrays - switch positive/negative
half spaces to negative/positive half spaces respectively. */

for ( i=nh+1, j=1; i<=n; i++, j++ )
{
cr[j] = a[i];
ci[j] = b[i];
}

for ( i=1; i<=nh; i++, j++ )
{
cr[j] = a[i];
ci[j] = b[i];
}

/* Reorder data, i.e. perform ’bit-reversal’. */

for ( i=1, j=1; i<=nm; i++ )
{
if ( i < j )
{
vr = cr[j];
vi = ci[j];
cr[j] = cr[i];
ci[j] = ci[i];
cr[i] = vr;
ci[i] = vi;
}

jj = nh;
while ( jj < j )
{
j -= jj;
jj = jj * 0.5;
}

j += jj;
}
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/* Do fast transform computations. */

for ( l=1; l<=k; l++ )
{
l1 = ldexp( 1.0, l );
x = (2 * pi * (double) sign) / l1;
wr = cos( x );
wi = sin( x );
l2 = l1 * 0.5;
ur = 1.0;
ui = 0.0;

for ( j=1; j<=l2; j++ )
{

for ( i=j; i<=n; i+=l1 )
{
ii = i + l2;
vr = (cr[ii] * ur) - (ci[ii] * ui);
vi = (cr[ii] * ui) + (ci[ii] * ur);
cr[ii] = cr[i] - vr;
ci[ii] = ci[i] - vi;
cr[i] = cr[i] + vr;
ci[i] = ci[i] + vi;
}

urtemp = ur;
ur = (ur * wr) - (ui * wi);
ui = (urtemp * wi) + (ui * wr);
}

}

/* Scale */

for ( i=1; i<=n; i++ )
{
cr[i] = cr[i] / den;
ci[i] = ci[i] / den;
}

/* Reverse half-spaces - write out data in ’optical form’. */

for ( i=nh+1, j=1; i<=n; i++, j++ )
{
a[j] = cr[i];
b[j] = ci[i];
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}

for ( i=1; i<=nh; i++, j++ )
{
a[j] = cr[i];
b[j] = ci[i];
}

/* Free space from work arrays. */

free( cr );
free( ci );

}

3.4.4 The 2D FFT

The 2D DFT pair are given by

Fnm =
∑
p

∑
q

fpq exp(−i2πnp/N) exp(−i2πmq/N),

fpq =
1
N2

∑
n

∑
m

Fnm exp(i2πnp/N) exp(i2πmq/N).

If we write the DFT in the form

Fnm =
∑
p

(∑
q

fpq exp(−i2πnp/N)

)
exp(−i2πmq/N)

then it is immediately clear that we can compute the 2D DFT by first comput-
ing the set of 1D DFTs for all of the rows of the matrix fpq and then computing
the set of 1D DFTs for all of the columns of the matrix output from the first
process. Thus, to obtain the DFT of a 2D array, we simply compute the 1D
DFT of each row and then each column or, alternatively, each column and
then each row. This result follows from the fact that, in Cartesian coordinates,
the 2D Fourier transform is separable and thus can be computed by successive
passes of the 1D transform.

The following code is a C (void) function called FFT2D which computes
the 2D DFT of a complex n × n matrix with real and imaginary parts using
the function FFT1D and the method discussed above. The algorithm performs
either a forward or an inverse DFT using the switch sign. If sign=-1, then the
forward DFT is computed and, if sign=1, then the inverse DFT is computed.
The DC component occurs at (1 + n/2, 1 + n/2).

void FFT2D( float **a, float **b, int n, int sign )
{
float *aa, *bb;
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int i, j;

/* FUNCTION: This subroutine computes the DFT of a 2D array with
real and imaginary parts a and b respectively.

NOTE: This function computes the ’optical’ transform
where the zero frequency occurs at (n/2+1,n/2+1).

I/O and PARAMETERS

Input: a - real part of image/spectrum
b - imaginary part of image/spectrum
n - image size (=n x n where n=2**k; k-integer)
sign = -1 gives forward Fourier transform

= 1 gives inverse Fourier transform

Output: a - real part of spectrum/image
b - imaginary part of spectrum/image

EXTERNAL FUCTIONS: FFT1D

INTERNAL FUNCTIONS: None */

/* Allocate space for internal matrices. */

for (i=0; i<n; i++)

{
c[i] = (float*) malloc(n*sizeof(float));

d[i] = (float*) malloc(n*sizeof(float));
}

/* Allocate space for work arrays. */

aa = (float *) malloc( (n+1)*sizeof( float ) );
bb = (float *) malloc( (n+1)*sizeof( float ) );

/* Use subroutine FFT1D to generate a 2D FFT by computing
the 1D FFT of the columns and rows separately. */

/* Put columns into single-dimension array and call FFT1D. */

for ( i=0; i<n; i++ )
{
for ( j=0; j<n; j++ )
{
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aa[j+1] = a[i][j];
bb[j+1] = b[i][j];
}

FFT1D( aa, bb, n, sign);

for ( j=0; j<n; j++)
{
c[i][j] = aa[j+1];
d[i][j] = bb[j+1];
}

}

/* Put rows into single-dimension array and call FFT1D. */

for ( j=0; j<n; j++ )
{
for ( i=0; i<n; i++ )
{
aa[i+1] = c[i][j];
bb[i+1] = d[i][j];
}

FFT1D( aa, bb, n, sign );
for ( i=0; i<n; i++)
{
a[i][j] = aa[i+1];
b[i][j] = bb[i+1];
}

}

/* Free space from work arrays. */

free( aa );
free( bb );

/* Free space from internal matrices. */

for (i=0; i<n; i++)
{

free(c[i]);
free(d[i]);

}

}
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3.5 The Imaging Equation and Convolution in
2D

The fundamental imaging equation for x ∈ [−X,X ], y ∈ [−Y, Y ] is given by

s = p⊗⊗f + n

=

X∫
−X

Y∫
−Y

p(x− x′, y − y′)f(x′, y′)dx′dy′ + n(x, y).

Here, p is the point spread function which describes the way in which infor-
mation on the object function f is ‘spread out’ as a result of recording the
data. It is a characteristic of the imaging instrument which represents the
response of the imaging system to a point source in the object plane and is
a deterministic function. The object function f describes the object that is
being imaged (its surface or internal structure, for example). The noise n is
a non-deterministic function which can at best be described in terms of some
statistical distribution. It is a stochastic function which is a consequence of all
of the external disturbances that occur during the recording process. The op-
eration ⊗⊗, which denotes 2D convolution, describes the blurring process that
occurs when an image is taken. This equation assumes that the imaging system
can be described by a stationary process in which the point spread function
remains the same over the image domain, i.e. it is spatially invariant. The
equation also assumes that the scattering process (e.g. light scattering from a
surface) that produces the image is dominated by single scattering events.

For a digital image, we consider a discrete 2D array of space or of space and
time and consider the discrete imaging equation given by

sij = pij ⊗⊗fij + nij =
∑
n

∑
m

pi−n,j−mfnm + nij

where ∑
n

≡
N∑

n=−N
and

∑
m

≡
M∑

m=−M
.

Here, the digital image is taken to of size 2N × 2M .

3.6 The Finite Impulse Response Filter

The Finite Impulse Response or FIR filter is that process defined by

snm =
∑
i

∑
j

pn−i,m−jfij

which is just a discrete convolution sum. In discrete terms, the FIR filter
pij performs the role of the point spread function in the imaging equation.
However, the filter has more general applications other than the role it plays
in describing the point spread function, and its computational aspects need to
be considered.
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3.6.1 The FIR Filter in 1D

In order to introduce the FIR filter, it is of value to first consider the operational
characteristic of this filter in 1D.

The FIR Convolution Filter

In 1D, the discrete convolution operation (the convolution sum) can be written
in the form (since the convolution process is commutative)

sj =
N∑

i=−N
pifj−i

where, in 1D (i.e. for signal processing), the function pi is the ‘impulse response
function’.

To illustration the nature of this process, consider the case when pi and fi
are vectors with just 3 elements, i.e.

p = (p−1, p0, p1)T ,

f = (f−1, f0, f1)T ,

and where
f−2 = 0, and f2 = 0.

Then,

for j = −1 :

s−1 =
1∑

i=−1

pif−1−i = p−1f0 + p0f−1 + p1f−2 = p−1f0 + p0f−1,

for j = 0 :

s0 =
1∑

i=−1

pif−i = p−1f1 + p0f0 + p1f−1,

for j = 1 :

s1 =
1∑

i=−1

pif1−i = p−1f2 + p0f1 + p1f0 = p0f1 + p1f0.

Clearly, this result can be written in matrix form as⎛⎝ s1
s0
s1

⎞⎠ =

⎛⎝ f0 f−1 0
f1 f0 f−1

0 f1 f0

⎞⎠⎛⎝ p−1

p0

p1

⎞⎠ .

Now consider the convolution sum defined as

sj =
N∑

i=−N
pj−ifi.
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With

p = (p−1, p0, p1)T , p−2 = p2 = 0

and

f = (f−1, f0, f1)T

we have

for j = −1 :

s−1 =
1∑

i=−1

p−1−ifi = p0f−1 + p−1f0 + p−2f1 = p0f−1 + p−1f0,

for j = 0 :

s0 =
1∑

i=−1

p−ifi = p1f−1 + p0f0 + p−1f1,

for j = 1 :

s1 =
1∑

i=−1

p1−ifi = p2f−1 + p1f0 + p0f1 = p1f0 + p0f1.

In matrix form, this result becomes⎛⎝ s−1

s0
s1

⎞⎠ =

⎛⎝ p0 p−1 0
p1 p0 p−1

0 p1 p0

⎞⎠⎛⎝ f−1

f0
f1

⎞⎠ .

Note that⎛⎝ p0 p−1 0
p1 p0 p−1

0 p1 p0

⎞⎠⎛⎝ f−1

f0
f1

⎞⎠ =

⎛⎝ f0 f−1 0
f1 f0 f−1

0 f1 f0

⎞⎠⎛⎝ p−1

p0

p1

⎞⎠
and in general that

N∑
i=−N

pifj−i =
N∑

i=−N
pj−ifi

which shows that the discrete convolution sum is commutative. However, the
latter definition of a convolution sum is better to work with because it ensures
that the matrix is filled with elements relating to the impulse response function
pi, i.e.

s = P f .
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Clearly, if f is an (2N + 1)th order vector and p contains just three elements
say, then the convolution sum can be written in the form

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

s−N
...
s−1

s0
s1
...
sN

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

. . .
. . .
p1 p0 p−1

p1 p0 p−1

p1 p0 p−1

. . .
. . .

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

f−N
...
f−1

f0
f1
...
fN

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

Here, P is a tridiagonal matrix. In general, the bandwidth of the matrix is
determined by the number of elements of the impulse response function.

Useful Visualization of the Discrete Convolution Process

Another way of interpreting the discrete convolution process which is useful
visually is in terms of the of two streams of numbers sliding along each other
where at each location in the stream, the appropriate numbers are multiplied
and the results added together. In terms of the matrix above we have:

...
f−4

f−3

f−2

f−1

f0
f1
f2
f3
f4
...

p1

p0 (= s−2)
p−1

p1

p0 (= s3)
p−1

In general, if

f =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

f−N
...
f−1

f0
f1
...
fN

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
and p =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

p−N
...
p−1

p0

p1

...
pN

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
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then
...
f−4

f−3

f−2

f−1

f0
f1
f2
f3
f4
...

...
p1

p0 (= s−1)
p−1

...

Note that the order of the elements of p is reversed with respect to f .

On Notation and Jargon

The vector p is sometimes called the kernel, a term taken from the ‘Kernel’
of an integral equation of the type

s(t) =
∫
K(t, τ)f(τ)dτ

where K is the Kernel. Visualizing a discrete convolution in the form discussed
above leads to p being referred to as a ‘window’ since we can think of this
process in terms of looking at the data fi through a window of coefficients pi.
As we slide the stream of coefficients pi along the data fi, we see the data in
the form of the output si which is the running weighted average of the original
data fi. Because the window moves over the data it is often referred to as a
‘moving window’.

The FIR Correlation Filter

The discrete correlation operation (the correlation sum) can be written in the
form

sj =
N∑

i=−N
pifi−j .

Compared with the convolution sum, the subscript on f is reversed (i.e. fj−i
becomes fi−j). Consider the case, when pi and fi are vectors with just 3
elements:

p = (p−1, p0, p1)T ,

f = (f−1, f0, f1)T , f−2 = f2 = 0.

For j = −1 :

s−1 =
1∑

i=−1

pifi+1 = p−1f0 + p0f1 + p1f2 = p−1f0 + p0f1,
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for j = 0 :

s0 =
1∑

i=−1

pifi = p−1f−1 + p0f0 + p1f1,

for j = 1 :

s1 =
1∑

i=−1

pifi−1 = p−1f−2 + p0f−1 + p1f0 = p0f−1 + p1f0.

This result can be written in matrix form as⎛⎝ s1
s0
s1

⎞⎠ =

⎛⎝ f0 f1 0
f−1 f0 f1
0 f−1 f0

⎞⎠⎛⎝ p−1

p0

p1

⎞⎠ .

Now consider the correlation sum defined as

sj =
N∑

i=−N
pi−jfi.

With
p = (p−1, p0, p1)T , p−2 = p2 = 0

and
f = (f−1, f0, f1)T

we have

for j = −1 :

s−1 =
1∑

i=−1

pi+1fi = p0f−1 + p1f0 + p2f1 = p0f−1 + p1f0,

for j = 0 :

s0 =
1∑

i=−1

pifi = p−1f−1 + p0f0 + p1f1,

for j = 1 :

s1 =
1∑

i=−1

pi−1fi = p−2f−1 + p−1f0 + p0f1 = p−1f0 + p0f1

and in matrix form, the result becomes⎛⎝ s−1

s0
s1

⎞⎠ =

⎛⎝ p0 p1 0
p−1 p0 p1

0 p−1 p0

⎞⎠⎛⎝ f−1

f0
f1

⎞⎠ .
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Note that⎛⎝ p0 p1 0
p−1 p0 p1

0 p−1 p0

⎞⎠⎛⎝ f−1

f0
f1

⎞⎠ �=
⎛⎝ f0 f1 0

f−1 f0 f1
0 f−1 f0

⎞⎠⎛⎝ p−1

p0

p1

⎞⎠
and in general

N∑
i=−N

pifi−j �=
N∑

i=−N
pi−jfi

illustrating that, unlike the convolution sum, the correlation sum is not com-
mutative. As with the discrete convolution sum, the latter definition of a
correlation sum is better to work with because it ensures that the matrix is
filled with elements relating to the impulse response function pi so that we can
write

s = P f .

If f is an (2N + 1)th order vector and p contains just three elements say, then
the correlation sum can be written in the form⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

s−N
...
s−1

s0
s1
...
sN

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

. . .
. . .
p−1 p0 p1

p−1 p0 p1

p−1 p0 p1

. . .
. . .

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

f−N
...
f−1

f0
f1
...
fN

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

Useful Visualization of the Discrete Correlation Process

A useful way of visualizing the discrete correlation process is in terms of the
two streams of numbers sliding along each other where, at each location in the
stream, the appropriate numbers are multiplied and the results added together.
In terms of the matrix equation above we have:

...
f−4

f−3

f−2

f−1

f0
f1
f2
f3
f4
...

p−1

p0 (= s−2)
p1

p−1

p0 (= s3)
p1
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In general, if

f =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

f−N
...
f−1

f0
f1
...
fN

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
and p =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

p−N
...
p−1

p0

p1

...
pN

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
then

...
f−4

f−3

f−2

f−1

f0
f1
f2
f3
f4
...

...
p−1

p0 (= s0)
p1

...

Note that, unlike convolution, the order of the elements of p is preserved with
respect to f . If the impulse response function is symmetric, then the convolution
and correlation sums are identical (for real data). The jargon associated with
the discrete convolution process is also used in the case of discrete correlation.
Correlation is also the principal basis for matched filtering which is of primary
importance in pattern recognition (i.e. matching a pattern in an image with
an existing template) - see Chapter 16.

3.6.2 Computational Methods

A problem arises in computing the FIR filter (convolution or correlation) at
the ends of the array fi. For example, if p is a 5× 1 kernel, then at the end of
the data stream we have

...
fN−3 p−2

fN−2 p−1

fN−1 p0

fN p1

p2
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In the computation of sN−1 there is no number associated with the data fi
with which to multiply p2. Similarly, in the computation of sN we have

...
fN−3

fN−2 p−2

fN−1 p−1

fN p0

p1

p2

Here, there are no numbers associated with the array fi with which to multiply
p1 and p2. The same situation occurs at the other end of the array fi. Hence, at
both ends of the data, the moving window ‘runs out’ of data for computing the
convolution sum. There are a number of ways of solving this problem including
zero padding, endpoint extension and wrapping.

Zero Padding

Zero padding assumes that the data is zero beyond the ends of the array, i.e.

f±N±1 = f±N±2 = f±N±2 = ... = 0.

This method was applied in the previous Sections to introduce the FIR filter.

Endpoint Extension

Endpoint extension assumes that the data beyond the ends of the array takes
on the value of the end points of the array, i.e. the extrapolated data is equal
in value to end points:

fN+1 = fN+2 = fN+3 = ... = fN

and
f−N−1 = f−N−2 = f−N−3 = ... = f−N .

This method is sometimes known as the ‘constant continuation method’.

Wrapping

The wrapping technique assumes that the array is wrapped back on itself so
that

fN+1 = f−N ; fN+2 = f−N+1; fN+3 = f−N+2; etc.

and
f−N−1 = fN ; f−N−2 = fN−1; f−N−3 = fN−2; etc.

These methods are used in different circumstances but the endpoint extension
technique is probably one of the most widely used.
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3.6.3 Moving Window Filters

The FIR filter is just one example of a moving window filter in which the
computational process is a convolution. There are a range of filters that can
be designed in which various processes are repeatedly applied to the windowed
data.

The moving average filter computes the average value of a set of samples
within a predetermined window.

Example For a 3× 1 window:

...
fi
fi+1

fi+2

fi+3

fi+4

...

si+1 = (fi + fi+1 + fi+2)/3
si+2 = (fi+1 + fi+2 + fi+3)/3
si+3 = (fi+2 + fi+3 + fi+4)/3

As the window moves over the data, the average of the samples ‘seen’ within the
window is computed; hence the term ‘moving average filter’. In mathematical
terms, we can express this type of processing in the form

si =
1
M

∑
j∈w(i)

fj

where w(i) is the window located at i over which the average of the data samples
is computed and M is the total number of samples in w. Note that the moving
average filter is just an FIR of the form

si =
N∑

i=−N
pj−ifi

with

p =
1
M

(1, 1, 1, ..., 1)

so that for a 3× 1 kernel

p =
1
3
(1, 1, 1)

and for a 5× 1 kernel

p =
1
5
(1, 1, 1, 1, 1).

This filter can be used to smooth a signal, a feature which can be taken to
include the reduction of noise. Note that this filter, is in effect, the convolution
of an input with a tophat function; the spectral response is therefore a sinc
function.
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3.6.4 The 2D FIR Filter

Computing the 2D FIR filter follows the same principles as those associated
with the 1D filter. To illustrate this, consider the 3× 3 kernel⎛⎝ p00 p01 p02

p10 p11 p12

p20 p21 p22

⎞⎠ −→
⎛⎝ p22 p21 p20

p12 p11 p10

p02 p01 p00

⎞⎠
where we have interchanged the rows and columns of the above matrix in order
to compute the convolution process in which the kernel is reversed (as in the
case of the 1D convolution process). Now consider the 8×8 digital image given
below: ⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

f00 f01 f02 f03 f04 f05 f06 f07
f10 f11 f12 f13 f14 f15 f16 f17
f20 f21 f22 f23 f24 f25 f26 f27
f30 f31 f32 f33 f34 f35 f36 f37
f40 f41 f42 f43 f44 f45 f46 f47
f50 f51 f52 f53 f54 f55 f56 f57
f60 f61 f62 f63 f64 f65 f66 f67
f70 f71 f72 f73 f74 f75 f76 f77

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
Suppose we wish to compute the output sij of this FIR filter at the position of
the element f11. Then

s11 = p22f00+p21f01+p20f02+p12f10+p11f11+p10f12+p02f20+p01f21+p00f22.

Now suppose we compute the output of this filter at the position of the element
f54, then

s54 = p22f43 + p21f44 + p20f45 + ...

The output at all other positions follows the same principle which involves
moving a 3× 3 window with elements pij over the image and at each position
computing the output by multiplying the adjacent element together and adding
the results together.

In the case of a 2D discrete correlation, when the FIR filter is defined as

snm =
∑
i

∑
j

pi−n,j−mfij

the kernel is not reversed but the process described above is applied in an
identical manner using the kernel⎛⎝ p00 p01 p02

p10 p11 p12

p20 p21 p22

⎞⎠
To compute the 2D FIR filter, padding is required at the edges of the image.

As with digital signals, one can apply techniques that include zero padding, end
point extension or wrapping, but zero padding is most common in the majority
of image processing systems. In the case of zero padding, the image is given a
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‘frame’ of zeros. With end point extension, the image is given a frame consisting
of data based on the first and last pixel value of each row and column; a block
of data is formed at the corners of the image based on the pixel value at each
corner.

Depending on the values of pij used, the output obtained from application
of an FIR filter (convolution or correlation) will contain positive, negative or
positive and negative values. For signal processing, in which the input to and
the output from, an FIR filter are usually expected to be bi-polar (i.e. a floating
point stream with positive and negative values), this is not an issue. However,
in terms of displaying a digital image of a data field with positive and negative
values, a choice needs to be made on how the data should be modified to
comply with the condition that fij ≥ 0 ∀ i, j, where fij is a matrix composed
of integers. There are several possibilities. The first is to ignore all the negative
components and set them to zero, normalize and apply 8-bit quantization for
example (see Introduction). The second is to rescale the data by adding the
value of the largest negative data point(s) to the data field and then normalize
and quantize in the usual way. The third option is to compute the absolute
values of the data, and then normalize and quantize in the usual way.

The issue of generating negative data values when applying processes to an
intensity image is quite common. In some cases, the condition fij ≥ 0 ∀ i, j
is used to pre-condition the data prior to an iteration when the output from
each iteration may contain negative data. In other cases, this condition is the
basis for the method of application, e.g. maximum entropy reconstruction.

3.6.5 The 2D FIR Filter and the 2D FFT

The implementation of the FIR filter directly is computationally advantageous
when the size of the kernel is small compared to the image. For a kernel of
size M ×M say and an image of size N × N where N > M , the number of
multiplications are or the order of N2 ×M2. When M approaches N and the
number of multiplication approaches N4, it is computationally more efficient
to implement the FFT algoithm to perform the convolution operation (where
the number of multiplications is approximately N3 logN). To perform this
operation, the kernel is required to be zero padded. In other words, the kernel
is padded out with zeros (i.e. framed by zeros) until the size of the array
is equal to the size of the image to which the convolution operation is to be
applied.

3.7 Origin of the Imaging Equation

The convolution process is fundamental to both general methods of processing
a digital image but also in terms of the physical models we use to describe the
way in which images are formed.

By studying the ‘physics’ of an imaging system and using appropriate ap-
proximations and geometries, one can formulate the imaging equation

s = p⊗⊗f + n
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directly. This approach provides a mathematical description of the point spread
function and the object function in terms of fundamental physical parameters,
which is required in order to understand the information that an image conveys
and hence the most appropriate processing methods that should be applied.
The mathematical apparatus required for undertaking this task is the basis
for the chapters that follow which look at the use of the Green function for
determining a scattered wavefield and discuss the field equations and wave
equations used to model electromagnetic and acoustic imaging systems. This
principle is illustrated in Figure 3.1.

Figure 3.1: Schematic diagram illustrating the principles of modelling an imag-
ing system by deriving the imaging equation from the field equations: From
the field equations we derive an inhomogeneous wave equation. Using the
Green function together with appropriate boundary condition, we derive an
integral equation. From this integral equation, given the geometry of the imag-
ing system and certain approximations (primarily the single scattering or Born
approximation) we derive the imaging equation with expressions for the point
spread function and the object function in terms of the system parameters and
field variables, respectively.
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3.8 Summary of Important Results

The 2D discrete Fourier transform pair

fpq =
1
N2

∑
n

∑
m

Fnm exp(i2πnp/N) exp(i2πmq/N),

Fnm =
∑
p

∑
q

fpq exp(−i2πnp/N) exp(−i2πmq/N).

Principle of the (base-2) FFT

DFT of N-point array
= DFT of even components + Wm

N × DFT of odd components.

Bit reversal

Reversal of the binary number representation of the position of an element in
an array which is used to reorder the data before application of the principle
above.

2D DFT

The 2D DFT of an array fnm can be generated by computing the 1D DFT of
all the rows and then all the columns (or visa versa).

1D FFT C function

void FFT1D(float a[ ], float b[ ], int n, int sign)

where a and b are the real and imaginary parts respectively, n is the array size
(an integer power of 2) and sign is a switch to control the computation of the
forward DFT (sign=-1) or inverse DFT (sign=1).

2D FFT C function

void FFT2D(float **a, float **b, int n, int sign)

The FIR filter

For an input digital image fij of size N ×N , the output of an FIR filter snm
is given by

snm = pnm ⊗⊗fnm =
N−1∑
i=0

N−1∑
j=0

pn−i,m−jfij
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for the convolution FIR filter and

snm =
N−1∑
i=0

N−1∑
j=0

pi−n,j−mfij

for the correlation FIR filter where pij is the FIR filter or kernel.

Zero padding

Computing the FIR filter by padding the input data with zeros.

End point extension

Computing the FIR filter by padding the input data with the values of those
elements at the edge of the image.

FIR filtering using an FFT

Computing the FIR filter by zero padding the kernel to the array size of the
input data and using the convolution theorem to employ an FFT.

Computational efficiency

For kernels that are small compared to the input, the FIR filter is efficiently
computed by direct application. For kernels whose arrays are of similar size
to the input data, the FIR is computed most efficiently by application of the
FFT.

Moving window filtering

Filtering or processing the input data by application of some process applied
to a sample of data over a window that moves over the input data one element
at a time.
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Chapter 4

Field and Wave Equations

This Chapter is concerned with the equations used to describe the fields that
are measured in an imaging system and their relationship with the material
variables with which these fields interact. The field equations determine the
physical characteristics and behaviour of a particular type of field. Two types
of fields are important in imaging: the electromagnetic field and the acoustic
field. The primary purpose of this Chapter is to introduce and discuss the
electromagnetic and acoustic field equations which are employed in later chap-
ters (Chapters 7 - 11 for example). From these results, we derive equations
(wave equations or equations of propagation) which describe the propagation
of different wavefields through various types of materials or media.

4.1 The Langevin Equation

The propagation of a wavefield can be modelled by various different wave equa-
tions depending upon the type of field, the supporting material and its physical
state. In general, however, if the supporting material is assumed to be a linear
medium, the scalar field u(r, t) obeys a partial integro-differential equation of
the form

D̂(1)u(r, t) = −s(r, t)
where

D̂(1) = D̂(0) + L̂

For a vector field u(r, t),

D̂(1)u(r, t) = −s(r, t)

This is the Langevin equation where D̂(0) and L̂ are linear operators: D̂(0)

is associated with the homogeneous portion of the medium, L̂ is, in general,
an integro-differential scattering operator, and s is a source function which
describes the emission of the incident field from a given source. The operator
L̂ models the interaction of the incident field with the differential or local

85
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scattering from material inhomogeneities. The operator D̂(1) has the general
form

D̂(1) ≡ D̂(1)

(
∇,∇2, ...; 1,

∂

∂t
,
∂2

∂t2
, ...

)
.

The source function s is, in general, given by

s = p⊗ f
where f is the probe field, p is a filter weighting function for the emitted field
and⊗ is taken to denote the convolution over three-dimensional space and time.
From this general formalism, one can consider a variety of scalar wave equations
governing the propagation of different types of wavefields supported by different
isotropic media. Two cases arise that are based on: (i) a rigorous derivation
of the Langevin from a set of fundamental field equations; (ii) the proposition
of a Langevin equation (a phenomenological model) whose characteristics (e.g.
the phase velocity) are confirmed experimentally.

The wave equation that is used to model a wavefield determines the under-
lying physical model for a (scatter) imaging system. This includes aspects such
as the resolution of the image (e.g. the wavelength or bandwidth of the probe),
the accuracy of the spatial mapping of the scatter generating parameters in an
image (e.g. the level of distortion as determined by the propagation model)
and image fuzziness. A fuzzy image is an image which, although attempting
to display a specific scatter generating parameter, fails to achieve this because
the scattered wavefield that has been measured and processed is corrupted by
some other interaction that has not been included on the original model (i.e.
the wave equation). Thus, all scatter-imaging techniques are highly model
dependent since the reconstruction algorithm is determined by the wave equa-
tion which characterizes the medium, in particular, the model associated with
the operator L̂. An inappropriate choice of wave equation results in image
fuzziness. Scatter imaging demands appropriate modelling of the scattering
dynamics, even if the computations are approximate. An inexact model will
lead to a fuzzy image whereas an approximate computation may lead to poor
resolution. Distortion, due to poor propagator models which are compounded
in the operator D̂(0) and its associated (free-space) Green function, is a com-
mon artifact in many imaging systems and poor physical modelling manifests
some form of distortion in most imaging methods. A general criticism, com-
mon to many imaging systems, is that emphasis is often placed on a significant
amount of computation for image reconstruction and processing. This can pro-
vide good, or at least, enhanced resolution but at the expense of developing
accurate models for the propagation of a wavefield through the medium that
generates the scattered field from which an image is generated and interpreted.
This leads to images which are well resolved but may be badly distorted and
fuzzy.

In this chapter, we start by considering Maxwell’s equations which provide a
unified theoretical framework for the interaction of electromagnetic waves with
matter. In the case of the macroscopic form of these equations, we introduce
material parameters such as the permittivity, the permeability and the con-
ductivity. The elastic and acoustic field equations are then studied. An elastic
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field describes the characteristics of ‘mechanical radiation’ when a material is
solid and incompressible. The acoustic field equations relate the acoustic field
variables (such as the pressure and velocity fields) to material parameters in-
cluding the density, compressibility and viscosity. These are used to model
the propagation and scattering of an acoustic wavefield when the material is
a compressible solid, liquid or gas. In each case, the material is taken to be
isotropic.

The field equations presented provide the fundamental basis for modelling
electromagnetic and acoustic imaging systems. In each case, it is shown how
the field equations can (under certain conditions and approximations) be de-
coupled to provide a governing inhomogeneous wave equation whose complexity
increases according to the number of material parameters that are considered.
General methods of solving such equations are then addressed in Part II using
the Green function method which is discussed in the following Chapter.

4.2 Maxwell’s Equations

We shall now consider Maxwell’s equations and study the electromagnetic wave-
fields and wave equations that arise from these equations. We first consider
these equations in their microscopic form (for individual charged particles) and
go on to consider the macroscopic form of Maxwell’s equations (for the case
when there are many particles per cubic wavelength) and briefly study the
propagation of monochromatic electromagnetic waves in homogeneous media.
The macroscopic form of Maxwell’s equations is then used to construct inho-
mogeneous wave equations in a form that are suitable for applying the solutions
methods discussed in Chapter 5.

The motions of electrons (and other charged particles) give rise to electric
and magnetic fields. These fields are described by the following equations which
are a complete mathematical descriptions for the physical laws quoted 1.

Coulomb’s law
∇ · e = 4πρ (4.1)

Faraday’s law of induction

∇× e = −1
c

∂b
∂t

(4.2)

No free magnetic monopoles exist

∇ · b = 0 (4.3)

Modified (by Maxwell) Ampere’s law

∇× b =
1
c

∂e
∂t

+
4π
c

j (4.4)

1For CGS units.
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where e is the electric field, b is the magnetic field, j is the current density,
ρ is the charge density and c � 3 × 108 ms−1 is the speed of light. These
microscopic Maxwell’s equations are used to predict the pointwise electric e and
magnetic b fields given the charge and current densities (ρ and j respectively).

By including a modification to Ampere’s law, i.e. the inclusion of the ‘dis-
placement current’ term ∂e/∂(ct), Maxwell (see Figure 4.1) provided a unifi-
cation of electricity and magnetism compounded in the equations above.

Figure 4.1: James Clerk Maxwell

4.2.1 Linearity of Maxwell’s Equations

Maxwell’s equations are linear because if

ρ1, j1 → e1, b1

and
ρ2, j2 → e2, b2

then
ρ1 + ρ2, j1 + j2 → e1 + e2, b1 + b2

where → means ‘produces’. This is because the operators ∇·, ∇× and the
time derivatives are all linear operators.

4.2.2 Solution to Maxwell’s Equations

The solution to these equations is based on exploiting the properties of vector
calculus and, in particular, identities involving the curl.
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Taking the curl of equation (4.2), we have

∇×∇× e = −1
c
∇× ∂b

∂t

and using the identity (see Chapter 1)

∇×∇× e = ∇(∇ · e)−∇2e

together with equations (4.1) and (4.4), we get

∇(4πρ)−∇2e = −1
c

∂

∂t

(
1
c

∂e
∂t

+
4π
c

j
)

or, after rearranging,

∇2e− 1
c2
∂2e
∂t2

= 4π∇ρ+
4π
c2
∂j
∂t
. (4.5)

Taking the curl of equation (4.4), using the identity above, equations (4.2) and
(4.3) and rearranging the result gives

∇2b− 1
c2
∂2b
∂t2

= −4π
c
∇× j. (4.6)

Equations (4.5) and (4.6) are inhomogeneous wave equations for e and b. These
equations are related or coupled to the vector field j (which is related to b).
If we define a region of free space where ρ = 0 and j = 0, then both e and b
satisfy the equation

∇2f − 1
c2
∂2f
∂t2

= 0.

This is the homogeneous wave equation. One possible solution of this equation
(in Cartesian coordinates) is

fx = p(z − ct); fy = 0, fz = 0

which describes a wave or distribution p moving along z at velocity c. Thus,
we have shown that in free space when

∇ · e = 0, ∇ · b = 0,

∇× e = −1
c

∂b
∂t
, ∇× b =

1
c

∂e
∂t
.

Maxwell’s equations describe the propagation of an electric and magnetic (or
electromagnetic field) in terms of a wave traveling at the speed of light (see front
cover). After developing the origins of the vector calculus, Maxwell derived the
wave equations for an electromagnetic field in a paper entitled A Dynamical
Theory of the Electromagnetic Field, first published in 1865 and arguably one
of the greatest intellectual achievements in the history of physics.



90 CHAPTER 4. FIELD AND WAVE EQUATIONS

4.3 General Solution to Maxwell’s (Micro-
scopic) Equations

The solution to Maxwell’s equation in free space is specific to the charge density
and current density being zero. We now investigate a method of solution for
the general case. The basic method of solving Maxwell’s equations (i.e. finding
e and b given ρ and j) involves the following:

(i) Expressing e and b in terms of two other fields U and A.

(ii) Obtaining two separate equations for U and A.

(iii) Solving these equations for U and A from which e and b can then be
computed.

For any vector field A
∇ · ∇ ×A = 0.

Hence, if we write
b = ∇×A (4.7)

then equation (4.3) remains unchanged. Equation (4.2) can then be written as

∇× e = −1
c

∂

∂t
∇×A

or

∇×
(
e +

1
c

∂A
∂t

)
= 0.

The field A is called the Magnetic Vector Potential. For any scalar field U

∇×∇U = 0

and thus equation (4.2) is satisfied if we write

±∇U = e +
1
c

∂A
∂t

or

e = −∇U − 1
c

∂A
∂t

(4.8)

where the minus sign is taken by convention. U is called the Electric Scalar
Potential.

Substituting equation (4.8) into Maxwell’s equation (4.1) gives

∇ ·
(
∇U +

1
c

∂A
∂t

)
= −4πρ

or

∇2U +
1
c

∂

∂t
∇ ·A = −4πρ. (4.9)
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Substituting equations (4.7) and (4.8) into Maxwell’s equation (4.4) gives

∇×∇×A +
1
c

∂

∂t

(
∇U +

1
c

∂A
∂t

)
=

4π
c

j

Finally, using the identity

∇×∇×A = ∇(∇ ·A)−∇2A

we can write

∇2A− 1
c2
∂2A
∂t2

−∇
(
∇ ·A +

1
c

∂U

∂t

)
= −4π

c
j (4.10)

If we could solve equations (4.9) and (4.10) above for U and A then e and b
could be computed. The problem here, is that equations (4.9) and (4.10) are
coupled. They can be decoupled by applying a technique known as a ‘gauge
transformation’ called the Lorentz gauge transformation, after Lorentz who
was among the first to consider it as an approach to solving these equations.
The idea is based on noting that equations (4.7) and (4.8) are unchanged if we
let

A→ A +∇X
and

U → U − 1
c

∂X

∂t

since ∇×∇X = 0. If this gauge function X is taken to satisfy the homogeneous
wave equation

∇2X − 1
c2
∂2X

∂t2
= 0

then
∇ ·A +

1
c

∂U

∂t
= 0 (4.11)

which is called the Lorentz condition. With equation (4.11), equations (4.9)
and (4.10) become

∇2U − 1
c2
∂2U

∂t2
= −4πρ (4.12)

and

∇2A− 1
c2
∂2A
∂t2

= −4π
c

j

respectively. These equations are non-coupled inhomogeneous wave equations
whose solution (using the Green function) will be considered in the following
Chapter.

4.4 The Macroscopic Maxwell’s Equations

The microscopic form of Maxwell’s equations tells us how individual charged
particles and electromagnetic fields interact. When there are many particles
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per cubic wavelength, the electromagnetic radiation ‘sees’ only a macroscopic
average. The medium is then described by its dielectric parameters: the per-
mittivity ε, the magnetic permeability μ and the conductivity σ.

Simple averaging of the quantities over a small volume V , e.g.

E(r, t) =
1
V

∫
V

e(r′, t)d3r′, B(r, t) =
1
V

∫
V

b(r′, t)d3r′

leads to the following, but not very useful, macroscopic form of Maxwell’s
equations:

∇ · E = 4πρmacro, ∇×E = −1
c

∂B
∂t
,

∇ ·B = 0, ∇×B =
1
c

∂E
∂t

+
4π
c

jmacro.

However, both ρmacro and jmacro can be split into two terms due to free and
bound electrons, i.e. we can write

ρmacro = ρbound + ρfree

and
jmacro = jbound + jfree.

By bound, we mean that the electrons are bound to the nucleus to constitute
an atom. If we introduce an electric polarization P of the medium to represent
the average dipole moment per unit volume given by

P = −Nes
where s is the average vector between bound electrons and nuclei, e is the charge
of an electron and N is the average number of electrons per unit volume, then
we can define the charge density of bound electrons as

ρbound = −∇ ·P
and the current density of bound electrons in the form

jbound =
∂P
∂t

+ c∇×M

where M is the magnetization vector. At optical frequencies, M = 0 (in the
absence of a strong applied magnetic field). Further, we now define the follow-
ing:

(i) the displacement vector given by D = E + 4πP;

(ii) the magnetic field strength given by H = B− 4πM.

From these definitions, we obtain a useful macroscopic form of Maxwell’s equa-
tions given by

∇ ·D = 4πρfree, ∇×E = −1
c

∂B
∂t

∇ ·B = 0, ∇×H =
1
c

∂D
∂t

+
4π
c

jfree

These equations are valid for media which are: (i) non-isotropic; (ii) inhomo-
geneous.



4.5. EM WAVES IN A HOMOGENEOUS MEDIUM 93

4.5 EM Waves in a Homogeneous Medium

Having derived Maxwell’s equation in macroscopic form, let us now consider
the type of solutions they provide for a specific case. Suppose we illuminate a
homogeneous material with monochromatic radiation of angular frequency ω.
What are the possible solutions of Maxwell’s equations in the material? i.e.
what waves exist in the medium?

4.5.1 Linear Medium

Assume that all the macroscopic vectors oscillate sinusoidally at angular fre-
quency ω (this is true, in general, only for high frequency, weak fields). Define
vector amplitudes E(r, t) = E(r, ω) exp(−iωt), B(r, t) = B(r, ω) exp(−iωt) and
so on2, so that Maxwell’s equations can be written in the form

∇ ·D = 4πρ (4.13)

∇×E =
iω

c
B (4.14)

∇ ·B = 0 (4.15)

∇×H = − iω
c

D +
4π
c

j (4.16)

where ρ and j are taken to be the free charge density and the free current
density, respectively.

Let
P = χeE, M = χmH and j = σE

where χe is the electric susceptibility, χm is the magnetic susceptibility and σ
is the conductivity, each of which may be tensors. Note that, in general, this
linearity may not occur and P could be of the form

P = χeE(1 + a1E + a2E2 + ...).

Here a1, a2, ... are constant coefficients which would introduce a nonlinear op-
tical material and nonlinear optical effects for example. Note that the effect of
introducing monochromatic radiation (i.e. a wavefield oscillating at one single
frequency ω) is to replace the time derivatives in Maxwell’s equations with iω
which significantly helps in the algebra required to derive the solutions that
follow.

4.5.2 Isotropic Medium

Let χe, χm and σ be complex scalars (not tensors) and let us define the follow-
ing:

(i) the dielectric constant given by ε = 1 + 4πχe;
2Strictly speaking E(r, ω), B(r, ω), etc. should be given a different notation but, in the

context of the equations that follow, it is implied that all dependent variables are functions
of r and ω and not r and t.
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(ii) the magnetic permeability given by μ = 1 + 4πχm

so that we can write
D = εE (4.17)

and
B = μH. (4.18)

Taking the divergence of equation (4.16) and noting that ∇ · ∇ ×H = 0, we
have

−iω∇ ·D + 4π∇ · j = 0.

Hence, from equation (4.13) we get

ρ = − i

ω
∇ · j = − i

ω
∇ · (σE). (4.19)

Substituting equations (4.17), (4.18) and (4.19) into Maxwell’s equation (4.13)-
(4.16), we obtain the following time independent equations for the complex
vector amplitudes:

∇ ·
(
ε+

i4πσ
ω

)
E = 0, ∇×E =

iωμ

c
H,

∇ · (μH) = 0, ∇×H = − iω
c

(
ε+

i4πσ
ω

)
E.

These equations apply to a linear, isotropic but inhomogeneous medium, i.e. ε,
μ and σ may be functions of position. Note that, for any vector X and scalar
a,

∇ · (aX) = ∇a ·X + a∇ ·X �= a∇ ·X, unless ∇a = 0.

4.5.3 Homogeneous Medium

For a homogeneous medium (where ε, μ and σ are constants, the previous set
of equations reduces to

∇ · E = 0, ∇×E =
iωμ

c
H,

∇ ·H = 0, ∇×H = − iω
c

(
ε+

i4πσ
ω

)
E.

4.5.4 Plane Wave Solutions

Let
E = E0 exp(ikc · r) H = H0 exp(ikc · r)

where kc is the complex wave number. Noting that

∇ · [C exp(ikc · r)] = ikc ·C exp(ikc · r)
and

∇× [C exp(ikc · r)] = ikc ×C exp(ikc · r)
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we obtain
kc ·E0 = 0, kc ·H0 = 0, (4.20)

kc ×E0 =
μω

c
H0, (4.21)

kc ×H0 = −ω
c

(
ε+

i4πσ
ω

)
E0. (4.22)

Equations (4.20) are referred to as the transversality conditions. Substituting
equation (4.21) into equation (4.22) yields

c

μω
kc × (kc ×E0) = −ω

c

(
ε+

i4πσ
ω

)
E0.

Using the identity

A× (B×C) = (A ·C)B− (A ·B)C

we can write this result in the form

(kc · E0)kc − (kc · kc)E0 = −μω
2

c2

(
ε+

i4πσ
ω

)
E0

or, since kc · E0 = 0, as
kc · kc = n2

ck
2
0 (4.23)

where
k0 =

2π
λ

=
ω

c
and

n2
c = εμ+

i4πμσ
ω

.

Here, nc is called the complex refractive index. Let

nc = n+ iκ

and
kc = k + ia

where n is the refractive index, κ is the extinction index, k is the wavenumber
and a is the attenuation vector. Substituting these expressions into equation
(4.23) and equating the real and imaginary parts gives

k2 − a2 = k2
0(n

2 − κ2) (4.24)

and
k · a = k2

0nκ. (4.25)

Thus, plane wave solutions exist of the form

E = E0 exp(ikc · r); H = H0 exp(ikc · r)
where, from equation (4.23),

| kc |= nck0,kc ·E0 = 0

and
H0 =

1
μk0

kc ×E0.
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4.5.5 Non-absorbing Media (κ = 0)

Equations (4.24) and (4.25) reduce to

k2 − a2 = n2k2
0 > 0

and
k · a = 0.

Two kinds of waves are possible:

(i) Real vector waves where a = 0, kc = k, | k |= k0n and

E(r, ω) = E0(r, ω) exp(ik · r)

or
E(r, t) = E0(r, t) exp[i(k · r− ωt)].

This is like a free space plane wave. The velocity of propagation is ω/k =
c/n and the wavelength, is λ/n. Both amplitude and phase are constant and
perpendicular to k, i.e. the wave is homogeneous. Since k · E0 = 0, the real
and imaginary parts of E are perpendicular to k. H is also perpendicular to k
and Re[E] is perpendicular to Re[H].

(ii) Complex wave vector where k is perpendicular to a so that k · a = 0 and

E(r, t) = E0(r, t) exp(−a · r) exp[i(k · r− ωt)]

which propagates along k with velocity ω/k < c/n. The amplitude is constant
over planes perpendicular to a and the phase is constant over planes perpen-
dicular to k - the wave is homogeneous.

4.5.6 Absorbing Media (κ > 0, k · a �= 0)

(i) Homogeneous wave: k and a are in the same direction,

k = nk0, a = κk0

and
E(r, t) = E0(r, ω) exp(−κk0 · r) exp[i(nk0 · r− ωt)].

This wave propagates along k0 at velocity c/n, with wavelength λ0/n and de-
creases exponentially along the direction of propagation. Both amplitude and
phase are constant and perpendicular to k0 and both E and H are perpendic-
ular to k0. Re[E] is not perpendicular to Re[H].

(ii) Inhomogeneous wave: k and a are not in the same direction. There is
constant phase perpendicular to k and constant amplitude perpendicular to a.
Since a has a component along k, there is a decrease of amplitude along k.
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4.6 EM Waves in an Inhomogeneous Medium

In the previous Section, we considered the EM waves that can occur in a homo-
geneous material that is linear and isotropic by studying Maxwell’s equations
for monochromatic propagation. We now turn our attention to developing
wave equations for a medium that is linear, isotropic and inhomogeneous using
Maxwell’s equations in the form3

∇ · εE = ρ, (4.26)

∇ · μH = 0, (4.27)

∇×E = −μ∂H
∂t

, (4.28)

and
∇×H = ε

∂E
∂t

+ j. (4.29)

where E(r, t) is the electric field (volts/metre), H(r, t) is the magnetic field
(amperes/metre), j(r, t) is the current density (amperes/metre2), ρ(r, t) is the
charge density (charge/metre2), ε(r) is the permittivity (farads/metre) and
μ(r) is the permeability (henries/metre). The values of ε and μ in a vacuum
(denoted by ε0 and μ0, respectively) are ε0 = 8.854× 10−12 farads/metre and
μ0 = 4π × 10−7 henries/metre. In electromagnetic imaging problems there
are two important physical models to consider, based on whether a material is
either conductive or non-conductive.

4.6.1 Conductive Materials

In this case, the medium is assumed to be a good conductor. A current is
induced which depends on the magnitude of the electric field and the conduc-
tivity σ (siemens/metre) of the material from which the object is composed.
The relationship between the electric field and the current density is given by
Ohm’s law

j = σE (4.30)

A good conductor is one where σ is large. By taking the divergence of equation
(4.29) and noting that

∇ · (∇×H) = 0

we obtain (using equation (4.26) for constant ε)

∂ρ

∂t
+
σ

ε
ρ = 0.

The solution to this equation is

ρ(t) = ρ0 exp(−σt/ε), where ρ0 = ρ(t = 0).

This solution shows that the charge density decays exponentially with time.
Typical values of ε are ∼ 10−12 − 10−10 farads/metre. Hence, provided σ is

3For SI units.
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not too small, the dissipation of charge is very rapid. It is therefore physically
reasonable to set the charge density to zero and, for problems involving the
interaction of electromagnetic waves with good conductors, equation (4.26)
can be approximated by

∇ · εE = 0 (4.31)

and equation (4.29) becomes

∇×H = ε
∂E
∂t

+ σE.

Note that, in imaging problems, the material may not necessarily be conduc-
tive throughout but may be a varying dielectric with distributed conductive
elements. For example, in imaging the surface of the Earth using microwave
radiation (Synthetic Aperture Radar), the electromagnetic scattering model is
based on a ‘ground truth’ that is predominantly a dielectric (dry ground sur-
faces and dry vegetation for example) with distributed conductors (e.g. metallic
objects on a dry ground surface, the sea and to a lesser extent rivers and lakes).

4.6.2 Non-conductive Dielectrics

In this case, it is assumed that the conductivity of the medium is negligible
and no current can flow, and hence

j = 0

and equation (4.29) is just

∇×H = ε
∂E
∂t
.

Also, if the conductivity is zero then ρ = ρ0 and if ρ0 = 0 then equation (4.26)
becomes

∇ · εE = 0.

The issues of when a material is a conductor or a dielectric is compounded
in the relative importance of the terms j and ε(∂E/∂t) in equation (4.29). Let
us consider the electric and magnetic fields to be monochromatic waves, so that
equation (4.29) becomes (with j = σE)

∇×H(r, ω) = (iωε+ σ)E(r, ω).

The relative importance of the terms on the right hand side of equation (4.29)
is then determined by the magnitudes of σ and ωε. If

σ

ωε
>> 1

then conduction currents dominate and the medium is a conductor. If
σ

ωε
<< 1

then displacement currents dominate and the material behaves as a dielectric.
When

σ

ωε
∼ 1
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the material is a quasi-conductor; some types of semi-conductor fall into this
category. Note that the ratio σ/ωε is frequency dependent and that, conse-
quently, a conductor at one frequency may be a dielectric at another. For ex-
ample, copper has a conductivity of 5.8×107 siemens/metre and ε � 9×10−12

farads/metre so that
σ

ωε
∼ 1018

ω
.

Up to a frequency of 1016Hz (the frequency of ultraviolet light) σ/ωε >> 1,
and copper is a conductor. At a frequency of 1020Hz (the frequency of X-rays),
however, σ/ωε << 1 and copper behaves as a dielectric. This is why X-rays
travel distances of many wavelengths in copper. An insulator has a conductivity
in the order of 10−15 siemens/metre and a permittivity of the order of 10−11

farads/metre, which gives
ωε

σ
∼ 104ω

so the conduction current is negligible at all frequencies.

4.6.3 EM Wave Equation

In many electromagnetic imaging systems, the field that is measured is the elec-
tric field. It is therefore appropriate to use a wave equation which describes the
behaviour of the electric field. This can be obtained by decoupling Maxwell’s
equations for the magnetic field H. Starting with equation (4.28), we divide
through by μ and take the curl of the resulting equation. This gives

∇×
(

1
μ
∇×E

)
= − ∂

∂t
∇×H.

By taking the derivative with respect to time t of equation (4.29) and using
Ohm’s law - equation (4.30) - we obtain

∂

∂t
(∇×H) = ε

∂2E
∂t2

+ σ
∂E
∂t
.

From the previous equation we can then write

∇×
(

1
μ
∇×E

)
= −ε∂

2E
∂t2

− σ∂E
∂t

(4.32)

Expanding the first term, multiplying through by μ and noting that

μ∇
(

1
μ

)
= −∇ lnμ

we get

∇×∇×E + εμ
∂2E
∂t2

+ σμ
∂E
∂t

= (∇ lnμ)×∇×E.

Expanding equation (4.31) we have

ε∇ · E + E · ∇ε = 0
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or
∇ ·E = −E · ∇ ln ε.

Hence, using the vector identity

∇×∇×E = −∇2E +∇(∇ ·E)

we obtain the following wave equation for the electric field

∇2E− εμ∂
2E
∂t2

− σμ∂E
∂t

= −∇(E · ∇ ln ε)− (∇ lnμ)×∇×E.

This equation is inhomogeneous in ε, μ and σ. Solutions to this equation
provide information on the behaviour of the electric field in a fluctuating con-
ductive dielectric environment. In electromagnetic imaging problems, interest
focuses on the behaviour of the scattered EM wavefield generated by varia-
tions in the material parameters ε, μ and σ. In this context, ε, μ and σ are
sometimes referred to as the electromagnetic scatter generating parameters. In
electromagnetic imaging, the problem is to reconstruct these parameters by
measuring certain properties of the scattered electric field. This is a three pa-
rameter inverse problem which requires us to first solve for the electric field E
given ε, μ and σ.

4.6.4 Inhomogeneous EM Wave Equations

In order to solve the wave equation derived in the last section using the most
appropriate analytical methods for imaging science (i.e. Green function solu-
tions which are discussed in the following Chapter), it must be re-cast in the
form of the Langevin equation

(∇2 + k2)E = −L̂E

where L̂ is an inhomogeneous differential operator. Starting with equation
(4.32), by adding

ε0
∂2E
∂t2

− 1
μ0
∇×∇×E

to both sides of this equation and re-arranging, we can write

∇×∇×E + ε0μ0
∂2E
∂t2

= −ε0μ0γε
∂2E
∂t2

− μ0σ
∂E
∂t

+∇× (γμ∇×E)

where
γε =

ε− ε0
ε0

and γμ =
μ− μ0

μ
.

We can then use the result (valid for ρ ∼ 0)

∇×∇×E = −∇2E +∇(∇ ·E)

= −∇2E−∇(E · ∇ ln ε)
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so that the above wave equation can be written as

∇2E− ε0μ0
∂E
∂t2

= μ0ε0γε
∂2E
∂t2

+ μ0σ
∂E
∂t
−∇(E · ∇ ln ε)−∇× (γμ∇×E).

Finally, introducing the Fourier transform

E(r, t) =
1
2π

∞∫
−∞

Ẽ(r, ω) exp(iωt)dω,

we can write the above wave equation in the time independent form

(∇2 + k2)Ẽ = −k2γεẼ + ikz0σẼ−∇(Ẽ · ∇ ln ε)−∇× (γμ∇× Ẽ)

where

k =
ω

c0
, c0 =

1√
ε0μ0

and z0 = μ0c0.

The parameter z0 is the free space wave impedance and is approximately equal
to 376.6 ohms. The constant c0 is the velocity at which electromagnetic waves
propagate in a perfect vacuum. In electromagnetic imaging, the fundamental
problem is to obtain images of the parameters γε, γμ and the conductivity σ.

4.7 Elastic Field Equations

The propagation and scattering of acoustic radiation in a non-compressible
solid is characterized by the elastic field equations. For a stationary isotropic
material, the governing equation of motion for an elastic field is given by

ρ
∂2s
∂t2

= ∇ ·T

where s(r, t) is the displacement vector (metres), ρ(r) is the material density
(mass per unit volume) and T(r, t) is the material stress tensor (force per unit
volume). The material stress tensor is determined by two parameters known
as the first and second elastic Lamé parameters (α and β, respectively), whose
dimensions are force×time/volume, and is given by

T(r, t) = α(r)I∇ · s(r, t) + β(r)[∇s(r, t) + s(r, t)∇]

where I (= x̂x̂ + ŷŷ + ẑẑ) is the unit dyad and

[∇s + s∇] = ∇s +∇s†

where ∇s† denotes the transposition of the dyadic field ∇s.
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4.8 Inhomogeneous Elastic Wave Equation

Consider an inhomogeneous elastic material embedded in a homogeneous
medium with material constants ρ0, α0 and β0. By adding

ρ0
∂2s
∂t2

−∇ · [α0I∇ · s + β0(∇s + s∇)]

to both sides of the equation

ρ
∂2s
∂t2

= ∇ · [αI∇ · s + β(∇s + s∇)]

and using the results

∇2s = ∇(∇ · s)−∇×∇× s, ∇s + s∇ = 2∇s + I×∇× s and ∇ · I ≡ ∇
we obtain

(1 + γρ)
1
c2L

∂2s
∂t2

=
(
∇∇ ·+∇γα∇ · −c

2
R

c2L
∇×∇×

)
s +∇ · [γβ(∇s + s∇)]

where γα, γβ and γρ are functions of the elastic field defined by

γα(r) =
α(r) − α0

α0 + 2β0
, γβ(r) =

β(r)− β0

α0 + 2β0
and γρ(r) =

ρ(r) − ρ0

ρ0

and the constants cL and cR are the longitudinal and rotational wave speeds
respectively, given by

c2L =
α0 + 2β0

ρ0
and c2R =

β0

ρ0
, cL > cR.

The displacement vector s consists of both longitudinal and rotational compo-
nents. We can write this vector in terms of two potentials u and w as

s = ∇u+∇×w.

Here, u is the longitudinal displacement potential for which ∇×∇u = 0. The
first term is the longitudinal or compression wave and the second term describes
the shear wave. In general, an elastic wavefield is composed of both compression
and shear waves. In order to simplify the problem and work with a single-
component wave equation, we consider the case when the shear component is
negligible. In an imaging system in which the shear component is not measured,
this is a reasonable assumption. However, this case assumes that mode coupling
between the compression and shear waves, which can affect the shear wave
component that is measured, is negligible. This is a reasonable assumption
when the elastic material is weakly inhomogeneous. Thus, substituting the
equation s = ∇u into the above equation for s, we have(

∇2 − 1
c2L

∂2

∂t2

)
∇u = ∇(γα∇2u) + 2∇ · (γβ∇∇u) +

γρ
cL

∂2

∂t2
∇u.
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Applying the divergence operator to each term, then gives(
∇2 − 1

c2L

∂2

∂t2

)
e = (γα + 2γβ)∇∇2u+ 2∇(γα + 2γβ) · ∇∇2u

+∇2γα∇2u+
1
c2L

∂2

∂t2
∇ · γρ∇u+∇∇γβ : ∇∇u

where
e(r, t) = ∇2u(r, t)

and : denotes the tensor product. The wavefield e is the elastic dilatation. The
quantitative imaging problem in this case is, on the basis of this elastic wave
equation, is to obtain a reconstruction of the parameters γρ, γα and γβ from
measurements of the field e(r, t). As with the electromagnetic case, this is a
three parameter problem. Finally, introducing the Fourier transforms

e(r, t) =

∞∫
−∞

E(r, ω) exp(−iωt)dt

and

u(r, t) =

∞∫
−∞

U(r, ω) exp(−iωt)dt,

we arrive at the inhomogeneous wave equation(
∇2 +

ω2

c2L

)
E = (γα + 2γβ)∇2∇2U + 2∇(γα + 2γβ) · ∇∇2U

+∇2γα∇2U +
ω2

c2L
∇ · γρ∇U +∇∇γβ : ∇∇U.

4.9 Acoustic Field Equations

The acoustic field equations are obtained by linearizing the hydrodynamic equa-
tions of motion and may be written in the form

∇ · v = κ
∂p

∂t
(4.33)

∇p = ρ
∂v
∂t
−∇ ·T (4.34)

where v(r, t) is the velocity field (length/time), p(r, t) is the pressure field
(force/area), T(r, t) is the material stress tensor (force/volume), ρ(r) is the
density (mass/volume) and κ(r) is the compressibility (area/force). Com-
pared with the elastic field equation, we now have another material param-
eter, namely, the compressibility. It is assumed that the material to which
these equations comply is adiabatic. The first equation comes from the law of



104 CHAPTER 4. FIELD AND WAVE EQUATIONS

conservation of mass and the second equation is a consequence of the law of
conservation of momentum. For compressional waves alone, the material stress
tensor is given by

T = Iα∇ · v + 2β∇v

where v is taken to be given by ∇u, u being the longitudinal velocity potential.
The parameters α and β are related to the bulk ζ and shear η viscosities of a
material by the equations

α = ζ − 2
3
η

and
β = η

When the viscosity is zero (i.e. when ζ = η = 0) we are left with the following
acoustic field equations:

∇ · v = κ
∂p

∂t
(4.35)

∇p = ρ
∂v
∂t

(4.36)

As in previous cases, it is assumed that ρ, κ, α and β are both isotropic and
time invariant.

4.9.1 Acoustic Wave Equation

By decoupling the field equations (4.35) and (4.36) for v, a scalar wave equation
for the pressure p can be obtained. This is accomplished by dividing equation
(4.36) by ρ and taking the divergence of each term, giving

∂

∂t
∇ · v = ∇ ·

(
1
ρ
∇p

)
Differentiating equation (4.35) with respect to time t then gives

∂

∂t
∇ · v = κ

∂2p

∂t2
.

Hence, we can write

∇ ·
(

1
ρ
∇p

)
− κ∂

2p

∂t2
= 0 (4.37)

or, after expanding the first term,

∇2p− κρ∂
2p

∂t2
= ∇ ln ρ · ∇p.

This wave equation is based on a physical model where it is assumed that the
propagation and scattering of acoustic waves is only due to variations in the
compressibility and density. When fluctuations in the bulk and shear viscosities
are present, an additional source of scattering occurs. In this case the appro-
priate wave equation is obtained by decoupling equations (4.33) and (4.34) for
p, giving

∇
(

1
κ
∇ · v

)
= ρ

∂2v
∂t2

− ∂

∂t
[∇(α∇ · v) + 2∇ · (β∇v)] . (4.38)
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4.9.2 Inhomogeneous Acoustic Wave Equations

As with electromagnetic problems, in acoustic imaging, we need to develop
inhomogeneous wave equations of the form

(∇2 + k2)u = −L̂u

or
(∇2 + k2)u = −L̂u

depending on whether we need to solve for the pressure wavefield p or the
velocity wavefield v, respectively.

Non-viscous Medium

Consider the case when the viscosity of the material is zero. By adding

κ0
∂2p

∂t2
− 1
ρ0
∇ · ∇p

to both sides of equation (4.37), we can write

∇2p− 1
c20

∂2p

∂t2
= γκ

1
c20

∂2p

∂t2
+∇ · (γρ∇p)

where
γκ =

κ− κ0

κ0
, γρ =

ρ− ρ0

ρ
and c0 =

1√
ρ0κ0

.

Here, c0 is the velocity at which acoustic waves propagate in a homogeneous
material with a density ρ0 and compressibility κ0. If we then introduce the
Fourier transform

p(r, t) =
1
2π

∞∫
−∞

P (r, ω) exp(iωt)dt

then the above wave equation becomes

(∇2 + k2)P = −k2γκP +∇ · (γρ∇P )

where k = ω/c0. The inverse scattering problem posed by this equation involves
reconstructing γκ and γρ by measuring appropriate properties of the scattered
pressure field. This is a two parameter reconstruction problem.

Viscous Medium

The problem becomes a little more complicated when we consider an inhomo-
geneous viscous material. In this case, by adding

∂

∂t
[∇(α0∇ · v) + 2∇ · (β0∇v)] − ρ0

∂2v
∂t2

−∇
(

1
κ0
∇ · v

)
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to both sides of equation (4.38) and noting that for compression waves only

∇(∇ · v) = ∇2v

since v = ∇u and ∇×∇u = 0, we obtain the wave equation(
1 + τ0

∂

∂t

)
∇2v − 1

c20

∂2v
∂t2

= γρ
1
c20

∂2v
∂t2

+∇(γκ∇ · v)

−τ ∂
∂t

(
∇(γα∇ · v) + 2∇ · (γβ∇v)

)
(4.39)

where
γκ =

κ− κ0

κ
, γρ =

ρ− ρ0

ρ0
, γα =

α− α0

α0 + 2β0

γβ =
β − β0

α0 + 2β0
, c0 =

1√
ρ0κ0

and τ0 = κ0(α0 + 2β0).

The parameter τ0 is known as the relaxation time and may be written in the
form

τ0 =
α0 + 2β0

ρ0c20

and the quantity

α0 + 2β0 = ζ0 +
4
3
η0

is the compressional viscosity. Introducing the Fourier transform

v(r, t) =
1
2π

∞∫
−∞

V(r, ω) exp(iωt)dt,

equation (4.39) can be written as

(1 + iωτ)∇2V + k2V = −k2γρV +∇(γκ∇ ·V)

−iωτ [∇(γλ∇ ·V) + 2∇ · (γβ∇V)].

If we then use the relationship

ωτ = k�

where � is the relaxation length (= τ/c0) and divide through by 1 + ik�, we
obtain

(∇2 + ξ2)V = −ξ2γρV +
1

1 + ik�
∇(γκ∇ ·V)

− ik�

1 + ik�
[∇(γλ∇ ·V) + 2∇ · (γβ∇V)]

where
ξ =

k√
1 + ik�

.
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Finally, we can obtain a scalar wave equation by substituting V for ∇u and
taking the divergence of each term to obtain

(∇2 + ξ2)U = −L̂u

where

L̂u = ξ2∇ · (γρ∇u)− 1
1 + ik�

∇2(γκ∇2u)

+
ik�

1 + ik�

(
∇2(γα∇2u) + 2∇ · [∇ · (γβ∇∇u)]

)
and

U = ∇2u.

The field U is the acoustic dilatation. It represents the fractional change in the
volume of a material due to the disturbance of an acoustic wave. The imaging
problem posed by the wave equation above involves finding inverse solutions
for the four acoustic scatter generating parameters γρ, γκ, γα and γβ. This is a
four parameter reconstruction problem.

Any spatial or temporal inhomogeneity in the acoustic properties of a
medium will scatter acoustic radiation. Thus, fluctuations in the density, com-
pressibility, shear and bulk viscosity will produce scattering of different direc-
tional behaviours and can therefore, in principle, be characterized by their own
directional scattering properties. A small density fluctuation (with regard to
the wavelength of the field) within an otherwise homogeneous medium will
exhibit a differential displacement amplitude when exposed to the oscillatory
forces within an acoustic field. This motion is essentially equivalent to an oscil-
lating particle in an otherwise stationary medium. Hence, a density fluctuation
is basically a dipole source of sound emission (or scattering), exhibiting a non-
isotropic directivity pattern with an intensity that depends on a differential
force, i.e. the acoustic pressure gradient ∇p.

A fluctuation in compressibility will expand and contract quite differently
to its surroundings when exposed to an acoustic field and is equivalent to a pul-
sating object within an otherwise stationary medium. Thus, a compressibility
fluctuation is essentially a monopole source of sound emission which gives rise
to isotropic scattering. This isotropic directivity pattern has an intensity de-
pendence related to the acceleration of the source boundaries by the acoustic
pressure, and is thus determined by the second time derivative ∂2p/∂t2.

An additional source of acoustic scattering occurs with any variation in the
viscosity of the medium which is a measure of the absorption of a wave by the
medium. A small fluctuation in the viscosity produces a local change in the
amplitude of the wavefront of a passing acoustic disturbance. This is equivalent
to a small vibrating membrane within an otherwise stationary medium. Thus,
a viscosity fluctuation represents a sound source having a relatively complicated
directivity pattern (multi-pole scattering) but predominantly along the forward
and backward directions of the acoustic wave vector with an intensity related
to the vibrational velocity.
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4.10 Discussion

This Chapter has been concerned with investigating the field equations for the
electromagnetic, elastic and acoustic fields. In each case, it has been shown how
these equations can be reduced or decoupled to provide a linear inhomogeneous
scalar wave equation (a Langevin equation) of the form

(∇2 + k2)u(r, k) = −L̂u

where L̂ is an inhomogeneous linear differential operator which involves the
‘scatter generating parameter’ sets (γε, γμ, σ) for the electromagnetic case
(where the material may be composed of ‘good conductors’), (γρ, γα, γβ) for
the elastic case and (γρ, γκ, γα, γβ) for the case of an acoustic field. The differ-
ence between the last two cases is determined by whether or not the material is
compressible. Note that, in the case of acoustics, the field equations are a result
of linearizing the hydrodynamic equations of motion whereas, in electromag-
netism, the field equations are linear. Thus in acoustics, it is possible to incur a
number of nonlinear effects that are not considered here. In electromagnetism,
nonlinear behaviour can occur as a result of the polarization vector having a
nonlinear relationship with the electric field vector. Also note that the wave
equations derived here for the elastic and acoustic fields assume that the shear
wave component is negligible. This is not always the case, particularly when
elastic wavefields propagate through solids (seismic waves for example). The
wave equations derived here are the result of trying to find a balance between
developing a physical model that is relatively complete but ‘simple’ enough for
the ‘forward problem’ (solving for the wavefield u given L̂) and the ‘inverse
problem’ (solving for the material parameter sets given u) to become tractable
using the analytical methods discussed in the following chapter - such is the
nature of physics!

4.11 Summary of Important Results

The Langevin equation

D̂(1)u(r, t) = −s(r, t)
where

D̂(1) = D̂(0) + L̂

D(0) is the homogeneous differential operator and L̂ is the inhomogeneous op-
erator.

Maxwell’s (microscopic) equations in CGS units

∇ · e = ρ

∇ · b = 0

∇× e = −1
c

∂b
∂t
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∇× b =
1
c

∂e
∂t

+
j
c

where e(r, t) is the (microscopic) electric field generated by a point charge,
b(r, t) is the (microscopic) magnetic field, ρ(r, t) is the charge density, j(r, t) is
the current density and c is the speed of light.

Maxwell’s (macroscopic) equations in SI units

∇ · εE = ρ

∇ · μH = 0

∇×E = −μ∂H
∂t

∇×H = ε
∂E
∂t

+ j

where E(r, t) is the (macroscopic) electric field (volts/metre), H(r, t) is the
(macroscopic) magnetic field (amperes/metre), j(r, t) is the current density
(amperes/metre2), ρ(r, t) is the charge density (charge/metre2), ε(r) is the
permittivity (farads/metre) and μ(r) is the permeability (henries/metre).

Ohm’s law
j = σE

where σ is the conductivity in siemens/metre.

Charge decay rate
ρ(t) = ρ0 exp(−σt/ε)

Elastic field equation

ρ
∂2s
∂t2

= ∇ ·T

where s(r, t) is the displacement vector (metres), ρ(r) is the material density
(mass per unit volume) and T(r, t) is the material stress tensor (force per unit
volume).

Acoustic field equations

∇ · v = κ
∂p

∂t

∇p = ρ
∂v
∂t
−∇ ·T

where v(r, t) is the velocity field (length/time), p(r, t) is the pressure field
(force/area), T(r, t) is the material stress tensor (force/volume), ρ(r) is the
density (mass/volume) and κ(r) is the compressibility (area/force).
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Inhomogeneous wave equation for EM waves in a conductive dielectric

(∇2 + k2)Ẽ = −L̂Ẽ

where
L̂Ẽ = k2γεẼ− ikz0σẼ +∇(E · ∇ ln ε) +∇× (γμ∇× Ẽ);

γε =
ε− ε0
ε0

, γμ =
μ− μ0

μ

Ẽ(r, ω) - Electric field (Fourier transform of)

ε - Permittivity

μ - Permeability

σ - Conductivity

Inhomogeneous wave equation for a compressional elastic wavefield in a
non-compressible solid (

∇2 +
ω2

c2L

)
E = L̂U

where
L̂U = (γα + 2γβ)∇2∇2U + 2∇(γα + 2γβ) · ∇∇2U

+∇2γα∇2U +
ω2

c2L
∇ · γρ∇U +∇∇γβ : ∇∇U,

γρ =
ρ− ρ0

ρ0
, γα =

λ− λ0

λ0 + 2μ0
and γβ =

μ− μ0

λ0 + 2μ0
.

e(r, ω) = ∇2u(r, ω) - elastic dilatation (Fourier transform of)

ρ - Density

α, β - First and second Lamé parameters, respectively

Inhomogeneous wave equation for an acoustic pressure field propagating
in a non-viscous compressible medium

(∇2 + k2)P = −L̂P

where
L̂P = k2γκP −∇ · (γρ∇P ),

γκ =
κ− κ0

κ0
, γρ =

ρ− ρ0

ρ
.

p(r, ω) - Pressure field (Fourier transform of)

κ - Compressibility
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ρ - Density

Inhomogeneous wave equation for a compressional acoustic wavefield prop-
agating in a viscous compressible material

(∇2 + ξ2)U = −L̂u

where
L̂u = ξ2∇ · (γρ∇u)− 1

1 + ik�
∇2(γκ∇2u)

+
ik�

1 + ik�

(
∇2(γα∇2u) + 2∇ · [∇ · (∇γβ∇∇u)]

)
,

γκ =
κ− κ0

κ
, γρ =

ρ− ρ0

ρ0
,

γα =
α− α0

α0 + 2β0
, γβ =

β − β0

α0 + 2β0

and

ξ =
k√

1 + ik�
.

u(r, ω) - Longitudinal velocity potential (Fourier transform of)

U = ∇2u - Acoustic dilatation

κ - Compressibility

ρ - Density

α, β - First and second Lamé parameters, respectively

� - Relaxation length
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Chapter 5

Green Functions

5.1 Overview

Green functions1 are named after the mathematician and physicist George
Green born in Nottingham in 1793 who ‘invented’ the Green function in 1828.
This invention is developed in an essay entitled Mathematical Analysis to the
Theories of Electricity and Magnetism originally published in Nottingham in
1828 and reprinted by the George Green Memorial Committee to mark the
bicentenary of the birth of George Green in 1993 when he was finally given the
recognition he deserved.

Figure 5.1: George Green memorial stone in Westminster Abbey, London (left)
and Green’s windmill (right) in Sneinton (now a suburb of Nottingham), orig-
inally built by his father and restored in the 1970s.

1It has been a tradition for most authors to use the term Green’s functions rather than
Green functions. Here, we break with tradition and use the term Green function(s) in the
same way as authors traditionally refer to Bessel or Hankel functions, for example.

113
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The Green function is a powerful mathematical tool rather than a physical
concept and was successfully applied to classical electromagnetism and acous-
tics in the late Nineteenth Century. More recently, the Green function has been
the working tool of calculations in particle physics, condensed matter and solid
state physics, quantum mechanics and many other topics of applied mathe-
matics and mathematical physics. Just as the Green function revolutionized
classical field theory in the nineteenth century (hydrodynamics, electrostatics
and magnetism) so it revolutionized quantum field theory in the mid-Twentieth
Century through the introduction of quantum Green functions. This provided
the essential link between the theories of quantum electrodynamics in the 1940s
and 1950s and has played a major role in theoretical physics ever since. It is
interesting to note that the work of Richard Feynman in the 1950s which led to
the development of the Feynman diagram was based on the Green function. In
fact, the Feynman diagram can be considered to be a pictorial representation
of a Green function (a Green function associated with wave operators) - what
Feynman referred to as a ‘propagator’.

The Green function remains the single most powerful tool we have for solving
partial differential equations and hence for solving problems in theoretical and
mathematical physics in general (since most physical laws can be cast in terms
of differential equations - arguably Isaac Newton’s greatest legacy!). This tool
is all the more enigmatic in that the work of George Green was neglected for
nearly thirty years after his death in 1841. To this day no one knows what
he looked like (there are no paintings or photographs of him) or how and why
he developed his completely original ideas. His work was rediscovered and
popularized in the latter part of the Nineteenth Century primarily by William
Thomson (later Lord Kelvin).

George Green was the son of a prosperous Nottingham miller, also called
George Green, and spent most of his early life helping with the family business
which centred on a windmill originally built by his father and restored in the
1970s (see Figure 5.1). It is in this windmill that we may suppose he might
of have done much of his original work. Only in 1829, on the death of his
father, did he become wealthy enough to devote the remaining years of his
life to mathematics; at the age of forty, he enrolled as an undergraduate at
Cambridge University, England. However, his most influential work (Green
functions and Green’s theorems) was produced before he had the benefit (or
otherwise) of a university education.

Green functions are used mainly to solve certain types of linear inhomoge-
neous partial differential equations (although homogeneous partial differential
equations can also be solved using this approach). In principle, the Green func-
tion technique can be applied to any linear constant coefficient inhomogeneous
partial differential equation (scalar or vector) in any number of independent
variables, although in practice difficulties can arise in computing the Green
function analytically. In fact, Green functions provide more than just a ‘so-
lution’, for they transform a partial differential equation representation of a
physical problem into a integral equation representation of the same problem
which is entirely general and complete. The kernel of the integral equation is
composed (completely or partly) of the Green function associated with the par-
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tial differential equation. This is why Green function solutions are one of the
most powerful analytical tools we have for solving partial differential equations,
equations that arise in areas of physics such as electromagnetism (Maxwell’s
equations), wave mechanics (elastic wave equation), optics (Helmholtz equa-
tion), quantum mechanics (Schrödinger and Dirac equations), fluid dynamics
(fluid equations of motion), relativistic particle dynamics (Klein-Gordon equa-
tion) and general relativity (Einstein equations) to name but a few.

The following points provide the reader with a brief history of the essential
developments in (mathematical) physics since the early Nineteenth Century in
order to illustrate the way in which Green functions have come to play a central
role.

• Early 19th Century: Green function ‘invented’ in 1828, providing gen-
eral solutions to the Laplace and Poisson equations - equations which
represented the ‘best models’ for electricity and magnetism at this time.

• Mid 19th Century: Partial Differential Equations (PDEs) start to rule the
underlying models associated with physical problems leading to the me-
chanics and dynamics of a continuum supporting ‘fields’ (e.g. Maxwell’s
equations developed in the early 1860s).

• Late 19th Century: PDEs lead to classical field theory and Green func-
tions used for the first time to solve problems in classical field theory (hy-
drodynamics, electrostatics, magnetism, electromagnetism and optics).

• Early 20th Century: Early developments in ‘old’ quantum mechanics
based on discrete states of (microscopic) matter, the idea of a ‘quantum’
being originally proposed by Max Planck in 1901.

• 1920s - 1930s: Development of ‘new’ quantum mechanics, based on con-
ventional solutions to PDEs, e.g. Schrödinger and Dirac equations.

• 1940s - 1950s: Development of quantum field theory, a field theory based
on Green function solutions (i.e. quantum Green functions).

• 1950s -1960s: Development of quantum electrodynamics using Green
functions (Feynman diagrams) and the use of Green functions to describe
the many-body interactions of condensed matter physics.

• 1960s - 1970s: Unification of electromagnetism and the weak force based
on the use of Green functions to model intermediate vector bosons.

• 1970s - date: Development of string theory based on multi-dimensional
and multi-modal Green functions.

In high energy particle physics, Green functions have been and continue
to be used to model the interactions of elementary particles. The basic prin-
ciple is very similar to that of active image systems in which: (i) matter is
probed with high energy particle (typically proton) beams and the effect of
this interaction measured; (ii) from the measured data, a model is developed
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to interpret what type of interaction has occurred. Particle beam experiments
are based on two principal types: (i) ‘Beam-Dump’ experiments in which a
particle beam is ‘focused’ on to a ‘lump’ of matter (the basis of particle physics
since Rutherford’s work of 1910 to confirm the basic model for an atom); (ii)
‘Beam-Beam’ experiments in which two particle beams (travelling in opposite
directions) are ‘focused’ on to each other. Beam-Beam experiments were first
developed in the mid 1970s and led to the confirmation of intermediate vector
bosons and hence the validation of a unification theory for electromagnetic and
weak forces. These experiments were based on advances in technology which,
in effect, eliminated the need to solve the multiple scattering problem that had
been worked on extensively over the 1950s and 1960s using Green functions.

The use of Green functions for solving problems in engineering has accom-
panied their use and applications in high energy nuclear and mathematical
physics. In particular, Grenn functions have been used to solve inverse problems
with applications that include telecommunications, optics, astronomy, remote
sensing, seismic prospecting, non-destructive evaluation (acoustic and electro-
magnetic), Radar, Sonar, microscopy, etc. The governing principle is the same
in each case:

(i) Interrogate a material with a wavefield (electron, electromagnetic, acoustic).

(ii) Measure the way in which the wavefield interacts with the material.

(iii) Interpret the distribution and/or type of material from these measure-
ments, i.e. solve the inverse problem.

Considerable investment in intellectual labour associated with solving inverse
problems in imaging has occurred since the late 1970s. In England, and in
addition to other scientific journals and specialized conferences, this influenced
the introduction of a new journal by the Institute of Physics, namely, the
Journal of Inverse Problems which first appeared in 1984. With regard to the
application of Green functions, the inverse (scattering) problem is typically
based on first defining the (scattering) problem in terms of the solution to a
linear inhomogeneous PDE of the type2

D̂u(r, t) = L̂u(r, t)

where u is the wavefield (which is taken to include the scattered wavefield), D̂
is a homogeneous differential operator and L̂ is an inhomogeneous differential
operator. The forward scattering problem can then be defined as follows:

Given D̂ and L̂ compute u(r, t).

The inverse scattering problem is then defined as:

Given u(r, t) compute the inhomogeneous characteristics of L̂.

An appropriate Green function solution (if available) allows us to write (without
loss of generality)

u(r, t) = ÎL̂u(r, t)
2r is the multi-dimensional space vector and t denotes time.
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where Î is an integral operator that incorporates the Green function.
Inverse scattering problems are, in general, concerned with the inversion of

integral equations of this type. However, the technique is not limited to wave
equations alone, but can be applied to a wide range of inhomogeneous partial
differential equations including those associated with diffusion problems (the
diffusion equation), transport phenomena (the Föcker-Planck equation) and
static problems (e.g. the Poisson equation).

Why are Green functions relevant to imaging and image processing? It is
because light (and sound) obeys a wave equation and, by deriving a Green
function for this equation, we can calculate the response of an optical system
at a point of measurement (e.g. a photographic plate or charge couple device
camera) to a disturbance at some source (a laser or some illuminated object).
Further, many problems in image processing revolve around the recovery of
information that has been degraded or lost in the passage of a signal through
optical instruments. Green functions give us a very general way of thinking
about this process. If we have a good physical model for an imaging process,
then we have a better chance of extracting valuable information by reversing
the process.

5.2 Introduction to the Green Function

In this Chapter, we provide an introduction to the Green function method. The
material focuses attention on Green function solutions to the wave equation.
In addition to imaging theory, this reflects the role that the Green function has
played in quantum field theory and wave mechanics in general over the past 50
years. It is an area in which Green functions have and continue to play a central
part especially with regard to Green functions for the wave equation. However,
for completeness, we also consider Green function solutions to the diffusion
equation and the Poisson and Laplace equations. Here, we are concerned with
the use of ‘Free Space’ Green functions which provide a general solution in the
infinite domain or over a finite domain to which boundary conditions can then
be applied.

By way of a short introduction to help the reader understand the principle
of using Green functions we now consider two short examples. The first exam-
ple is based on considering point sources to generate a solution to an ordinary
differential equation and is based on a ‘qualitative analysis’. The second ex-
ample makes specific use of the delta function and its properties to develop a
solution which is based on a more systematic analysis - as used throughout this
Chapter.

Example 1: Consider the following inhomogeneous ordinary differential equa-
tion

D̂u(x) = f(x) (5.1)

where D̂ is a linear differential operator and f(x) is a given function (the source
term), the solution being required on the interval 0 ≤ x ≤ a where a is some
constant.
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Instead of considering f(x) as a continuous source function, let us approx-
imate it by a set of source functions f(ξ1), f(ξ2), ..., f(ξn) acting at the points
x = ξ1, x = ξ2, ..., x = ξn, all for x ∈ [0, a]. Now define the function g(x, ξi) to
be the solution to equation (5.1) due to a source acting at ξi. The solution due
to the single effect of this point source is given by g(x, ξi)f(ξi). The solution
for u(x) is then obtained by summing the results for all the n source terms
acting over the interval 0 ≤ x ≤ a, and takes the form

u(x) =
n∑
i=1

g(x, ξi)f(ξi).

As n becomes larger so that the number of point source functions f(ξi) in-
creases, a better and better approximation to f(x) is obtained. In the limit as
n → ∞, |ξi − ξi+1| → 0 ∀i and the summation in the equation above may be
replaced by an integral to give the required solution to equation (5.1) in the
form

u(x) =

a∫
0

g(x, ξ)f(ξ)dξ.

The function g(x, ξ) is called the Green function of the problem.
The Green function is usually denoted by g and G, but the notation changes

from author to author. They are usually written in the form g(x, ξ) (as in this
example), or g(| x− ξ |), or g(x | ξ) (as used throughout this Chapter).

Similar results to the one given above may be obtained for linear partial
differential equations. For example, the solution of the Poisson equation in two
dimensions, i.e.

∇2u(x, y) = f(x, y); x ∈ [0, a], y ∈ [0, b]

may be written as

u(x, y) =

a∫
0

b∫
0

g(x, y; ξ, η)f(ξ, η)dξdη

where g(x, y; ξ, η) is the Green function of the problem.
The approach to developing a Green function solution discussed in this

example is based on considering point sources to provide a set of elementary
results and then summing up the results to give the required solution. In
optics and acoustics, this principle is often referred to as Huygens’ principle. It
allows the optical or acoustic field generated by a given source to be computed
by considering the field generated from a single point on the source and then
summing up the field generated from a large collection of such points. In this
sense, the principle behind a Green function solution is effectively the same as
Huygens’ principle, i.e. find the solution to the problem for a single point and
then integrate over all such points.

A point source can be described by a delta function and the relationship
between the delta function and the Green function is fundamental. By way
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of a short introduction to the use of the delta function for solving partial
differential equations using Green functions, we consider the following example
which, in comparison with the example given above, provides a more complete
form of analysis to develop a Green function solution for the one-dimensional
inhomogeneous wave equation.

Example 2: Consider the inhomogeneous wave equation(
∂2

∂x2
+ k2

)
u(x, k) = f(x) (5.2)

where k (the wavenumber) is a constant and f(x) is the source term, the
solution being required over all space x ∈ (−∞,∞) subject to the conditions
that u and ∂u/∂x are zero at ±∞. This equation describes the behaviour of
‘steady waves’ (with constant wavelength λ = 2π/k) generated by a source
f(x). With reference to the Example 1, we are considering the case where

D̂ =
∂2

∂x2
+ k2.

Let us define the Green function as being the solution to equation (5.2)
when the source term is replaced by a point source or delta function at a point
x0 say, giving the equation(

∂2

∂x2
+ k2

)
g(x | x0, k) = δ(x − x0) (5.3)

where δ has the following fundamental property
∞∫

−∞
u(x)δ(x − x0)dx = u(x0).

Pre-multiplying equation (5.2) by g gives

g

(
∂2

∂x2
+ k2

)
u = gf

and pre-multiplying equation (5.3) by u gives

u

(
∂2

∂x2
+ k2

)
g = uδ(x− x0).

Subtracting the two results and integrating over all space, we obtain
∞∫

−∞

(
g
∂2u

∂x2
− u∂

2g

∂x2

)
dx =

∞∫
−∞

fgdx−
∞∫

−∞
uδ(x− x0)dx.

Using the generalized sampling property of the delta function given above and
rearranging the result, we obtain

u(x0, k) =

∞∫
−∞

fgdx−
∞∫

−∞

(
g
∂2u

∂x2
− u∂

2g

∂x2

)
dx.
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Evaluating the second integral on the right-hand side,

∞∫
−∞

(
g
∂2u

∂x2
− u∂

2g

∂x2

)
dx =

∞∫
−∞

[
∂

∂x

(
g
∂u

∂x

)
− ∂g

∂x

∂u

∂x
− ∂

∂x

(
u
∂g

∂x

)
+
∂u

∂x

∂g

∂x

]
dx

=

∞∫
−∞

∂

∂x

(
g
∂u

∂x

)
dx−

∞∫
−∞

∂

∂x

(
u
∂g

∂x

)
dx =

[
g
∂u

∂x

]∞
−∞

−
[
u
∂g

∂x

]∞
−∞

= 0

provided u and ∂u/∂x are zero at x = ±∞. With these conditions, we obtain
the Green function solution to equation (5.2.2) in the form

u(x0, k) =

∞∫
−∞

f(x)g(x | x0, k)dx.

Physically the Green function associated with wavefield problems, as in this
example, represents the way in which a wave propagates from one point in
space to another. For this reason, Grenn functions are sometimes referred to
as propagators. In this case, the Green function is a function of the ‘path
length’ between x and x0, irrespective of whether x > x0 or x < x0. The
path length is given by | x − x0 | and the Green function is a function of this
path length which is why, using the notation x | x0 ≡| x − x0 |, we write
g(x | x0). Note that the solution for u is a convolution (since x | x0 = x0 | x),
the convolution of the source function f(x) with the Green function g(| x |).
In general, we can consider the solution to an equation of the type

D̂u(x) = f(x)

to be given by
u(x) = g(| x |)⊗ f(x)

where ⊗ denotes the convolution operation and g is the solution to the equation

D̂u(x) = δ(x− x0).

Such a solution is of little value unless the Green function can be computed
and, in the following Section, this problem is addressed.

5.3 The Time Independent Wave Operator

In this Section, we shall concentrate on the computation of Green functions
for the time-independent wave equation in one-, two- and three-dimensions.
The solution is over all space and the Green function is not constrained to any
particular boundary conditions (except those at±∞). It is therefore referred to
as a free space Green function. Green functions of this type are used in a wide
range of physical problems related to the propagation and interaction of waves
with matter. They are one of the most important functions in mathematical
physics because of the way they allow partial differential equations that describe
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the interaction of wavefields with matter to be solved. Physically, these Green
functions represent the way in which a wave propagates from one point source
to another.

The type of equations that we are forced to consider with regard to the
‘physics’ of imaging systems, and the analytical techniques that have been
developed to cope with them, nearly always originate in some way from the
properties of the Green function that is used. A good understanding of these
functions is therefore required if the basic elements of imaging theory are to be
understood.

5.3.1 The One-dimensional Green Function

We start by reconsidering Example 2 given in the Section 5.2 which, through the
application of the sampling property of the delta function together with some
relatively simple analysis, demonstrated that the solution to the inhomogeneous
wave equation (

∂2

∂x2
+ k2

)
u(x, k) = f(x)

for constant k and x ∈ (−∞,∞) subject to the boundary conditions

u(x, k) |±∞= 0 and
[
∂

∂x
u(x, k)

]
±∞

= 0

is given by

u(x0, k) =

∞∫
−∞

f(x)g(x | x0, k)dx

where g is the Green function given by the solution to the equation(
∂2

∂x2
+ k2

)
g(x | x0, k) = −δ(x− x0) (5.4)

subject to g(x|x0, k)|±∞ = 0 and [∂g(x|x0, k)/∂x]±∞ = 0. We shall now discuss
the evaluation of the Green function for this case. Note that, here, the Green
function is defined for −δ on the right hand side instead of δ as used previously.
This is for convenience only in the computations that follow; it does not affect
the analysis but does reduces the number of negative signs that accompany the
calculation. For this reason, many authors define the Green function with −δ,
a definition which is used throughout the rest of this Chapter.

The solution for the Green function is based on employing the properties of
the Fourier transform. Writing X =| x − x0 |, we express g and δ as Fourier
transforms, i.e.

g(X, k) =
1
2π

∞∫
−∞

G(u, k) exp(iuX)du (5.5)

and

δ(X) =
1
2π

∞∫
−∞

exp(iuX)du.
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Substituting these expressions into equation (5.4) and differentiating gives

1
2π

∞∫
−∞

(−u2 + k2)G(u, k) exp(iuX)du = − 1
2π

∞∫
−∞

exp(iuX)du

from which it follows that

G(u, k) =
1

u2 − k2
.

Substituting this result back into equation (5.5), we obtain

g(X, k) =
1
2π

∞∫
−∞

exp(iuX)
u2 − k2

du =
1
2π

∞∫
−∞

exp(iuX)
(u − k)(u+ k)

du.

The problem is therefore reduced to that of evaluating the above integral. This
can be done using Cauchy’s integral formula,∮

C

f(z)dz = 2πi× (sum of the residues enclosed by C)

where C is the contour defining the path of integration. In order to evaluate the
integral explicitly using this formula, we must consider the singular nature or
poles of the integrand at z = −k and z = k. For now, let us consider a contour
which encloses both poles. The residue at z = k is given by exp(ikX)/(2k) and
at z = −k by − exp(−ikX)/(2k). Hence the Green function is given by

g(X, k) = 2πi
(

exp(ikX)
4πk

− exp(−ikX)
4πk

)
= − sin(kX)

k
.

This Green function represents the propagation of waves travelling away from
the point disturbance at x = x0, or ‘outgoing waves’, and also waves traveling
toward the point disturbance, or ‘incoming waves’. Since x and x0 are points
along a line, we can consider the result to be the sum of waves travelling to the
left of δ(x−x0) in which x < x0 and to the right of δ(x−x0) where x > x0. In
most applications it is convenient to consider the Green function for outgoing
or (more rarely) incoming waves, but not both. Here, the Green function for a
incoming waves is given by

g(x | x0, k) = − i

2k
exp(−ik | x− x0 |)

and for outgoing waves is

g(x | x0, k) =
i

2k
exp(ik | x− x0 |).
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5.3.2 The Two-dimensional Green Function

A Green function in two- and three-dimensions is synonymous with the source-
observer system illustrated in Figure 5.2. If the position of the source is denoted
by r0 and the position of the observer by r, then the Green function is written
as a function of | r− r0 | where in Cartesian coordinates,

| r− r0 |=
√

(x− x0)2 + (y − y0)2.

Figure 5.2: Source-observer geometry used to defined the Green function which
is a function of the ‘pathlength’ | r− r0 |.

When the functional dependence of the Green function is declared, instead
of writing g(| r − r0 |), which is messy, it is more convenient to write g(r, r0)
or g(r | r0). Here, the latter notation is used throughout, i.e.

g(r | r0) ≡ g(| r− r0 |).

In two dimensions, the same method can be used to obtain the (free space)
Green function as that used to solve the one-dimensional case, i.e. to solve the
equation

(∇2 + k2)g(r | r0, k) = −δ2(r− r0)

where
r = x̂x+ ŷy, r0 = x̂x0 + ŷy0,
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and

∇2 =
∂2

∂x2
+

∂2

∂y2
.

Note that
δ2(r− r0) ≡ δ(x− x0)δ(y − y0).

Also note that g is a function of the path length | r− r0 |. Writing R = r− r0

and using the same technique as before, namely the one used to derive an
integral representation of the one-dimensional Green function, we obtain

g(R, k) =
1

(2π)2

∞∫
−∞

exp(iu ·R)
u2 − k2

d2u.

In polar coordinates this result becomes

g(R, k) =
1

(2π)2

π∫
0

∞∫
−∞

exp(iuR cos θ)
u2 − k2

ududθ.

Integrating over u first and using Cauchy’s residue theorem, we have∮
C

z exp(izR cos θ)
(z + k)(z − k) dz = iπ exp(ikR cos θ)

where the contour of integration C has been chosen to enclose just one of the
poles at z = k. This provides an expression for the ‘outgoing’ Green function in
which the wave propagates away from the point disturbance at r0. A solution
for the pole at z = −k would provide a solution which represents a wavefield
converging on r0. The ‘outgoing’ Green function is usually the most physically
significant result (except for an implosion for example). Thus, the (outgoing)
Green function can be written in the form

g(R, k) =
i

4π

π∫
0

exp(ikR cos θ)dθ.

Writing the Green function in this form allows us to employ the result

H
(1)
0 (kR) =

1
π

π∫
0

exp(ikR cos θ)dθ

where H(1)
0 is the Hankel function (of the first kind and of order zero). This

is the integral representation for the Hankel transform and it can be used to
write the two-dimensional Green function as

g(r | r0, k) =
i

4
H

(1)
0 (k | r− r0 |).
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A useful form of this function can be obtained by employing the asymptotic
approximation

H
(1)
0 (kR) �

√
2
π

exp(−iπ/4)
exp(−ikR)√

kR

which is valid when
kR >> 1.

This condition means that the wavelength of the wave originating from r0 is
very small compared with the distance between r0 and r, which is physically
reasonable in many cases, and so a two-dimensional Green function of the
following form can be used:

g(r | r0, k) =
1√
8π

exp(iπ/4)
exp(ik | r− r0 |)√

k | r− r0 |
, k | r− r0 |>> 1.

5.3.3 The Three-dimensional Green Function

In three dimensions, the free space Green function is given by the solution to
the equation

(�2 + k2)g(r | r0, k) = −δ3(r− r0)

where
r = x̂x+ ŷy + ẑz, r0 = x̂x0 + ŷy0 + ẑz0,

δ3(r− r0) ≡ δ(x − x0)δ(y − y0)δ(z − z0)
and

�2 =
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2
.

In this case, following the same procedure as before,

g(R, k) =
1

(2π)3

∞∫
−∞

exp(iu ·R)
u2 − k2

d3u.

It proves convenient to evaluate this integral using spherical polar coordinates
which gives

g(R, k) =
1

(2π)3

2π∫
0

dφ

1∫
−1

d(cos θ)

∞∫
0

exp(iuR cos θ)u2

u2 − k2
du.

Integrating over φ and θ we then obtain

g(R, k) =
1

2π2R

∞∫
0

u sin(uR)
u2 − k2

du.

Since the integrand is an even function we may extend the integration to include
the interval −∞ to 0 by writing

g(R, k) =
1

4π2R

∞∫
−∞

u sin(uR)
u2 − k2

du.
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This is done in anticipation of using Cauchy’s residue theorem to evaluate the
contour integral ∮

C

z exp(izR)
(z − k)(z + k)

dz

which has simple poles at z = ±k. Choosing the contour C to enclose the pole
at z = k (the ‘outgoing’ case), the residue is

exp(ikR)
2

and, thus, the ‘outgoing’ Green becomes

g(r | r0, k) =
1

4π | r− r0 | exp(ik | r− r0 |).

We see that in one-, two- and three dimensions the Green function is sin-
gular. The precise nature of the singularity changes from one dimension to
the next. In three dimensions, the Green function is spatially singular when
r = r0, whereas in one dimension the singularity occurs when k = 0. In two di-
mensions, a singularity occurs when either k = 0 or r = r0. An example of this
two-dimensional Green function is observed when a small stone falls vertically
into a large pool of water. The symmetrical expanding wavefront represents
the result of applying a short impulse to the surface of the water. What is
observed is a good approximation to a Hankel function! There are relatively
few examples in nature which are characteristic of an ingoing Green function
since most impulses produce wavefields that propagate away from the point of
disturbance. However, there are some notable exceptions, one of which relates
to the development of the Plutonium fission bomb first used in 1945. Figure
5.3 shows the implosion generated by the ‘device’ shown in Figure 5.4 (left),
the effect being illustrated in Figure 5.4 (right). This was the first plutonium
fission bomb designed using conventional charges to compress a plutonium core
at the centre of the device.

Figure 5.3: Example of a 3D ‘ingoing’ Green function (recorded in the plane
over five time frames) - an implosion.
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Figure 5.4: The device (above left) used to produce the implosion shown in
Figure 5.3 and its ‘output’ (above right), i.e. a 3D ‘outgoing’ Green function -
an explosion.

In addition to the derivation of the 3D Green function given above, the
function can be derived in a more physically intuitive way. Imagine a point
source of radiation with a wavenumber k which gives out a stream of waves,
moving radially outwards. If the distance from the source is R, then we should
expect to be able to describe the wavefield (taken to be of unit amplitude) as
exp(ikR) in the usual way. However, in 3D, the intensity of the field should
obey an inverse square law and vary as 1/R2. But the intensity of the wavefield
is proportional to the modulus squared and so the amplitude of the wavefield
must be proportional to 1/R and hence the amplitude of the field should be

exp(ikR)
R

which is the correct form of the Green function, up to a numerical factor (i.e.
1/4π). Finally, if the source is taken to be at r0 and the field is measured at r,
then R must be given in terms of the ‘path length’ | r− r0 |.

5.3.4 Asymptotic Forms

Although the Green functions for the inhomogeneous wave equation can be
computed in the manner already discussed, their algebraic form is not always
easy, useful or indeed necessary to work with. This is because the geometry
of many imaging systems justifies an approximation. For this reason, it is now
appropriate to consider the form of the Green function when the field generated
by a point source is moved away from that source, i.e. when the magnitude
of r0 becomes increasingly larger than the magnitude of r. There are two
approximations which are important in this respect which are often referred
to as the Fraunhofer and Fresnel approximations. These approximations are
usually associated with the applications of Green functions in optics (in which
both Fraunhofer and Fresnel undertook their original work) but are, in fact, of
general applicability.
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The Fraunhofer Approximation

In one-dimension, we note that

|x− x0| =
{
x0 − x, x0 > x;
x− x0, x > x0.

so that the Green function for a left-travelling wave for example can be written
as

g(x | x0, k) =
i

2k
exp(ikx0) exp(−ikx), x0 > x

and
g(x | x0, k) =

i

2k
exp(−ikx0) exp(ikx), x0 < x

for a right-travelling wave.
In two- and three-dimensions, we expand the path length between the source

and observer in terms of their respective coordinates. To start with, let us look
at the result in two dimensions. In this case,

| r− r0 |=
√
r20 + r2 − 2r · r0 = r0

(
1− 2r · r0

r20
+
r2

r20

) 1
2

where r = x̂x+ ŷy, r =| r | and r0 =| r0 |. A binomial expansion of this result
gives

| r− r0 |= r0

(
1− r · r0

r20
+

r2

2r20
+ ...

)
(5.6)

which under the condition
r

r0
<< 1

reduces to
| r− r0 |� r0 − n̂0 · r

where
n̂0 =

r0

r0
.

It is sufficient to let
1

| r− r0 | �
1
r0
, r0 >> r

because small changes in n̂·r compared to r0 are not significant in an expression
of this type. However, with the exponential function

exp[ik(r0 − n̂0 · r)]

a relatively small change in the value of r0 − n̂0 · r compared to r0 will still
cause this term to oscillate rapidly, particularly if the value of k is large. We
therefore write

exp(ik | r− r0 |) = exp(ikr0) exp(−ikn̂0 · r).
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The asymptotic form of the two dimensional Green function is then given by

g(r | r0, k) =
exp(iπ/4)√

8π
1√
kr0

exp(ikr0) exp(−ikn̂0 · r), kr0 >> 1.

In three dimensions, the result is (using exactly the same arguments as in the
two dimensional case)

g(r | r0, k) =
1

4πr0
exp(ikr0) exp(−ikn̂0 · r)

where
r = x̂x+ ŷy + ẑz.

When we observe the field described by a Green function at large distances
(i.e. the wavefield generated by a point source a long distance away), it behaves
like a plane wave exp(−ikn̂0 · r). Approximating the Green function in this
way provides a description for the wave in what is commonly referred to as the
far field or Fraunhofer zone (or plane). This approximation is often referred
to as the Fraunhofer approximation in physical optics. In this zone, the wave
front which reaches the observer is a plane wave front because, in effect, the
divergence of the field is so small. Observations of a field in this zone are said
to be in the Fourier plane because they lead to equations that involve a Fourier
transform as shall be shown later. This is the basis for Fraunhofer diffrac-
tion theory which is important in applications such as X-ray crystallography,
electromagnetic and acoustic imaging and, of course, modern optics.

The Fresnel Approximation

When the source is brought closer to the observer, the wavefront ceases to be a
plane wavefront. In this case, the Fraunhofer approximation is inadequate and
another approximation for the Green function must be used. This is known as
the Fresnel approximation and is based on incorporating the next term in the
binomial expansion of | r− r0 |, namely the quadratic term r2/2r20 in equation
(5.6). In this case, it is assumed that r2/r20 << 1 rather than r/r0 << 1 so
that all the terms in the binomial expansion of | r − r0 | that occur after the
quadratic term can be neglected. As before, | r − r0 |−1 is approximated by
1/r0 but the exponential term now possesses an additional feature, namely a
‘quadratic phase factor’. In this case, the two and three-dimensional Green
functions are given by

g(r | r0, k) =
exp(iπ/4)√

8π
exp(ikr0)√

kr0
exp(−ikn̂0 · r) exp(ir2/2r0), kr0 >> 1

and

g(r | r0, k) =
exp(ikr0)

4πr0
exp(−ikn̂0 · r) exp(ir2/2r0)

respectively. This type of approximation is used in the study of systems (op-
tical systems for example) in which the divergence of the field is a measurable
quantity. This is important in imaging systems such as Synthetic Aperture
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Radar, the application of Fresnel- or zone-plates for example, and Fresnel op-
tics in general. If the source is moved even closer to the observer then neither
the Fraunhofer nor the Fresnel approximations will apply. In such cases, it is
usually easier to retain the Green function in full rather than consider another
term in the binomial expansion of the path length. Analysis of a wavefield
that is produced when a non-asymptotic form of the Green function is used is
referred to as near field analysis. Thus, the Green function solution to two-
and three-dimensional wave type partial differential equations usually falls into
one of the three categories:

(i) near field analysis;

(ii) intermediate field (Fresnel zone) analysis;

(iii) far field (Fraunhofer zone of Fourier plane) analysis.

These ‘zones’ are characterized by the geometry of the ‘wavefront’ as illustrated
in Figure 5.6.

Figure 5.5: Characteristic wavefronts in the near, intermediate and far fields

In practice the far field approximation is much easier to use. This is be-
cause it leads to solutions that can be written in terms of a Fourier transform
which is a relatively easy transform to work with and invert. Using the Fres-
nel approximation leads to solutions which involve a class of integral known
as the Fresnel integral. The nonlinear behaviour of this integral, because of
the quadratic phase factor, makes it more difficult to evaluate compared with
the Fourier integral. There are relatively few applications in wavefield theory
which require a full near field analysis. This is fortunate, because near field
analysis presents some formidable analytical and computational problems.
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5.4 Wavefields Generated by Sources

Now that we have studied Green functions for the inhomogeneous time-
independent wave equation, in this Section we turn our attention to the more
general problem of developing a solution for the wavefield u(r, k) generated by
an arbitrary and time independent source function f(r). This study is a prelude
to the work discussed in the following Chapter which provides an introduction
to scattering theory in which the source function is not f(r) but f(r)u(r, k) or
k2f(r)u(r, k). Working in three dimensions, our aim is to solve

(∇2 + k2)u(r, k) = −f(r), r ∈ V
for u where V is the volume of the source function which is of compact support
(occupies a finite region of space V ) . Outside of this region, it is assumed that
the source function is zero. Note that we define the source term as −f rather
than +f . This is done so that there is consistency with the definition of the
Green function which is defined in terms of −δ by convention. We start by
writing the equation for a Green function, i.e.

(∇2 + k2)g(r | r0, k) = −δ3(r− r0).

If we now multiply both sides of the first equation by g and both sides of the
second equation by u, then by subtracting the two results we obtain

g∇2u− u∇2g = −gf + uδ3.

By integrating the last equation over all space, we can exploit the result∫ ∞

−∞
u(r, k)δ3(r − r0)d3r = u(r0, k)

and therefore write (noting that r ∈ V )

u(r0, k) =
∫
V

f(r)g(r | r0, k)d3r

+
∫
V

[g(r | r0, k)∇2u(r, k)− u(r, k)∇2g(r | r0, k)]d3r.

We see that this expression is not a ‘proper solution’ for u because u occurs on
both the left and right hand sides. What we require is a solution for u in terms
of known quantities on the right hand side of the above equation. To this end,
we can simplify the second term by using Green theorem (see Chapter 1)∫

V

(g∇2u− u∇2g)d3r =
∮
S

(g∇u− u∇g) · n̂d2r.

Here, S defines the surface enclosing the volume V and d2r is an element of this
surface. The unit vector n̂ points out of the surface and is perpendicular to the
surface element d2r. Green’s theorem is a special but important consequence
of Gauss’ divergence theorem as shown below.
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5.4.1 Green’s Theorem

Let u and g be any two piecewise continuous functions of position and S be
a surface enclosing a volume V . If u, g and their first and second partial
derivatives are single-valued and continuous within and on S, then∫

V

(g∇2u− u∇2g)d3r =
∮
S

(
g
∂u

∂n̂
− u ∂g

∂n̂

)
d2r

where ∂/∂n̂ is a partial derivative in the outward normal direction on S.
The proof of this result stems from noting that since

∇ · (g∇u) = ∇g · ∇u+ g∇2u

and
∇ · (u∇g) = ∇u · ∇g + u∇2g

then ∫
V

∇ · (g∇u− u∇g)d3r =
∫
V

(g∇2u− u∇2g)d3r.

But from Gauss’ theorem ∫
V

∇ ·Fd3r =
∮
S

F · n̂d2r

for any vector F. Hence,∫
V

∇ · (g∇2u− u∇2g)d3r =
∮
S

(g∇u− u∇g) · n̂d2r

which provides the basic result, a result that can be written in an alternative
(and arguably more elegant way) by defining

∇u · n̂ ≡ ∂u

∂n̂

and
∇g · n̂ ≡ ∂g

∂n̂
so that we can write∫

V

(g∇2u− u∇2g)d3r =
∮
S

(
g
∂u

∂n̂
− u ∂g

∂n̂

)
d2r.

This theorem provides a solution for the wavefield u at r0 of the form

u(r0, k) =
∫
V

fgd3r +
∮
S

(g∇u− u∇g) · n̂d2r.
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We have shown that using a Green function and Green’s theorem, the solution
to the equation

(∇2 + k2)u(r, k) = −f(r), r ∈ V
is

u(r0, k) =
∮
S

(g∇u− u∇g) · n̂d2r +
∫
V

fgd3r.

It is important to appreciate that this solution is entirely general with no
conditions being placed on any of the analysis at any point other than that
u are g are piecewise continuous. However, as discussed before, it is not a
‘solution’ as such because the field variable u occurs on both the left hand
and right hand sides of the ‘solution’. It is therefore better to consider this
‘solution’ to be a transform from a partial differential equation to an integral
equation. From a mathematical point of view, a Green function is that function
which allows any linear inhomogeneous PDE to be transformed to an integral
equation. Finally, note that the homogeneous equation

(∇2 + k2)u(r, k) = 0

also has a Green function solution given by

u(r0, k) =
∮
S

(g∇u− u∇g) · n̂d2r.

5.4.2 Dirichlet and Neumann Boundary Conditions

Although Green’s theorem allows us to simplify the solution for the wavefield u
derived in the previous Section (in the sense that we now have a two dimensional
instead of a three dimensional integral), we still do not have a proper solution
for u since this field variable is present on both the left and right hand sides of
the integral equation for u. However, as a result of applying Green’s theorem,
we now only need to specify u and ∇u on the surface S. Therefore, if we know,
a priori, the behaviour of u and ∇u on S, then we can compute u at any other
observation point r0. Clearly, a statement about the nature of u and ∇u on S
is required, i.e. the boundary conditions need to be specified.

In general, the type of conditions that may be applied depends on the
applications that are involved. In practice, two types of boundary conditions
are commonly considered. The first one, known as the homogeneous Dirichlet
boundary condition, states that u is zero on S. The second one, known as the
homogeneous Neumann condition, states that ∇u is zero on S. Taken together,
these boundary conditions are known as the ‘homogeneous conditions’ and are
referred to as such throughout the rest of this work. When u satisfies these
homogeneous boundary conditions, the solution for u is given by

u(r0, k) =
∫
V

f(r)g(r | r0, k)d3r
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because ∮
S

(g∇u− u∇g) · n̂d2r = 0.

If the wavefield generated by a source is measured a long distance away from
the location of the source, then by using the far field approximation for the
Green function, we have

u(n̂0, k) =
1

4πr0
exp(ikr0)

∫
V

f(r) exp(−ikn̂0 · r)d3r.

In this case, the field generated by the source is given by the 3D Fourier trans-
form of the source function f . By measuring the radiation pattern produced
by a source denoted by f(r), the structure or spatial distribution of the source
may be recovered through a processes of inversion. In the far field, the source
function can be recovered by taking the inverse Fourier transform of the ob-
served field. This is an example of a solution to a class of problem known as
an inverse source problem.

5.4.3 The Reciprocity Theorem

The reciprocity theorem applies to all Green functions associated with any
linear partial differential equation. Here, the theorem will be proved for the
3D Green function corresponding to the time-independent wave equation. The
theorem states that if r1 and r2 are two points in space then

g(r1 | r2, k) = g(r2 | r1, k).

The proof of this result which can be obtained by considering the equations

(∇2 + k2)g(r | r1, k) = −δ3(r− r1), r ∈ V

and
(∇2 + k2)g(r | r2, k) = −δ3(r− r2) r ∈ V.

Then
g(r | r2, k)∇2g(r | r1, k)− g(r | r1, k)∇2g(r | r2, k)

= g(r | r1, k)δ3(r− r2)− g(r | r2, k)δ3(r− r1)

Integrating over V and using Green’s theorem, for homogeneous boundary
conditions on the surface of V , we have∫

V

g(r | r1, k)δ3(r− r2)d3r−
∫
V

g(r | r2, k)δ3(r− r1)d3r = 0

or
g(r2 | r1, k) = g(r1 | r2, k).

Thus, the propagation of a wave from a point at r1 to r2 is the same as the
propagation of a wave from a point at r2 to r1.
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5.4.4 Coherent and Incoherent Sources

Suppose we have an extended one-dimensional source function f(x) and are
able to measure the resulting wavefield generated by the emission of radiation
from just two points xA and xB of this source which are at a distance XA and
XB from the detector, respectively. The amplitudes of the wave field generated
from points xA and xB will be given by f(xA)g(XA, k) and f(xB)g(XB, k),
respectively, where g is the Green function. The total amplitude u will be the
sum of these two wavefields, i.e.

u = A+B

where A = f(xA)g(XA, k) and B = f(xB)g(XB, k). The intensity is then given
by

I = uu∗ =| A |2 + | B |2 +AB∗ +BA∗.

This is the situation when the source function describes a coherent source where
the phase difference between A and B is a constant.

If the source is incoherent, then the phases associated with different parts
of the source do not maintain a constant relationship. We can model this by
placing a random phase function φ(x) = exp[iθ(x)] in the expression for the
source term, i.e.

f(x) → φ(x)f(x).

The statistical properties of φ reflect the fact that wave phases at different
points are uncorrelated, so that, for x �= x′,

〈φ(x)φ∗(x′)〉 = 0

where

〈φ(x)〉 ≡
∫
φ(x)dx∫
dx

and where we note that the magnitude of any single phase factor is 1, i.e

〈φ(x)φ∗(x)〉 = 1

so that

〈φ(x)φ∗(x′)〉 =

{
1, x = x′;
0, x �= x′.

With this phase function in place, we can calculate the amplitude as before:

u = Aφ(xA) +Bφ(xB).

The intensity is then given by

I = uu∗ =| A |2 + | B |2 +AB∗φ(xA)φ∗(xB) +BA∗φ(xB)φ∗(xA)

Because φ varies rapidly with time as the relative phases at different parts
of the source change, the quantity that determines the observed intensity is
the average intensity. Taking the average intensity of the last equation and
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using the fact that the phases at different parts of the source are uncorrelated,
eliminates the last two terms and leaves us with

〈I〉 =| A |2 + | B |2

This is the same as the expression for the intensity of the coherent source,
except for the last two cross-terms. These terms represent interference which
average to zero in the incoherent case, leaving the sum of the intensities coming
from the two different parts of the source.

Now consider the Green function solution to the inhomogeneous Helmholtz
equation for the source function f(x) given by

u(x, k) =
∫
g(x | x0, k)f(x0)dx0

With coherent illumination, the phase relationships between different parts of
the source are maintained and the intensity is

I(x, k) =| u(x, k) |2=
∫
dx1g(x | x1, k)f(x1)

∫
dx2g

∗(x | x2, k)f∗(x2)

=
∫ ∫

dx1dx2g(x | x1, k)g∗(x | x2, k)f(x1)f∗(x2).

When the source is incoherent we introduce a random phase function φ(x′) with
statistical properties that reflect the fact that the phases at different points of
the source are uncorrelated, or

〈φ(x1)φ∗(x2)〉 = δ(x1 − x2) =

{
∞, x1 = x2;
0, x1 �= x2.

Upon calculating the average intensity 〈I(x)〉, the expression simplifies as before
to

〈I(x, k)〉 =
∫ ∫

dx1dx2g(x | x1, k)g∗(x | x2, k)f(x1)f∗(x2)〈φ(x1)φ∗(x2)〉

=
∫ ∫

dx1dx2g(x | x1, k)g∗(x | x2, k)f(x1)f∗(x2)δ(x1 − x2)

=
∫
dx1 | g(x | x1, k) |2| f(x1) |2 .

Now, | f(x) |2 is the intensity If (x) of the source function f(x) and thus we
have

〈I(x, k)〉 =| g(| x |, k) |2 ⊗If (x)
where ⊗ denotes the one-dimensional convolution operation.

For homogeneous boundary conditions, in two- or three-dimensions, we can
derive the same basic result. Thus, for a 2D coherent source,

I(r, k) =| g(| r |, k)⊗⊗f(r) |2



5.5. TIME DEPENDENT GREEN FUNCTION 137

and for a 2D incoherent source,

〈I(r, k)〉 =| g(| r |, k) |2 ⊗⊗ If (r).

The results above are basic to imaging science in terms of the differentiation
between a coherent and an incoherent image in which g is replaced by the
so-called point spread function p. Thus, if p is the amplitude point spread
function for a coherent system, then the intensity point spread function for the
corresponding incoherent system is | p |2.

5.5 Time Dependent Green Function

We have studied the Green function for the time independent wave equation.
In this section, we investigate the time dependent case.

As an introduction to the time dependent Green function, let us first con-
sider the case where we have a homogeneous source of scalar radiation a long
distance away from an observer at r. Here, the scalar wavefield u as a function
of space r and time t is described by the homogeneous equation(

∇2 +
1
c2
∂2

∂t2

)
U(r, t) = 0 (5.7)

where c is the velocity at which the radiation propagates from the source to
the observer.

5.5.1 Continuous Wave Sources

Let us assume that the source emits a continuous wave which oscillates at a
fixed frequency. In this case, the source is known as a continuous wave (CW) or
monochromatic source as used earlier in Chapter 4 to investigate the solutions
to the Maxwell’s equations for a linear isotropic medium. The time dependence
of the radiation field is described by the complex exponential function exp(iωt)
where ω is the angular frequency (= 2π×frequency). The time dependent field
u can therefore be written as

U(r, t) = u(r, ω) exp(iωt).

Substituting this expression into equation (5.7), we obtain

(∇2 + k2)u(r, k) = 0

where
k =

ω

c
=

2π
λ

is the wavenumber and λ is the wavelength of the wavefield described by the
function u. A solution to this equation is

u(r, k) = exp(ik · r)
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where the wave vector
k = kn̂

and it is assumed that the amplitude of the wave is 1. The unit vector n̂ points
along the direction in which the wave propagates. Thus, the solution for the
time dependent wavefield becomes

U(r, t) = exp[i(k · r + ωt)].

However, an equally valid solution is

U(r, t) = exp[i(k · r− ωt)]
which is obtained by using the exp(−iωt) to describe the time dependence of
the wavefield. If we imagine a straight line along the direction of n̂, then the
above solution for u represents a wave propagating to the right whereas the
former solution represents a wave propagating to the left. The function

exp[i(k · r + ωt)]

is said to describe a left-travelling wave and

exp[i(k · r− ωt)]

is referred to as a right-travelling wave.

5.5.2 Pulsed Sources

If the source emits a pulse of radiation, then the time dependent field can be
written as the sum of many different monochromatic waves of different frequen-
cies ω and amplitudes u. If we consider all the different possible frequencies
that can exist between −∞ and ∞, then U(r, t) can be written in terms of its
Fourier transform as,

U(r, t) =
1
2π

∞∫
−∞

u(r, ω) exp(iωt)dω.

Here, U describes a left-travelling pulse. We can also consider a solution for a
right-travelling pulse by writing

U(r, t) =
1
2π

∞∫
−∞

u(r, ω) exp(−iωt)dω.

Substituting either of these expressions into equation (5.7), we obtain

(∇2 + k2)u(r, k) = 0

where now k is not fixed but can take on any value between −∞ and ∞. The
time dependent field produced by a left-travelling pulse is therefore

U(r, t) =
1
2π

∞∫
−∞

exp[i(k · r + ωt)]dω.
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If we now write k·r as kn̂·r = (ω/c)n̂·r, then, using the integral representation
for a delta function, the above equation can be written as

U(r, t) =
1
2π

∞∫
−∞

exp[iω(t+ n̂ · r/c)]dω = δ(t+ n̂ · r/c).

The expression for a right-travelling pulse is given by

U(r, t) = δ(t− n̂ · r/c).

5.6 Time Dependent Sources

Let us now turn our attention to the case when an inhomogeneous time varying
source produces a wavefield U(r, t). To describe this situation mathematically,
we introduce a source function f(r, t). The wavefield is then governed by the
inhomogeneous equation(

∇2 +
1
c2

∂2

∂t2

)
U(r, t) = −f(r, t).

Now, as in the time dependent case, the Green function describes the wavefield
that is produced when the source function is a delta function, i.e. when

S(r, t) = δn(r− r0)δ(t− t0)
where n = 1, 2 or 3 depending on whether we are considering a one-, two-,
or three-dimensional wavefield respectively. Hence, the equation for the time
dependent Green function (which is usually denoted by G) is given by(

∇2 +
1
c2
∂2

∂t2

)
G(r | r0, t | t0) = −δn(r− r0)δ(t− t0).

5.6.1 3D Time Dependent Green Function

We shall consider the three-dimensional time-dependent problem first which is
based on an evaluation using the time-independent Green function. We write
G and δ(t− t0) as Fourier transforms,

G(r | r0, t | t0) =
1
2π

∞∫
−∞

g(r | r0, ω) exp[iω(t− t0)]dω

and

δ(t− t0) =
1
2π

∞∫
−∞

exp[iω(t− t0)]dω

where ω is the angular frequency. Substituting these equations into the equa-
tion for G we then have

(∇2 + k2)g(r | r0, k) = −δ3(r− r0)
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which is the same equation as that used previously to define the time-
independent Green function. Thus, once g has been obtained, the time depen-
dent Green function can be derived by computing the Fourier integral given
above. Using the expression for g derived earlier,

G(r | r0, t | t0) =
1
2π

∞∫
−∞

1
4π | r− r0 | exp(ik | r− r0 |) exp[iω(t− t0)]dω

=
1

4π | r− r0 |δ(t− t0+ | r− r0 | /c).

5.6.2 2D Time Dependent Green Function

In two dimensions, the point source (which depends on x and y) can be treated
as a line source, that is a uniform source extending from z0 = −∞ to z0 = ∞
along a line parallel to the z axis and passing through the point (x0, y0). Thus,
a simple way of computing the two-dimensional Green function is to integrate
the three-dimensional Green function from z0 = −∞ to z0 =∞, i.e.

G(s | s0, t | t0) =

∞∫
−∞

δ(t− t0+ | r− r0 | /c)
4π | r− r0 | dz0

where

s = x̂x+ ŷy

and

s0 = x̂x0 + ŷy0.

Writing τ = (t− t0)c, ξ = z0 − z, S =| s− s0 | and R =| r− r0 | we have

R2 = ξ2 + S2

and
dR

dz0
=

ξ

R

and so the Green function can be written in the form

G(S, τ) =
1
4π

∞∫
−∞

δ(τ +R)√
R2 − S2

dR

=

{
1
4π

1√
τ2−S2 , τ > S;

0, τ < S.
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5.6.3 1D Time Dependent Green Function

In one dimension, the time-dependent Green function can be calculated by
integrating the three dimensional Green function over z0 and y0. Alternatively,
we can use the expression for g(x | x0, k) (right-travelling Green function)
giving

G(x | x0, t | t0) =
1
2π

∞∫
−∞

i

2k
exp(ik | x− x0 |) exp[iω(t− t0)]dω.

This equation is the inverse Fourier transform of the product of two functions
(given that k = ω/c), namely i/2k and exp(ik | x − x0 |). Thus, using the
convolution theorem and noting that

1
2π

∞∫
−∞

i

2k
exp[iω(t− t0)]dω =

c

4
sgn(t− t0)

and

1
2π

∞∫
−∞

exp(ik | x− x0 |) exp[iω(t− t0)]dω = δ(t− t0+ | x− x0 | /c),

we obtain

G(x | x0, t | t0) =
c

4
sgn(t− t0)⊗ δ(t− t0+ | x− x0 | /c)

=
c

4
sgn[t− t0+ | x− x0 | /c]

where ⊗ denotes the convolution integral and sgn is defined by

sgn(x) =

{
1, x > 0;
−1, x < 0.

5.6.4 Comparison of the Green Functions

There is a striking difference between the time dependent Green functions
derived in the last Sections. In three dimensions, the effect of an impulse after
a time t− t0 is found concentrated on a sphere of radius c(t− t0) whose centre
is the source point. The effect of the impulse can therefore only be experienced
by an observer at one location over an infinitely short period of time. After the
pulse has passed by an observer, the disturbance ceases. In two dimensions, the
disturbance is spread over the entire plane | s−s0 |. At | s−s0 |= c(t−t0) there
is a singularity which defines the position of the two dimensional wavefront as
it propagates outwards from the source point at s0. For | s − s0 |< c(t − t0)
the Green function is still finite and therefore, unlike the three-dimensional
case, the disturbance is still felt after the wavefront has passed by the observer.
In one dimension, the disturbance is uniformly distributed over all points of



142 CHAPTER 5. GREEN FUNCTIONS

observation through which the wavefront has passed, since for all values of
| x − x0 | and c(t − t0), the Green function is either c/4 or −c/4. This is
illustrated in Figure 5.6.

Compared with the Green function in one and two dimensions, the three
dimensional Green function possesses the strongest singularity. Compared to
the delta function, the singularity of the two-dimensional Green function at
| s− s0 |= c(t− t0) is very weak. In one dimension, the time dependent Green
function is not singular but discontinuous when | x − x0 |= c(t − t0). An
interesting example of a 3D time-dependent Green function is shown in Figure
5.4 (right). The almost spherical ‘shell’ is a picture of

G(r | r0, t | t0) =
1

4π | r− r0 |δ(t− t0+ | r− r0 | /c)

at a snap-shot in time t in the very early stages of development of the explosion.

Figure 5.6: Time history of the Green function in one, two and three dimensions

5.7 Green Function Solution to Maxwell’s

Equation

In Chapter 4, a gauge transform, together with the Lorentz condition, was
used to solve Maxwell’s equations and reduce them to two independent time
dependent wave equations given by

∇2U − 1
c2
∂2U

∂t2
= −4πρ
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and

∇2A− 1
c2
∂2A
∂t2

= −4π
c

j.

Having discussed the time dependent Green functions for the wave equation,
we can now investigate the general solution to Maxwell’s equations under the
Lorentz condition. In particular, we consider the solution for the electric scalar
potential U given ρ. The form of analysis is the same as used before, throughout
this Chapter. Thus, solving for U , using Green’s theorem (with homogeneous
boundary conditions) and the conditions that u and ∂u/∂t are zero at t = ±∞
gives

U(r0, t0) =

∞∫
−∞

∫
4πρ(r, t)G(r | r0, t | t0)d3rdt =

∫
d3r

∞∫
−∞

dt
ρ(r, t)
R

δ

(
R

c
+ t− t0

)

=
∫
d3r

ρ
(
r, t0 − R

c

)
R

where R =| r− r0 | or

U(r0, t0) =
∫
ρ(r, τ)
R

d3r

where

τ = t0 − R

c
.

The solution for the Magnetic Vector Potential A can be found by solving for
the components Ax, Ay and Az separately. These are all scalar equations of
exactly the same type and therefore have identical solutions and combine to
give

A(r0, t0) =
∫

j(r, τ)
cR

d3r

The wavefields U and A are called the Retarded Potentials. The current value
of U at (r0, t0) depends on ρ at earlier times τ = t0 − R/c. A change in
ρ or j affects U and A (and hence e and b) R/c seconds later - the change
propagates outward at velocity c. This is the principle of electromagnetic wave
propagation.

5.8 The Diffusion Equation

The homogeneous diffusion equation

∇2u(r, t) = σ
∂

∂t
u(r, t), σ =

1
D

where D is the ‘Diffusivity’ differs in many aspects from the scalar wave equa-
tion and the Green function exhibits these difference. The most important
single feature is the asymmetry of the diffusion equation with respect to time.
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For the wave equation, if u(r, t) is a solution, so is u(r,−t). However, if u(r, t)
is a solution of

∇2u = σ
∂u

∂t

the function u(r,−t) is not; it is a solution of the quite different equation,

∇2u(r,−t) = −σ ∂
∂t
u(r,−t).

Thus, unlike the wave equation, the diffusion equation differentiates between
past and future. This is because the diffusing field u represents the behaviour
of some average property of an ensemble of many particles which cannot in
general go back to their original state. Thus, causality must be considered in
the solution to the diffusion equation. This in turn leads to the use of the
Laplace transform3 for solving the equation with respect to t (compared to the
Fourier transform used to solve the wave equation with respect to t).

As in the case of the scalar wave equation, it is possible to evaluate the
Green function for the diffusion equation which satisfies homogeneous boundary
conditions and the causality condition

G(r | r0, t | t0) = 0 if t < t0.

This can be accomplished for one-, two- and three-dimensions simultaneously.
Thus with R =| r− r0 | and τ = t− t0 we require the solution of the equation(

∇2 − σ ∂

∂τ

)
G(R, τ) = −δn(R)δ(τ), τ > 0

where n is 1, 2 or 3 depending on the number of dimensions. One way of solving
this equation is first to take the Laplace transform with respect to τ , then solve
for G (in Laplace space) and then inverse Laplace transform the result. This
requires an initial condition to be specified (the value of G at τ = 0). Another
way to solve this equation is to take its Fourier transform with respect to R,
solve for G (in Fourier space) and then inverse Fourier transform the result.
Here, we adopt the latter approach. Let

G(R, τ) =
1

(2π)n

∞∫
−∞

G̃(k, τ) exp(ik ·R)dnk

and

δn(R) =
1

(2π)n

∞∫
−∞

exp(ik ·R)dnk.

Then the equation for G reduces to

σ
∂G̃

∂τ
+ k2G̃ = δ(τ)

3see Blackledge J M, Digital Signal Processing, Horwood, 2003.
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which has the solution

G̃ =
1
σ

exp(−k2τ/σ)H(τ)

where H(τ) is the step function

H(τ) =

{
1, τ > 0;
0, τ < 0.

Hence, the Green functions are given by

G(R, τ) =
1

σ(2π)n
H(τ)

∞∫
−∞

exp(ik ·R) exp(−k2τ/σ)dnk

=
1

σ(2π)n
H(τ)

⎛⎝ ∞∫
−∞

exp(ikxRx) exp(−k2
xτ/σ)dkx

⎞⎠ ...

By rearranging the exponent in the integral, it becomes possible to evaluate
each integral exactly. Thus, with

ikxRx − k2
x

τ

σ
= −

(
kx

√
τ

σ
− iRx

2

√
σ

τ

)2

−
(
σR2

x

4τ

)
= − τ

σ
ξ2 −

(
σR2

x

4τ

)
where

ξ = kx − iσRx2τ
.

the integral over kx becomes

∞∫
−∞

exp
[
−
( τ
σ
ξ2
)
−
(
σRx
4τ

)]
dξ = e−(σR2

x/4τ)

∞∫
−∞

e−(τξ2/σ)dξ

=
√
πσ

τ
exp

[
−
(
σR2

x

4τ

)]
with similar results for the integrals over ky and kz giving the result

G(R, τ) =
1
σ

( σ

4πτ

)n
2

exp
[
−
(
σR2

4τ

)]
H(τ).

The function G satisfies an important property which is valid for all n:∫ ∞

−∞
g(R, τ)dnr =

1
σ

; τ > 0.

This is the expression for the conservation of the Green function associated
with the diffusion equation. For example, if we consider the diffusion of heat,
then if at a time t0 and at a point in space r0 a source of heat is introduced,
then the heat diffuses out through the medium characterized by σ in such a
way that the total flux of heat energy is unchanged.



146 CHAPTER 5. GREEN FUNCTIONS

5.9 Green Function Solution to the Diffusion
Equation

Working in three dimensions, let us consider the general solution to the equation(
∇2 − σ ∂

∂t

)
u(r, t) = −f(r, t)

where f is a source of compact support (r ∈ V ) and define the Green function
as the solution to the equation(

∇2 − σ ∂
∂t

)
G(r | r0, t | t0) = −δ3(r− r0)δ(t− t0).

It is convenient to first take the Laplace transform of these equations with
respect to τ = t− t0 to obtain

∇2ū− σ[−u0 + pū] = −f̄
and

∇2Ḡ+ σ[−G0 + pḠ] = −δ3
where

ū(r, p) =

∞∫
0

u(r | r0, τ) exp(−pτ)dτ,

Ḡ(r, p) =

∞∫
0

G(r | r0, τ) exp(−pτ)dτ,

f̄(r, p) =

∞∫
0

f(r, τ) exp(−pτ)dτ

u0 ≡ u(r, τ = 0) and G0 ≡ G(r | r0, τ = 0) = 0.

Pre-multiplying the equation for ū by Ḡ and the equation for Ḡ by ū, subtract-
ing the two results and integrating over V we obtain∫

V

(Ḡ∇2ū− ū∇2Ḡ)d3r + σ

∫
V

u0Ḡd
3r = −

∫
V

f̄ Ḡd3r + ū(r0, τ).

Using Green’s theorem and rearranging the result gives

ū(r0, τ) =
∫
V

f̄(r, p)Ḡ(r | r0, p)d3r+σ
∫
V

u0(r)Ḡ(r | r, p)d3r+
∮
S

(ḡ∇ū−ū∇ḡ)·n̂d2r.

Finally, taking the inverse Laplace transform and using the convolution theorem
for Laplace transforms, we can write

u(r0, τ) =

τ∫
0

∫
V

f(r, τ ′)G(r | r0, τ − τ ′)d3rdτ ′ + σ

∫
V

u0(r)G(r | r0, τ)d3r
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+

τ∫
0

∮
S

[G(r | r0, τ
′)∇u(r, τ − τ ′)− u(r, τ ′)∇G(r | r0, τ − τ ′)] · n̂d2rdτ ′.

The first two terms are convolutions of the Green function with the source
function and the initial field u(r, τ = 0), respectively.

As a simple case study which helps to investigate this solution further,
suppose we consider the source term to be zero and the volume of interest is
the infinite domain, so that the surface integral is zero. Then we have

u(r0, τ) = σ

∫
V

u0(r)G(r | r0, τ)d3r.

In one dimension, this reduces to

u(x0, τ) =
√

σ

4πτ

∞∫
−∞

exp
[
−σ(x0 − x)2

4τ

]
u0(x) dx, t > 0.

Thus we see that the field u at a time τ > 0 is given by the convolution of the
field at time t = 0 with the Gaussian function√

σ

4πt
exp

(
−σx

2

4t

)
.

5.10 The Laplace and Poisson Equations

The Laplace and Poisson equations (in one- or two-dimensions) are given by

∇2u = 0

and
∇2u = −f

respectively. Let us consider the Poisson equation first. The general approach is
identical to that used to derive a solution to the inhomogeneous wave equation.
Thus, working in three dimensions and defining the Green function to be the
solution of

∇2g(r | r0) = −δ3(r− r0)

from Poisson’s equation, we obtain the following result

u =
∮
S

(g∇u− u∇g) · n̂d2r +
∫
V

gfd3r

where we have used Green’s theorem to obtain the surface integral on the right
hand side. The problem now is to find the Green function for this problem.
Clearly, since the solution to the equation

(∇2 + k2)g = −δ3(r− r0)
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is
g(r | r0, k) =

1
4π | r− r0 | exp(ik | r− r0 |)

we should expect the Green function for the three-dimensional Poisson equation
(and the Laplace equation) to be of the form

g(r | r0) =
1

4π | r− r0 | .

This can be shown by taking the Fourier transform of the equation for g which
gives

k2G(k) = 1

where
G(k) =

∫
g(R) exp(ik ·R)d3R, R =| r− r0 | .

Therefore

g(R) =
1

(2π)3

∫
exp(ik ·R)

k2
d3k =

1
(2π)3

2π∫
0

dφ

1∫
−1

d(cos θ)

∞∫
0

dk exp(ikR cos θ)

=
1

2π2R

∞∫
0

sin(kR)
k

dk =
1

4πR

using spherical polar coordinates and the result
∞∫
0

sinx
x

dx =
π

2
.

Thus, we obtain the following fundamental result:

∇2

(
1

4πR

)
= −δ3(R).

With homogeneous boundary conditions, the solution to the Poisson equation
is

u(r0) =
1
4π

∫
V

f(r)
| r− r0 |d

3r.

In two dimensions the solution is of the same form, but with a Green function
given by

g(r | r0) =
1
2π

ln | r− r0 | .
Clearly, the general solution to Laplace’s equation (in 3D) is

u =
∮
S

(g∇u− u∇g) · n̂d2r.

These solutions to the Laplace and Poisson equations are analogous to those
for the homogeneous and inhomogeneous wave equations. The principle behind
the method of solution is the same; what changes is the Green function.
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5.11 Discussion

This Chapter has provided an introduction to the use of Green functions for
solving partial differential equations in different dimensions and for time de-
pendent and time independent problems. Moreover, the material presented has
been based almost exclusively on the use of free space Green functions in which
a solution is developed over the infinite domain to which boundary conditions
can be applied. The focus has been on Green functions for wave equations
as this is the principal basis for modelling imaging systems and image under-
standing.

There are a number of techniques for computing the Green function G for
finite or bounded domain problems provided the geometry is simple enough.
For example, we can consider

G(r | r0) = g(r | r0) + F (r | r0)

where g is the free space Green function and F represents the boundary effects.
F cannot have a singularity within the bounded domain and so as r → r0,
G(r | r0) → g(r | r0). In the so called ‘Imaging Method’ F is determined by
considering a mirror image of the source point r0 in the opposite side of the
boundary at r1 say. F is then given by -g(r | r1) satisfying Dirichlet boundary
conditions or +g(r | r1) satisfying Neumann boundary conditions. Application
of this method for two or more boundaries leads naturally to expressions for
G which involve infinite series as the effect of one boundary on another is
taken into account in order to generate a complete solution on a bounded
domain. Green functions are also used in certain numerical methods of solution
to partial differential equations. These are the Boundary Element Methods
in which a numerical solution is devised by discretizing the surface integral
considered in this Chapter into surface patches, and computing the surface
integral numerically.

With regard to this work, we are now in a position to consider Green func-
tion solutions to wave equations of the type

(∇2 + k2)u(r, k) = −L̂u(r, k)

for a vector wavefield u or

(∇2 + k2)u(r, k) = −L̂u(r, k)
for a scalar wavefield u as derived in Chapter 4. This is the basis for the material
presented in Part II, starting with Chapter 6, which provides an introduction
to scattering theory using the Helmholtz equation

(∇2 + k2)u(r, k) = −k2γ(r)u(r, k)

where the ‘scattering function’ γ is of compact support (i.e. of finite spatial
extent) and the Schrödinger equation

(∇2 + k2)u(r, k) = γ(r)u(r, k)

where γ is the ‘scattering potential’.
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5.12 Summary of Important Results

Time Independent Green functions for the wave equation

The time independent Green function g that is the solution to the equation

(∇2 + k2)g(r | r0, k) = −δn(r− r0)

and is given by:

n=1
g(x | x0, k) =

i

2k
exp(ik | x− x0 |)

n=2
g(r | r0, k) =

i

4
H0(k | r− r0 |)

� 1√
8π

exp(iπ/4)
exp(ik | r− r0 |)√

k | r− r0 |
, k | r− r0 |>> 1

n=3
g(r | r0, k) =

1
4π | r− r0 | exp(ik | r− r0 |)

Fresnel and Fraunhofer approximations

Fresnel approximation

exp(ik | r− r0 |) � exp(ikr0) exp(−ikn̂0 · r) exp(ir2/2r0), n̂0 = r0/r0

Fraunhofer approximation

exp(ik | r− r0 |) � exp(ikr0) exp(−ikn̂0 · r)

Green’s theorem∫
V

(g∇2u− u∇2g)d3r =
∮
S

(
g
∂u

∂n̂
− u ∂g

∂n̂

)
d2r

Green function solution to the inhomogeneous wave equation

Given
(∇2 + k2)u(r, k) = −f(r), r ∈ V,

u(r0, k) =
∮
S

(g∇u− u∇g) · n̂d2r +
∫
V

f(r)g(r | r0, k)d3r
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Homogeneous Dirichlet condition

u(r) = 0 on the surface defined by V

Homogeneous Neumann condition

∇u(r) = 0 on the surface defined by V

Homogeneous conditions

Both u(r) and ∇(r) are zero on the surface defined by V .

Reciprocity theorem

g(r2 | r1, k) = g(r1 | r2, k)

Intensity function for a coherent source function f

I(r) =| g(| r |, k)⊗ f(r) |2

Intensity function for an incoherent source function f

I(r) =| g(| r |, k) |2 ⊗ | f(r) |2

Green functions for the time dependent wave equation

The function G that is the solution to the equation(
∇2 +

1
c2
∂2

∂t2

)
G(r | r0, t | t0) = −δn(r− r0)δ(t− t0)

and given by:

n=1
G(x | x0, t | t0) =

c

4
sgn[t− t0+ | x− x0 | /c]

n=2

G(r | r0, t | t0) =

{
1
4π

1√
|t−t0|2−|r−r0|2

, | t− t0 |>| r− r0 |;
0, | t− t0 |<| r− r0 | .

n=3
G(r | r0, t | t0) =

1
4π | r− r0 |δ(t− t0+ | r− r0 | /c)
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Green function for the diffusion equation

For n = 1 (1D), n = 2 (2D) and n = 3 (3D),

G(| r−r |, | t− t0 |) =
1
σ

(
σ

4π | t− t0 |
)n

2

exp
[
−
(
σ | r− r0 |2
4 | t− t0 |

)]
H(| t− t0 |).

Green function for the Laplace and Poisson equation

n=2
g(r | r0) =

1
2π

ln | r− r0 |

n=3
g(r | r0) =

1
4π | r− r0 |

Fundamental result

The solution to an equation of arbitrary dimensions and of the type

D̂u = f

where D̂ is a linear differential operator is, subject to homogeneous boundary
conditions given by

u = g ⊗ f
where g is the Green function.
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Problems: Part I

I.1 Obtain the gradients of the following scalar fields: x3 + y3 + z3, rn, a · r
(where a is a constant vector) and r · ∇(x + y + z).

I.2 Obtain the divergence of the following vector fields: f = constant vector,
r, xyz(x̂ + ŷ + ẑ) and r× [x̂f(x) + ŷg(y) + ẑh(z)].

I.3 Show that
∇2(rn) = n(n+ 1)rn−2.

I.4 Show that
∇× (A + B) = ∇ ·A +∇ ·B

and
∇ · (uA) = ∇u ·A + u∇ ·A

where A and B are vector fields and u is a sclar field.

I.5 Obtain the curls of the following vector fields: x̂x, ŷy, x̂x cos z+ŷylogx+
ẑz2 and rf(r).

I.6 Show that
∇× (A + B) = ∇×A +∇×B

and
∇× (uf) = u∇× f + (∇u)× f .

I.7 Show that
∇× (∇u) = 0 and ∇ · (∇× f) = 0.

I.8 Show that
∇×∇× f = ∇(∇ · f)−∇2f .

153



154 Problems: Part I

I.9 Given that F = ∇u, ∇ ·F = 0 and V is the volume enclosed by a surface
S, use the divergence theorem to show that∫

V

F 2d3r =
∮
S

uF · nd2r.

I.10 Use the divergence theorem to prove Green’s first and second identities.

I.11 Show that
∇f(r)⇐⇒ ikF (k)

and that
∇2f(r)⇐⇒ −k2F (k).

I.12 Derive the 2D Fourier transform of the box-function

f(x, y) =

{
1, | x |≤ a

2 and | y |≤ b
2 ;

0, otherwise.

I.13 Derive the 2D Fourier transform of the Gaussian function

f(x, y) = exp(−ar2) where r2 = x2 + y2,

noting that
∞∫

−∞
exp(−x2)dx =

√
π.

I.14 Prove the addition theorem, the similarity and the shift theorem for a 2D
function f(r).

I.15 Prove Parseval’s theorem for a 2D function f(r) and hence show that
∞∫

−∞
| f(r) |2 d2r =

1
(2π)2)

∞∫
−∞

| F (k) |2 d2k.

(Rayleigh’s theorem - also known as the energy theorem.)

I.16 Prove the convolution theorem, i.e.

f(r)⊗⊗g(r)⇐⇒ F (k)G(k).

I.17 Prove the product theorem, i.e.

f(r)g(r) ⇐⇒ 1
(2π)2

F (k)⊗⊗G(k).
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I.18 Prove the correlation theorem, i.e.

f(r)��g(r)⇐⇒ F ∗(k)G(k).

I.19 Show that convolution is commutative, associative and distributive.

I.20 Prove that
∇(f ⊗⊗g) = f ⊗⊗∇g = g ⊗⊗∇f

and that
∇2(f ⊗⊗g) = f ⊗⊗∇2g = g ⊗⊗∇2f.

In the questions that follow, the functions required should be void functions
written in ANSI C. They should be compiled, tested and then added to a digital
image processing object library. In each case, a simple I/O test procedure
should be written, I/O being studied in terms of a digital image. Each function
should be self-contained within the context of the algorithm to be coded. In
each case, n (which is of type integer) is the size of the image (i.e. n×n) which
can be set to an upper limit of 512 pixels. I/O and display utilities are provided
in Appendix D for development under a unix/linux operating environemnt with
X-windows.

I.21 Write a function to compute the 2D FIR (convolution) filter of an image
using a square window and zero padding.

void FIRCON(float **f, float **p, foat **s, int n, int w)

where f is the input image, p is the FIR (convolution) filter, s is the output
and w is the window size.

I.22 Write a function to compute the 2D FIR (correlation) filter of an image
using a square window and zero padding.

void FIRCOR(float **f, float **p, float **s, int n, int w)

where f is the input image, p is the FIR (correlation) filter, s is the output and
w is the window size.

I.23 Test the FIR filters above by applying the following FIR filters to a test
image.

1.
1
9

⎛⎝ 1 1 1
1 1 1
1 1 1

⎞⎠ 2.

⎛⎝ 0 0 0
−1 0 1
0 0 0

⎞⎠ 3.

⎛⎝ 0 −1 0
0 0 0
0 1 0

⎞⎠
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4.

⎛⎝ 0 1 0
1 −4 1
0 1 0

⎞⎠ 5.

⎛⎝ 0 −1 0
−1 5 −1
0 −1 0

⎞⎠
Display the output and interpret the results.

I.24 Write a function to compute an elliptical disc with given coordinates (in
the image plane), major and minor axes and grey level.

void ELLIPSE(float **s,int nx,int ny,int maj,int min,int l,int n)

where s is the output, nx and ny are the x,y coordinates (in pixels) for the
centre of the ellipse, maj and min are the major and minor axes and l is the
gray level (amplitude).

I.25 Write a function to compute a solid rectangle with given coordinates (in
the image plane), size and grey level.

void RECT(float **s, int nx, int ny, int lx, int ly, int l, int n)

where s is the output, nx and ny are the x,y coordinates (in pixels) for the
centre of the rectangle, lx and ly are the length of sides in x and y direction
respectively (in pixels) and l is the grey level (amplitude).

I.26 Write a function to compute a Gaussian point spread function of arbitrary
width.

void GPSF(float **s, int n, int w)

where s is the output and w is the half width of function at 1/e.

I.27 Write a function to compute the amplitude spectrum of an image using
function FFT1D as given in Chapter 3.

void AMPSPEC(float **s, float **a, int n)

where s is the input image, a is the amplitude spectrum (output).

I.28 Write a function to compute the power spectrum of an image which pro-
vides an option for output on a logarithmic scale.

void POWSPEC(float **s, float **p, int n int opt)
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where s is the image (input) and p is the power spectrum (output) and, if
opt=1, then a logarithmic scale is used.

I.29 Write a main program to generate a complex of ellipses, circles, rectan-
gles or squares with different grey levels using functions ELLIPSE and RECT.
Compute the discrete amplitude spectrum of an elliptical disc, a rectangle (cen-
tered in the image plane) and a Gaussian point spread function using FFT2D.
Study the effect of changing the width of these functions using a logarithmic
scale to display the power spectrum.

I.30 Write a function to sinc interpolate an image from 2k square to 2l using
FFT2D where l > k and k and l are integers.

void SINCINT(float **x, int n, float **y, int m)

where x is the input, n is the size of the input, y is the output and m is the
size of the output.

Use this function to interpolate an image from 128 square to 256 and 512
square.

I.31 By means of Laplace transforms, find the general Green function solution
to the equation (

∂2

∂x2
+ k2

)
u(x, k) = −f(x)

where k is a constant, the solution being required in the positive half space
x ∈ [0,∞).

I.32 Find the Green function solution to the equation(
∂2

∂x2
+ k2

)
u(x, k) = 0, x ∈ [0, L],

subject to the boundary conditions u(0, l) = 0 and u(L, k) = 0 by first finding
a Green function solution for the infinite domain and then adding a solution of
the homogeneous equation to fit the boundary conditions.

I.33 By taking the Laplace transform with respect to x of the equation(
∂2

∂x2
+ k2

)
g(x | x0, k) = −δ(x− x0)

show that the Green function g on the interval [0, 1] with the boundary condi-
tions

g(0 | x0, k) = 0 and
[
∂g(x | x0, k)

∂x

]
x=0

= g(1 | x0, k)
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is

g(x | x0, k) =
sin(kx) sin[k(1− x0)]

k(sink − k) − sin[k(x − x0)]
k

H(x− x0).

where H(x) is the step function.

I.34 Use Fourier transforms to show that the solution of

∇2g(r | r0, k)− λg(r | r0, k) = −δ3(r− r0)

is

g(r | r0, k) =
exp(−√λ | r− r0 |)

4π | r− r0 | .

I.35 Investigate the reciprocity theorem for the diffusion equation assuming
homogeneous boundary conditions and, in particular, show that

G(r | r0, t | t0) = G(r0 | r,−t0 | −t).



Part II

Imaging Systems Modelling
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Chapter 6

Scattering Theory

Unlike the field generated by a source, a scattered wavefield depends on both
the nature of the scatterer and the type and properties of the radiation scattered
by it. These properties are described by the characteristic inhomogeneous wave
equations. In Chapter 4, the reader was introduced to the field equations and
wave equations that form a basis for modelling electromagnetic and acoustic
imaging systems. For scalar wavefields u, it was shown that we can derive
inhomogeneous wave equations of the form

(∇2 + k2)u = −L̂u

or
(∇2 + k2)∇2u = −L̂u

or for vector fields u of the form

(∇2 + k2)u = −L̂u.

For example, a non-viscous linear isotropic acoustic scatterer with variations
in the compressibility γκ and density γρ is characterized by

(∇2 + k2)P = −k2γκP +∇ · (γρ∇P )

where P is the isotropic pressure. For a non-conductive linear isotropic elec-
tromagnetic scatterer with variations in the permittivity γε and permeability
γμ,

(∇2 + k2)Ẽ = −L̂Ẽ

with
L̂Ẽ = k2γεẼ +∇(Ẽ · ∇lnε) +∇× (γμ∇× Ẽ).

Chapter 5 has introduced the Green function for operators of the form (∇2+k2)
and considered the Green function solution for inhomogeneous wave equations
of the form

(∇2 + k2)u = −f.

160
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In this Chapter, we explore the use of the Green function for solving inho-
mogeneous wave equations of the type

(∇2 + k2)u = −k2γu

which is known as the inhomogeneous Helmholtz equation and

(∇2 + k2)u = γu

which is the Schrödinger equation. These problems are related to volume scat-
tering when γ(r) is of compact support (i.e. r ∈ V ) and potential scattering
theory when γ as given in Schrödinger’s equation is a potential associated with
the charge radiated by an elementary particle for example. We also study the
solutions to the homogeneous Helmholtz equation

(∇2 + k2)u = 0

where u and ∇u are defined on a boundary defining a surface which generates
surface scattering. The homogeneous and inhomogeneous Helmholtz equations
provide the basis for developing a scattering theory that is of value in imaging
science. We can then investigate scattering models that are based on physical
models (inhomogeneous wave equations) that are more complete (i.e. models
that describe a greater number of physical effects) when the right hand side of
the wave equations considered here is of the form −L̂u.

Much of the original work on scattering theory began in the 1930s and
has been the product of mathematicians and physicists working on problems
of theoretical physics including quantum mechanics and high energy nuclear
physics, where the scattering of particles and the interpretation of their ‘images’
(particle tracking devices) has been fundamental to investigating the structure
of matter.

6.1 The Schrödinger and Helmholtz Equations

The inhomogeneous Helmholtz and the Schrödinger equations have been stud-
ied for many years and have a wide range of applications in solid state physics,
quantum mechanics, electromagnetic and acoustic wave propagation and scat-
tering. In quantum mechanics, elementary particles of matter behave like waves
called De Broglie or matter waves. The mechanics becomes that of wave motion
and wave functions are used to describe the behaviour of quantum systems. If
γ(r) is taken to be an atomic (or nuclear) potential which is an elastic scatterer
and the De Broglie waves describe non-relativistic particles then the (time in-
dependent) partial differential equation that describes this (scattering) effect
is

(∇2 + k2)u(r, k) = γ(r)u(r, k)

where k is the wavenumber and u is the scattered field. This equation is known
as the Schrödinger equation after the Austrian physicist Erwin Schrödinger who
derived it in the 1920s. Comparing this equation with the partial differential
equations derived in Chapter 4, it is clear that the equation for a De Broglie
wavefield is produced by replacing the source function f with −γu.
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6.1.1 The Schrödinger Equation

The Schrödinger equation can be formulated using the equation

E =
p2

2m
+ Ep(r)

which states that the total energy E of a particle is the sum of the kinetic
energy p2/2m plus the potential energy denoted by Ep and is taken to be a
function of space. Here, p is the momentum andm is the mass of a fundamental
particle. The basic postulates of quantum mechanics (first introduced by Max
Planck in 1901 and De Broglie in 1924, respectively) are that

E = �ω and p = �k

where

| p |≡ p, | k |≡ k, and � =
h

2π
.

Here h = 6.6261× 10−34Js is Planck’s constant. Now,

E

p
=
ω

k
= c

where c is the velocity of a wave and since we can write

p =
√

2m(E − Ep)

then

c2 =
E2

2m(E − Ep)
and the wave equation (

∇2 − 1
c2
∂2

∂t2

)
U(r, t) = 0

becomes [
∇2 − 2m(E − Ep)

E2

∂2

∂t2

]
U(r, t) = 0.

With U(r, t) = u(r, ω) exp(iωt), we can write(
∇2 +

2m(E − Ep)
E2

ω2

)
u(r, k) =

(
∇2 +

2m(E − Ep)
�2ω2

ω2

)
u(r, k) = 0

or
(∇2 + k2)u(r, k) = γ(r)u(r, k)

where

k =

√
2mE
�2

and γ(r) =
2m
�2
Ep(r).
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Another approach is by way of introducing wave operators for the energy
and the momentum given by

i�
∂

∂t
and i�∇

respectively. The energy equation

E =
p2

2m
+ Ep(r),

which can be written as

EU(r, t) =
p2

2m
U(r, t) + Ep(r)U(r, t)

then becomes

i�
∂

∂t
U(r, t) = − �

2

2m
∇2U(r, t) + EpU(r, t).

With U(r, t) = u(r, ω) exp(−iωt), we then have

�ωu(r, ω) = Eu(r, ω) = − �
2

2m
∇2u(r, ω) + Epu(r, ω)

or (
∇2 +

2m(E − Ep)
�2

)
u(r, k) = 0

which can be written in the form

(∇2 + k2)u(r, k) = γ(r)u(r, k)

as before. The wavefield u is a De Broglie or matter wave as it describes the
behaviour of matter on the atomic scale. However, only the intensity | u |2 is a
measurable quantity. It can be interpreted in terms of the probability density
function associated with the position of a particle in space. The probability of
finding a particle described by the wave function u in the finite volume element
d3r around a point at r is | u(r, k) |2 d3r. The probability of finding the particle
within a finite volume V is then given by∫

V

| u(r, k) |2 d3r.

Since the particle must always be somewhere in space so, in extending the
integral over all space, the probability becomes a certainty, i.e.

∞∫
−∞

| u(r, k) |2 d3r = 1

which gives the normalization condition. The postulates of quantum mechanics
(i.e. E = �ω and p = �k) together with the sampling theorem discussed in
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Part I, provide a fundamental limit to the ultimate precision with which we
can (simultaneously) know the position of a particle and the component of its
momentum. The sampling theorem states that

Δx ≤ π

K

where K is the bandwidth of the analogue signal and Δx is the sampling
interval. Let Δk denote the total bandwidth of the spectrum so that Δk = 2K,
then the sampling theorem becomes

ΔxΔk ≤ 2π

Now, since p = �k and p = E/c we have

ΔxΔp ≤ h and ΔEΔt ≤ h

which is Heisenberg’s uncertainty principle. Unlike the Helmholtz equation
that can be derived from Maxwell’s equations for example, the Schrödinger
cannot be derived in the same way. The equation is a direct consequence
of the postulates E = �ω and p = �k which in themselves can be justified
experimentally. The validity of results that the Schrödinger equation predicts
and which can be confirmed experimentally are ultimately the only justification
for this equation. Thus, the Schrödinger equation is one of the most intriguing
equations of physics in that it cannot be derived and its solution cannot be
measured directly. Yet, to-date, it provides one of the most accurate models for
characterizing the nature of matter. The success of quantum mechanics, which
ranks as one of the greatest intellectual achievements of the Twentieth Century,
points to the fact that matter, and physics in general, is best interpreted not in
terms of particles but in terms of waves and the interaction of waves with waves
and the scattering of waves by waves (e.g. electromagnetic waves scattering
from matter waves, such as the reflection of light from material objects) over
a broad frequency spectrum. Thus, for example (albeit a rather important
one), instead of visualising of an electron as a particle with a negative charge
that ‘radiates’ an electric field and is attracted to particles with a positive
charge (which also ‘radiate’ an electric field), we should contemplate an electron
in terms of a wave which is ‘attracted’ by the ‘need’ (through the principle
of least energy) of becoming an eigenfunction (a standing wave with lower
energy than a free wave) whose properties are determined by the functional
form of the potential energy associated with any other physical entity such the
atomic nucleus. Then, an electric field is, in effect, the field associated with the
propensity for a free wavefield to become a standing wavefield and a magnetic
field is a measure of the rate of change over which this propensity is satisfied.
In this context, Schrödinger’s equation provides the basis for modelling the
atomic and molecular structure of matter in terms of discrete energy levels
(eigenvalues) obtained when Ep is a potential well or for modelling the nuclear
structure of matter. This includes, for example, the process of radioactive
decay by the transmission of a wave through a potential barrier (the atomic
nucleus). Clearly, the functional form of Ep (together with associated boundary
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conditions) determines the nature and the characteristics of the solution for
u. This includes interesting cases such as when Ep =| U |2 and the (time-
dependent) Schrödinger equation has the nonlinear form

�
2

2m
∇2U(r, t) + i�

∂

∂t
U(r, t) =| U(r, t) |2 U(r, t).

6.1.2 The Helmholtz Equation

Another fundamental wave equation of particular importance in electromag-
netics and acoustics is the inhomogeneous Helmholtz equation given by

(∇2 + k2)u(r, k) = −k2γ(r)u(r, k)

where γ is an inhomogeneity which is responsible for scattering the wavefield
u and is therefore sometimes referred to as a scatterer - usually considered to
be of compact support. Referring to the results discussed in Chapter 4, this
equation is derived from the inhomogeneous acoustic wave equation for a non-
viscous medium when we can assume that γρ is constant. In EM imaging, the
Helmholtz equation is obtained when we can assume that the medium is non
conductive (i.e. σ = 0), γμ is a constant and the term ∇(E · ∇lnε) is ignored.

The Helmholtz equation can be derived quite generally from the time de-
pendent wave equation (

∇2 − 1
c2
∂2

∂t2

)
U(r, t) = 0

by letting
1
c2

=
1
c20

(1 + γ)

where γ is a dimensionless quantity and c0 is a constant (wave speed). Note
that the form of the wave equation dictates that c must be of finite value.
If a wavefield (whatever the field may be) was to convey information from
one point in space to another instantaneously then the second term would be
zero and the ‘wave equation’ would be reduced to ‘Laplace’s equation’ and the
indepednent variable t would become an irrelevance! The upper limit at which
any wavefield can propagate is determined by the speed of an electromagnetic
wave in a perfect vacuum. However, in a more general perspective, the rationale
associated with the fact that c must be finite (as given above) means that the
influence of any physical field (whether it be an electric, magnetic, gravitational,
weak or strong force field) on any measurable entity can only occur in a finite
period of time and that there can be no such thing as instantaneous ‘action
at a distance’. This is the essential difference between the ‘universe’ according
to Isaac Newton and the ‘universe’ according to Albert Einstein, a difference
that, given the wave equation, points to the ‘physics’ of a wavefield being more
fundamental than the ‘physics’ of the field itself. This principle should be
considered in light of the fact that the one property common to all the principal
field equation of physics (i.e. Einstein’s equations, Maxwell’s equations and



166 CHAPTER 6. SCATTERING THEORY

Dirac’s equations), is that they describe wave phenomena (i.e. gravity wave,
electromagnetic wave and matter waves respectively).

With U(r, t) = u(r, ω) exp(iωt) we have

(∇2 + k2)u(r, k) = −k2γ(r)u(r, k)

where
k =

ω

c0
.

We can write the Schrödinger equation in terms of the Helmholtz equation
since, from the postulates of quantum mechanics, we have

1
c2

=
1
c20

(1 + γ) =
2m(E − Ep)

E2

and thus the Schrödinger equation is

(∇2 + k2)u(r, k) = −k2γ(r)u(r, k)

with

γ(r) = 2mc20
[E − Ep(r)]

E2
− 1.

Note that since γ is dimensionless, this result implies that mc20 is energy (i.e.
Einstein’s famous energy-mass equivalence formula, where c0 is the speed of
light and m is the rest mass). Thus, for a scalar electromagnetic wavefield
interacting with a non-conductive dielectric - ignoring the term ∇(E · ∇ ln εr)
- the Helmholtz equation is given by (see Chapter 4)

(∇2 + k2)u(r, k) = −k2γ(r)u(r, k)

where γ = εr − 1. We can therefore interpret the relative permittivity εr in
terms of the function

2mc20
[E − Ep(r)]

E2

on an entirely phenomenological basis.
In this Chapter, we consider solutions to the inhomogeneous Helmholtz and

Schrödinger equations which, for k constant, are essentially the same. We start
by investigating the Green function solution to the inhomogeneous Helmholtz
equation.

6.2 Solution to the Helmholtz Equation

The same Green function method as presented in Chapter 5 can be used to
solve the inhomogeneous Helmholtz equation. The basic solution is (under the
assumption that γ is of compact support r ∈ V )

u(r0, k) = k2

∫
V

gγud3r +
∮
S

(g∇u− u∇g) · n̂d2r.
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To compute the surface integral, a condition for the behaviour of u on the
surface S of γ must be chosen. Consider the case where the incident wavefield
ui is a simple plane wave of unit amplitude

exp(ik · r)
satisfying the homogeneous wave equation

(∇2 + k2)ui(r, k) = 0.

By choosing the condition u(r, k) = ui(r, k) on the surface of γ, we obtain the
result

u(r0, k) = k2

∫
V

gγud3r +
∮
S

(g∇ui − ui∇g) · n̂d2r.

Now, using Green’s theorem to convert the surface integral back into a volume
integral, we have∮

S

(g∇ui − ui∇g) · n̂d2r =
∫
V

(g∇2ui − ui∇2g)d3r.

Noting that
∇2ui = −k2ui

and that
∇2g = −δ3 − k2g

we obtain ∫
V

(g∇2ui − ui∇2g)d3r =
∫
δ3uid

3r = ui.

Hence, by choosing the field u to be equal to the incident wavefield ui on the
surface of γ, we obtain a solution of the form

u = ui + us

where
us = k2

∫
V

gγud3r.

The function us is the scattered wavefield.

6.2.1 The Born Approximation

From the last result it is clear that, in order to compute the scattered field
us, we must define u inside the volume integral. Unlike the surface integral, a
boundary condition will not help here because it is not sufficient to specify the
behaviour of u at a boundary. In this case, the behaviour of u throughout V
needs to be known. In general, it is not possible to do this (i.e. to compute the
scattered wavefield exactly) and we are forced to choose a model for u inside
V that is compatible with a particular physical problem in the same way that
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an appropriate set of boundary conditions is required to evaluate the surface
integral. The simplest model for the internal field is based on assuming that u
behaves like ui for r ∈ V . The scattered field is then given by

us(r0, k) = k2

∫
V

g(r | r0, k)γ(r)ui(r, k)d3r.

This assumption provides an approximate solution for the scattered field. It is
known as the Born approximation after Max Born who first introduced it in
his study of quantum mechanics in the 1930s.

There is another way of deriving this result that is instructive; it helps us to
obtain a criterion for the validity of this approximation which will be considered
shortly. We start with the inhomogeneous Helmholtz equation

(∇2 + k2)u = −k2γu

and consider a solution for u in terms of a sum of the incident and scattered
fields, i.e.

u = ui + us.

The wave equation then becomes

(∇2 + k2)us + (∇2 + k2)ui = −k2γ(ui + us).

If the incident field satisfies

(∇2 + k2)ui = 0,

then
(∇2 + k2)us = −k2γ(ui + us).

Assuming that
ui + us � ui, r ∈ V

we obtain
(∇2 + k2)us � −k2γui, r ∈ V.

Solving for us and using the homogeneous boundary conditions (i.e. us = 0 on
S and ∇us = 0 on S) we obtain

us =
∮
S

(g∇us − us∇g) · n̂d2r + k2

∫
V

gγuid
3r = k2

∫
V

gγuid
3r.

6.2.2 Validity of the Born Approximation

In general, the Born approximation requires that us is ‘small’ compared to ui.
What do we really mean by the term ‘small’ and how can we quantify it? One
way to answer this question is to compute an appropriate measure for both the
incident and scattered fields and compare the two results. Consider the case
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where we compute the root mean square modulus (i.e. the L2 norm) of each
field. We then require that⎛⎝∫

V

| us(r0, k) |2 d3r0

⎞⎠ 1
2

<<

⎛⎝∫
V

| ui(r0, k) |2 d3r0

⎞⎠ 1
2

or1 ‖us‖
‖ui‖ << 1. (6.1)

Essentially, this condition means that the overall intensity of us in V is small
compared to that of ui in V .

Let us now look in more detail at the nature of this condition. Ideally, what
we want is a version of the condition that can be cast in terms of a set of
physical parameters (such as the wavelength and the physical extent of γ for
example). The Born scattered field at r0 is given by

us(r0, k) = k2

∫
V

g(r | r0, k)γ(r)ui(r, k)d3r.

By taking the L2 norm of this equation we can write

‖us(r0, k)‖ = ‖k2

∫
V

g(r | r0, k)γ(r)ui(r, k)d3r‖

≤ k2‖ui(r0, k)‖ × ‖
∫
V

g(r | r0, k)γ(r)d3r‖.

Using this result, the condition required for the Born approximation to hold
[i.e. condition (6.1)] can be written as

k2‖
∫
V

g(r | r0, k)γ(r)d3r‖ << 1, r0 ∈ V. (6.2)

Here, the norm involves integration over the spatial variable r0 in the scattering
volume V . To emphasize this we write r0 ∈ V .

Condition (6.2) can be written as

I(r0) << 1

where
I(r0) = k2‖

∫
V

g(r | r0, k)γ(r)d3r‖

≤ k2

⎛⎝∫
V

| g(r | r0, k) |2 d3r

⎞⎠
1
2
⎛⎝∫
V

| γ(r) |2 d3r

⎞⎠
1
2

.

1where ‖ • ‖ is taken to denote the L2 norm, i.e. ‖ • ‖2
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Substituting the expression for the three-dimensional Green function into the
above expression, we have

I(r0) ≤ k2

⎛⎝ 1
16π2

∫
V

1
| r− r0 |2 d

3r
∫
V

| γ(r) |2 d3r

⎞⎠ 1
2

.

A relatively simple calculation can now be performed, if we consider γ to be
a sphere of volume V and radius R, and resort to calculating its least upper
bound which occurs when r0 = 0. Using spherical polar coordinates (r, θ, φ),
we have

sup
∫
V

1
| r− r0 |2 d

3r =
∫
V

1
r2
d3r =

2π∫
0

1∫
−1

R∫
0

drd(cos θ)dφ = 4πR

where sup denotes the supremum. Using this result, we can write

sup I(r0) ≤ k2

⎛⎝ R

4π

∫
V

| γ(r) |2 d3r

⎞⎠ 1
2

and noting that

V =
∫
V

d3r =
4
3
πR3

we obtain

sup I(r0) ≤ 1√
3
k2R2γ̄

where

γ̄ =

√∫ | γ |2 d3r∫
d3r

.

Hence, the condition for the Born approximation to apply becomes (ignoring√
3)

k2R2γ̄ << 1

or

γ̄ <<
1

k2R2
.

This condition demonstrates that, in principle, large values of γ can occur so
long as its root mean square value over the volume V is small compared to
1/k2R2. In scattering theory, γ is said to be a ‘weak scatterer’. Note that
when k or R approaches zero, this condition is easy to satisfy. Born scattering
is thus, more likely to occur in situations when

λ

R
>> 1
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where λ is the wavelength (noting that k = 2π/λ). If

λ

R
∼ 1

then the value of γ̄ must be small for Born scattering to occur.
By repeating the method given above and using the two- and one-

dimensional Green functions, respectively, it is easy to show that in two di-
mensions the condition required for the Born approximation to apply is given
by

γ̄ <<
1

(kR)3/2

where R is the radius of a disc of area A and γ̄ is the root mean square over A.
In one dimension, the result is

γ̄ <<
1
kL

where L is the length of the scatterer and γ̄ is the root mean square over L.
In both cases we use the same Green function solution to solve the 2D and
1D inhomogeneous Helmholtz equations, respectively. In each case, we assume
that the scattered field is, on average, weak compared to the incident field. We
may consider the term ‘weak’ to imply that the total energy associated with
us inside the inhomogeneity γ is small compared to ui outside the scatterer.

6.2.3 Asymptotic Born Scattering

By measuring us, we can attempt to invert the relevant integral equation and
hence recover or reconstruct γ. This type of problem is known as the inverse
scattering problem, and solutions to this problem are called inverse scattering
solutions. This subject is one of the most fundamental in mathematical physics
and is the subject of continuing research. The simplest type of inverse scattering
problem occurs when a Born scattered wavefield is measured in the far field
or Fraunhofer zone (i.e. when the Green functions takes on its asymptotic
form discussed in Chapter 5). From previous results, working in 3D, when the
incident field is a (unit) plane wave

ui = exp(ikn̂i · r)

where n̂i points in the direction of the incident field, the Born scattered field
observed at rs is

us(n̂s, n̂i, k) =
k2

4πrs
exp(ikrs)

∫
V

exp[−ik(n̂s − n̂i) · r]γ(r)d3r, r ∈ V

where n̂s(= rs/rs) denotes the direction in which us propagates. From
this result, it is clear that the function γ can be recovered from us by
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three-dimensional Fourier inversion. The scattered field produced by a two-
dimensional Born scatterer in the far field is given by

us(n̂i, n̂s, k) =
exp(iπ/4)√

8π
k2

√
krs

exp(ikrs)
∫
A

exp[−ik(n̂s−n̂i)·r]γ(r)d2r, r ∈ A.

In one dimension, the equivalent result is (for a right travelling wave)

us(xs, k) =
ik

2
exp(ikxs)

∫
L

γ(x)dx, x ∈ L.

When n̂s = n̂i, we see that

us =
k2

4πrs
exp(ikrs)

∫
V

γ(r)d3r.

This is called the forward-scattered field. In terms of Fourier analysis, it rep-
resents the zero frequency or DC component of the spectrum of γ. Another
special case arises when n̂s = −n̂i. The scattered field that is produced in this
case is called the back-scattered field, and in three dimensions is given by

us(n̂s, k) =
k2

4πrs
exp(ikrs)

∫
V

exp(−2ikn̂s · r)γ(r)d3r.

In one dimension, the result is (for a left travelling wave)

us(k) =
ik

2
exp(ikxs)

∫
L

exp(−2ikx)γ(x)dx.

Note that, in one-dimension, the scattering function can only be recovered (via
Fourier inversion) by measuring the back-scattered spectrum whereas in two
and three dimensions, the scattering function can, in principle, be recovered by
either keeping k fixed or varying k.

6.3 Examples of Born Scattering

By way of a short introduction to the applications and uses of the Born ap-
proximation, some well known examples are now presented in which it is used
to derive expressions for the scattered intensity associated with two physically
different scattering phenomena - Rayleigh scattering and Rutherford scattering.

6.3.1 Rutherford Scattering

Rutherford scattering ranks as one of the most important experiments of the
Twentieth Century because it was the basis for developing the basic ‘visual
model’ for the atom - a positively charged nucleus with negatively charged
orbiting electrons.
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In Rutherford’s famous experiment (which dates from 1910), α-particles
(or helium nuclei) were scattered by gold leaf. The differential cross-section
denoted by dσ/dΩ (i.e. the number of particles scattered into a solid angle
dΩ per unit time divided by the number of particles incident per unit area
per unit time) was then measured at different scattering angles θ. By treating
the α-particles as classical Newtonian particles, Rutherford showed that if the
scattering potential (i.e. due to the nucleus of the atoms in the gold leaf) is a
repulsive Coulomb potential, then

dσ

dΩ
∝ 1

sin4(θ/2)
.

This was before the development of quantum mechanics and the emergence
of Schrödinger’s equation as a governing partial differential equation of quan-
tum mechanics. In this Section, we shall derive Rutherford’s result by solving
Schrödinger’s equation using a Green function.

In terms of quantum mechanics we can consider Rutherford’s scattering ex-
periment to consist of a source of plane waves (i.e. the de Broglie or probability
waves associated with the α-particles), a scattering function γ (the potential
associated with the nucleus of the atoms which make up the gold leaf) and a
measuring device which allows us to record the intensity of the scattered radi-
ation at different angles to the incident beam. The Green function solution to
the 3D Schrödinger equation

(∇2 + k2)u(r, k) = γ(r)u(r)

for an incident plane wave ui(r, k) = exp(ik · r) is given by

u(r0, k) = ui(r0, k) +
∫
g(r | r0, k)γ(r)u(r, k)d3r.

This is the Lippmann-Schwinger equation. The limits of the integral are left
‘open’ because this equation applies to potentials that are finite (of compact
support) or asymptotic (tend to zero at infinity). The inversion of this integral
equation is the basis for inverse Schrödinger scattering in three-dimensions.

The Born scattered wave in the far field due to a scattering potential V
which is influential over all space is given by

us(n̂s, n̂i, k) = −exp(ikrs)
4πrs

∞∫
−∞

exp[−ik(n̂s − n̂i) · r]γ(r)d3r.

For fixed k and rs (the distance at which the scattered wavefield is measured
from the scattering event), the measured intensity I of the scattered wavefield
is given by

I = usu
∗
s =

1
16π2r2s

| A |2

where A is the scattering amplitude,

A(n̂s, n̂i, k) =

∞∫
−∞

exp[−ik(n̂s − n̂i) · r]γ(r)d3r.
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The differential cross section measures the flux of particles through a given area
in specific period of time. It is thus a measure of the wavefield intensity, i.e.

dσ

dΩ
= I.

Hence, using quantum mechanics (i.e. Schrödinger’s equation), the differen-
tial cross-section for Rutherford’s scattering experiment can be obtained by
evaluating the Fourier transform of the potential γ. For a radially symmetric
potential γ(r), the scattering amplitude becomes (switching to spherical polar
coordinates r, φ, ψ)

A(n̂s, n̂i) =

2π∫
0

dψ

1∫
−1

d(cosφ)

∞∫
0

dr r2 exp(−ik | n̂s − n̂i | r cosφ)γ(r).

The modulus of n̂s − n̂i is given by

| n̂s − n̂i |=
√

(n̂s − n̂i) · (n̂s − n̂i) =
√

2(1− cos θ)

where
cos θ = n̂s · n̂i

and θ is the scattering angle (the angle between the incident and scattered
fields). Using the half angle formula,

1− cos θ = 2 sin2(θ/2)

we can write
| n̂s − n̂i |= 2 sin(θ/2)

and integrating over ψ and cosφ the scattering amplitude as a function θ can
be written as

A(θ) =
2π

k sin(θ/2)

∞∫
0

sin[2kr sin(θ/2)]γ(r)rdr.

All we need to do now is compute the remaining integral over r. If we use
a simple Coulomb potential where γ(r) ∝ 1/r, then we run into a problem
because the integrand does not converge as r → ∞. For this reason, another
radially symmetric potential is introduced which is given by

γ(r) =
exp(−ar)

r

where a > 0 is a constant. This type of potential is known as a screened
Coulomb potential, the parameter a determining the range over which the
potential is influential. It allows us to evaluate the scattering amplitude ana-
lytically. We can then observe the behaviour of | A |2 for a Coulomb potential
by letting a approach zero. The scattering amplitude becomes

A(θ) =
2π

k sin(θ/2)

∞∫
0

sin[2kr sin(θ/2)] exp(−ar)dr.
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This integral is given by
2k sin(θ/2)

a2 + [2k sin(θ/2)]2

and we can write

A(θ) =
π

k2 sin2(θ/2)

(
1 +

a2

[2k sin(θ/2)]2

)−1

.

Hence, as a→ 0, we obtain

A(θ) � π

k2 sin2(θ/2)

and the intensity of the scattered field is

I =| A(θ) |2∝ 1
sin4(θ/2)

.

We may think of Rutherford’s scattering experiment as an inverse scattering
problem in the sense that he deduced the potential of the nucleus by recording
the way in which it scattered α-particles. However, he did not actually solve the
inverse problem directly because he assumed that the scattering potential acted
like a repulsive Coulomb potential a priori and justified this hypothesis later
by showing that the theoretical and experimental results were compatible. One
final and interesting point to note is that in order to undertake the experiment
Rutherford required a very thin foil which was only a few atoms thick. Gold
leaf was the best possible technical solution to this problem at the time. The
reason for this was that the α-particles needed (on average) to scatter only from
one nucleus in order to investigate the repulsive Coulomb potential theory.
If a thicker foil had been used, the α-particles may have scattered from a
number of atoms as they passed through it. Multiple scattering would have
led to an indeterminacy in the results. It is important to note that the Born
approximation used here to verify Rutherford’s results using a Green function
solution to Schrödinger’s equation is consistent with the concept of single, or
weak, scattering.

6.3.2 Rayleigh Scattering

Rayleigh scattering is the scattering of electromagnetic radiation by small di-
electric scatterers. It is named after the English scientist Lord Rayleigh who
was one of the Nineteenth Century’s most prolific scientists and made contri-
butions in many areas in mathematics, physics and chemistry, including some
of the earliest studies on the scattering of light following the development of
James Clerk Maxwell’s theory of electromagnetism.

If we consider a scalar electromagnetic wave theory, then we can consider a
wave equation of the form

(∇2 + k2)u(r, k) = −k2γ(r)u(r, k), γ = εr − 1; r ∈ V
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to describe the behaviour of the electric field u, where εr is the relative permit-
tivity of a dielectric of compact support V . This is of course a highly idealized
case, but it helps to provide another demonstration of Born scattering in a form
that is pertinent to the use of Green functions for solving physically significant
problems.

In the context of electromagnetic scattering problems, the Born approxi-
mation is sometimes referred to as the Rayleigh-Gan approximation - just a
different name for an identical mathematical technique. Using this approxima-
tion, the asymptotic form of the the scattered electric field is given by

us(n̂s, n̂i, k) =
k2

4πrs
exp(ikrs)

∫
V

exp[−ik(n̂s − n̂i) · r]γ(r)d3r.

There are two important differences between this equation and its counterpart
in quantum mechanics (i.e. the Schrödinger equation). First, the coefficient
in front of the integral possesses a factor k2. Second, the integral itself is
over a finite volume of space V which is determined by the spatial extent of
γ. In quantum mechanics, the influence of a potential may be ‘felt’ over all
space so that the integral is over ±∞. This is an important distinction between
scattering problems in quantum mechanics which involve asymptotic potentials
(potentials which go to zero at infinity) and classical scattering problems of the
type considered here.

Let us consider a model where a plane electromagnetic wave is incident on
a homogeneous spherical dielectric object of radius R and relative permittivity
εr. The theory which describes this type of scattering (scattering of light from
uniform spheres) is called Mie theory. In this case the Born scattered amplitude
is given by (following the same methods as those used earlier)

A(θ) =
2πkγ

sin(θ/2)

R∫
0

sin[2kr sin(θ/2)]rdr. (6.3)

If the dimensions of the scatterer are small compared to the wavelength, then

kR << 1

and
sin[2kr sin(θ/2)] � 2kr sin(θ/2), 0 ≤ r ≤ R.

The scattering amplitude is then given by

A(θ) � 4πk2γ

R∫
0

r2dr = k2γV

where V = 4πR3/3 is the volume of the scatterer. In this case, the scattering is
entirely isotropic (i.e. the scattering amplitude is independent of the scattering
angle). The intensity is proportional to k4 or

| A(θ) |2 ∝ 1
λ4
.



6.4. OTHER APPROXIMATION METHODS 177

Note the large inverse dependence on the wavelength. This result is charac-
teristic of Rayleigh scattering and of the spectra produced by light scattering
from small sub-wavelength structures. In the visible part of the spectrum,
the intensity is greatest for blue light (the colour associated with the smallest
wavelength of the visible spectrum). This is why the sky is blue, i.e. sunlight
is scattered by the electrons in air molecules in the terrestial atmosphere gen-
erating blue light preferentially around in all directions. Further, as the Sun
approaches the horizon, we have to look more and more diagonally through the
Earth’s atmosphere. Our line of sight through the atmosphere is then longer
and most of the blue light is scattered out before it reaches us, especially as
the Sun gets very near the horizon. Relatively more red light reaches us, ac-
counting for the reddish colour of sunsets. In other words, the λ−4 dependence
of the scattered intensity implies that the atmosphere scatters green, blue and
violet light photons more effectively than yellow, orange, and red photons. As
the Sun approaches the horizon, the path of light through the atmosphere in-
creases, so more of the short-wavelength photons get scattered away leaving
the longer-wavelength photons and the Sun look progressively redder.

When kR ∼ 1, the scattering amplitude is obtained by evaluating the inte-
gral in equation (6.3), the scattering amplitude being given by

A(θ) = 3V γk2 J1[2kR sin(θ/2)]
2kR sin(θ/2)

where J1 is the spherical Bessel function

J1(x) =
sin(x)
x2

− cos(x)
x

.

In this case, the scattering is not isotropic but strongly dependent on the
scattering angle.

6.4 Other Approximation Methods

So far in this Chapter, we have been concerned with the use of the Green
function for solving two fundamental inhomogeneous partial differential equa-
tions (the Helmholtz and the Schrödinger equations). These have introduced
the role that Green functions play in an important aspect of mathematical
physics - scattering theory - which is fundamental to the field of image systems
modelling and image understanding.

The solutions considered so far have been based on the application of the
Born approximation (Born scattering theory) to Green function solutions of
time-independent wave equations. In this section, we consider the Wentzel-
Kramers-Brillouin (WKB) and the Rytov approximations for solving inhomo-
geneous wave equations, taking the inhomogeneous Helmholtz equation by way
of an example (albeit an important one). The WKB method is based on the idea
that if the wavelength of the wavefield u is very small compared to variations in
γ then a suitable approximation can be introduced which provides an appropri-
ate solution. A similar idea is used for the Rytov approximation. In both cases
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the result is based on the use of an exponential type or ‘eikonal’ transforma-
tion where a solution of the type A(r, k) exp[±s(r, k)] or A(r, k) exp[±is(r, k)]
is considered. This is analogous (in the latter case) to a plane wave solution
of the type A exp(k · r). In this transform, the scalar field s is known as the
‘eikonal’ from the Greek meaning ‘image’ or ‘icon’.

The WKB and Rytov approximations are based on a similar idea, one which
has a long history dating back to Huygens. In his book A Treatise on Light,
Huygens suggested that the reflection and refraction properties of light can be
explained on the basis of a sequence of wavefronts which spreads out from a
source much as ripples spread out from a stone thrown into water, and that
each point on such a wavefront act as a new disturbance source. Although
in 1678 Huygens did not specify exactly what is meant by a wavefront, he
emphasized that the spacing between successive wavefronts need not to be
uniform which is one way of considering the physical interpretation of the
WKB approximation. Another example of the WKB approximation being
used earlier was in a paper by George Green on The Motion of Waves in a
Variable Canal of Small Depth and Width (published in the Transactions of
the Cambridge Philosophical Society in 1837) who developed a solution for
waves along a narrow (to make the problem one dimensional) but variable
channel. His solution involves an approach which is essentially the same as the
WKB method used in quantum mechanics. It is therefore arguable that the
approximation should be called the Green approximation!

6.4.1 The WKB Approximation

To illustrate the idea behind the WKB approximation, let us consider a general
solution to the 1D wave equation(

∂2

∂x2
+ k2

)
u(x, k) = −k2γ(x)u(x, k). (6.4)

The Green function solution to this equation is given by

u = ui + us

where ui is the incident wavefield (typically a unit amplitude plane wave) and
us is given by

us(x0, k) = k2

∫
γ(x)g(x | x0, k)u(x, k)dx.

Instead of considering the solution to be the sum of two wavefields ui and us,
suppose we introduce the eikonal transform

u(x, k) = ui(x, k) exp[s(x, k)].

Substituting this result into equation (6.4) and differentiating, we obtain

∂2ui
∂x2

+ 2
∂s

∂x

∂ui
∂x

+ ui

(
∂s

∂x

)2

+ ui
∂2s

∂x2
+ k2ui = −k2γui.
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Now if we consider ui to be a solution to ∂2ui/∂x
2 + k2ui = 0 [i.e. ui =

exp(ikx)] then, after differentiating ui and rearranging, we have

2ik
∂s

∂x
+
(
∂s

∂x

)2

+
∂2s

∂x2
= −k2γ. (6.5)

This is a nonlinear Riccatian equation for s which at first sight, appears to be
more complicated than the original. However, if we introduce the condition
that the wavelength λ = 2π/k is significantly smaller than the spatial extent
over which s varies, then the nonlinear term and the second derivative can be
ignored and we can write

2ik
ds

dx
= −k2γ

whose general solution is (ignoring the constant of integration)

s(x) =
ik

2

x∫
γ(x)dx.

The solution for u is therefore given by

u(x, k) = ui exp

⎛⎝ ik

2

x∫
γ(x)dx

⎞⎠ = exp

⎡⎣ik
⎛⎝x+

1
2

x∫
γ(x)dx

⎞⎠⎤⎦ .
This is an example of the WKB approximation. It is based on the idea that
if k is large compared to the magnitudes of the terms (∂s/∂x)2 and ∂2s/∂x2

then the only terms in equation (6.5) that matter are 2ik(∂s/∂x) and −k2γ.
In other words, if L is the characteristic scale length over which s varies, then

λ

L
<< 1.

The solution describes a plane wavefield whose phase kx is modified by k
2

∫
γdx.

A similar approach can be used in higher dimensions which leads to an interpre-
tation of the solutions in terms of the characteristics or rays and the geometric
properties associated with them.

The WKB approximation as illustrated here does not in itself make use of
a Green function. We shall now consider the Rytov approximation which is
based on a similar idea to the WKB approximation and which makes explicit
use of the Green function.

6.4.2 The Rytov Approximation

Consider the 3D inhomogeneous Helmholtz equation

(∇2 + k2)u(r, k) = −k2γ(r)u(r, k), r ∈ V.
If we substitute u = ui exp(s) into this equation and differentiate, we obtain
the nonlinear Riccatian equation

∇2s+ 2
∇ui
ui

· ∇s+∇s · ∇s = −k2γ
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where ui is taken to satisfy the equation

∇2ui + k2ui = 0, i.e. ui = exp(ik · r).

Suppose we assume that s varies sufficiently slowly for the nonlinear term
∇s · ∇s to be neglected compared to the other terms, then we can write (ap-
proximately)

ui∇2s+ 2∇ui · ∇s = −k2γui. (6.6)

This is the Rytov approximation. To facilitate a Green function solution, we
substitute s = w/ui into equation (6.6). Differentiating, we have

ui∇2s+ 2∇u · ∇s

= ∇2w + 2ui∇w · ∇
(

1
ui

)
+ uiw∇2

(
1
ui

)
+ 2

∇ui
ui

· ∇w + 2w∇ui · ∇
(

1
ui

)
= ∇2w + k2w

and thus, equation (6.6) reduces to

∇2w + k2w = −k2γui.

The Green function solution to this equation (subject to homogeneous bound-
ary conditions) is

w(r0, k) = k2

∫
V

ui(r, k)γ(r)g(r | r0, k)d3r

and we arrive at the solution

u(r0, k) = ui(r0, k) exp

⎡⎣ k2

ui(r0, k)

∫
V

ui(r, k)γ(r)g(r | r0, k)d3r

⎤⎦ .
We can write this result as

u = ui

⎛⎝1 +
k2

ui

∫
V

uiγgd
3r + ...

⎞⎠ � ui + k2

∫
V

uiγgd
3r

which is the solution under the Born approximation.

6.4.3 Conditions for the Rytov Approximation

The condition required for the validity of the Rytov approximation can be
investigated by considering a Green function solution with the nonlinear term
∇s · ∇s included. In this case, equation (6.6) becomes

ui∇2s+ 2∇ui · ∇s = −k2γui − ui∇s · ∇s.
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Substituting s = w/ui into this equation (except for the second term on the
right hand side) we have

∇2w + k2w = −k2γui − ui∇s · ∇s
whose Green function solution is

w = k2

∫
V

uiγgd
3r +

∫
V

ui(∇s · ∇s)gd3r

so that we can write

s =
k2

ui

∫
V

uiγgd
3r +

k2

ui

∫
V

uiγg

(∇s · ∇s
k2γ

)
d3r.

In order for the second term on the right hand side to be neglected, we must
introduce the condition ∇s · ∇s

k2γ
<< 1

or
‖k2γ‖ >> ‖∇s · ∇s‖.

The interpretation of this condition is not trivial. Clearly, the larger the value
of k (i.e. the smaller the value of the wavelength) for a given magnitude of γ
and ∇s, the more appropriate the condition becomes. Thus, the condition is
valid if the wavelength of the field is small compared to γ. Since s can be taken
to be the phase of the wavefield solution u, another physical interpretation
of the condition is that the characteristic scale length over which a change in
phase occurs ∇s is small compared to the wavelength for a given γ.

6.5 The Born Series

The Born approximation introduced earlier was used to solve some elementary
scattering problems. We shall now consider a natural extension to the Born
approximation which is based on generating a series solution to the problem,
known generally as the Neumann series.

Consider the 3D Green function solution to the Helmholtz equation

(∇2 + k2)u(r, k) = −k2γu(r, k)

which is given by
u(r0, k) = ui(r0, k) + us(r0, k)

where
us(r0, k) = k2

∫
V

g(r | r0, k)γ(r)u(r, k)d3r,

ui is the incident field satisfying the equation

(∇2 + k2)ui(r, k) = 0
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and g is the outgoing Green function given by

g(r | r0, k) =
exp(ik | r− r0 |)

4π | r− r0 | .

We have seen that the Born approximation to this equation is given by consid-
ering u ∼ ui, r ∈ V which is valid provided ‖us‖ << ‖ui‖. We then obtain
an approximate solution u1, say, of the form

u1(r0, k) = ui(r0, k) + k2

∫
V

g(r | r0, k)γ(r)ui(r, k)d3r.

This result can be considered to be the first approximation to a series solution,
in which the second approximation u2, say, is given by

u2(r0, k) = ui(r0, k) + k2

∫
V

g(r | r0, k)γ(r)u1(r, k)d3r

and the third approximation u3 is given by

u3(r0, k) = k2ui(r0, k) +
∫
V

g(r | r0, k)γ(r)u2(r, k)d3r

and so on. In general, we can consider the iteration

un+1(r0, k) = ui(r0, k) + k2

∫
V

g(r | r0, k)γ(r)un(r, k)d3r, n = 0, 1, 2, 3, ..

where u0 = ui.
In principle, if this series converges, then it must converge to the solution.

To investigate its convergence, it is convenient to use operator notation and
write

un+1 = ui + Îun

where Î is the integral operator

Î =
∫
V

d3rgγ.

At each iteration n we can consider the solution to be given by

un = u+ εn

where εn is the error associated with the solution at iteration n and u is the
exact solution. A necessary condition for convergence is that εn → 0 as n→∞.
Now,

u+ εn+1 = ui + Î(u+ εn) = ui + Îu+ Îεn

and therefore we can write
εn+1 = Îεn
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since u = ui + Îu. Thus

ε1 = Îε0; ε2 = Îε1 = Î(Îε0); ε3 = Îε2 = Î[Î(Îε0)]; ...

or
εn = Înε0

from which it follows that

‖εn‖ = ‖Înε0‖ ≤ ‖În‖ × ‖ε0‖ ≤ ‖Î‖n‖ε0‖.

The condition for convergence therefore becomes

lim
n→∞ ‖Î‖

n = 0.

This is only possible if
‖Î‖ < 1

or

k2‖
∫
V

g(r | r0, k)γ(r)d3r‖ < 1.

Comparing this result with condition (6.2) and the analysis associated with it
given in Section 6.2.2, it is clear that

γ̄ <
1

k2R2

must be satisfied for the series to converge where R is the radius of a sphere of
volume V .

This series solution, which can be written out as

u(r0, k) = ui(r0, k) + k2

∫
V

g(r | r0, k)γ(r)ui(r, k)d3r =

k2

∫
V

g(r | r0, k)γ(r)

⎡⎣k2

∫
V

g(r1 | r, k)γ(r1)ui(r1, k)d3r1

⎤⎦ d3r + ...

= ui(r0, k) + k2

∫
V

d3rg(r | r0, k)γ(r)ui(r, k)

+k4

∫
V

∫
V

d3rd3r1g(r | r0, k)γ(r)g(r1 | r, k)γ(r1)ui(r1, k)

+k6

∫
V

∫
V

∫
V

d3rd3r1d
3r2g(r | r0, k)γ(r)g(r1 | r, k)γ(r1)g(r2 | r1, k)γ(r2)ui(r2, k)

+ ...
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is an example of a Neumann series solution to a Fredholm integral equation
and is known as the Born series. The scattered field can be written in the form

us(r, k) = k2g(r, k)⊗ γ(r)ui(r, k) + k4g(r, k)⊗ γ(r)[g(r) ⊗ γ(r)ui(r, k)] + ...

where ⊗ denotes the three-dimensional convolution integral over V and r ≡| r |.
Another approach to deriving this result can be taken by considering the

inverse operator. Writing
u = ui + k2Îu

where
Î ≡

∫
V

d3rγ(r)g(r | r0, k),

we have
(1− k2Î)u = ui

or
u = (1 − k2Î)−1ui = (1 + k2Î + k4Î2 + k6Î3 + ...)ui.

Either way, the Born series can be interpreted as follows:

u(r0, k) =incident wavefield
+

wavefield generated by single scattering events
+

wavefield generated by double scattering events
+

wavefield generated by triple scattering events
+

...

Each term in this series expresses the effects due to single, double, and triple,
etc., scattering. Feynman diagrams can be used to represent these effects graph-
ically, e.g. the propagation of a wavefield generated by one interaction with
another. In particle physics, interparticle interactions are complicated multiple
scattering events in which the forces are transmitted by quantum fields. The
propagation of fields between points is precisely what Green functions describe.
So Green functions, often called Feynman propagators in particle physics, are
among the standard working tools of theoretical analysis in modern quantum
physics.

For an incident plane wave ui(r, k) = exp(ik · r) and with R ≡| r− r0 | each
term in the Born series scales as 1

R , 1
R2 , 1

R3 , etc., so that multiple-scattering gets
‘weaker by the term’. This is due to the form of the Green function in 3D which
scales as 1/R, the intensity of the field being 1/R2 - the inverse square law.
Thus, if the scattering function is characterized by a number of scattering ‘sites’
(i.e. where γ is composed of a distribution of point-like scatterers that are of
compact support) then, provided that the distance between these sites is large,
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the effect of multiple scattering will be insignificant. However, if these sites
are close together where the effect of the multiple scattering wavefield falling
off as 1/R2, 1/R3, etc., is not appreciable, then multiple scattering events will
contribute significantly to the scattered field. Hence, one way to interpret
the meaning of ‘weak’ and ‘strong’ scattering is in terms of the ‘density’ of
scattering sites over the volume V being low or high, respectively. For λ ∼ R
where R is the characteristics size of the scatterer, the Born approximation
holds provided the root mean square of the scattering function over the volume
is much less than 1. This is a quantification of the principle that the density of
scattering sites from which we can suppose the scattering function is composed
is low.

Another important feature of the Born series for Helmholtz scattering is that
the terms are scaled by k2, k4, k6. Thus for a fixed k << 1 (long wavelength
waves),

u(r0, k) = ui(r0, k) + k2

∫
V

g(r | r0, k)γ(r)ui(r, k)d3r.

In 1D, the Green function scales as 1/k, the Born series for Helmholtz
scattering being given by

u(x0, k) = ui(x0, k) +
ik

2

∫
L

dx exp(ik | x− x0 |)γ(x)ui(x, k)

−k
2

4

∫
L

∫
L

dxdx1 exp(ik | x− x0 |)γ(x) exp(ik | x1 − x |)γ(x1)ui(x1, k)

− ik
3

8

∫
L

∫
L

∫
L

dxdx1dx2 exp(ik | x− x0)γ(x) exp(ik | x1 − x |)γ(x1)

. exp(ik | x2 − x1)γ(x2)ui(x2, k)

+ ...

In this case, the series does not get ‘weaker by the term’ according to 1/Rn

but by 1/2n. Consequently, we should expect that multiple scattering is a
more common occurrence when waves scatter (transmit/reflect) from layered
materials. This is readily experienced when observing light reflecting from
two glass plates - double glazing for example. Here, a number of faded ‘ghost
images’ are seen in addition to the two primary images obtained from the
partial reflection of light by the first plate and that from the second. As in
the 3D case, the Born approximation ‘improves’ at larger wavelengths since for
k << 1

u(x0, k) = ui(x0, k) +
ik

2

∫
L

exp(ik | x− x0 |)γ(x)ui(x, k)dx.

In quantum (Schrödinger) scattering, the Born series is of the same form
but without the factors of k2, k4, k6, etc., and in 1D is given by

u(x0, k) = ui(x0, k) +
∫
dxg(x | x0, k)γ(x)ui(x, k)dx + ...
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Now, the 1D Green function is given by

g(x | x0, k) =
i

2k
exp(ik | x− x0 |)

and so for k >> 1

u(x0, k) = ui(x0, k) +
i

2k

∫
exp(ik | x− x0 |)V (x) exp(ikx)dx

= ui(x0, k) + exp(−ikx0)
i

2k

∫
V (x) exp(2ikx)dx, x0 →∞.

Thus, for very high frequency quantum wavefields in 1D, the Fourier transform
of the scattering potential γ is an exact scattering transform. This result can
be applied to the 1D inhomogeneous Helmholtz equation by mapping it into
the Schrödinger equation. Writing(

∂2

∂x2
+ k2Γ(x)

)
u(x, k) = 0

where
Γ(x) = 1 + γ(x),

application of the Liouville transformation

U(y, k) = g(x)u(x, k),
dx

dy
=

1
[g(x)]2

, and g(x) = Γ
1
2 (x)

gives (
∂2

∂y2
+ k2

)
U(y, k) = f(y)U(y, k)

where

f(y) =
1
g(y)

∂2

∂y2
g(y).

In imaging science, the fundamental imaging equation comes from assuming
that the recorded data d = u− ui is of the form

d = k2Îui + n

where
n = (k4Î2 + k6Î3 + ...)ui + other noise

In other words, the multiple scattering events are assumed to be part of the
noise inherent in the system recording.

One of the principal issues with using the Born approximation is that it is
generally going to be valid for the case when λ >> R where R is a measure of
the characteristic size of the inhomogeneity. However, in imaging science, to
obtain information on an object over a scale of R, we apply wavefields whose
wavelength is of the same order, i.e. λ ∼ R. Now, since the Born approximation
requires that (in 3D)

γ̄ <<
1
kR

,



6.6. INVERSE SCATTERING 187

for λ ∼ R,
γ̄ << 1.

In other words, to utilize the fundamental imaging equation (which is a prod-
uct of applying the Born approximation) the material we are imaging should
ideally have inhomogeneities whose root mean square value is much less than
1. Because this condition is not always satisfied, multiple scattering effects are
inevitable. Nevertheless, the basic imaging model is, for better or worse, based
on the Born scattering term plus noise for the case when λ ∼ R. Asymptotic
conditions such as λ → ∞ or λ → 0 may provide exact scattering solutions
but they are inconsistent with imaging systems based on the use of radiation
where λ ∼ R.

When multiple scattering is a dominant feature of an image system, al-
though it may be possible to construct a deterministic multiple scattering
model, the application of such a model for the development of a practical image
reconstruction and image processing algorithms is often intractable. Instead
we can consider the wavefield generated by multiple scattering events to be
a stochastic field and investigate its characteristics using statistical modelling
and analysis. This approach is of course consistent with many areas of physics
and engineering when the ‘physics’ that one is attempting to model becomes
too complicated for a deterministic analysis to be of any practical value. In
such cases we turn to statistical methods of modelling the data. This approach
is discussed in Chapter 17.

It is worth mentioning that a Rytov series can be derived by extending
the Rytov approximation in the same way that the Born series has been de-
rived here by extending the Born approximation and considering higher order
iterates subject to a condition for convergence being satisfied. However, the
interpretation of the Rytov series is not trivial and the computational effort
required to evaluate the series for a given scattering function can lead to the
problem becoming a ‘complete Rytov’ !

The use of the Born series (and the Rytov series) leads to computational
problems when evaluating a fully multiple scattered field. First is the issue over
the converegence criterion for the series which may not always be satisfied; sec-
ond is the issue of the singularities that arise when a multiple point scattering
model (i.e. multiple delta functions located at different position in space) for
the scattering function is introduced into the Born series. These problems ne-
cessitated the development of renormalization theory in the early 1960s which
lies beyond the scope of this work. However, it is worth noting, that issues
concerning the development of renormalization theory and the difficulties as-
sociated with its application helped to forge the foundations of string theory
that, to this day, remains the most promising approach for the development of
a unified field theory (a theory of everything!).

6.6 Inverse Scattering

Inverse scattering aims to reconstruct the scattering function from measure-
ments of the data. The practicability of solving inverse scattering problems
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analytically and implementing them experimentally varies considerably from
one application to another. An inversion method is usually based on the ap-
proximation that has been applied to solve the forward scattering problem
given the wave equation. For example, given the Helmholtz equation, then
under the Born approximation, in the far field region, the scattering amplitude
is given by

A(n̂s, n̂i, k) = k2

∫
V

exp[−ik(n̂s − n̂i) · r]γ(r)d3r.

The inverse solution to this problem is therefore compounded in the inverse
Fourier transform. In 1D, the solution is, for a unit plane wave,

u(x0, k) = exp(ikx0) + exp(−ikx0)r(k)

where r is the ‘reflection coefficient’ given by

r(k) =
ik

2

∫
L

γ(x) exp(2ikx)dx

which can be written as

r(k) =
1
4

∫
dx exp(ikx)

d

dx
γ(x/2).

Hence, inversion is achieved by taking the inverse Fourier transform and inte-
grating the result.

The link between the application of the Born approximation in the far field
and the Fourier transform should now be clear. This ‘link’ is essential in imag-
ing science and is why the Fourier transform plays such an essential role. Inverse
solutions under the Born approximation are in effect the same as implementing
Fourier based reconstruction methods in imaging science, at least when the
data collected are the result of a scattering event. In some cases, the scattering
is not as weak as it should be to support application of the Born approxima-
tion. In such cases, Fourier based image reconstructions can become distorted.
There is, however, a method of inverting a wavefield that is the result of multi-
ple Born scattering; this is known as the Jost-Kohn method first published in
1952. A brief overview of this method follows.

Using operator notation, the Born series can be written as

u = ui + Îiγ + Îi(γÎγ) + Ii[γÎ(γÎγ)] + ...

where γ is either the scattering potential (for Schrödinger scattering) or k2γ
(for Helmholtz scattering) and

Îi =
∫
d3ruig, Î =

∫
d3rg.

Now, let εU = u− ui and

γ =
∞∑
j=1

εjγj .
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Then
εU = Îi[εγ1 + ε2γ2 + ε3γ3 + ...]

+Îi[(εγ1 + ε2γ2 + ε3γ3 + ...)Î(εγ1 + ε2γ2 + ε3γ3 + ...)]

+Îi{(εγ1 + ε2γ2 + ε3γ3 + ...)Î [(εγ1 + ε2γ2 + ε3γ3 + ...)

Î(εγ1 + ε2γ2 + ε3γ3 + ...)]} + ...

Equating terms with common coefficients ε, ε2, etc., we have

For j = 1 :
U = Îiγ1; γ1 = Î−1

i U.

For j = 2 :
0 = Îiγ2 + Îi(γ1Îγ1); γ2 = −Î−1

i [Îi(γ1Îγ1)]

and so on. By computing the functions γj using this iterative method, the
scattering function γ is obtained by summing γj for ε = 1. This approach
provides a formal exact inverse scattering solution but it is not unconditional,
i.e. the inverse solution is only applicable when the Born series converges to
the exact scattering solution and thus when

‖
∫
V

g(r | r0, k)γ(r)d3r‖ < 1

We note, that, for j = 1, the solution for γ1 is that obtained under the Born
approximation.

6.7 Surface Scattering Theory

The complete Green function solution to an equation of the form

(∇2 + k2)u = −k2fu, r ∈ V

is

u(r0, k) =
∮
S

(
g
∂u

∂n̂
− u ∂g

∂n̂

)
d2r + k2

∫
V

g(r | r0, k)f(r)u(r, k)d3r

where
∂u

∂n̂
≡ n̂ · ∇u and

∂g

∂n̂
n̂ · ∇g,

the surface integral being obtained by application of Green’s theorem. This
surface integral has so far been discarded under the assumption of homogeneous
boundary conditions or that u = ui (the incident field) on the surface S which
encloses the volume V . We are then left with a volume integral and a volume
scattering theory.

In general, both surface and volume scattering occur. However, if the inci-
dent field does not penetrate the object defined by V , then volume scattering
will not occur. Instead, the scattering is determined by the way in which the
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wavefield interacts with the surface alone and is thus determined by evaluat-
ing the surface integral alone. In this Section, we make explicit use of this
surface integral to develop a solution to the homogeneous Helmholtz equation.
This leads to the theory of surface scattering of which Kirchhoff’s theory is
a special (but very important) case. Kirchhoff developed a rigorous theory of
diffraction in 1887 and demonstrated that previous results and ideas in optics
could be obtained from the wave equation. This result is interesting in that it
provided a well formulated theory of optics (i.e. one based on the solution to
a partial differential equation) but it is also one of the first examples to make
explicit use of Green’s theorem and the Green function combined as a result
of Lord Kelvin popularizing the work of George Green in the latter part of the
Nineteenth Century.

6.7.1 Kirchhoff Diffraction Theory

Consider a scalar wavefield u described by the homogeneous Helmholtz equation

(∇2 + k2)u = 0.

Let ui be the field incident on a (open) surface S and consider the following
(Kirchhoff) boundary conditions

u = ui,
∂u

∂n̂
=
∂ui
∂n̂

on S.

The results which derive from a solution to the Helmholtz equation based on
these boundary conditions is called Kirchhoff diffraction theory. The theory
can be applied to surfaces of different topology but is commonly associated
with plane surfaces such as those representing a plane aperture in a screen.

The scalar diffraction theory used here should be regarded as a first approx-
imation to optical diffraction. The observed intensity I (the observed quantity
at optical frequencies) can be taken to be given by

I =| u |2 .

Except in free space, u is not (in general) a Cartesian component of the vector
electric or magnetic field, and scalar diffraction theory is accurate only if: (i)
the diffracting aperture is large compared to the wavelength; (ii) the diffracted
fields are observed at a reasonable distance from the screen.

In the following Section we solve the homogeneous Helmholtz equation using
a Green function by implementing the Kirchhoff theory of diffraction - a theory
which is fundamental to modern optics.

6.7.2 Green Function Solution

Consider the Green function g which is the solution to

(∇2 + k2)g = −δ3(r− r0)



6.7. SURFACE SCATTERING THEORY 191

given by

g(r | r0, k) =
1

4π | r− r0 | exp(ik | r− r0 |).

We can construct two equations:

g∇2u+ k2gu = 0

and
u∇2g + k2ug = −uδ3.

Subtracting these equations and integrating over a volume V we obtain a so-
lution for the field u at r0,

u(r0, k) =
∮
S

(
g
∂u

∂n̂
− u ∂g

∂n̂

)
· n̂d2r

where we have used Green’s theorem to write the solution in terms of a (closed)
surface integral. We must consider the surface integration carefully to obtain
a sensible result for an aperture in a screen. Consider the case where the
surface of integration is made up of the following three surface patches: (i) the
surface covering the aperture S1; (ii) a plane surface adjacent to the screen
S2 (not covering the aperture); (iii) a semi-spherical surface S3 connected to
S2, where, in each case, the surfaces are considered to exist in the diffraction
domain, i.e. the side of the screen which the incident field does not illuminate
so that S = S1 +S2 +S3. On S2 (the screen itself) u and ∂u/∂n̂ are identically
zero. In the aperture (over the surface S1) the values of u and ∂u/∂n̂ will
have the values they would have if the screen were not there (ui and ∂ui/∂n̂).
Evaluation of the behaviour of the field over S3 requires some attention which
is compounded in the computation of

∂g

∂n̂
= n̂ · ∇g.

Evaluating ∇g we have

∇g = x̂
∂

∂x

exp(ik
√

(x− x0)2 + ...)
4π
√

(x− x0)2 + ...
+ ...

= −x̂
1
4π

exp(ik
√

(x − x0)2 + ...)[(x− x0)2 + ...]−
3
2 (x− x0)

+x̂
ik

4π
(x− x0)

(x− x0)2 + ...
exp(ik

√
(x− x0)2 + ...) + ...

= x̂
exp(ik

√
(x− x0)2 + ...)

4π
√

(x− x0)2 + ...

(x− x0)√
(x− x0)2 + ...

×
(
ik − 1√

(x − x0)2 + ...

)
+ ...

= m̂
(
ik − 1

| r− r0 |
)
g
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where
m̂ =

r− r0

| r− r0 | .

Therefore,
∂g

∂n̂
= n̂ · m̂

(
ik − 1

| r− r0 |
)
g.

In most practical circumstances the diffracted field is observed at distances
| r− r0 | where

| r− r0 |>> λ.

This condition allows us to introduce the simplification

∇g � ikm̂g

so that
∂g

∂n̂
� ikn̂ · m̂g.

The surface integral over S3 can therefore be written as∫
S3

g

(
∂u

∂n̂
− ikn̂ · m̂u

)
d2r.

For simplicity, if we consider S3 to be a hemisphere of radius R =| r−r0 | with
the origin at O say, then we may write this integral in the form∫

Ω

exp(ikR)
4πR

(
∂u

∂n̂
− ikn̂ · m̂u

)
R2dΩ

where Ω is the solid angle subtended by S3 at O. If we now assume that

lim
R→∞

R

(
∂u

∂n̂
+ ikn̂ · m̂u

)
= 0

uniformly with angle, then the surface integral over S3 can be neglected. This
limiting condition is called the Sommerfeld Radiation Condition and is satisfied
if u → 0 as fast as | r − r0 |−1→ 0. With this requirement met, the only
contribution to the surface integral will be in the plane of the aperture. Using
the Kirchhoff boundary conditions we have

u(r0, k) =
∫
S

(
g
∂ui
∂n̂

− ui ∂g
∂n̂

)
d2r

where S is taken to be S1. This equation is referred to as the Kirchhoff integral.
Note that this integral is not a closed surface integral and so Green’s theorem
will not apply. Also note that, in deriving this result we have failed to take into
account the finite width of the aperture and therefore the effect of the edges of
the aperture on the field within the aperture. Thus, the model can only apply
to apertures much larger than the wavelength of the field and for apertures
which are ‘thin’.



6.7. SURFACE SCATTERING THEORY 193

To compute the diffracted field using the Kirchhoff integral, an expression
for ui must be introduced and the derivatives ∂/∂n̂ with respect to ui and g
evaluated. Let us consider the case where the incident field is a plane wavefield
of unit amplitude (with wavenumber k ≡| k |, k̂ = k/k). Then

ui = exp(ik · r),

∂ui
∂n̂

= n̂ · ∇ exp(ik · r) = ik · n̂ exp(ik · r) = ikn̂ · k̂ exp(ik · r)

and the Kirchhoff diffraction formula reduces to the form

u(r0, k) = ik

∫
S

exp(ik · r)(n̂ · k̂− n̂ · m̂)g(r | r0, k)d2r.

6.7.3 Fraunhofer Diffraction

Fraunhofer diffraction assumes that the diffracted wavefield is observed a large
distance away from the screen and, as in previous Sections, is based on the
asymptotic form of the Green function. For this reason, Fraunhofer diffraction
is sometimes called diffraction in the ‘far field’. The basic idea is to exploit
the simplifications that can be made to the Kirchhoff diffraction integral by
considering the case when

r0 >> r

where r ≡| r | and r0 ≡| r0 |. In this case,

1
| r− r0 | �

1
r0

and

n̂ · k̂− n̂ · m̂ � n̂ · k̂ + n̂ · r̂0

where

r̂0 =
r0

r0

With regard to the term exp(ik | r− r0 |),

| r− r0 |� r0 − r · r̂0

and, hence, the Kirchhoff diffraction integral reduces to

u(r0, k) � ikα

4πr0
exp(ikr0)

∫
S

exp(ik · r) exp(−ikr̂0 · r)d2r

where α = n̂ · k̂ + n̂ · r̂0. This is the Fraunhofer diffraction integral.
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6.7.4 Fresnel Diffraction

Fresnel diffraction is based on considering the binomial expansion of | r− r0 |
in the function exp(ik | r−r0 |) to second order and retaining the term r2/2r0;

| r− r0 |= r0 − r · r̂0 +
r2

2r0
+ ...

� r0 − r · r̂0 +
r2

2r0
.

This approximation is necessary when the diffraction pattern is observed in
what is called the intermediate field, or Fresnel zone, in which

u(r0, k) � ikα

4πr0
exp(ikr0)

∫
S

exp(ik · r) exp(−ikr0 · r) exp
(
ik
r2

2r0

)
d2r.

This is the Fresnel diffraction formula.

6.8 Summary of Important Results

Green function solution

The general solution to the equation

(∇2 + k2)u(r, k) = −k2γ(r)u(r, k), r ∈ V

is

u(r0, k) =
∮
S

(
g
∂u

∂n̂
− u ∂g

∂n̂

)
d2r + k2

∫
V

g(r | r0, k)γ(r)u(r, k)d3r

where
∂u

∂n̂
≡ n̂ · ∇u and

∂g

∂n̂
≡ n̂ · ∇g.

Boundary conditioning

If u = ui on S where ui satisfies the equation

(∇2 + k2)ui = 0

then ∮
S

(
g
∂u

∂n̂
− u ∂g

∂n̂

)
d2r = ui

The Born approximation

u = ui + us
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where
us(r0, k) = k2

∫
g(r | r0, k)γ(r)ui(r, k)d3r

provided

‖us(r, k)‖ << ‖ui(r, k)‖ =⇒ γ̄ <<
1

k2R2

where ui and us are the incident and scattered fields respectively and R is the
characteristic scale of the scattering function γ, r ∈ V .

The Born series

u(r0, k) = ui(r0, k) + us(r, k)

where
us(r, k) = k2

∫
V

g(r | r0, k)γ(r)ui(r, k)d3r =

k2

∫
V

g(r | r0, k)γ(r)

⎡⎣k2

∫
V

g(r1 | r, k)γ(r1)ui(r1, k)d3r1

⎤⎦ d3r + ...

= ui(r0, k) + k2

∫
V

d3rg(r | r0, k)γ(r)ui(r, k)

+k4

∫
V

∫
V

d3rd3r1g(r | r0, k)γ(r)g(r1 | r, k)γ(r1)ui(r1, k)

+k6

∫
V

∫
V

∫
V

d3rd3r1d
3r2g(r | r0, k)γ(r)g(r1 | r, k)γ(r1)g(r2 | r1, k)γ(r2)ui(r2, k)

+ ...

under the condition that

‖us(r, k)‖ ≤< ui(r, k)‖ =⇒ γ̄ <
1

k2R2

The Rytov approximation

u(r0, k) = ui(r0, k) exp

⎡⎣ k2

ui(r0, k)

∫
V

ui(r, k)γ(r)g(r | r0, k)d3r

⎤⎦
on the condition that

‖k2γ‖ >> ‖∇s · ∇s‖
where

s = ln(u/ui)

.
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The WKB approximation

The solution to the equation(
∂2

∂x2
+ k2

)
u(x, k) = −k2γ(x)u(x, k), x ∈ L

given by

u(x, k) = exp

⎡⎣ik
⎛⎝x+

1
2

x∫
γ(x)dx

⎞⎠⎤⎦ , λ << L

The Sommerfeld radiation condition

lim
R→∞

R

(
∂u

∂n̂
+ ikn̂ · m̂u

)
= 0

Kirchhoff boundary conditions

u = ui,
∂u

∂n̂
=
∂ui
∂n̂

on S

where S is an open surface.

Kirchhoff diffraction integral

u(r0, k) = ik

∫
S

exp(ik · r)(n̂ · k̂− n̂ · m̂)g(r | r0, k)d2r

Fraunhofer diffraction integral

u(r0, k) =
ikα

4πr0
exp(ikr0)

∫
S

exp(ik · r) exp(−ikr̂0 · r)d2r

where α = n̂ · k̂ + n̂ · r̂0.

Fresnel diffraction integral

u(r0, k) =
ikα

4πr0
exp(ikr0)

∫
S

exp(ik · r) exp(−ikr̂0 · r) exp
(
ik
r2

2r0

)
d2r
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Chapter 7

Imaging of Layered Media

Many imaging methods are based on the assumption that the scattering body
is composed of layers. This highly idealized model reduces the dimension of a
scattering problem to one dimension. In some special cases, this is consistent
with the physical nature of the imaging system especially if: (i) the scattering
function is a one-dimensional function; (ii) the incident wavefield is a ‘pencil-
line beam’.

Seismic imaging

The propagation and reflection of seismic waves through the Earth has been
studied intensively in the context of the exploration of oil, coal and natural gas.
In this case, an image is generated of the interior structure of the ground. This
provides information on the geology of regions which are often stratified. Hence,
seismic imaging can often be based on the theory of scattering from layered
media. Seismic prospecting is conducted either on land or at sea. Seismic waves
are generated by chemical explosions or vibrating impacts of short duration.
By recording the time history of the reflected seismic waves, information on
the nature and geological significance of the Earth’s interior can be obtained.

An interesting example of a seismic image is given in Figure 7.1. This type of
image is produced by collecting together and displaying side-by-side the seismic
signals which are produced at different shot locations (the location of a small
chemical explosion below the surface of the Earth) as shown in Figure 7.2. The
seismic signals may be recorded over both sides of the shot or over just one side
(the latter case being more common). Each signal or ‘trace’ is the sum of all
those signals that have been detected by a linear array of geophones extending
away from the shot location after they have been corrected for normal moveout,
i.e. aligned to coincide with reflections from points at a common depth. This is
called ‘stacking’ and a seismic image of this type is therefore usually known as
a Common Depth Point (CDP) stack. It provides a set of seismic signals with
an improved signal-to-noise ratio compared to the original pre-stacked data.
It also reduces episodes in the data which are due to multiple scattering by
enhancing the amplitudes of the primary or single scattering events. In effect,
this process conditions the data in such a way as to make it conform better to

198
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a Born scattering model.

Figure 7.1: Example seismic image of a section of the South Yorkshire coal
field in England.

Figure 7.2: A small charge is placed below the surface of the earth at the point
marked X. The explosion creates a seismic wave which travels through the
earth and is reflected at interfaces between different rock strata. The seismic
reflections travel back to the surface of the earth where they are recorded by
a linear array of geophones either over both sides or more commonly, just one
side of the shot. The recorded signals are corrected for normal moveout and
added together to form a single trace improving the signal-to-noise ratio which,
in effect, provides data on the scattered field that can be modelled using the
Born approximation. By repeating this type of experiment for different shot
locations, a seismic image can be built up of the type given in Figure 7.1.
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The example given in Figure 7.1 shows a region of the South Yorkshire coal
field. It is conventional to shade in the area under the positive lobes of each
trace to emphasize the lateral correlation of the data. This makes it easier for
a geologist to distinguish between layers of geological interest. In this image,
the main event (which occurs approximately half way down the image) is due
to seismic reflections from a coal seam.

Ultrasonic imaging

Another example where it is often assumed that the scattering object has a
layered structure is in imaging with ultrasound. This is used extensively for
the nondestructive evaluation of objects and for medical imaging. In the latter
case, the layers are of different tissue types. Reflections of an ultrasonic pulse
are generated at the interface between these layers. By moving the source
of ultrasound (the transducer) and displaying the amplitude envelope of the
ultrasonic signals on a visual display unit, an image can be generated which is
known as a ‘brightness’ or B-scan as illustrated in Figure 7.3. In practice, an
array of transducers is used which may be linear or curvilinear. This allows an
experienced radiologist to judge the pathological state of the tissues. In some
cases, a dramatic difference can be observed between healthy and unhealthy
tissues. An example of this is provided in Figure 7.4. This shows two transverse
B-scans of the thigh for a normal patient (left) and a patient suffering from
muscular dystrophy (right) where the muscle wastes away, being replaced in
part by fatty tissues. Figure 7.4 demonstrates that, in healthy tissue, the B-
scan illustrates bulk anatomical features such as the skin (S), fascia lata (FL)
and bone (B) which are clearly defined. In the case of muscular dystrophy, the
B-scan demonstrates the striking differences in intensity and diffuseness of the
scattered ultrasonic field in the muscle compared with normal muscle and the
absence of scattering from bone.

Discussion

In addition to the examples discussed above, there are many other applications
in acoustic imaging. Further, a variety of electromagnetic imaging systems can
be ‘cast’ in terms of problems involving layered materials (e.g. the response
of light, radio and microwaves to layered dielectric materials including the
transmission of electromagnetic waves along transmission such as an optical
fiber). Also, problems that involve radial symmetry may often be reduced
to a form where one-dimensional scattering theory can be employed. One-
dimensional scattering models may also be used effectively in cases when the
probe is a narrow collimated beam - a so-called ‘pencil’ or ‘pencil-line’ beam
although in reality all beams diverge. Ideally, all imaging theory should be
fully three-dimensional. No arguments can then arise about the geometrical
validity of the theory. However, it is often useful to reduce the dimension of a
theoretical model for a physical problem when the opportunity arises, and this
is the subject of this Chapter.
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Figure 7.3: Medical imaging with ultrasound utilizes a short side-band pulse
which is emitted by a transducer. The pulse is reflected by the tissue layers. The
characteristic signal is recoded, demodulated and the amplitude modulations
displayed on a visual display unit. Lateral movement of the transducer provides
an ultrasonic image (a ‘brightness’ or B-scan).

7.1 Pulse-Echo Imaging

All the imaging methods that are discussed in this Chapter can be classified in
terms of ‘pulse-echo’ imaging. This is where a short pulse of radiation is emitted
from a source and the ‘time history’ of the scattered field is recorded by a
receiver which is placed in the vicinity of the location of the source. By moving
both the source and receiver and repeating this type of experiment, an image
can be built up based on the nature of the reflected pulse at different source
locations. The resolution that can be obtained with pulse-echo experiments of
this type is determined by the length of the pulse that is used and the width of
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the beam. To obtain high resolution, a short pulse and narrow ‘pencil beam’
are required. In some cases, the lateral resolution can be synthesized. This
type of imaging is known as synthetic aperture imaging and is discussed later
on in this work.

Figure 7.4: Transverse B-scans of a healthy thigh (left) and the thigh of a
patient with Duchenne dystrophy (right). S-skin, FL-faccia lata, B-bone, M-
muscle.

In a pulse-echo experiment, the receiver monitors the time history of the
reflected waves (the echo). After a short delay (which depends on the distance
of the source from the scatterer and the speed at which the pulse propagates),
the first reflections are received followed by a series or ‘train’ of other reflections
from the interior of the material. This process continues until all the energy
of the pulse has been dissipated. In each case, the receiver produces a voltage
trace which is proportional to the variations in time of the reflected waves. For
example, in seismic imaging, the pulse is often produced by detonating a small
charge which is placed in the ground. Seismic reflections are monitored by an
array of instruments called geophones. A geophone consists of a thin wire coil
which is free to move through a radial magnetic field induced by a bar magnet
around which the coil is mounted. The geophone is weighted so that the coil
moves in sympathy with the motion of the ground surface that is induced by
the arrival of seismic reflections. The oscillation of the coil then produces a
time varying voltage which can be amplified and recorded in analogue and then
digitized. Thus, a record of the time history of the seismic waves is obtained.
In ultrasonic imaging, the pulse is produced by an instrument known as a
transducer. This instrument translates an electrical impulse into a mechanical
impulse or visa versa. The reflected ultrasonic pressure waves induce motion
of the transducer face which consequently produces a time varying voltage. As
before, the time varying signal is amplified and digitized, providing data on
the time history of the scattered field at a point in space. In electromagnetic
imaging (time-history resolved), the scattered electric field is measured by the
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way in which it induces a time varying voltage in an antenna.
Pulse-echo imaging is based on using wavefields at frequencies where the

time variations of the wavefield can be recorded to produce a set of signals.
In acoustics, the frequency range is from Hz - MHz. In electromagnetics, it
is generally from kHz - GHz. Apart from synthetic aperture imaging systems,
most pulse-echo based systems provide partially coherent (in time) images.
There is one important difference between them, however, which is concerned
with whether or not the pulse is a side-band of base-band wavefield. Baseband
pulses are multi-frequency wavefields with a frequency range from 0-Ω Hz where
Ω is the bandwidth of the pulse. Sideband pulses are fields with a bandwidth
of Ω but with a central frequency of ω0, the carrier frequency of the pulse,
where typically, ω0 >> Ω. In side-band systems, it is usual to demodulate
back to base-band and then digitize the resulting signal(s). Sideband systems
are a natural consequence of utilizing high frequency radiation sources where
the pulse length is much longer than the wavelength. Thus, suppose a pulse of
radiation denoted by p(t) has a spectrum P (ω) where | ω |≤ Ω. Then, for a
base-band system we have

p(t) ⇐⇒ P (ω)

but for a side-band system

p(t) exp(iω0t)⇐⇒ P (ω)⊗ δ(ω − ω0) = P (ω − ω0).

In the latter case, there are many oscillations of the field over the duration of
the pulse and hence we have p(t) exp(iω0t) rather than just p(t).

Basic Equation

The signal produced in a pulse-echo experiment is described by the equation

s(t) = p(t)⊗ f(t) + n(t)

where p is the pulse, f is the object function and n is the noise. Here, p
describes the profile in time of the pulse that is used to probe the material
and f describes the response of the material to this probe. For this reason,
f is called the impulse response function. It represents the signal that would
be produced in the hypothetical case when p is an infinitely short pulse (an
impulse or delta function) when

s(t) = δ(t)⊗ f(t) + n(t) = f(t) + n(t).

The basic processing that is undertaken in pulse-echo imaging involves the re-
construction of f from s. This is known as deconvolution. The resolution in
time that can be obtained in a pulse-echo experiment of this kind is determined
by the length of the pulse - the shorter the pulse, the greater the resolution.
In practice, the length of the pulse is limited by a number of technical and
physical constraints such as the amount of energy that is required to penetrate
the material. In the latter case, a major factor is the characteristic absorption
of the material which tends to increase at higher frequencies in a manner that
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is invariably nonlinear. For example, in acoustic imaging, the absorption coeffi-
cient (responsible for negative exponential decay) is proportional to the square
of the frequency (in a viscous medium). In electromagnetism, the absorption
is proportional to the square root of the frequency (in a conductive medium).

The pulse p depends upon the imaging system that is used, whereas the
impulse response is a description for the material that is being imaged. A
pulse-echo imaging system attempts to find out as much about the nature of
the impulse response function as possible. To generate quantitative images
of a layered material, expressions for the impulse response function must be
derived in terms of an appropriate set of material parameters. In the following
Sections, expressions for this function are derived for an electromagnetic and
acoustic continuum with a layered structure. To do this, we employ the Born
approximation. This approximation leads to an expression for the reflected
field which is of the same form as s = p⊗ f . Here, the principal assumption is
that multiple scattering does not contribute to the information in the signal.

7.2 EM Imaging of a Layered Dielectric

From Maxwell’s equations, the wave equation for an electric field in a material
composed of variations in the permittivity ε permeability μ and conductivity
σ is given by (see Chapter 4)

∇×∇×E + εμ
∂2E
∂t2

+ μσ
∂E
∂t

= (∇ lnμ)×∇×E (7.1)

We now introduce the following model:

1. A plane layered conductive dielectric

ε = ε(x); μ = μ(x); σ = σ(x) (7.2)

2. A plane polarized E-field

E = ẑEz(x, y, t) (7.3)

Our aim is to solve the inverse Born scattering problem posed by this model
and reconstruct ε, μ and σ.

Substituting equations (7.2) and (7.3) into equation (7.1) we obtain(
∂2

∂x2
+

∂2

∂y2

)
Ez − εμ∂

2Ez
∂t2

− μσ∂Ez
∂t

=
d lnμ
dx

∂Ez
∂x

. (7.4)

By introducing the Fourier transform

Ez(x, y, t) =
1
2π

∞∫
−∞

Ẽz(x, y, ω) exp(iωt)dω
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equation (7.4) can be written in the form(
∂2

∂x2
+

∂2

∂y2

)
Ẽ + ω2εμ

(
1− i

ωτ

)
Ẽz =

d lnμ
dx

∂Ẽz
∂x

where
τ =

ε

σ
.

The parameter τ is called the relaxation time. For one-dimensional scattering
problems of this kind, it is convenient to separate the electric field into two
components. Since the material is homogeneous in the y-direction, we can
write the electric field as

Ẽz(x, y, ω) = u(x, ω) exp(−iky sin θ), k =
ω

c0

where θ is the angle of incidence and c0 is the velocity of the electromagnetic
waves in a vacuum. Using this result, the wave equation above can be reduced
to the form [

∂2

∂x2
+ ω2εμ

(
1− i

ωτ

)]
u =

d lnμ
dx

∂u

∂x
+ u

ω2

c20
sin2 θ. (7.5)

We see that this equation is inhomogeneous on both the left- and right-hand
sides. The next thing to do is to write this equation in a form that enables us
to use the appropriate Green function to solve it. This could be done using the
methods discussed in Chapter 4. However, in one-dimensional (and only 1D)
problems, it is more elegant to do this by introducing the transform

dx

dξ
= c(ξ). (7.6)

This is known as the travel time transformation. The parameter ξ is the travel
time and c is the velocity profile of the inhomogeneous dielectric given by

c =
1√
εμ
.

Using the chain rule together and equation (7.6) we can write

∂2u

∂x2
=

1
c2
∂2u

∂ξ2
− 1
c3
dc

dξ

∂u

∂ξ

and
d lnμ
dx

∂u

∂x
=

1
c2
d lnμ
dξ

∂u

∂ξ
.

Noting that
1
c

dc

dξ
=
d ln c
dξ

equation (7.5) then becomes(
d2

dξ2
+ ω2

)
u = −L̂u
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where

L̂u = −d lnZ
dξ

∂u

∂ξ
− iω

τ
u− uω2 c

2

c20
sin2 θ

and
Z = μc.

The parameter Z is called the impedance. Using the Born approximation, the
equation for the scattered field us becomes(

∂2

∂ξ2
+ ω2

)
us = −L̂ui

where ui is the incident field. In a pulse-echo experiment, us is the reflected
or back-scattered field that is produced by the emission of a pulse p(t) with a
spectrum P (ω) where

p(t) =
1
2π

∞∫
−∞

P (ω) exp(iωt)dω.

Consider a pulse-echo experiment which utilizes a right travelling pulse. In this
case

ui = P exp(−iωξ) (7.7)

and so

L̂ui = iωP exp(−iωξ) d
dξ

lnZ − iω

τ
P exp(−iωξ)− ω2P exp(−iωξ)c

2

c20
sin2 θ.

(7.8)
The reflected field travels in the opposite direction to the incident field. Hence,
in this case, we must use the Green function which represents a left-travelling
wave, i.e.

g(ξ | ξ0, ω) =
i

2ω
exp(iω | ξ − ξ0 |).

The back-scattered field at ξ0 is then given by

us(ξ0, ω) =
i

2ω

∞∫
−∞

exp(iω | ξ − ξ0 |)L̂uidξ.

In the far field, when ξ0 >> ξ, | ξ − ξ0 |= ξ0 − ξ and

us(ξ0, ω) = exp(iωξ0)S(ω)

where S is the reflection coefficient given by

S(ω) =
i

2ω

∞∫
−∞

exp(−iωξ)L̂uidξ. (7.9)
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Substituting equation (7.8) into equation (7.9) we obtain

S(ω) =
P

2

∞∫
−∞

(
− d

dt
lnZ +

1
2τ

)
exp(−iωt)dt

− iωP sin2 θ

4c20

∞∫
−∞

c2 exp(−iωt)dt

where t = 2ξ (the two-way travel time). By taking the inverse Fourier transform
of this equation, noting that

iωc2 ⇐⇒ d

dt
c2

and using the convolution theorem, we obtain

sθ(t) = p(t)⊗ fθ(t) (7.10)

where

fθ = −1
2
d

dt
lnZ +

1
4τ
− sin2 θ

4c20

dc2

dt
.

The function sθ(t) represents the time varying signal that is measured in an
experiment of the type illustrated in Figure 7.5. In this example, the electro-
magnetic pulse is a right-travelling pulse. It travels through a homogeneous
medium where the velocity of the wave is constant and the relaxation time
is infinitely long (i.e. the conductivity is zero). The pulse is incident on the
inhomogeneous region at an angle θ to the normal and the scattered field is
observed at an angle 2θ to the path of the incident pulse. The receiver converts
variations in the electric field as a function of the two-way travel time t into a
voltage trace. The function sθ(t) is taken to describe this voltage trace.

Equation (7.10) is based on a solution for a right-travelling incident pulse.
To indicate this we write sθ and fθ with the superscript −. Equation (7.10)
then becomes

s−θ (t) = p(t)⊗ f−
θ (t)

An equally valid solution can be constructed by considering the case when a
left travelling pulse is incident on the material. In this case, equation (7.7) is
replaced by

ui = P exp(iωξ)

and we must use the Green function which represents a right-travelling wave,
i.e.

g(ξ | ξ0, ω) =
i

2ω
exp(−iω | ξ − ξ0 |)

=
i

2ω
exp(iωξ) exp(−iωξ0), ξ0 >> ξ.
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In this case, the reflection coefficient becomes

S(ω) =
i

2ω

∞∫
−∞

exp(iωξ)L̂uidξ

where

L̂ui = −iωP exp(iωξ)
d

dξ
lnZ − iω

τ
P exp(iωξ)− ω2P exp(iωξ)

c2

c20
sin2 θ.

Figure 7.5: Illustration of the method for imaging an inhomogeneous layered
dielectric with impulse response function fθ(t) using a pulse p(t) incident at an
angle θ.

Evaluating this integral and taking the inverse Fourier transform, we then
obtain an expression for the signal produced by a left-travelling incident pulse.
This is given by

s+θ (t) = p(t)⊗ f+
θ (t)

where

f+
θ =

1
2
d

dt
lnZ +

1
4τ
− sin2 θ

4c20

dc2

dt
.
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Hence, we can write the general solution for a left (+) or right (−) travelling
pulse as

s±θ = p(t)⊗ f±
θ (t)

where

f±
θ (t) = ±1

2
d

dt
lnZ +

1
4τ
− sin2 θ

4c20

dc2

dt
. (7.11)

The calculations given above provide us with expressions for the signal,
where the impulse response function is defined in terms of the material param-
eters ε, μ and σ. In addition to this, we know that a change in the direction of
the incident pulse only effects the polarity of one term in the impulse response
functions, namely 1

2d lnZ/dt. This result allows us to obtain a quantitative
solution to the three-parameter problem (ε, μ, σ). By generating the data

s+0 = p⊗ f+
0 ,

s−0 = p⊗ f−
0 ,

and
s+θ = p⊗ f+

θ

and deconvolving1 each signal, we can construct the simultaneous equations

f+
0 =

1
2
d

dt
lnZ +

1
4τ
,

f−
0 = −1

2
d

dt
lnZ +

1
4τ
,

f+
θ =

1
2
d

dt
lnZ +

1
4τ
− sin2 θ

4c20

dc2

dt
.

Defining the functions
f1 = f+

0 − f−
0 ,

f2 = f+
0 + f−

0 ,

f3 = f+
0 − f+

θ ,

the following equations are obtained,

f1 =
d

dt
lnZ,

f2 =
1
2τ
,

f3 =
sin2 θ

4c20

dc2

dt
.

It is then a simple matter to solve each of these equations. Using the initial
conditions,

Z(t) = Z0, t = 0;

1Deconvolution is discussed at length in Digital Signal Processing, Horwood, 2003.
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c(t) = c0, t = 0;
t∫
f1(t′)dt′ = 0, t = 0,

and
t∫
f3(t′)dt′ = 0, t = 0

we obtain

Z(t) = Z0 exp

⎛⎝ t∫
f1(t′)dt′

⎞⎠ ,

τ(t) =
1

2f2(t)
,

and

c(t) = c0

⎛⎝1 +
4

sin2 θ

t∫
f3(t′)dt′

⎞⎠
1
2

.

Using the definitions for Z, c and τ , the required set of parameters are given
by

ε =
1
Zc
,

μ =
Z

c
,

and
σ =

1
Zcτ

.

These solutions can be written as a function of the displacement x by inverting
the travel time transform, i.e. equation (7.6). This gives

x(ξ) =

ξ∫
c(ξ′)dξ′.

The method of quantitative imaging given here assumes that the deconvolution
is ideal and that the impulse response functions can be recovered perfectly from
the signal, i.e. some function q(t) exists such that q(t) ⊗ p(t) = δ(t). This of
course is not possible because in reality each signal will be noisy, i.e.

s+0 = p⊗ f+
0 + n+,

s−0 = p⊗ f−
0 + n−,

and
s+θ = p⊗ f+

θ + n+
θ .

However, we can still use the results under the assumption that f+
0 , f−

0 and
f+
θ are band-limited spectral approximations to the ideal impulse response

functions given.
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Observe that at normal incidence (i.e. when θ = 0), the impulse response
function for a left-travelling incident pulse is

f+
0 (t) =

1
2
d

dt
lnZ +

1
4τ
.

When the conductivity is zero, only the first term contributes to the result
(since 1/τ = σ/ε). The strength of the reflected signal is determined not by
the value of the impedance but by the tie derivative of its logarithm. An
everyday example of this is the reflection of light from a glass plate. If such a
glass plate is then coated with a highly conductive material such as mercury,
then the impulse response function is determined by the additional term σ

4ε . In
this case, the strength of the reflection is additionally determined by the value
of the conductivity; what we have is a mirror!

7.3 Acoustic Imaging of a Layered Material

The same method as that used in the previous Section can be employed to study
the reflection of an acoustic pulse from a layered acoustic continuum. The basic
aim of the calculation is the same. However, because the wave equation for an
acoustic field is more complicated, the calculations are a little more involved.

It was shown in Chapter 4 that the basic wave equation for the compressional
velocity field v is given by

ρ
∂2

∂t2
v = ∇

(
1
κ
∇ · v

)
+
∂

∂t
∇ · (αI∇ · v + 2β∇v) (7.11)

assuming that the shear wave component is negligible, or

∇× v = 0.

We now consider the following models:

1. A layered viscous continuum

ρ = ρ(x), κ = κ(x), α = α(x), β = β(x). (7.12)

2. A compressional velocity field

v = x̂vx(x, y, t). (7.13)

Our problem is to solve the inverse acoustic Born scattering problem posed by
this model.

Using the vector identity

∇×∇× v = −∇2v +∇∇ · v

we note that, if ∇× v = 0, then

∇2v = ∇∇ · v.
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Using this result, equation (7.11) becomes

ρ
∂2

∂t2
v =

1
κ
∇2v − 1

κ2
(∇κ)∇ · v

+(α+ 2β)
∂

∂t
∇2v +

∂

∂t
(∇α)∇ · v + 2

∂

∂t
(∇β) · ∇v.

Substituting equations (7.12) and (7.13) into this equation and rearranging, we
then obtain (

1 + τ
∂

∂t

)(
∂2

∂x2
+

∂2

∂y2

)
vx − κρ∂

2vx
∂t2

=
1
κ

dκ

dx

∂vx
∂x

−κ d
dx

(α+ 2β)
∂2vx
∂x∂t

where τ is the relaxation time of the acoustic material given by

τ = κ(α+ 2β).

Introducing the Fourier transform,

vx(x, y, t) =
1
2π

∞∫
−∞

Vx(x, y, ω) exp(iωt),

this equation becomes

(1 + iωτ)
(
∂2

∂x2
+

∂2

∂y2

)
Vx + κρω2Vx

=
1 + iωτ

κ

dκ

dx

∂Vx
∂x

− iω dτ
dx

∂Vx
∂x

. (7.14)

In this case, our problem is to reconstruct the density ρ, the compressibility κ
and the bulk viscosity α+2β. To do this, exactly the same procedure as before
can be used. Thus, we write

Vx(x, y, ω) = u(x, ω) exp(−iky sin θ), k =
ω

c0

and introduce the travel time transformation

dx

dξ
= c(ξ)

where c is the acoustic velocity given by

c =
1√
ρκ
.

From equation (7.14) we then obtain(
d2

dξ2
+ ω2

)
u = −(1 + iωτ)

d

dξ
lnZ

∂u

∂ξ
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−iω dτ
dξ

∂u

∂ξ
− iωτ ∂

2u

∂ξ2
+ u(1 + iωτ)ω2 c

2

c20
sin2 θ

where Z is the acoustic impedance given by

Z = ρc =
√
ρ/κ.

Using the Born approximation and repeating the same type of calculation that
was performed in Section 7.2, it can be shown that the signal produced by a
right-travelling pulse is given by

s−θ (t) = p(t)⊗ f−
θ (t)

where

f−
θ =

1
2
d

dt
lnZ +

1
2
d

dt

(
τ
d

dt
lnZ

)
+

3
4
d2τ

dt2
+

sin2 θ

4c20

d

dt

(
c2 +

d

dt
(τc2)

)
and, for a left-travelling pulse, is given by

s+θ (t) = p(t)⊗ f+
θ (t)

where

f+
θ = −1

2
d

dt
lnZ +

1
2
d

dt

(
τ
d

dt
lnZ

)
+

3
4
d2τ

dt2
+

sin2 θ

4c20

d

dt

(
c2 +

d

dt
(τc2)

)
.

At this stage, it is interesting to compare the acoustic impulse response function
with the electromagnetic impulse response function derived in Section 7.2. First
of all, notice that, when θ = 0 and τ = 0, the impulse response functions
for both the electromagnetic and acoustic models are the same. In this case,
reflections are induced by variations in the impedance Z alone. The major
difference between the two models occurs when variations in the relaxation time
τ are present. Notice that the strength of the reflection of an electromagnetic
wave induced by variations in τ is determined by the magnitude of 1/τ which
is proportional to the conductivity of the material. However, the strength of
the reflection of an acoustic wave is determined by both the first and second
derivatives of τ . This means that even if the average viscosity of the material
is small, a sudden change in this parameter can still generate strong reflections
of an acoustic wave.

By recording the signals s+0 , s−0 and s+θ and deconvolving, we can, in prin-
ciple, generate the functions

f+
0 = −1

2
d

dt
lnZ +

1
2
d

dt

(
τ
d

dt
lnZ

)
+

3
4
d2τ

dt2
,

f−
0 =

1
2
d

dt
lnZ +

1
2
d

dt

(
τ
d

dt
lnZ

)
+

3
4
d2τ

dt2
,

and

f+
θ = −1

2
d

dt
lnZ +

1
2
d

dt

(
τ
d

dt
lnZ

)
+

3
4
d2τ

dt2
+

sin2 θ

4c20

d

dt

(
c2 +

d(τc2)
dt

)
.
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We are then faced with the problem of solving these three simultaneous equa-
tions for the functions Z, τ and c. To do this we generate the data

f1 = f+
0 − f−

0 ,

f2 = f+
0 + f−

0 ,

and
f3 = f+

θ − f+
0

so that we can write
f1 = − d

dt
lnZ, (7.15)

f2 =
d

dt

(
τ
d

dt
lnZ

)
+

3
2
d2τ

dt2
(7.16)

and

f3 =
sin2 θ

4c20

d

dt

(
c2 +

d(τc2)
dt

)
. (7.17)

Compared to the electromagnetic case, these equations are not as easy to solve
except for equation (7.15) whose solution is

Z(t) = Z0 exp

⎛⎝− t∫
f1(t′)dt′

⎞⎠
where

Z = Z0, t = 0

and
t∫
f1(t′)dt′ = 0, t = 0.

This solution is often used in acoustic imaging when the angle of incidence of the
pulse is zero (θ = 0) under the assumption that the viscosity of the material
is also zero (τ = 0). The reconstruction of the impedance from a signal by
deconvolution and application of the above formula is known as impediography
which is discussed later.

Solution to Equation (7.16)

Using the initial conditions

dZ

dt
= 0, t = 0;

dτ

dt
= 0, t = 0;

and
t∫
f2(t′)dt′ = 0, t = 0;



7.3. ACOUSTIC IMAGING OF A LAYERED MATERIAL 215

the solution to equation (7.16) can be obtained by first integrating directly to
get

τ
d

dt
lnZ +

3
2
dτ

dt
=

t∫
f2(t′)dt′.

Multiplying through by 2/3 and noting that

2
3

lnZ = lnZ2/3

and
d

dt
lnZ2/3 =

1
Z2/3

d

dt
Z2/3

we can write

1
Z2/3

d

dt
(τZ2/3) =

2
3

t∫
f2(t′)dt′.

Multiplying through by Z2/3, integrating again and then using the initial con-
ditions

Z = Z0, t = 0;

τ = τ0, t = 0;

and
t∫
dt′Z2/3(t′)

t′∫
f2(t′′)dt′′ = 0, t = 0;

we get

τ(t) = τ0

(
Z0

Z(t)

) 2
3

⎛⎝1 +
2

3τ0Z
2/3
0

t∫
dt′Z2/3(t′)

t′∫
f2(t′′)dt′′

⎞⎠ .

Solution to Equation (7.17)

Writing equation (7.17) as

d

dt

(
c2 +

d(τc2)
dt

)
=

4c20f3
sin2 θ

and introducing the initial conditions

c = c0, t = 0;

τ = τ0, t = 0;

dc

dt
= 0, t = 0;

dτ

dt
= 0, t = 0;
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we can integrate directly to obtain

d

dt
(τc2) + c2 = c20

⎛⎝1 +
4

sin2 θ

t∫
f3(t′)dt′

⎞⎠ .

We then use the relationship

d

dt
(τc2) + c2 =

d

dt

⎡⎣c2τ exp

⎛⎝ t∫
dt′

τ

⎞⎠⎤⎦ exp

⎛⎝− t∫
dt′

τ

⎞⎠
so that we can write

d

dt

⎡⎣c2τ exp

⎛⎝ t∫
dt′

τ

⎞⎠⎤⎦ = c20

⎛⎝1 +
4

sin2 θ

t∫
f3dt

′

⎞⎠ exp

⎛⎝ t∫
dt′

τ

⎞⎠ .

Integrating this equation then yields the expression

c2τ exp

⎛⎝ t∫
dt′

τ

⎞⎠ = τ0c
2
0 + c20

t∫
dt′ exp

⎛⎝ t′∫
dt′′

τ

⎞⎠⎛⎝1 +
4

sin2 θ

t′∫
f3dt

′′

⎞⎠
where, in addition to the initial conditions given above, we have chosen that

t∫
dt′

τ
= 0, t = 0

and
t∫
dt′ exp

⎛⎝ t′∫
dt′′

τ

⎞⎠⎛⎝1 +
4

sin2 θ

t′∫
f3dt

′′

⎞⎠ = 0, t = 0.

The solution for the acoustic velocity can then be written in the form

c(t) = c0

(
τ0
τ(t)

) 1
2

exp

⎛⎝−1
2

t∫
0

dt′

τ(t′)

⎞⎠

×
⎡⎣1 +

1
τ0

t∫
dt′ exp

⎛⎝ t′∫
dt′′

τ(t′′)

⎞⎠⎛⎝1 +
4

sin2 θ

t′∫
f3(t′′)dt′′

⎞⎠⎤⎦
1
2

.

Hence, using the definition for the impedance Z, velocity c and relaxation time
τ of an acoustic material, we arrive at the quantitative solutions

κ =
1
Zc

,

ρ =
Z

c
,
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and

α+ 2β = Zcτ.

An illustration of the type of experiment that is required to obtain the relevant
data is shown in Figure 7.6.

Figure 7.6: Experiment required to solve the three parameter reconstruc-
tion problem in electromagnetics (permittivity, permeability, conductivity) or
acoustics (compressibility, density, viscosity).

A left travelling acoustic pulse is emitted at normal incidence to the material
and at an angle θ to the normal. This provides the data s+0 and s+θ , respec-
tively. Another experiment is then required where the material is interrogated
by a right travelling pulse to provide the data s−0 . By deconvolving these data
to recover the impulse response functions, the density, compressibility and vis-
cosity profiles of the layered material can be reconstructed using the formulae
given above although, as mentioned before, deconvolution will only yield band-
limited versions of the impulse response functions at best. The reconstruction
formulae given here are under the theoretical assumption that some function
exists q, such that q ⊗ s = δ.



218 CHAPTER 7. IMAGING OF LAYERED MEDIA

7.4 Side-band Systems and Demodulation

In the previous Sections, we have considered the case when a layered material
is interrogated with a pulse given by

p(t) =
1
2π

∞∫
−∞

P (ω) exp(iωt)dω

where P (ω) is the spectrum. We have then shown that the reflected signal(s)
(are) is given by

s(t) = p(t)⊗ f(t)

where f(t) is the impulse response function. This result is valid for any pulse
p(t). However, when side-band systems are used, the pulse is not of the form
p(t) but p(t) exp(iω0t) where ω0 is the carrier frequency. In such systems,
the signal received is usually demodulated by multiplying it with the complex
conjugate of the carrier wave. We record and digitize not s(t) but

S(t) = s(t) exp(−iω0t).

What is the effect of this on the model for the impulse response function? Using
the product and the convolution theorems,

S(t) = exp(−iω0t)[p(t) exp(iω0t)⊗ f(t)],

which in Fourier space becomes

S(ω) = δ(ω + ω0)⊗ [P (ω − ω0)F (ω)]

= P (ω)F (ω + ω0) = P (ω)[F (ω)⊗ δ(ω + ω0)]

so that
S(t) = p(t)⊗ exp(−iω0t)f(t).

For side-band systems (with demodulation), the basic convolution equation
holds but the impulse response function is modulated by a wave oscillating
at the same frequency as the modulated pulse. Thus, the impulse response
function is given by

f(t) = exp(iω0t)[q(t)⊗ S(t)]

where the filter q(t) has the idealized property

q(t)⊗ p(t) = δ(t).

7.5 Some Applications

The three parameter solutions given in Sections 7.2 and 7.3 are not always
effective in practice. Nevertheless, the computation of the impulse response
function provides a useful method of analysis and the basis for some applica-
tions.
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7.5.1 Synthesis of Seismic Signals

The synthesis and analysis of signals and images using convolution models of
the type presented in the previous Sections is a well established technique. In
this Section, some examples are discussed.

Theoretical modelling of the propagation and interaction of acoustic radi-
ation with different materials provides a vital input into the understanding
of established acoustic imaging techniques and the development of new pro-
cedures. The synthesis of acoustic signals is important in a wide range of
applications, especially when access to information on the relevant properties
of the material is available. For example, in seismology it is common to have
access to data which provides information on the vertical changes in the physi-
cal characteristics of the ground. These data can be obtained from a bore-hole
and may include a log of the fluctuations in the density and acoustic velocity
of the ground. From this information, a detailed account of the changes in
impedance of the material as a function of depth can be obtained. From the
velocity log, a time-dependent impedance log can be generated. Assuming that
the viscosity of the material is negligible, the relaxation time can be set to zero.
A single seismic trace can then be written as (after stacking)

s(t) = p(t)⊗ f(t)

where
f(t) =

1
2
d

dt
lnZ(t). (7.18)

From the impedance log, the impulse response function for the ground can
be computed from equation (7.18) (at the location of the bore hole). This
result can be used to generate a synthetic seismic trace by convolving it with
an appropriate wavelet2 A detailed account of the precise nature of a seismic
wavelet is difficult to obtain experimentally. It is therefore common practice to
utilize appropriate models for the wavelet. A well known model used extensively
in seismology is the Ricker wavelet (after N H Ricker, Transient Waves in Visco-
Elastic Media, Developments in Solid Earth Geophysics 10, Elsevier, 1976).
This is given by

p(t) =
√
π

2

(
u2 − 1

2

)
exp(−u2)

where
u =

ω0t

2
.

Here, ω0 is the centre frequency of the wavelet. By convolving the impulse
response function with a suitable Ricker wavelet (i.e. a Ricker wavelet with
an appropriate carrier frequency) a synthetic seismic trace can be obtained.
An example of this is given in Figure 7.8. This figure compares a real seismic
signal near to the location of the impedance log with a simulated signal which
has been generated from the impedance log using a 200 Hz Ricker wavelet.

2The term ‘wavelet’ is traditionally used by seismologists to refer to the seismic pulse p(t)
or section of a seismic trace. It is not used here with reference to a wavelet as in a wavelet
transform, although it is interesting to note that wavelet-based signal analysis originally
developed from seismic signal analysis.
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Figure 7.7: Comparison between a real seismic signal and a synthetic signal
generated from the corresponding impedance log.

7.5.2 Impediography

Impediography is an inverse technique which seeks to reverse the process of
deriving a synthetic signal from an impedance log. In other words, impediog-
raphy attempts to reproduce the impedance variations (usually as a function
of time) from a suitably processed signal. This technique is used in a wide
variety of low frequency acoustic and some high frequency ultrasonic imaging
techniques. Its success depends on the quality of the deconvolved signal. In
seismology, the impedance profile can be compared with real impedance logs.
Done on a trace-by-trace basis, this effectively replaces a seismic image com-
posed from a stack of seismic signals with a seismic section made up of derived
or pseudo impedance profiles. The wider the bandwidth of the original seis-
mic trace, the more closely the derived impedance profile will match the real
impedance log. This provides a technique which utilizes the processes inherent
in broadband data to study, in detail, lateral and vertical changes in lithology.
At normal incidence, impediography assumes that the relaxation time is zero.
After deconvolution, we can then employ the equation

1
2
d

dt
lnZ(t) = f(t) (7.19)

where f(t) is the deconvolved data (the impulse response function). The ana-
lytical solution for the impedance is

Z(t) = Z0 exp

⎛⎝ t∫
fdt

⎞⎠ .
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This inverse process is essentially integration which amplifies the low frequency
components of the deconvolved data. Numerically, the integration can be be
performed using a variety of techniques. One of the simplest methods utilized
for fast display purposes is based on writing equation (7.19) as a difference
equation. Noting that

d

dt
lnZ =

1
Z

dZ

dt

we have
dZ

dt
= 2Zf

Differencing this equation we obtain the simple iterative process

Zn+1 = Zn(1 + 2Δtfn) (7.20)

Once the impedance of the first layer Z0 is known, the others follow from
application of this formula. This assumes, however, that the processes are
stationary and that no dispersion occurs. In practice, the pulse will, of course,
decay in amplitude as it propagates as well as disperse, i.e. its bandwidth will
decrease with travel time. Thus, impediography with deconvolution can usually
only be practiced on segments of the data where, to a good approximation, the
process is stationary (with respect to time).

7.5.3 Fuzzy and Quantitative Impediography

Conventional acoustic impediography assumes that a signal has been produced
by single scattering from an inhomogeneous material with fluctuations in the
impedance alone. When variations in the viscosity of the material are present,
impediography can give rise to ‘fuzzy images’ of the impedance. A fuzzy image
is an image which attempts to describe a single property of a material but fails
to achieve this because the data are corrupted by some other interaction not
included in the original model for the signal (i.e. the model for the impulse
response function). This is a consequence of the fact that the reconstruction
algorithm used to generate an image is ultimately determined by the type of
wave equation which is used to describe the scattered field. A simple demon-
stration of this is given in Figure 7.8. Here, a hypothetical layered material is
considered which consists of a simple impedance profile and a single mismatch
in the relaxation time. If we consider the interaction of this material with an
acoustic pulse p(t) at normal incidence, then the reflected signal is given by
(for a right-travelling wave)

s(t) = p(t)⊗ f(t)

where

f(t) =
1
2
d

dt
lnZ +

1
2
d

dt

(
τ
d

dt
lnZ

)
+

3
4
d2τ

dt2
. (7.21)

In Figure 7.8, the signal has been computed by forward differencing equation
(7.18) and convolving the result with a Ricker wavelet. Deconvolution recovers
the impulse response function. If it is then assumed that the original signal
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does not contain features that are due to changes in the relaxation time, then
the impulse response function is given by equation (7.19) rather than equation
(7.21). Integration then gives a fuzzy reconstruction because the impediogra-
phy algorithm [which in this example is given by equation (7.20)] interprets
the second echo (which arises from a mismatch in the relaxation time) as aris-
ing from an impedance mismatch. This is an example of image fuzziness (see
Introduction).

Figure 7.8: Fuzzy impedance profiles are obtained when features in the signal
are due to variations of the relaxation time as well as of the impedance.

To avoid the production of fuzzy acoustic impedance profiles and therefore er-
rors in the interpretation of the distribution of impedance, we must resort to
normal incidence reflection experiments of the type illustrated in Figure 7.6.
This requires access to both sides of the layered material which rules out a
number applications, such as seismic imaging, where access is only available
from the ground surface. In applications where the material can be scanned
with an ultrasonic pulse from both sides, quantitative impediography may be
utilized. This is illustrated in Figure 7.9. Each transducer emits a pulse and
records the echo obtained at different lateral positions. Both signals are de-
convolved and used to construct the functions given by equations (7.15) and
(7.16). These equations are then solved to provide Z(t) and τ(t), respectively.
Ultrasonic inspection of this type provides two images, one of the impedance
of the material and another of the relaxation time.
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Figure 7.9: Quantitative ultrasonic impediography utilizes two transducers
which provide data on the echoes generated from a material when it is in-
sonified by a left- and right-travelling pulse. Deconvolution and inversion allow
ultrasonic images of the variations in impedance and relaxation time of the
material to be presented.

7.6 Case Study: Imaging the Ionosphere

The ionosphere is a weakly ionised gas which exists between the Earth’s atmo-
sphere and the magnetosphere. At long wavelengths the ionosphere behaves
like a layered dielectric, and its ability to reflect radio waves is well known.
This was the reason why Guglielmo Marconi was successful in being the first to
transmit radio waves across the Atlantic ocean (from Cornwall in England to
Newfoundland in Canada) in his famous experiment of 1901 although, at the
time, he did not know it.

By observing the way in which radio waves are reflected we can determine
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the structure and dielectric properties of the ionosphere using the methods
discussed in Section 7.2. However, in order to apply this method we are required
to make some reasonable assumptions about particle motions in the ionosphere.
To a good approximation, the ionosphere is a three-component gas made up of
ions, electrons and neutrals embedded in a magnetic field of uniform magnitude
across its vertical extent (i.e. the Earth’s magnetic field). If the component x is
vertical, then the gyrofrequencies (the frequencies at which a charged particle
gyrates about a magnetic field line) of ions and electrons (Ωi,Ωe) are roughly
constant in x. However, the collision frequencies of ions, electrons and neutrals
(νi, νe, νn) can change by five orders of magnitude as a function of x due to
the change in neutral gas density as a function of altitude. As a consequence
of this, charged particle motions at low altitudes are dominated by collisions
(ν/Ω >> 1) whereas, at high altitudes, the effects of the magnetic field are
more important (ν/Ω << 1), the collision frequencies being reduced by the
low number densities that occur at high altitudes. In this type of model,
it is assumed that thermal and viscous motions can be neglected. This is a
reasonable assumption for a ‘quiet’ ionosphere where changes in its state are
not abrupt but take place smoothly and over relatively long periods of time.

If an electric field is applied perpendicular to the Earth’s magnetic field
H, current will flow in a parallel, intermediate and perpendicular direction for
ν/Ω going from very large to very small values. The magnitude of the currents
is a function of the anisotropic electrical conductivity. The conductivity is
additionally anisotropic for electric field components parallel to H. For the
ionosphere, the current density J is related to the electric field E by the equation

J = σ1E‖ + σ2E⊥ + σ3H×E (7.22)

where ‖ and ⊥ indicate the electric field components parallel and perpendicular
to ĥ = H/ | H |. Here, it is assumed that the conductivity is anisotropic in
three different senses. The first term in equation (7.22) describes the current
that is generated parallel to the magnetic field, namely the direct current with
an associated conductivity σ1. The second term identifies the current that
is induced due to an electric field perpendicular to the magnetic field which
represents the Ohmic current with an associated conductivity σ2. Finally,
there will exist a current known as the Hall current which is perpendicular
to both the electric and magnetic fields and is described by the third term of
equation (7.22). This term arises from the differential motion between the ions
and electrons as a result of an E×H drift. The conductivity components σ1, σ2

and σ3 are known as the direct, Pedersen and Hall conductivities, respectively.
If we now consider the ionosphere to be a continuum composed of different

layers so that ε = ε(x), μ = μ(x) and σi = σi(x); i = 1, 2, 3, then, from
Maxwell’s equations, our basic time-dependent wave equation for the electric
field E becomes

∇×∇× E− εμ∂
2E
∂t2

− μ∂J
∂t

= x̂
d

dx
lnμ×∇×E

where x̂ is the unit vector in the x-direction. Considerable simplification can
be achieved by modelling the ionosphere at the equator where ĥ is to a good
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approximation, horizontal over the extent of the ionosphere as shown in Figure
7.10.

Figure 7.10: Model for the ionosphere at the Equator

At the equator (where ĥ = ŷ and ĥ×E = x̂Ez − ẑEx), the components of the
current density are from equation (7.22):

Jx = σ2Ex + σ3Ez ,

Jy = σ1Ey,

and
Jz = σ2Ez − σ3Ex.

Using these results, the wave equation for the polarized electric field

E = ŷEy(x, y, t)

reduces to(
∂2

∂x2
+

∂2

∂y2

)
Ey − εμ∂

2Ey
∂t2

− μσ1
∂Ey
∂t

=
d

dx
lnμ

∂

∂x
Ey . (7.23)

When a polarized electric field of the form

E = ẑEz(x, y, t)
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is used, the wave equation reduces to(
∂2

∂x2
+

∂2

∂y2

)
Ez − εμ∂

2Ez
∂t2

− μσ2
∂Ez
∂t

=
d

dx
lnμ

∂

∂x
Ez. (7.24)

Both equations (7.23) and (7.24) are of the same form as equation (7.4) and,
thus, by repeating the method presented in Section 7.2, we can obtain recon-
structions for ε, μ and σ1 using equation (7.23) and ε, μ and σ2 using equation
(7.24).

An illustration of the type of experiment required to reconstruct parameters
ε, μ, σ1 and σ2 at the equator is shown in Figure 7.11.

Figure 7.11: Illustration of the type of experiment required to recover the per-
mittivity, permeability and anisotropic conductivity (the direct and Pedersen
conductivities) of the ionosphere at the Equator using different polarized fields.

A ground-based emitter-detector sends out a known modulated pulse of
radio waves with known polarization. The signal produced by the reflected
electric field at normal incidence is then recorded. A second emitter generates
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another and preferably identical pulse of radio waves at some known angle
θ to the normal vertical component. The signal produced by the reflected
electric field is then recorded as shown. These records are demodulated and
deconvolved to recover the impulse response functions. A further experiment
is then required to obtain information about the reflection of radio waves from
the top of the ionosphere. These data may be obtained by a satellite in a
geostationary orbit. By changing the polarization of the incident electric vector,
reconstructions for two different types of conductivity can be obtained. This
provides quantitative information about the anisotropic conductivity of the
ionosphere.

7.7 Case Study: Radar Plasma Screening

Since its development in the late 1930s by the British, Radio Detection and
Ranging or Radar has been used for many years to detect airborne objects
using ground and/or airborne platforms.3 The use of stealth technology for
suppressing the detection of aerospace vehicles by Radar has been the sub-
ject of intensive research since the early 1970s following the development of
radar guided surface-to-air missiles in the 1960s. One of the most notable
current examples of the results of this research is the Lockhead-Martin F-117
stealth fighter and later the stealth bomber, first tested successfully under
combat conditions in the Gulf war of 1991. Based on ideas first introduced
by Denys Overholser in 1974 at Lockhead’s advanced engineering laboratories,
the technology is based on two principal aspects: (i) design features; (ii) radar
absorbing materials and coatings. The geometry of the design is based on try-
ing to minimize those features of an aerospace vehicle that are responsible for
reflecting microwave radiation in such a way that the result can fly. Obvious
features include embedding the gas turbine engines deep into the structure of
the aircraft and introducing facets - diamond shaped flat surfaces - that reflect
the microwave radiation away from the source. However, one of the principal
factors for reducing the Radar Cross Section (RCS) is to minimize the profile
of the aircraft while maximizing the ‘smoothness’ of the design. This effect was
first noticed when a prototype ‘flying wing’ was developed in Germany by two
Luftwaffe officers - the Horten brothers - and first tested in late 1944. This
unique design was many years ahead of its time; it was investigated further
in the 1950s by the USA (the Northrop flying wing), but limitations in con-
trol systems technology available at the time meant that the principle was not
practically viable until significant improvements over the 1960s and 1970s in
digital control processing had taken place.

Theoretically, the problem can be posed as follows: given that the aircraft
can be assumed to be a Born scatterer and that

(∇2 + k2)Ẽs = −k2γẼi + ikz0σẼi −∇(Ẽi · ∇ ln εr)

where
γ = εr − 1,

3This case study is based on a research project undertaken by the author for MatraBAE
dynamics Limited, Bristol, England, 2001
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find ‘flying functions’ γ and σ which are of compact support such that Ẽs = 0.
In addition to investigating the RCS for different designs and materials,

there is another approach to producing stealthy flying objects using a plasma,
i.e. an ionised gas. The reduction of the RCS of an aerospace vehicle through
the generation of a plasma is an effect that has been known about for some
50 years. The phenomenon has an obvious connection with the ‘radio silence’
phenomenon that occurs during re-entry of a spacecraft. This occurs when
a plasma is formed around the spacecraft due to the ‘friction’ of the Earth’s
atmosphere such as the Space Shuttle.

A fundamental parameter of any plasma is the ‘plasma (angular) frequency’
ωp given by

ωp =
(

4πne2

m

) 1
2

where e is the charge of an electron (1.6×10−19 C), m is the mass of an electron
(0.91× 10−30kg) and n is the number density of electrons in m−3. For a plane
EM wave incident on a plasma, Maxwell’s equations (for transverse EM waves)
yield the dispersion relation

k =
1
c0

√
ω2 − ω2

p

where k is the wavenumber (= 2π/λ) and c0 is the velocity of light in a vacuum
(� 3× 108 m/sec). A cut-off occurs when ω = ωp, i.e. when there is a critical
number density

nc =
mω2

4πe2
.

Radio waves can only propagate through a plasma when ω > ωp. For a typical
laboratory plasma with n = 1012cm−3, a cut-off occurs when

fp =
ωp
2π
∼ 104

√
n = 10GHz

which is in the microwave range. This effect is used as method of measuring
the density of laboratory plasmas. The idea of ‘covering’ an aerospace vehicle
in a self-induced plasma with an appropriate critical number density is not a
practical proposition. However, partial plasma screening of specific features
which are good radar point-scatterers is possible, one example being the point
on the ‘nose-cone’ of a missile.

In this case study, we derive a model for radar signals generated by a con-
ductor that is screened by a plasma. We develop an electromagnetic scattering
model to investigate the effect that a plasma has on a conventional radar sys-
tem. Expressions for the Impulse Response Function generated by a scatterer
with and without plasma screening are derived. For a weakly ionised plasma,
we derive a result that shows that the screening of the scatterer by the plasma
is characterized by a simple negative exponential whose decay rate is deter-
mined by the electron number density. We start with a model that is fully
three dimensional but reduce the radar signal to a one-dimensional convolu-
tion equation that is consistent with the remit of this Chapter.
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Basic Scattering Model

Our aim is to develop a suitable model for the plasma screening effect by devel-
oping some relatively simple analytical results that explain why, under certain
conditions, it provides a near-zero RCS. The basic reason for this effect is as-
sumed to be due to the following: (i) a plasma is a (good) conductor and will
therefore absorb (and disperse) electromagnetic (microwave) radiation before
it is reflected by a scatterer; (ii) the air/plasma boundary is continuous (on
the scale of the wavelength) and will therefore not generate a strong reflection
compared with that generated by the surface of the scatterer which represents
a sharp discontinuity on the scale of a wavelength (of a microwave field).

Let us model the problem using the scalar wave equation (under the Born
approximation)

(∇2 + k2)Ẽs = −k2γ(r)Ẽi + ikz0σ(r)Ẽi, r ∈ V

where Ẽs is the scattered (scalar) electric field and Ẽi is the incident electric
field. A general solution to this equation can now be obtained using the Green
function method which, for homogeneous boundary conditions, gives

Ẽs =
∫
g(ikz0σ − k2γ)Ẽid3r

where g is the ‘out-going’ Green function,

g(r | r0) =
exp(ik | r− r0 |)

4π | r− r0 |
and the integral is taken over the volume V of the scatterer. Here, r and r0

are the spatial coordinates of the scatterer and the position at which the field
is measured, respectively. The characteristics of the back-scattered field are
dependent on εr, σ and their geometry (i.e. the shape of the scatterer over
volume V ). Note that, if εr = 1 and σ = 0, then the scattered field is zero.

Let us assume that the scatterer is a good conductor, and that εr = 1 so
that γ = 0. This assumption is consistent with the application of a scalar wave
equation since ∇(Ẽi · ∇ ln εr) = 0 with εr = 1. The scattered field is now
determined by the conductivity alone. Let us also assume that the incident
field is described by the Green function g instead of a plane wave (the more
usual case). This assumption helps to simplify slightly the analysis required in
generating a model for the back-scattered field.

If the incident field propagates through a medium whose conductivity is
effectively zero (i.e. air) then the solution for the back-scattered field will be
given by

Ẽs =
∫
ikz0σg

2d3r.

The volume over which scattering is effective will be determined by the skin
depth

δ =
(

2
kz0σ

) 1
2
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which, although very small for a good conductor, will be considered to be
finite. This allows us to adopt a volume scattering approach instead of one
based on surface scattering. The reason for this is that we can then consider
the volume scattering effects introduced by a plasma screen. Note that the
homogeneous boundary conditions used to produce this Green function solution
yield a surface integral that is zero (i.e. Ẽs and ∇Ẽs are considered to be zero
on the surface of V ).

The solution for Ẽs in the far field (i.e. when r/r0 << 1) is (ignoring
numerical scaling factors)

Ẽs(r0, k) = exp(2ikr0)F

where F is the reflection coefficient given by

F (r0, k) =
∫
ikσ exp(−2ikn̂ · r)d3r

and n̂ = r0/r0. A relatively simple result can now be developed by considering
the radar beam to be a narrow pencil-line beam oriented in the x-direction so
that

r0 ≡| r0 |= x0

(
1 +

y2
0

x2
0

+
z2
0

x2
0

) 1
2

� x0;
y0
x0

<< 1,
z0
x0

<< 1.

This provides us with a solution for the reflection coefficient of the form

F (x0, y0, z0, k) =
∫
ikΩ exp(−2ikx)dx

where

Ω(x, x0, y0, z0, k) =
∫ ∫

σ(x, y, z) exp(−2iky0y/x0) exp(−2ikz0z/x0)dydz.

If we now consider the case when the back-scattered field is measured at a fixed
point (x0, 0, 0), we obtain

F (k) =
∫
ikΩ exp(−ikx)dx

where

Ω(x) =
∫ ∫

σ(x/2, y, z)dydz.

Note that this result has been obtained by replacing x by x/2 and then ignoring
scaling. If we assume that σ is a constant as a function of y and z, then

Ω(x) = Aσ(x/2)

where A is the area of the scatterer. Here, we see that the back-scattered
field (i.e. the reflection coefficient) is given by the Fourier transform of ikΩ.
The time signature associated with the reflection coefficient (i.e. the temporal
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Impulse Response Function or IRF) can now be obtained by taking the inverse
Fourier transform giving

f(t) = −Adσ
dt

where we have ignored scaling and where t is the ‘two-way’ travel time (i.e.
x = 2c0t where c0 is the speed of light). This result illustrates that the strength
of the return is determined by the following: (i) the area A of the scatterer that
is illuminated by the radar beam; (ii) the gradient in the conductivity (from air
to scatterer). Thus, assuming that the conductivity of air is zero, a scatterer,
such as an aerospace vehicle composed of aluminium alloy with a conductivity
of approximately 2.5 × 107 siemens/metre, represents a huge change in the
conductivity across the air/scatterer boundary and so produces a very strong
reflection. It is useful to consider a scatterer with unit area, so that Ω = σ
which is assumed from now on.

Let us now consider the case when the scatterer is embedded in a plasma
sheath which is taken to be a conductor with average conductivity σ0. The
sheath contributes to the volume V over which the scattered field is to be com-
puted and is assumed to have a conductivity profile with no distinct air/plasma
boundary. The average conductivity σ0 is taken to be the volume integral of
the plasma conductivity profile divided by the volume of the sheath over which
the incident field is scattered. The effect of this sheath is of course to introduce
absorption (and frequency dispersion) of the electric field before it is incident
upon the scatterer.

We consider the conductivity profile of the plasma together with the scat-
terer over volume V to be described by σ0 +σ(x, y, z). Our wave equation then
becomes

(∇2 + k2 − ikz0σ0)Ẽs = ikz0σẼi.

We can now repeat the calculation undertaken previously to obtain a far-field
solution for the back-scattered field at (x0, 0, 0) produced by a narrow incident
radar beam in the x-direction. In this case, the reflection coefficient is given by

F (k) =
∫
ikσ(x) exp[−2i(k2 − ikz0σ0)1/2x]dx.

Note that an absorption effect has been introduced as a consequence of our
model in which the electric field propagates through a plasma with an average
conductivity σ0 before incidence with the scatterer.

Impulse Respsonse Function for a Good Conductive Plasma: k <<
z0σ0

We can simplify the equation for F (k) by noting that for a good conductor
k2 − ikz0σ0 ∼ −ikz0σ0. Using the result

√−i = (1− i)/√2 we can then write

F (k) =
∫
ikσ(x) exp

[
−2i

(
kz0σ0

2

) 1
2

x

]
exp

[
−2

(
kz0σ0

2

) 1
2

x

]
dx.

The form of this integral transform does not provide a simple Fourier-based
relationship between σ and F . Nevertheless, the IRF f(t) is given by the inverse
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Fourier transform of F (k) and it is clear that a major feature of this integral
transform is the negative exponential which characterizes the absorption of
electromagnetic energy in the plasma. The plasma is in effect producing a
conductive shield that screens the scatterer from incident radiation.

For a given wavelength, the skin depth δ depends on the average conductiv-
ity of the sheath; the more conductive the plasma, the shorter the skin depth
(i.e. δ ∝ σ

−1/2
0 ). For a fixed average conductivity, there is less penetration of

radiation at higher frequencies. Since radar relies on high frequency sweeping
(i.e. the emission of chirped and other coded pulse) to obtain high resolution,
the dispersion introduced through this integral transform will yield a spectrum
at the receiver in which the frequency components are attenuated according to
a exp(−α√k) power law, where α =

√
z0σ0/2.

Impulse Response Function for a Poor Conductive Plasma: k >> z0σ0

The equation for F (k) above is a consequence of considering the case when
k << z0σ0, and it is not possible to Fourier invert to give an analytical expres-
sion for the IRF. However, if we consider the condition

k >> z0σ0

which is valid for the case when the plasma is weakly conductive, then we can
consider the approximation

√
k2 − ikz0σ0 � k − iz0σ0/2, giving

F (k) =
∫
ikσ exp(−2ikx) exp(−z0σ0x)dx.

Fourier inversion then allows us to establish the IRF, i.e.

f(t) = − d

dt
[σ(t) exp(−σ0t/ε0)]

where, as before, t is the ‘two-way’ travel time and scaling has been ignored.
Assuming that the variations in conductivity are smooth and that the boundary
between the atmosphere and the plasma (in terms of variations in conductivity)
is continuous, the effect of the plasma sheath on the IRF is characterised by
exp(−σ0t/ε0). On the other hand, if the air/plasma boundary is discontinuous,
the IRF is dominated by the gradient in the conductivity across this boundary.
In either case, there is no frequency dependence and the form of the negative
exponential is the same as that describing the rate of decay of charge ρ in a
conductor, i.e.

ρ = ρ0 exp(−σ0t/ε0).

Note that, since ε0 ∼ 10−11, only relatively low values of σ0 are required to
cause rapid decay in the IRF. If we consider a 1cm wavelength radar, then the
condition that has been applied to achieve this simplification reduces to

σ0 << 17.

The skin depth for this case is

δ =
10−3

√
σ0
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and, for a plasma with a very low conductivity of say 1 siemens/metre, the
skin depth is 1 mm, i.e. the length over which the electric field strength has
decayed by e−1 or by 63% .

The results obtained here are for the back-scattered field only; a special
case has been considered where the field is measured at a fixed point (x0, 0, 0).
For k = k0 (i.e. the carrier wavenumber), the field strength as a function of
θ � y0/x0 and φ � z0/x0 is determined by

Ω(θ, φ) =
∫ ∫

σ(x, y, z) exp(−2ik0θy) exp(−2ik0φz)dxdy

and provides a Born estimate of the diffraction pattern produced by σ, i.e. a
map of the back-scattered cross-section at small angles θ and φ.

7.7.1 The Radar Signal Equation

Assuming that the return has been demodulated with a carrier frequency ω0,
the radar signal s(t) generated by a scatterer embedded in a weakly conductive
plasma sheath is (ignoring scaling)

s(t) = p(t)⊗ f(t) + n(t)

where

f(t) = exp(−iω0t)
d

dt
[σ(t) exp(−σ0t/ε0)],

p(t) is the outgoing pulse (typically a linear FM pulse) and n(t) is the noise
associated with the whole system.

The negative exponential component from which f(t) is composed can be
thought of as a Signal-to-Noise Ratio (SNR) control; as the conductivity in-
creases, the SNR is reduced through negative exponential decay. In general,
and in the practical application of using plasmas to screen aerospace vehicles,
it is more likely that the plasma will be weakly ionised and weakly conduc-
tive. Hence, the equation above provides a useful initial model. For a weakly
ionised plasma the electron number density determines its conductivity. In
terms of this result, there are three principle factors affecting the performance
of a practical radar plasma screening system: (i) maximizing the electron num-
ber density of the plasma; (ii) maximizing the thickness of the screen; (iii)
maintaining continuity of the air/plasma interface. Points (i)-(iii) will depend
on the power of the plasma generator, the stability of the plasma and its profile.
Thus, a model is required for the electron number density profile of a plasma
that we assume is generated by an electron beam which is discharged through
an appropriate feature on a moving aerospace vehicle.

7.7.2 Model for an Electron-beam Induced Plasma

The conductivity of a plasma depends upon whether we consider it to be weakly
or strongly ionised. A weakly ionised plasma is one in which the frequency of
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collisions ν of electrons (e) and ions (i) with atoms (a) greatly exceeds that of
collisions of these particle with one another, i.e.

νea >> νee, νei; νia >> νii, νie.

A highly ionised plasma is described by the reverse of these inequalities.
The conductivity of a weakly ionised plasma is given by

σ =
ne2

meνea
+

2ne2

miνia

where me and mi are the masses of an electron and ion, respectively. This
expression for the conductivity is dominated by the first term which describes
the conductivity for the electron component of the plasma. The reason for this
is that mi >> me always. Clearly, in this case, the conductivity is proportional
to the electron number density n and the conductivity of a weakly ionised
plasma can be approximated by

σ =
ne2

meνea
∼ 10−9 n

νea

where νea is the frequency of collisions between electrons and atoms. The
ratio n/νea will vary considerably from one regime (i.e. altitude and speed of
flight) to another, although the values of n and νea may tend to off-set each
other. Assuming that the plasma is generated by e-beam breakdown of the
atmosphere, at ambient atmospheric pressures, n will be large as will νea. At
higher altitudes, n will be less but so will νae. Finally, above the atmosphere
there will be relatively few atoms to break down and the collision frequency
will be relatively small. However, if, for example, a hydrogen gas puff could
be generated prior to ionization, then it would be possible to generate large
electron densities with low collision frequencies leading to high and sustainable
plasma conductivities and, therefore, more effective plasma screening systems.

Since the conductivity of the plasma screen is linearly proportional to the
electron number density, a principal problem is to determine the number density
distribution for a given configuration (of source and aerospace vehicle). Thus,
we are required to obtain a model that predicts the generation and transport of
electrons subject to a variety of processes such ionization, recombination, dif-
fusion, radiative losses, air flow, etc. This can be accomplished by considering
the macroscopic properties of the plasma which are governed by the dynamics
of the growth process, a process that involves avalanche electron multiplication
(an exponential process), i.e. the ionization rate per initial electron. A limiting
mechanism for the growth of the cascade is taken to be due to the (ambipolar)
diffusion of electrons out the volume of the e-beam. Away from the plasma
source, the electron number density is taken to be determined primarily by
the recombination rate, radiative losses or bremsstrahlung radiation and flow
regime. The ionization mechanism is taken to include inverse bremsstrahlung
processes.
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Ionization

The ionization of a neutral gas by an electron beam, for example, is determined
by a cascade process that produces an exponential growth in the electron den-
sity. In the absence of diffusion processes, this electron density is determined
by the equation

dn

dt
= In

where I is the ionization rate per initial electron and is assumed to be a con-
stant. The solution is trivial, represents exponential growth and is given by

n = n0 exp(It)

where n0 is the initial electron density. Suppose that for a given volume, we
require the e-beam to produce 1013 electrons say and that this number should
be produced from an initial value of 10 electrons that have been ionised by
electrons from the e-beam alone, then

ln
(
n

n0

)
=
∫
Idt ∼ 40.

In other words, the cascade process requires 40 generations to produce 1013

electrons from just 10 of them. This number is not strongly dependent on the
assumed value of n0 within reasonable bounds. The electron density becomes
large only near the end of the cascade process; 99% of the ionisation is produced
from the last 7 generations. Therefore, quantities such as the growth and losses
from the cascade and the time to breakdown are determined by the conditions
at times when the electron density is small.

The ionization rate will be determined by two principal processes: (i) the
ionization rate Ib due to collisions of neutral atoms or molecules with electrons
that have absorbed energy in the inverse bremsstrahlung process; (ii) the loss
of potential ionizing electrons due to electron attachment with an ion which we
denote by a rate coefficient Ia. Thus, in general

I = Ib − Ia.

The process of inverse bremsstrahlung involves raising a free electron to a
higher energy state in the continuum of states available to it. The energy
is a result of the absorption of a photon due to bremsstrahlung radiation which
is itself produced by the acceleration of charged particles involved in elastic
collisions. This absorption must occur with a simultaneous interaction with a
heavy particle (atom, molecule or ion) in order that momentum is conserved.

Diffusion

The diffusion of electrons in a plasma is determined by the diffusion equation

∂n

∂t
= D∇2n
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where D is the (ambipolar) diffusion coefficient. In this equation, n represents
the electron density of the plasma. With regard to ionization, the term In can
be added to the diffusion equation to produce the inhomogeneous equation

∂n

∂t
= D∇2n+ In.

Note that, in general, I will be a function of both space and time. Another
source term that is required is the multi-electron ionization rate due the e-beam
alone which is responsible for the production of the initial electron density from
which the cascade process develops. This ionization will also depend on both
space and time and, in particular, on the distance of the beam away from the
source. Thus, if we denote the e-beam ionisation rate by B (for beam), then
the diffusion equation becomes

∂n

∂t
= D∇2n+ In+B

Recombination

Electron-ion collisions may lead to recombination, i.e. the production of a neu-
tral atom as a result of the capture of an electron by an ion. The efficiency of
the processes responsible for recombination is considerable at low electron ener-
gies at which the electron-ion interaction time is sufficiently large. Accordingly,
at low electron temperatures (i.e. much less than the ionisation energy) these
processes strongly affect the balance of the charged plasma particles. The rate
of charged particle removal due to recombination in a volume is determined by
the total recombination cross section and depends of the number densities of
both ions ni and electrons ne. Thus the rate equation is given by

∂n

∂t
= −Rnine = −Rn2

where R is the recombination coefficient. The minus sign is introduced here
because the process is lossy. This nonlinear equation has a simple analytical
solution which can be obtained by inspection and is given by

1
n

=
1
n0

+Rt

where n0 is the initial number density. After the density has fallen far below
its initial value, it decays reciprocally with time, i.e.

n ∝ 1
Rt
.

This is a fundamentally different behaviour from the exponential decay associ-
ated with diffusive processes and exponential growth associated with ionization
processes. Since the recombination rate is proportional to n2, for high values
of n it can be expected to be the dominant process.
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With regard to the diffusion equation, −Rn2 is a source term and, thus, the
diffusion equation must be modified again, this time to the nonlinear inhomo-
geneous form

∂n

∂t
= D∇2n+ In+B −Rn2.

Note that, in general, it is expected that, like I and B, the recombination
coefficient R will be a function of both space and time.

The rate equation above, has two source terms and two loss terms. The
source terms are B and In which describe the initial population density of
electrons produced by the e-beam alone and the population density generated
by the cascade process. The loss termsD∇2n andRn2 describe losses due to the
processes of diffusion and recombination, respectively. Another effect that can
be considered is loss through radiative processes. However, for weakly ionised
plasmas, it reasonable to assume that this effect is relatively small compared
to diffusion and recombination. These losses will also be proportional to n2

since the total power P radiated per unit volume by a plasma is given by

P ∼ 1.5× 10−38Z2neniT
1
2
e (Watts/m3)

where n is in m−3 and Te is in eV. Because the radiated power is proportional
to the square of the atomic number Z, a low Z plasma (e.g. a hydrogen plasma)
will last longer.

Rate Equation Analysis

Analytical solutions to the rate equation

∂n

∂t
= D∇2n+ In+B −Rn2

can be considered for different conditions compounded in the inclusion, or
otherwise, of different terms.

In some practical cases, the diffusion loss will dominate over losses from
recombination after initiation, and we can consider the electron density to be
determined by the solution to

∂n

∂t
= D∇2n+ In.

For the characteristic diffusion length Λ of the breakdown, we may replace ∇2

by −1/Λ2 to obtain a solution of the form

n = n0 exp[(I −D/Λ2)t].

This solution illustrates exponential growth of electrons, subject to exponential
damping due to diffusion. Clearly, for a given coefficient of diffusion, the char-
acteristic diffusion length should be low in order to achieve a high concentration
of electrons.
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Under conditions where, along with diffusion, the quadratic recombination
term substantially affects the plasma decay, the rate equation takes the form

∂n

∂t
= ∇2n+ In−Rn2

or, in terms of the characteristic length of diffusion,

dn

dt
= −

(
D

Λ2
− I

)
n−Rn2.

The solution to this equation is

n(t) =

(
D
Λ2 − I

)
n0 exp

(
It− D

Λ2 t
)(

D
Λ2 − I

)
+Rn0

[
1− exp

(
It− D

Λ2 t
)] .

Note that, when D/Λ2 − I >> Rn, this solution changes into an exponen-
tial form that is characteristic of ionization growth and diffusion decay; alter-
natively, when Rn >> D/Λ2 − I the electron density is determined by the
equation.

1
n

=
1
n0

+Rt.

Steady State Solutions

For steady state conditions
∂n

∂t
= 0

and our rate equation reduces to

D∇2n+ In+B −Rn2 = 0.

Let us now consider some of the solutions available under different conditions.
If we consider the e-beam to produce ionization along the axis alone then the

plasma source can be assumed to be axially symmetric. The electron density
is then a function of the radius r and, using cylindrical coordinates, we have

∇2n =
1
r

∂

∂r

(
r
∂n

∂r

)
.

The simplest solution available to us in this case is obtained under the assump-
tion that B, I and R are all zero. The plasma is therefore assumed to be a
cylindrical plasma with losses due to diffusion alone. Except at r = 0, the
density must satisfy

1
r

∂

∂r

(
r
∂n

∂r

)
= 0

which has the solution
n(r) = n0 ln r + c.
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With the boundary condition n(a) = 0 (i.e. the electron density is zero some
distance away from the source) we have c = −n0 ln a and therefore

n(r) = n0 ln
(a
r

)
which is the fundamental solution to the 2D Laplace’s equation.

Let us now consider the solution to the equation D∇2n+ In = 0 in cylin-
drical coordinates. This requires that we solve the equation

1
r

∂

∂r

(
r
∂n

∂r

)
= −In

D

or
d2n

dr2
+

1
r

dn

dr
+
I

D
n = 0

which is Bessel’s equation of order zero. This has the solution

n(r) = n0J0

(
r

√
I

D

)
where J0 is the Bessel function of order zero. The boundary condition that
must be applied is that n = 0 at r = a. The Bessel function is zero for multiple
values of x = r

√
I/D. However, the first zero occurs when x � 2.4 or when

r = a = 2.4

√
D

I
.

This solution describes the lowest diffusion mode in which a can be taken to
define the boundary between the plasma and air. Although it is possible for
higher diffusion modes to occur, they tend to decay rapidly in most plasmas and
may therefore be ignored. Note that the radial extent of the electron density
is proportional to the square root of the coefficient of diffusion.

Suppose we consider the case when the plasma source is in a steady state
condition (i.e. the e-beam is operating in the continuous mode) and that the
radial distribution of the electron density is described by J0. For the case when
the plasma source is moving through the atmosphere, it will be expected that
the plasma streams away from the source (down wind) producing a decay of
the electron density due to: (i) air flow effects, e.g. boundary layer thickening;
(ii) recombination. Let us assume that the plasma forms a boundary layer with
thickness

Δ ∼ L√
R

where R is the Reynolds number given by

R =
Lv

η
,

L is the characteristic length scale of the flow, v is the velocity of the flow and
η is the kinematic viscosity of air. For a 10 m long aerospace vehicle travelling
at 100 m/s and with η ∼ 10−3m2/s for air,

Δ = 1 mm.
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For a 1mm thick plasma sheath of 1 siemen/metre and considering the two-way
travel path, the absorption of microwave radiation with a wavelength of 1cm
(due to the skin depth effect) is 87%. Thus, relatively large absorption can
occur over small boundary layers composed of low conductivity plasmas (i.e.
plasmas with low electron number densities). As the plasma streams away from
the source, the electron density will decrease due to an increase in the extent
of the boundary layer (ignoring recombination). Since the initial radial extent
of the plasma at source is given by a, we can expect the sheath thickness to be
of the order of a+ Δ. The decay of the electron density as a function of r and
L is therefore given by

n(r, L) =
n0J0

(
r
√

I
D

)
2.4
√

D
I +

√
Lη
v

.

This steady state solution neglects the effects of recombination but provides a
qualitative estimate of the electron density profile produced by a continuous
on-axis e-beam. In the following Section, we consider the equations required
to compute the electron density accurately.

Steady State Equation with Flow

The rate equation for the electron density is given by

∂n

∂t
= D∇2n+B + In−Rn2.

If the plasma is generated in a flow of air then, to a good approximation, we can
consider the electrons to flow with the air and thus conform to the conservation
equation

∂n

∂t
= ∇ · (nv)

where v is the velocity of the flow. Hence, we are required to solve the equation

D∇2n+B + In−Rn2 −∇ · (n∇u) = 0

where u is the velocity potential v = ∇u. Our problem is to find n given
u which requires the velocity potential to be computed a priori. Suppose we
compute the velocity potential for air (in the absence of a plasma). We can
then consider a model in which the electron density is characterised by this
potential alone. In other words, we consider the plasma to flow away from the
source in a manner that is determined by the stream lines associated with the
flow of air over the aerospace vehicle. For constant (air) density, the velocity
potential is obtained by solving Laplace’s equation

∇2u = 0

subject to appropriate boundary conditions. Noting that

∇u · ∇n = ∇ · (u∇n)− u∇2n
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we can write

(D + u)∇2n+B + In−Rn2 −∇ · (u∇n) = 0.

This is the steady state equation for the electron density n subject to a flow
regime characterized by velocity potential u. The 3D Green function solution
to this equation is

n =
1

4πr
⊗
(

B

u+D
+

In

u+D
− Rn2

u+D
−∇ · (u∇n)

)
where ⊗ denotes the 3D convolution. The order of iteration required to com-
pute n can follow the order in which the physical mechanisms described by
each of the terms occur. Thus:

Electron generation

n1 =
1

4πr
⊗ B

u+D

Ionization
n2 = n1 +

1
4πr

⊗ In1

u+D

Recombination

n3 = n1 + n2 − 1
4πr

⊗ Rn2
2

u+D

Flow
n4 = n1 + n2 − n3 − 1

4πr
⊗∇ · (u∇n3)

Figure 7.12 shows the effect of a plasma (specifically, the electron number den-
sity n3) generated without (u = 0) and with (∇2u = 0) an air flow (from right
to left) over a cone with a smooth point. This is achieved by implementing the
equations above on a two-dimensional uniform grid of size 700×300, applying
the convolution theorem and using the result

1√
x2 + y2

⇐⇒ 1√
k2
x + k2

y

with the boundary condition n = 0 (applied over the boundary and over the
extent of the cone). The e-beam is taken to be a ‘pencil line beam’ (one
pixel wide) emitted from the point of the cone with uniform intensity along
its extent. The coefficients B, I, R and D are assumed constant with values:
B = 4π, I = 4π, R = 4π and D = 1. The velocity potential u is computed
using the Successive-over-Relaxation method (see Digital Signal Processing,
J M Blackledge, Horwood Publishing, 2003, Chapter 9) compounded in the
following result (where ω = 1.1 is the relaxation parameter)

uk+1
i,j = uki,j +

ω

4
(uki+1,j + uk+1

i−1,j + uki,j+1 + uk+1
i,j−1 − 4uki,j)
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for i = 1, 2, ..., N and j = 1, 2, ...,M with conditions uij = 0 on the boundary
and over the extent of the cone, u1,j = u0 ∀j, uN,j = u0 ∀j, ui,M = u0 ∀i,
ui,1 = u0 ∀i /∈ C where C is the extent of the cone at the extreme left-hand
edge of the grid (with u0 = 1).

Figure 7.12: Plasma density profile generated by an electron beam without
airflow (above) and with an airflow (below) from right to left over a ‘smoothed
cone’. The beam is taken to be of uniform intensity and emitted from the
‘point’ of the cone ‘travelling’ to the right.

The extent of the plasma sheath that forms over the boundary of the cone
to provide a radar screen is quite noticeable when air flow is present, an extent
that is strongly determined by the magnitude of the recombination coefficient
and air flow for a given beam energy and coefficient of ionization. Actual values
for R along with I, D and the beam profile B (which will not be uniform as in
the idealized simulation presented here) and the flow rate will depend on the
operating conditions that apply. These include the vehicle velocity, the plasma
medium, additives (readily ionizable or reactive species), the electron beam
energy, its diameter and profile. Typical parameters include an electron beam
energy of 100keV, a (Gaussian) beam diameter of less than 5mm with a loss
of 1keV per cm for an aerospace vehicle travelling at up to 100ms−1 operating
in a plasma medium of air (over a range of atmospheric pressures) and with
additives such as water vapour. Applications include the plasma screening of
in-coming missiles, for example, against close proximity anti-missile systems
that use radar for targeting and control.
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Discussion

The idea of using a weakly ionized plasma to screen an aeropace vehicle is
not new but interest in this effect and appraisal of the applications to which
it can be practically applied are likely to grow. In this case study, we have
developed a model for the radar signal generated with and without a plasma
screen and illustrates that, for a weakly ionised plasma, the effect of such a
screen is compounded in the function exp(−σ0tε0) where t is the two-way travel
time, σ0 is the average conductivity of the plasma and ε0 is the permittivity
of free space. For a weakly ionised plasma, the conductivity is determined by
the number density of electrons and qualitative results have been developed to
estimate the number density of a plasma sheath enveloping a moving vehicle.
A numerical procedure to simulate the number density of a plasma sheath has
been developed and an example provided for the case when an e-beam induced
plasma is generated from the front of a (sub-sonic) missile. This simulation
is based on assuming cascade ionization with loss mechanisms due to diffusion
and recombination. The simulator is not suitable for the super-sonic case when
the airflow cannot by determined by the solution to Laplace’s equation for the
velocity potential. In this case, it may be expected that the plasma is partially
distributed along the shock wave that is formed and thus, depending on the
exact configuration of the aerospace vehicle, could provide a more extensive
plasma screen.

7.8 Summary of Important Results

Stationary signals model

The signal s(t) generated by the reflection of a pulse p(t) from a layered inho-
mogeneous medium with an impulse response function f(t) is given by

s(t) = p(t)⊗ f(t) + n(t)

where t is the two way travel time. This result assumes Born scattering, mul-
tiple scattering effects being assumed to be ‘embedded’ in the noise n(t).

EM imaging

f(t) =
1
2
d

dt
lnZ(t) +

1
4τ
− sin2 θ

4c20

d

dt
c2

Z - EM impedance = μc

c - EM wave velocity= 1/
√
εμ

τ - Relaxation time = ε/σ

θ - Angle of incidence

ε, μ and σ are the permittivity, permeability and conductivity respectively.
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Acoustic imaging

f(t) =
1
2
d

dt
lnZ +

1
2
d

dt

(
τ
d

dt
lnZ

)
+

3
4
d2τ

dt2
+

sin2 θ

4c20

d

dt

(
c2 +

d

dt
(τc2)

)

Z - Acoustic impedance = ρc

c - Acoustic wave velocity = 1/
√
ρκ

τ - Relaxation time = κ(α+ 2β)

κ, ρ and α+2β are the compressibility, density and bulk viscosity respectively.

Baseband systems

The pulse is given by

p(t), t ∈ T ⇐⇒ P (ω), | ω |≤ Ω

where T is the pulse length and Ω is the bandwidth.

Sideband systems

The pulse is given by

p(t) exp(iω0t) ⇐⇒ P (ω − ω0)

where ω0 is the carrier frequency.
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Chapter 8

Projection Tomography

The imaging of layered media discussed in the previous Chapter is based on
utilizing a spectrum of waves through the application of a pulse of radiation in
which the reflected or back-scattered waves are recorded. The models used are
compounded in the calculation of the reflection coefficient. Whether the imag-
ing system is based on a baseband pulse p(t) or a sideband pulse p(t) exp(iω0t),
the essential approximation that is used is the Born approximation which re-
quires that

γ̄ << 1,

the information the images provide being on the scale of the (carrier) wave-
length(s) used, i.e.

λ ∼ D

where D is the characteristic dimension of the scatterer (reflector). In Chapter
6, the WKB and Rytov approximations were considered and it was shown that
these approximations are most effective when

λ << D

with no condition having to be placed on the magnitude of γ̄. When this
condition is valid, imaging techniques can be developed that are based on
considering the wavefield to be a field of ‘rays’, which propagate through the
material, changing their properties cumulatively to give a projection at some
point(s) in space. This is known as projection tomography. It is analogous
to geometric optics and, like geometric optics, is based on assuming that the
radiation field is composed of rays which can be described mathematically using
geometric relationships.

In this Chapter, the principles and theoretical basis for projection tomogra-
phy are discussed. This is for two reasons. First, projection tomography is used
for imaging inhomogeneous materials for non-destructive analysis. Secondly,
the theoretical basis of projection tomography has a wider range of applica-
tions. For example, it is used in diffraction tomography which is discussed in
the following Chapter. Moreover, the theory of projection tomography, which
is compounded in a transform known as the Radon transform, plays an im-
portant role in image processing and machine vision. Radon transform-based

246
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computer vision and, in particular, the Hough transform (a special case of the
Radon transform), is of value in pattern recognition when the image is com-
posed of lines and curves (finger print identification, for example) obtained via
the application of an edge detector. Further, it is sometimes of value to pro-
cess a digital image in ‘Radon space’ through the application of various (Radon
space) filters. In addition, the Radon transform provides a method of process-
ing non-separable digital images using signal processing algorithms for which
there is no directly equivalent image processing algorithm.

8.1 Basic Principles

The history of projection tomography is interesting in two respects. First, it
is a good example of a scientific development where advances in technology
(particularly in digital computer power) aided theoretical progress in the sub-
ject. Secondly, a large number of early investigators were entirely unaware of
former contributions that had been made. Indeed, the theoretical basis for
projection tomography was ‘re-discovered’ many times before it was realized in
the early 1970s that the Austrian mathematician Johannes Radon had studied
the problem as early as 1917. It is now accepted that the theoretical basis
for projection tomography is compounded in the analytical properties of the
‘Radon transform’ and its inverse.

8.1.1 X-ray CT

Although projection tomography now has a wide range of applications in many
diverse areas, it originated as a problem in medical diagnosis using X-rays.
The imaging technique and the transform(s) upon which it is now based grew
rapidly as a result of the announcement in 1972 of the invention of Computer
Tomography (CT) by G N Hounsfield using X-rays. It is therefore appropriate
to introduce projection tomography in terms of an X-ray imaging technique.

X-rays have been used for many years in medical diagnosis. This involves
recording the intensity of X-rays on a photographic plate as they emerge from
a three-dimensional object after having been attenuated by an amount that is
determined by the path followed by a particular ray through the object. This
gives an image known as an X-ray radiograph. Each grey level (assuming the
radiograph has been digitized) is determined by the combined effect of all the
absorbing elements that lie along the path of an individual ray.

We can consider a three-dimensional object to be composed of a number of
two-dimensional slices stacked one on top of the other. Instead of looking at
the absorption of X-rays over a composite stack of these slices, we can choose to
study the absorption of X-rays as they pass through an individual slice. To do
this we must assume that the absorption properties over the finite thickness of
the slice are constant. The type of image produced by looking at the material
composition and properties of a slice is known as a tomogram. The absorption
of X-rays as they pass through a slice provides a single profile of the X-ray
intensity. This profile is characteristic of the distribution of material in the
slice. This is illustrated in Figure 8.1.
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Figure 8.1: Conventional X-ray imaging (top) and X-ray tomography (bottom).
By considering a three dimensional object to be composed of a stack of slices,
we can investigate the distribution of X-ray absorbing material in a single slice
by recording the corresponding X-ray intensity profile. This is known as X-ray
tomography.

A single profile of the X-ray intensity associated with a particular slice only
provides a qualitative account of the distribution of material in a slice. In other
words, we only have one-dimensional information about a two-dimensional ob-
ject just as in conventional X-ray radiography we only have two-dimensional
information (i.e. an image) about a three-dimensional object. Further in-
formation can be obtained by changing the direction of the X-rays. This is
determined by the angle of rotation θ of the slice relative to the source or,
equivalently, by the location of the source relative to the slice. Either way,
further information on the composition of the material may be obtained by
observing how the X-ray intensity profile varies with the angle of rotation. The
basic question then arises of how the two-dimensional structure of a slice can
be reconstructed from information on the X-ray intensity profiles as a function
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θ. One way is to use a computer-based arithmetic technique. This is where an
initial estimate for the reconstruction is progressively updated until a sequence
of simulated projections are obtained which are close to the experimental data.
This is an iterative technique known as Arithmetic Reconstruction Tomography
(ART). It can be used effectively when relatively small data fields are involved.
However, ART is not an inverse solution to the problem. In other words, it is
not an algorithm that reconstructs the distribution of material in a slice from
the experimental data directly.

The addition of computer techniques to tomography has led to a method
of X-ray imaging known a Computed Tomography (CT) or Computer Aided
Tomography (CAT) and the so-called CAT-scan. Computer or computed to-
mography provides a quantitative image of the absorption coefficient for X-rays.
To understand this, consider a single X-ray with initial intensity I0. If it passes
through a homogeneous material with an attenuation coefficient α over a length
L, the resulting intensity is

I = I0 exp(−αL).

If the material is inhomogeneous, we can consider the path along which the
ray travels to consist of different attenuation coefficients αi over elemental
lengths Δ�i (the length over which the attenuation coefficient is constant).
The resulting intensity is then

I = I0 exp[−(α1Δ�1 + α2Δ�2 + ...+ αNΔ�N)]

where
N∑
i=1

Δ�i = L.

As Δ�i → 0, we can consider the result

I = I0 exp

⎛⎝− ∫
L

αd�

⎞⎠ .

By computing the natural logarithm of I/I0, we obtain the data

P =

L∫
0

αd�

where
P = − ln(I/I0).

The value of the intensity and therefore P depends upon the point where the ray
passes through the object, which shall be denoted by z. It also depends on the
orientation of the object relative to the ray. This is determined by the angle of
rotation of the object about its centre θ. Hence, by adjusting the orientation of
the attenuating object to a linear X-ray field, a full sequence of projections can
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be obtained which are related to the two-dimensional attenuation coefficient
α(x, y) of a slice by the equation

P (z, θ) =
∫

L(z,θ)

α(x, y)d� (8.1)

where d� is an element of a line passing through the function α(x, y) and L (as
indicated in the equation above) depends on z and θ as shown in Figure 8.2.

Figure 8.2: A projection is denoted by P (z, θ) where θ is the angle at which the
projection is taken and z is the projection coordinate. This function is related
to the variable X-ray absorption coefficient α(x, y) by the line integral shown.
Projection tomography is based on measuring P (z, θ) for all values of z and θ
and then inverting the line integral(s) to recover α(x, y).

The function P is a line integral through the two-dimensional X-ray absorp-
tion coefficient α(x, y). It is a projection of the function α that is characteristic
of θ. The general name given to this type of imagery is therefore projection to-
mography. Here, the basic problem is to invert equation (8.1) to obtain α(x, y)
when P is known for all values of z and θ. In Section 8.3, it is shown that
equation (8.1) is just another way of writing the Radon transform of the func-
tion α(x, y) and how the inverse Radon transform can be used to reconstruct
this function.

Recent advances in Dynamic Spatial Reconstructors (DSR) provide two
very powerful features to CT: high resolution and synchronous (fully three di-
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mensional) scanning. They have revolutionized medical imaging by providing
dynamic studies of the anatomical structures and functional relationships of
moving organ systems such as the heart, lungs and circulatory systems. Fur-
ther, DSR are capable of simultaneous three-dimensional reconstructions of
vascular anatomy and the dynamics of blood circulation in any region of the
body.

8.1.2 Time-of-Flight CT

Although X-ray absorption CT is one of the main applications of projection
tomography, it can of course be applied to any source/detector system where:
(i) the probe can be assumed to pass through the material like a ray; (ii)
a measurable property of the probe can be recorded that is associated with
physical changes that take place along the path of the ray.

The term ‘measurable property’ includes the attenuation of X-rays or any
other type of radiation that is attenuated by the object. However, there are
properties of a field other than attenuation that may also be measured. For
example, consider the case where a short pulse of radiation is emitted and
the time taken for it to reach the detector recorded. If the material in which
the pulse propagates is homogeneous, then the ‘time-of-flight’ for the pulse to
traverse the distance between source and detector along a line L is given by
the simple expression

t =
L

v
where v is the velocity at which the pulse propagates through the material.
Now, if the material is inhomogeneous along L, the time of flight becomes

t =
∫
L

dx

v(x)
.

If we record the time of flight for all lines through a slice of material with an
inhomogeneous velocity profile v(x, y), then, by analogy with equation (8.1),
we can write

P (z, θ) =
∫
L

d�

v(x, y)
.

In this case, a tomogram of the inhomogeneous velocity of the material can
be found by inverting the above equation. This result is the basis for an imag-
ing technique known as ultrasonic computer tomography (UCT). In this case,
a short acoustic pulse is used as a probe. Alternatively, the decay in ampli-
tude of the ultrasonic probe can be measured. This allows a tomogram of the
acoustic attenuation to be obtained. Images of this kind may be interpreted as
maps of the viscosity of the material since it is the viscous nature of a material
that is responsible for attenuating acoustic radiation. By using electromagnetic
probes, we can obtain information about the spatial distribution of the refrac-
tive index of a material using an appropriate time-of-flight experiment or the
conductivity of a material by measuring the decay in amplitude of the EM field.
Other tomographic imaging systems can be developed by measuring physical
properties such as the capacitance, resistance and inductance, for example.
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8.1.3 Emission CT

Emission Computed Tomography (ECT) refers to the use of radioactive iso-
topes as passive probes. This passive approach does not require external probes.
There is a probe involved but it comes from the object itself. In the case of
ECT, we determine the distribution (location and concentration) of some ra-
dioactive isotope inside an object by studying the emitted photons.

There are two basic types of ECT depending on whether the isotope utilized
is a single photon emitter, such as iodine-131, or a positron (e+ or β+) emitter,
such as carbon-11. When a β+ emitter is used, the ejected positron loses
most of its energy over a few millimetres. As it comes to rest, it annihilates
with a nearby electron resulting in the formation of two γ-ray photons which
travel in opposite directions along the same path. If a ring of detectors is
placed around the object and two of the detectors simultaneously record γ-
ray photons, then the radio-nuclide is known to lie somewhere along the line
between the detectors.

The reconstruction problem can therefore be cast in terms of the Radon
transform where a complete set of projections is a measure of the total radio-
nucleide emission. The use of ECT has provided a dramatic advancement in
nuclear medicine including investigations into brain and heart metabolisms.
Other possibilities include new methods for cancer detection. Further, the
method can be used in industry for imaging the distribution of isotope doped
materials, e.g. imaging the distribution of oil in an internal combustion or gas
turbine engine.

8.1.4 Diffraction Tomography

Diffraction tomography is a method of imaging based on reconstructing an
object from measurements of the way in which it diffracts a probe signal. Unlike
X-ray CT, this involves the use of a radiation field whose wavelength is the same
order of magnitude as the object (e.g. ultrasound, with a wavelength ∼ 10−3m,
and millimetric microwaves). Two methods are available based on (i) CW
(Continuous Wave) fields and (ii) pulsed fields. In the latter case, the time
history of the diffraction pattern set-up by a short pulse of radiation is related
to the internal structure of the diffracting object by the Radon transform (see
Chapter 9). Hence, in principle, the object can be reconstructed by employing
algorithms for computing the inverse Radon transform.

8.1.5 Computer Vision

The Radon transform is used directly in computer vision which is concerned
with the analysis and recognition of images. It is particularly important to
manufacturing industry for automatic inspection and for military applications
(e.g. guided weapons systems and automatic targeting).

The projection transform utilized in computer vision is the Hough trans-
form. The Hough transform was derived independently from the Radon trans-
form. However, the Hough transform is in fact just a special case of the Radon
transform. The basic idea involves the identification of lines in digital images.
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The Radon transform of a function concentrated at a point, described by
the 2D delta function

δ2(x− x0, y − y0) = δ(x− x0)δ(y − y0),
yields a sinusoidal curve

p = x0 cos θ + y0 sin θ

in the pθ-plane. All co-linear points in the xy-plane, along a line determined by
fixed values of θ0 and p0, map to sinusoidal curves in the pθ-plane and intersect
at the same point. Thus, if we choose a suitable method for plotting the
projections of a digital image as a function of θ and p, it follows that the Radon
transform may be regarded as a line-to-point transformation. By utilizing the
line detection properties of the Radon transform, the edges of manufactured
objects for example can be analysed against their known characteristics. From
these characteristics, the identification of faults can be realised. Other areas of
imaging science which are based on the properties of the Radon transformation
include the fields of astronomy, optics, and Magnetic Resonance (MR).

8.2 Projection Tomography and Scattering
Theory

In general, projection tomography involves an experiment where the projections
P (z, θ) of a two-dimensional object O(x, y) are recorded at different angles θ.
A computer algorithm is then designed to invert the equation

P (z, θ) =
∫

L(z,θ)

O(x, y)d�

numerically and reconstruct the object function O. The physical interpretation
of the object function depends on the nature of the experiment, the type and
frequency of the probe and the measurements that are made. The success
of projection tomography as a useful imaging technique relies on how well
the probe behaves like a ray. If the probe starts to diffract as a result of its
interaction with the material, then projection tomography is inadequate and
diffraction tomography must be applied, which, as discussed in the following
Chapter, for pulsed systems, is based on an application of the Radon transform.

In Chapter 6, the WKB approximation was introduced as a method for
solving the 1D inhomogeneous Helmholtz equation under the condition that

λ << L

where L is the characteristic length of the inhomogeneity. In particular, it was
shown that the solution to(

∂2

∂x2
+ k2

)
u(x, k) = −k2γ(x)u(x, k)
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under this condition is given by

u(x, k) = exp

⎡⎣ik
⎛⎝x+

1
2

x∫
γ(x)dx

⎞⎠⎤⎦
using the eikonal transform

u(x, k) = exp(ikx) exp[s(x, k)].

Suppose we consider a pulse of radiation with spectrum P (ω) so that with
k = ω/c0, where c0 is the constant wave speed, we can write

u(x, ω) = P (ω) exp

⎡⎣iω
⎛⎝t+

1
2

x∫
dx

v(x)

⎞⎠⎤⎦
where v(x) = c/γ(x). Inverse Fourier transforming, the time-dependent wave-
field U associated with the time taken for this pulse to propagate from a source
(taken to be at x = 0) to a receiver at x0, say, is

U(x0, t) = p(t)⊗ δ

⎛⎝t+
1
2

x0∫
0

dx

v(x)

⎞⎠ = p(t+ T )

where

T =
1
2

x0∫
0

dx

v(x)
.

However, in order for the WKB approximation to apply, a high frequency
wavefield is required which dictates the need for a sideband system so that the
spectrum becomes P (ω + ω0) where ω0 >> ω and | ω |≤ Ω (the bandwidth of
the pulse). In this case,

U(x0, t) = exp[iω0(t+ T )]p(t+ T ),

the demodulated signal being given by

exp(−iω0t)U(x0, t) = exp(iω0T )p(t+ T )

whose amplitude envelope is p(t+ T ). The arrival of the pulse at the detector
is then determined by the time of flight T .

In the case of attenuation-based tomography using EM waves for example,
let us rework the WKB approximation using the 1D scalar wave equation(

∂2

∂x2
+ k2

)
u(x, k) = −k2γεu(x, k) + ikz0σu(x, k)

where
γε =

ε− ε0
ε0

,
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σ is the conductivity, z0 is the impedance of free space, and it is assumed that
μ = μ0. Using the eikonal transform u = Aui exp(−s) where A is the amplitude
of the incident field, the WKB approximation yields the equation

−2ik
ds

dx
= −k2γε + ikz0σ

whose solution is (ignoring the constant of integration)

s(x) = − ik
2

x∫
γε(x)dx − z0

2

x∫
σ(x)dx.

Thus, the rayfield is given by

u(x, k) = A exp

⎡⎣ik
⎛⎝x− 1

2

x∫
γε(x)dx

⎞⎠⎤⎦ exp

⎛⎝−z0
2

x∫
σ(x)dx

⎞⎠ .

With X-ray tomography, we measure the intensity of the rayfield which in this
case is given by (with I0 =| A |2)

I =| u(x, k) |2= I0 exp

⎛⎝− x∫
α(x)dx

⎞⎠
where α = z0σ/2.

The results above demonstrate that the principles of projection tomography
discussed earlier are based on a WKB approximation to the scattering prob-
lem in which λ >> L where the wavefield becomes a rayfield. Application of
a multiple rayfield through a two-dimensional object at different angles then
yields a set of projections from which we are required to reconstruct the object
function. The basis for this is the Radon transform which provides one of the
most successful theoretical foundations for imaging both the two- and three-
dimensional internal structure of inhomogeneous objects. Consequently, it has
a wide range of applications. The mathematical principles of projection tomog-
raphy considers continuous functions. The inverse problem therefore involves
the reconstruction of an object function from an infinite set of projections. In
practice, only a finite number of projections can be obtained by computing the
inverse Radon transform digitally. The accuracy of this approximation can be
improved by increasing the number of projections used and employing suitable
image enhancement techniques.

8.3 The Radon Transform

We have already seen in previous Chapters that a large proportion of the theory
of imaging is closely related to the analytic properties of the delta function, in
particular, the Fourier transform and the Green function. Another important
example is the Radon transform which has a variety of applications and which is
the mathematical basis for projection tomography. In this Section, the Radon
transform is derived entirely from the analytic properties of the two-dimensional
delta function.
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8.3.1 Derivation of the Radon transform

Consider the two-dimensional delta function

δ2(r− r0) = δ(x− x0)δ(y − y0).

Let us write this function in terms of its integral representation, i.e.

δ2(r− r0) =
1

(2π)2

∞∫
−∞

exp[−ik · (r− r0)]d2k.

Next, writing
k = n̂k

where

n̂ =
k
k

we note that

∞∫
−∞

δ(z − n̂ · r) exp(−ikz)dz = exp(−ikn̂ · r)

where δ is the one-dimensional delta function. This result allows us to write
the two-dimensional delta function, as

δ2(r− r0) =
1

(2π)2

∞∫
−∞

∞∫
−∞

exp(ikn̂ · r0) exp(−ikn̂ · r)d2k

=
1

(2π)2

∞∫
−∞

∞∫
−∞

d2k exp(ikn̂ · r0)
∫
δ(z − n̂ · r) exp(−ikz)dz.

This result can now be written in polar coordinates (k, θ) giving

δ2(r− r0) =
1

(2π)2

2π∫
0

dθ

∞∫
0

dkk

∞∫
−∞

dz exp[ik(n̂ · r0 − z)]δ(z − n̂ · r)

=
1

(2π)2

π∫
0

dθ

∞∫
−∞

dk | k |
∞∫

−∞
dz exp[ik(n̂ · r0 − z)]δ(z − n̂ · r).

The next task involves a couple of simple analytical tricks. Using the definition
of the sgn function, i.e.

sgn(k) =

{
1, k ≥ 0;
−1, k < 0.
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| k | can be re-written as k sgn(k) so that

δ2(r− r0) =
1

(2π)2

π∫
0

dθ

∞∫
−∞

dkk sgn(k)

∞∫
−∞

dz exp[ik(n̂ · r0 − z)]δ(z − n̂ · r).

Re-writing the two-dimensional delta function in this form allows us to utilize
the result

∞∫
−∞

(
∂

∂z
δ(z − n̂ · r)

)
exp(−ikz)dz = ik

∞∫
−∞

δ(z − n̂ · r) exp(−ikz)dz

giving

δ2(r− r0) = − i

(2π)2

π∫
0

dθ

∞∫
−∞

dz

(
∂

∂z
δ(z − n̂ · r)

)

×
∞∫

−∞
dk sgn(k) exp[ik(n̂ · r0 − z)].

We can progress further by using the definition of the sgn function in terms of
the Fourier transform of 1/u (u being a dummy variable), i.e.

∞∫
−∞

1
u

exp(−iku)du = −iπ sgn(k).

On taking the inverse Fourier transform we obtain

1
u

= − i
2

∞∫
−∞

sgn(k) exp(iku)dk

or, rearranging,
∞∫

−∞
sgn(k) exp(iku)dk =

2i
u
.

The two-dimensional delta function can then be written as

δ2(r− r0) =
1

2π2

π∫
0

dθ

∞∫
−∞

dz
1

n̂ · r0 − z
∂

∂z
δ(z − n̂ · r).

All that has been done here is to utilize various analytical results to write δ2 in
a different form. The reason for this is that the definition of the forward and
inverse Radon transforms is now very easy to derive via the sampling property
of the delta function. Consider a continuous 2D function O, referred to as the
object function. This function may be written as

O(r0) =

∞∫
−∞

O(r)δ2(r− r0)d2r.
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Substituting our definition for δ2 into the above equation leads to the expression

O(r0) =

∞∫
−∞

O(r)
1

2π2

π∫
0

dθ

∞∫
−∞

dz
1

n̂ · r0 − z
∂

∂z
δ(z − n̂ · r)d2r

or, alternatively, after interchanging the order of integration,

O(r0) =
1

2π2

π∫
0

∞∫
−∞

dz
1

n̂ · r0 − z
∂

∂z
P (n̂, z) (8.2)

where

P (n̂, z) =

∞∫
−∞

O(r)δ(z − n̂ · r)d2r.

The function P is defined as the Radon transform of O, and we can write

P (n̂, z) = R̂O(r) =
∫
O(r)δ(z − n̂ · r)d2r (8.3)

where R̂ denotes the the Radon transform operator. The object function can
be recovered or reconstructed from P using equation (8.2). By writing

O(r0) = R̂−1P (n̂, z) =
1

2π2

π∫
0

dθ

∞∫
−∞

dz
1

n̂ · r0 − z
∂

∂z
P (n̂, z) (8.4)

we may define R̂−1 as the inverse Radon transform operator. The function P
denotes the projection or line integral of O onto a line perpendicular to the
direction of n̂. The unit vector n̂ defines the angle of rotation of the object
function and so we may write

P (n̂, z) ≡ P (θ, z).

The variable z may be interpreted as defining the location of n̂ at which the
rectilinear line integral through O is taken.

8.3.2 Operator Analysis

At this stage, it is useful to introduce two more operators, namely the Hilbert
transform operator Ĥ, defined by

Ĥf =
1
π

∫
f(z)

n̂ · r0 − z dz

and the Back projection operator B̂ given by

B̂f =
1
2π

π∫
0

f(n̂, n̂ · r0)dθ
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where f is a continuous function. From equation (8.4) the inverse Radon trans-
form can then be written in terms of operators as

O(r) = R̂−1P (θ, z) = B̂Ĥ∂zP (θ, z), ∂z ≡ ∂

∂z
.

It is then clear that
R̂−1 ≡ B̂Ĥ∂z.

In other words, to compute the inverse Radon transform we need to differ-
entiate, Hilbert transform and then back-project. This is known as filtered
back-projection, the filtering being a result of implementing the operator Ĥ∂z .
The type of filter that is produced by this operation can be found by trans-
forming Ĥ∂zP into Fourier space. For a fixed value of n̂ this operation can be
written as

Ĥ∂zP =
1
πz
⊗ ∂P

∂z
.

By taking the Fourier transform of this equation and using the convolution
theorem we obtain

Ĥ
∂P

∂z
⇐⇒ −i sgn(k)ikP̃

where P̃ is the Fourier transform of P . Hence, we see that the filter produced
by the operation Ĥ∂z is sgn(k)k or | k |.

8.3.3 Geometric Analysis

Now that the main mathematical results have been presented, let us look at
the geometrical significance of both a projection and back-projection. Writing
n̂ · r as x cos θ + y sin θ, the projection function given in equation (8.3) is

P (θ, z) =
∫ ∫

O(x, y)δ(z − x cos θ − y sin θ)dxdy. (8.5)

The delta function is non-zero at the ‘point’ where

z = x cos θ + y sin θ.

We can think of a projection as being the family of line integrals through the
object function when it is rotated by an angle θ. To illustrate this, consider
the case when θ = 0. The projection at this angle is given by

P (0, z) =
∫ ∫

O(x, y)δ(z − x)dxdy =
∫
O(z, y)dy.

In this case, it is easy to see that the projection P (0, z) is obtained by inte-
grating the object over y for all values of the projection coordinate z. This is
shown in Figure 8.3a. When θ = π/2, the projection at this angle is

P (π/2, z) =
∫ ∫

O(x, y)δ(z − y)dxdy =
∫
O(x, z)dx
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and so, in this case, the projection is obtained by integrating along x as shown
in Figure 8.3b. It should now be clear that, for arbitrary values of θ, the line
integral through O is along a line L as shown in Figure 8.3c. Another way of
writing the Radon transform is therefore

P (θ, z) = R̂O(x, y) =
∫
L

O(x, y)d�

where L depends on the value of θ and z. This equation is useful as a conceptual
guide, showing that the Radon transform is just a collection of parallel line
integrals at different angles.

Figure 8.3: The projection of an object at three different angles.

Let us now turn our attention to back-projection. The result of back-
projecting a sequence of projections

P (θ, z), z = x cos θ + y sin θ

may be written as

B(x, y) =
1
2π

π∫
0

P (x cos θ + y sin θ, θ)dθ.
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The function P (x cos θ + y sin θ, θ) is the distribution of P along the family of
lines L. In other words, for a fixed value of θ, P (x cos θ+y sin θ, θ) is constructed
by assigning the value of the projection at z to all the points that lie along the
line L. For example, referring to Figure 8.3c, we take the value of the projection
at z = a and let all points along the line L have the same value. By repeating
this process for all values of z, the function P (x cos θ + y sin θ, θ) is obtained
for a given value of θ. The whole process is then repeated for all values of θ
between 0 and π. This provides the function P (x cos θ+y sin θ, θ) for all values
of θ. By summing all these results, the back-projection function is obtained.
This is how the inverse Radon transform is obtained, except that in this case
we back project the filtered projections, i.e. we back-project Ĥ∂zP (θ, z) rather
than just P (θ, z).

8.4 Back-Projection PSF

The point spread function (PSF) associated with the back-projection function
can be found by back-projecting the projections obtained from a single point
and observing how the result is spread about this point. We can describe
a ‘perfect point’ by a two-dimensional delta function. If we project a two-
dimensional delta function, the result will be a sequence of one-dimensional
delta functions at different angles. In terms of polar coordinates (r, θ0) where
x = r cos θ0 and y = r sin θ0, the back projection function becomes

B(r, θ0) =
1
2π

2π∫
0

δ[r cos(θ0 − θ)]dθ =
1
r
.

The point spread function of the back projection function is therefore given by

P (x, y) =
1√

(x2 + y2)
.

Hence, the back projection function produced from an object O(x, y) is given
by

B(x, y) = P (x, y)⊗⊗O(x, y).

From this result, it is clear that we have another method of reconstructing
the object function from its projections by inverting or deconvolving the above
equation. From the convolution theorem, convolutions in real space are equiv-
alent to multiplications in Fourier space. We can therefore write

B̃(kx, ky) = P̃ (kx, ky)Õ(kx, ky)

where
Õ = F̂2O, P̃ = F̂2P,

and
B̃ = F̂2B.
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Re-arranging

Õ(kx, ky) =
B̃(kx, ky)

P̃ (kx, ky)
.

The function 1/P̃ is the inverse filter and can be evaluated analytically since

P̃ (kx, ky) =

∞∫
−∞

∞∫
−∞

exp(−ikxx) exp(−ikyy) 1√
(x2 + y2)

dxdy

=
1√

(k2
x + k2

y)
.

Hence the object function is given by

O(x, y) = F̂−1
2 [
√

(k2
x + k2

y)B̃(kx, ky)].

One may think of the back-projection function as being a blurred image of
the object because of the poor transmission of high spacial frequencies and
the enhancement of low spacial frequencies. Any procedure that reverses this
emphasis, helps to deblur the image. In other words, deconvolution amplifies
the high spacial frequencies of the image which consequently enhances the
resolution.

8.5 The Central Slice Theorem

It is always useful to know how various operations in image or real space are
related to those in Fourier space. The central slice theorem gives the relation-
ship between the Radon transform of an object and its two-dimensional Fourier
transform. The theorem is as follows: The one-dimensional Fourier transform
of a projection obtained at an angle θ is the same as the radial or central slice
taken through the two-dimensional Fourier domain of the object at the same
angle. To show this, consider the two-dimensional Fourier transform of O(x, y)
given by

Õ(kn̂) = F̂2O =

∞∫
−∞

O(r) exp(−ikn̂ · r)d2r.

We then use the result

exp(−ikn̂ · r) =
∫

exp(−ikz)δ(z − n̂ · r)dz
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Figure 8.4: Illustration of the central slice theorem.

so that the Fourier transform may be written as

Õ(kn̂) =

∞∫
−∞

O(r)

∞∫
−∞

exp(−ikz)δ(z − n̂ · r)dzd2r.

Interchanging the order of integration, we then have

Õ(kn̂) =

∞∫
−∞

dz exp(−ikz)
∞∫

−∞
O(r)δ(z − n̂ · r)d2r.

Hence, in terms of operators, we may write

F̂2O(r) = F̂1R̂O(r).

Observe that the two-dimensional Fourier transform of the object function is
the same as the one-dimensional Fourier transform operating on the Radon
transform of the object. Using polar coordinates, this result can be written as

Õ(k, θ) =

∞∫
−∞

exp(−ikz)P (θ, z)dz



264 CHAPTER 8. PROJECTION TOMOGRAPHY

where

Õ(k, θ) =

2π∫
0

∞∫
0

exp[−ikr cos(φ− θ)]O(r, φ)rdrdφ.

The relationship between Õ at a fixed value of θ and P (θ, z) at the same angle
is shown in Figure 8.4 which is an illustration of the central slice theorem.

The central slice theorem gives us yet another way by which the object
function can be reconstructed from its parallel projections. We take the Fourier
transform of each projection and ‘place it’ along the appropriate radial slice.
By repeating this process for all values of θ between 0 and π, Fourier inversion
allows us to recover the object. In terms of the relevant operators, this result
may be expressed in the form

O(r) = F̂−1
2 F̂1R̂O(r).

The projection slice theorem is widely used to design FFT-based recon-
struction algorithms for commercial X-ray CT. An example of the type of
result obtained using this method is given in Figure 8.5 which shows an X-ray
tomogram of a normal abdomen after the application of a noise suppression
filter (low-pass Gaussian filter).

Figure 8.5: An X-ray tomogram of a normal abdomen showing the Liver (1),
Stomach (2), Spleen (3) and Aorta (4).

8.6 Numerical Methods

Computing the Radon transform can be based on rotating an object about its
centre and taking projections at regular steps in the angle of rotation. This is
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an alternative but equivalent approach to that advocated in the proof of the
Radon transform where, for a stationary object, the projection plane is rotated
about the object through an angle θ. Two numerical functions are required
to compute the Radon transform using this approach. The first is designed
to rotate a Cartesian array of numbers (the object) about a fixed point (its
centre). The second function computes the sum of all the pixels which lie along
each column or row of the rotated array (i.e. it computes the family of discrete
line sums associated with a specific angle of rotation - a projection).

8.6.1 Forward Radon Transform

The first problem encountered in designing an algorithm is that as the object
is rotated, the size of the projection plane must be increased to accommodate
the information contained in the corners of the array. The maximum length
of the projection plane is reached when the object has been rotated through
an angle of π/4 radians, when the diagonal vertex is parallel to the projection
plane. In order to prevent ‘corner clipping’, the projection plane must be ‘zero
padded’ providing an array size equal to the diagonal vertex of the object plane
as shown in Figure 8.6. For example, if the original image contains 128×128
pixels, the new array length is given by

int(sqrt(128 ∗ 128 + 128 ∗ 128)) = int(128 ∗ sqrt(2)) = 181 pixels

Now, if the Radon transform is computed using angle increments of 1o for all
angles between 0o and 180o, then the data can be stored and displayed as a
181×181 square image.

The actual rotation of an object in the xy-plane can be accomplished via
the co-ordinate transformation:

x′ = x cos θ − y sin θ

and
y′ = x sin θ + y cos θ

where x′ and y′ are the new co-ordinates. By applying this transformation to all
pixels, the object can be rotated through any angle θ. However, one important
problem remains: how to allocate the value of a co-ordinate transformed pixel
(co-ordinates that will in general be floating point values) to the necessarily
integer co-ordinate system of a Cartesian grid. One of the simplest solutions to
this problem is to use a nearest neighbour approximation to generate integer
co-ordinates (i.e. compute the nearest integer value of x′ and y′ at each step).
This method produces an angle dependent distribution of ‘holes’, i.e. pixels
that do not get assigned a value. The number of these holes increases as the
angle of rotation approaches 45o. They can be eliminated by interpolation or
by the application of a Median filter. However, with regard to the computation
of the Radon transform, nearest integer assignments can be used. This leads to
predominantly high frequency digital noise being generated in the computation
of the Radon transform and its inverse which can then be filtered using a
lowpass filter as required. After rotating the Cartesian array through a given
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angle θ via the method discussed above, a projection can be computed relatively
easily by added together all the pixels which lie along each row.

Figure 8.6: The rotation and projection of a square array.
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8.6.2 Inverse Radon Transform

There are three possible methods of reconstructing an object from a complete
set of its parallel projections: (i) back-projection and deconvolution, (ii) filtered
back-projection and (iii) reconstruction via the central slice theorem.

Back-projection

The algorithm for back-projection is just a variation of that for rotating a
Cartesian array. Each projection is back-projected onto the object plane. This
plane is then rotated through the appropriate angle and the next projection
back-projected. The results are added together and the process repeated. As
before, computations are carried out on an array large enough to prevent ‘cor-
ner clipping’. Finally, when all the projections have been back-projected, the
reconstruction is extracted from the object plane, the algorithm used for the
process of rotation being the same as before.

Deconvolution

The point spread function associated with the back-projection function is | r |−1

which has a Fourier transform of the same form, i.e. | k |−1. The inverse filter
is therefore given by | k |. Fortunately, this particular filter is non-singular
and can therefore be used directly to deconvolve the back-projection function
without recourse to optimization methods such as the Wiener filter. This is
a rare and exceptional case. The process for deconvolving the back-projection
function is relatively straightforward. The 2D Fourier transform of this function
is taken and the real and imaginary parts multiplied by | k |. The inverse
Fourier transform is then computed, the reconstruction being given by the real
part of the output.

8.7 The Hough Transform

The Hough transform dates from the early 1960s and was patented in 1963 well
before the Radon transform was re-discovered. It evolved from a problem in
high energy nuclear physics, in particular, the identification of particle tracks
generated in a bubble chamber. If a magnetic field is applied perpendicular to
the object plane, then neutral particles will travel in a straight line whereas
charged particles will travel along a curve, the arc of a circle. The problem
was to differentiate between a straight line and a curve in an image composed
of both. Today, the Hough transform is used in pattern recognition to do
the same whereby information in a digital image is quantified by processing it
and/or analyzing it in Hough space. It is ironic that the application of the WKB
approximation for predicting the interaction of high frequency de Broglie waves
with slowly varying potentials should form the basis of an image processing
method that can then be used to detect the results of these interactions.

The Hough transform is just a special case of the Radon transform; it is
the result of considering the Radon transform of a point in the object plane at
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(x0, y0) say described by

O(x, y) = δ(x− x0)δ(y − y0).
The Radon transform is then given by

P (z, θ) =

∞∫
−∞

∞∫
−∞

δ(x− x0)δ(y − y0)δ(z − x cos θ − y sin θ)dxdy

= δ(z − x0 cos θ − y0 sin θ)

which describes a curve in Radon space with the characteristic equation

z = x0 cos θ + y0 sin θ.

Consider a curve in the object plane which ‘travels’ through the set of points
(xi, yi). Radon space will then consist of a set of curves with the characteristic
equations

z = xi cos θ + yi sin θ.

In order to ‘picture’ the effect of this, it is easier to ‘think’ of this result in terms
of a set of digital projections. For a line at the angle θ, the projection generated
at this angle will be the sum of the pixel values of the line described by the
set of points (xi, yi). For a line consisting of say 100 pixels each of value 1 and
at an angle θ0, the projection at θ0 will be described by a single spike with a
value of 100. At θ0 +π/2 radians, the projection will be a tophat function with
an amplitude of one. Computing all the projections for θ ∈ [0, π] will give a
function in Radon space, that is characterized by a maximum value (a point)
occurring at θ0, the amplitude of the point being determined by the length of
the line, i.e. in this hypothetical example, 100. If the Radon transform is taken
of a circle, each projection will have the same functional form and no single
maximum value or point will be present in Radon space. This is illustrated in
Figure 8.7.

If we take the Radon transform of a binary image composed of a line and
a circle, for example and extract the maximum value in Radon space, then,
by inverting, we can obtain an image of the line alone (except for its extent).
Moreover, if we take the Radon transform of the Radon transform of a circle,
then from Figure 8.7, we will obtain two points whose separation is determined
by the diameter of the circle. This is an example of filtering in Radon space
which processes information on the geometric features in an image. It should
be compared with Fourier space processing which filters information on the
spatial frequency content of these features. Line based features in the object
plane can be transformed into Radon space and a point set generated, giving a
relatively small numerical field that can be taken to be a unique description of
the feature (a template). For example, suppose we want to generate a template
for describing the symbols +, = and × in the object plane, all of which are
composed of lines of equal length L. The Radon transform of + will produce two
points of amplitude L at θ values of 0 and π/2 radians. The Radon transform
of = will produce two points at θ values of 0 alone and the transform of ×, two
points at θ = π/4 and θ = π/4 + π/2 radians.
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Figure 8.7: Radon transform (top-right) of a line (top-left) and the Radon
transform (bottom-right) of a circle (bottom-left).

Point extraction in Radon space requires the application of numerical proce-
dures that are designed to enhance the accuracy of their location which cannot
be relied upon in practice via the application of a simple threshold alone (ex-
cept in the simplest of cases). The template construction and identification of
object plane features that are composed from lines of different lengths requires
multiple amplitude point extraction. There are a number of methods available.
For example, by correlating (i.e. matched filtering) the Radon space data with
a kernel that has been designed to replicate the data fields that occur close to
a point, a new ‘clean’ point set can be obtained from the correlation surface.
Another method is to apply a median filter to eliminate isolated points and
then subtract the output from the original.

From the computational point of view, two methods can be applied. The
Radon transform can be computed directly by rotating and projecting where,
given that the object plane is taken to by a binary image, only non-zero pixels
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are processed. The other method is to compute the curves

z = x cos θ + y sin θ

for all non-zero pixels (x, y) in the object plane and add the results together in
an ‘accumulator’. The computational efficiency of this process can be enhanced
by using a look-up table that stores the values of cos θ and sin θ for a given
step change in θ.

8.8 Non-separable Image Processing

Many image processing methods originate from solutions for processing digital
signals. In those cases, where the image can be considered to be separable,
i.e. where I(x, y) = Ix(x)Iy(y), any DSP algorithm can be applied directly.
In those cases where the image is not separable but the process is, then it is
usually possible to develop an equivalent 2D process from the 1D version that
is required to be implemented. However, there are some cases where this is
not possible and the image processing problem cannot be addressed by sim-
ply increasing the dimension of a signal processing method and/or algorithm.
One method of solving this problem is to use the Radon transform to convert
the image into a set of projections, apply the signal processing algorithm on
a projection by projection basis and then inverse Radon transform the result,
an idea that was first published in 1986 (Blackledge J M, Digital image pro-
cessing in Radon space and the inversion of limited Fourier data, Optik 73(2):
74-82, 1986). This principle is entirely general but to be implemented in prac-
tice, requires the forward and inverse Radon transforms to be computed with
high accuracy and resolution. The application of the Radon transform for this
purpose is compounded in the equation

P̂2O(x, y) ≡ R̂−1P̂1[R̂O(x, y)]

where P̂1 is a 1D process for which there is no directly equivalent 2D process P̂2.
For example, the Burg maximum entropy method (see Digital Signal Process-
ing, J M Blackledge, Horwood, 2003 - Chapter 15) for which there is no closed
form solution in two-dimensions can be applied to an image via application of
the Radon transform. The inverse of this principle can also be applied in cases
where an image processing method is available for which there is no directly
equivalent signal processing algorithm. In this case, the signal is replicated to
form a set of projections and the inverse Radon transform applied to form an
image. Upon processing the image, the processed signal is derived by taking
a single projection of the processed image. This approach can, for example,
be used to solve the phase reconstruction problem for a signal by applying
a phase retrieval algorithm (see Chapter 12) to the image that is formed via
Radon inversion.
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8.9 Summary of Important Results

Radon transform

P (z, θ) = R̂O(x, y) =
∫ ∫

O(x, y)δ(z − x cos θ − y sin θ)dxdy

Inverse Radon transform

O(x, y) = R̂−1P (z, θ) =
1

2π2

∫ ∫
1

x cos θ + y sin θ − z
∂

∂z
P (z, θ)dzdθ

Back-projection PSF

P (x, y) =
1√

x2 + y2

Projection slice theorem

F̂2O(x, y) = F̂1R̂O(x, y)

The Hough transform

z = x cos θ + y sin θ

A General signal-to-image processing converter

If P̂1 is a 1D process for which there is no directly equivalent 2D process P̂2,
then

P̂2O(x, y) ≡ R̂−1P̂1[R̂O(x, y)]
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Chapter 9

Diffraction Tomography

Diffraction tomography is an imaging method that attempts to reconstruct the
internal structure of an inhomogeneous material by the way in which it diffracts
radiation. This method of imaging is used when the wavelength of a probe λ
is the same order of magnitude as the scatterer D, i.e. when

λ ∼ D.

In this case, the reconstruction methods used for projection tomography (which
rely on the condition λ << D) are inadequate.

In practice there is one very important difference between projection and
diffraction tomography: whereas projection tomography is based on an exact
reconstruction, diffraction tomography relies heavily on approximate solutions
to the scattering problem. In other words, the inversion algorithm that enables
us to recover the structure of an object from a sequence of projections is exact
whereas, in diffraction tomography, the inversion algorithm is based on an ap-
proximate solution for the diffracted field. The type of approximation that is
used has already been discussed in Chapter 6. It is known as the Born approx-
imation and for λ ∼ D is valid when the root mean square of the scattering
function is much less that 1.

The problems discussed in this Chapter are two-dimensional and, like pro-
jection tomography, are idealized in their concern with imaging a slice of mate-
rial taken through a three-dimensional object. However, it should be stressed
that the ideas and analytical techniques that are presented can be extended to
three dimensions.

The principles of diffraction tomography are the same in both acoustic and
electromagnetic imaging, but the theoretical details are different. In this Chap-
ter, attention is focused on the diffraction of an acoustic wavefield from a slice
of material by way of an introduction to the problem. The diffraction of a
polarized electromagnetic field from a conductive dielectric is briefly discussed
at the end of this Chapter.

273
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9.1 Diffraction Tomography using CW Fields

Consider the 2D ultrasonic imaging system illustrated in Figure 9.1. A trans-
ducer emits a diverging wavefield at a fixed frequency which insonifies the
scatterer completely. This field is transmitted through a homogeneous medium
of uniform density ρ0 and compressibility κ0. The scatterer is assumed to be
composed of variations in compressibility κ alone and confined to a finite region
of space with area A. The inhomogeneous nature of this acoustic parameter
causes diffraction to occur. The diffracted wavefield is detected by a second
transducer (the receiver) which, like the acoustic source, is free to move around
a circular frame which completely encloses the scatterer. As in projection to-
mography, the acoustic image obtained by this method is taken to be a cross
section through a three-dimensional object. Our aim is to develop a scattering
model for this system and obtain a suitable reconstruction algorithm.

9.1.1 Mathematical Model

By considering the acoustic source to be a point source, the diverging incident
wavefield can be described by the appropriate Green function (in this case, the
two-dimensional Green function). The 2D wave equation for the Born scattered
pressure field Ps at r due to the presence of a point acoustic source at ri is the
solution of

(∇2 + k2)Ps(r, ri, k) = −k2γκ(r)g(r | ri, k)
where

γκ =
κ− κ0

κ0
.

Here, it is assumed that there are no variations in the density and that the
viscosity of the medium is negligible. Using the expression for the 2D Green
function (see Chapter 5), the solution to this equation at rs is then

Ps(rs, ri, k) =
ik

8π

∫
A

exp(ik | r− ri |)√ | r− ri |
exp(ik | r− rs |)√ | r− rs | γκ(r)d2r.

Let us consider this solution under the far-field conditions
r
| ri | << 1

and r
| rs | << 1

where
| ri |�| rs |� a,

the distance of the source and receiver from the centre of the scatterer as shown
in Figure 9.1.
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Figure 9.1: The type of experiment required to perform CW ultrasonic diffrac-
tion tomography using a circular source/receiver system. A transducer emits
a wavefield oscillating at a fixed frequency through a homogeneous material
with compressibility κ0 and density ρ0. The field is diffracted by an acoustic
scatterer which is taken to be composed of variations in the compressibility κ
alone. By measuring the diffracted field as a function of the position of the
source and receiver on the frame, the variations in the compressibility can be
recovered.

These conditions allow us to use a Fourier-based inversion scheme because the
scattered pressure field can be written as

Ps(n̂i, n̂s, k) =
ik

8πa
exp(2ika)

∫
A

exp[−ik(n̂s − n̂i) · r]γκ(r)d2r

where
n̂i = − ri

| ri |
and

n̂s =
rs
| rs | .

This equation is essentially a two-dimensional Fourier integral of the compress-
ibility variations where n̂i and n̂s represent the direction of the incident and
scattered fields, respectively.
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9.1.2 Geometric Model

If the scattered field is measured over a circular frame, then the appropriate
co-ordinates to work with are polar co-ordinates. We therefore write

n̂i = x̂ cosφi + ŷ sinφi

and
n̂s = x̂ cosφs + ŷ sinφs

where φi and φs are the angles of incidence and scattering, respectively. The
scattered pressure field can then be written as

Ps(kx, ky) =
ik

8πa
exp(2ika)

∫ ∫
exp(−ikxx) exp(−ikyy)γκ(x, y)dxdy (9.1)

where
kx = k(cosφs − cosφi) (9.2)

and
ky = k(sinφs − sinφi) (9.3)

Note that k is taken to be a constant and that kx and ky are functions of φi
and φs.

9.1.3 Recording Model

Two basic parameters must be measured in an experiment of this kind: the
amplitude of the scattered pressure field and its phase. In practice, the actual
field that is measured in an imaging system of the type illustrated in Figure
9.1 is not just the scattered field but the sum of the incident Pi and scattered
fields, i.e. the total pressure field

P (kx, ky) = Pi(kx, ky) + Ps(kx, ky).

To recover γκ from Ps, we require information on the amplitude A and phase
θ of Pi and Ps as a function of φi and φs. The amplitude and phase of the
incident pressure field can be obtained by measuring the total pressure field in
the absence of the scatterer. The incident pressure field as a function of these
angles is then given by

Pi(φi, φs) = Ai(φi, φs) exp[iθi(φi, φs)].

Exactly the same procedure must then be repeated with the scatterer present,
producing the total pressure field

P (φi, φs) = A(φi, φs) exp[iθ(φi, φs)].

The scattered pressure field is then given by

Ps(φi, φs) = P (φi, φs)− Pi(φi, φs) = A cos θ −Ai cos θi + i(A sin θ −Ai sin θi).
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The behaviour of the incident pressure field is ultimately a function of the
design of the imaging system and must be known a priori before the scatterer
is introduced. In other words, the system must be calibrated before conducting
an experiment. It is then a relatively simple procedure to compute the complex
scattered field by measuring the amplitude of the total field and its phase
relative to the source (i.e. the phase shift)

9.1.4 Inversion

Having obtained the complex scattered pressure field, the compressibility fluc-
tuations can be recovered by performing the appropriate Fourier inversion.
Noting that γκ is a real function, we have from equation (9.1), by 2D Fourier
inversion,

γκ(x, y) = Re
(

2a
πik

exp(−2ika)
∫ ∫

exp(ikxx) exp(ikyy)Ps(kx, ky)dkxdky

)
.

(9.4)
In this formula, Ps is a function of kx and ky and not the experimental parame-
ters φi and φs. Hence, to use this inversion, we need to know how observations
of the scattered field as a function of φi and φs are related to the spatial fre-
quencies kx and ky.

Figure 9.2: The geometric relationship between the spatial frequencies of the
scatterer kx and ky and the incident and scattering angles (φi and φs respec-
tively) is a circle of radius k (the wavenumber of the CW field used to insonify
the scatterer) whose centre is at (k cosφi, k sinφi).
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The relationship is provided by the parametric equations (9.2) and (9.3). Figure
6.2 shows the parametric curve in kxky-space produced by changing φs from
0 to 2π when φi is fixed according to these parametric equations. This curve
is a circle with an origin at (kx = k cosφi, ky = k sinφi). This can be shown
by decoupling equations (9.2) and (9.3) for φs which gives the equation for a
circle,

(kx + k cosφi)2

k2
+

(ky + k sinφi)2

k2
= 1.

Figure 9.3: By changing the position of the source (determined by φi) and
measuring the diffracted field as a function of φs, the spatial frequencies of the
scatterer up to and including 2k can be determined. The scatterer can then be
recovered by Fourier inversion.
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This relationship demonstrates that, by changing the scattering angle, we are
able to select the spatial frequencies of the scatterer which lie on a circle in
Fourier space of radius k and origin (k cosφi, k sinφi). By changing the value of
φi (i.e. the position of the acoustic source), the origin of this circle is moved and
a new set of spatial frequencies can be obtained by once again measuring the
scattered field at different scattering angles φs. By repeating this process for all
values of φi between 0 and 2π, all the spatial frequencies of the scatterer can be
measured up to and including 2k. In other words, by recording the behaviour
of the complex scattered field for all values of φi and φs between 0 and 2π,
the complex spectrum of the scatterer can be obtained. This is illustrated in
Figure 9.3. The maximum spatial frequency that can be obtained in this way
is 2k. To emphasize this important point, equation (9.4) should be written in
a form where the double integral is bounded by the condition

√
(k2
x + k2

y) ≤ 2k.

Using vector notation, the inversion formula for the compressibility fluctuations
can be written in the form

γκ(r) = Re

⎛⎜⎝ 2a
πik

exp(−2ika)
∫

|k|≤2k

exp(ik · r)Ps(k)d2k

⎞⎟⎠ .

9.2 Pulse Mode Diffraction Tomography

In the previous Section we examined how the compressibility fluctuations of
an acoustic material can be recovered using a CW field and a scattering model
that is based on the Helmholtz equation, the Born approximation and the far
field approximation. Using exactly the same model we shall now examine how
the compressibility fluctuations can be reconstructed using a pulsed acoustic
(e.g. ultrasonic) field.

9.2.1 Basic Equations

To start with, let us see how the basic equations change when a pulse is in-
troduced. Using a pulse is equivalent to using a spectrum of different CW
frequencies. If we denote the pulse by p(τ) where τ =time×acoustic wave
speed, then its characteristic spectrum can be written as

P (k) =

∞∫
−∞

exp(−ikτ)p(τ)dτ.

In this case the scattered pressure field at r induced by a pulsed acoustic point
source at ri is determined by the wave equation

(∇2 + k2)Ps(r, ri, k) = −k2P (k)γκ(r)g(r | ri, k).
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Following exactly the same procedure as before (i.e. for the CW case), the
scattered pressure is given by

Ps(N̂, k) =
ik

8πa
P (k) exp(2ika)

∫
A

exp(−ikN̂ · r)γκ(r)d2r

where
N̂ = n̂s − n̂i.

The function Ps describes the spectrum of the scattered pressure field. In
practice, the spectrum of this field is not measured directly. What is actually
measured is a time varying voltage (a signal with both positive and negative
values) which is the time history of the scattered field. This is given by the in-
verse Fourier transform of Ps. Using the convolution theorem and remembering
that ik in Fourier space yields a derivative in real space, we can write

ps(N̂, τ) =
1

8πa
∂

∂τ

⎛⎝p(τ) ⊗ δ(τ + 2a)⊗
∫
A

γκ(r)δ(τ − N̂ · r)d2r

⎞⎠

=
1

8πa
∂

∂τ

⎛⎝p(τ + 2a)⊗
∫
A

γκ(r)δ(τ − N̂ · r)d2r

⎞⎠ (9.5)

where

ps(N̂, τ) =
1
2π

∞∫
−∞

Ps(N̂, k) exp(ikτ)dk.

This is a rather nice result because the integral over γκ in the above expres-
sion is just the Radon transform of γκ. Hence, the techniques used to obtain
the inverse Radon transform discussed in Chapter 8 can also be used here to
reconstruct the compressibility fluctuations. The only additional problem that
we have to contend with is the convolution of the integral with ∂τp.

9.2.2 Inversion

To extract the Radon transform of γκ we need to deconvolve ps. This can be
done by transforming back into Fourier space and constructing the appropriate
inverse filter. We can then write

D(N̂, τ) =
∫
A

γκδ(τ − N̂ · r)d2r

where D is the deconvolved data given by

D(N̂, τ) = 8πaF̂−1
1

(
Ps(N̂, k)
ikP (k)

exp(−2ika)

)
. (9.6)
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Details of how to deconvolve signals in the presence of experimental noise and
singular inverse filters such as this one, are given in Digital Signal Processing,
J M Blackledge, Horwood, 2003.

Recalling the results of Chapter 8, D is completely equivalent to a pro-
jection, with the exception that γκ is not an object function but a scattering
function andD is not a projection but a deconvolved time trace. To reconstruct
γκ from D we need to know the characteristic time signals for all values of N̂.
Because N̂ is the difference between the scattered and incident unit vectors,
there are a number of ways of choosing N̂. We can choose to keep n̂i fixed and
vary n̂s or vice versa. Alternatively, we may change both n̂i and n̂s keeping
the angle between them fixed. This is equivalent to rotating the object by an
angle φ while keeping the positions of the source and receiver fixed. Noting
that

| N̂ |=| n̂s − n̂i |= √
[(n̂s − n̂i) · (n̂s − n̂i)]

= 2 sin
θ

2
, θ = cos−1(n̂i · n̂s)

where θ is the angle between the incident and scattered fields, we can write
[with N̂ =| N̂ | (x̂ cosφ+ ŷ sinφ)]

N̂ · r = 2x cosφ sin
θ

2
+ 2y sinφ sin

θ

2
.

For a fixed value of θ, the deconvolved data can then be written as

D(φ, τ) =
∫ ∫

γκ(x, y)δ
(
τ − 2x cosφ sin

θ

2
− 2y sinφ sin

θ

2

)
dxdy.

This expression is identical to the formula for a projection except for the factor
2 sin(θ/2). In this case, using the expression for the inverse Radon transform,
the compressibility fluctuations are given by

γκ(x, y) = R̂−1D

=
1

2π2

π∫
0

dφ

∫
dτ

1
2x cosφ sin(θ/2) + 2y sinφ sin(θ/2)− τ

∂

∂τ
D(φ, τ).

9.3 The Diffraction Slice Theorem

We have shown that the deconvolved data generated by insonifying an acoustic
scatterer with a pulse are related to the scattering function by the Radon
transform. The spatial frequencies of the scattering function must therefore be
related to the spectrum of these data in the same way that the spectrum of a
projection is related to the spatial frequencies of the object function. In other
words, the central slice theorem should apply. In this case, since we are dealing
with a diffraction phenomenon, we refer to this theorem as the diffraction slice
theorem. Its basic properties are the same as the projection slice theorem with
one very important difference which arises from the presence of the additional
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parameter θ. Following the same procedure as in Chapter 8 (for deriving the
projection slice theorem) we write

Γκ(kN̂) =
∫
A

γκ(r) exp(−ikN̂ · r)d2r

=
∫
A

d2rγκ(r)

∞∫
−∞

exp(−ikτ)δ(τ − N̂ · r)dτ =
∫
A

D(N̂, τ) exp(−ikτ)dτ.

In terms of the appropriate operators, this equation can be written as

F̂2γκ = F̂1R̂γκ.

As in the projection slice theorem, the Fourier transform of R̂γκ at a given
angle is equal to a slice through the Fourier domain of γκ at the same angle.
The length of the slice is determined by the maximum value of

| kN̂ |= 2k sin(θ/2).

This is illustrated in Figure 9.4.

Figure 9.4: Illustration of the Diffraction Slice Theorem.

Using vector notation, the compressibility fluctuations can therefore be written
in the form

γκ(r) =
1

(2π)2

∫
|k|≤2k sin θ

2

Γκ(k) exp(ik · r)d2k.
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Observe that the bandwidth of the reconstruction and therefore its resolution
does not depend on the wavenumber alone but on the angle between the inci-
dent and scattered waves. Recall that the bandwidth of a CW reconstruction
only depends on the magnitude of 2k, whereas the value of the scattering angle
plays a crucial role in defining the resolution of a reconstruction using pulsed
fields. Note that maximum resolution will be obtained when θ = 1800, i.e.
when the back-scattered field is recorded. Also note that when θ is zero, only
the DC component of the spectrum can be recovered, i.e.

Γκ(0, 0) =
∫ ∫

γκ(x, y)dxdy.

In addition to the scattering angle, the resolution also depends on the wavenum-
ber k. With a pulsed system, the maximum value of k is determined by the
bandwidth of the pulse. Hence, the larger the bandwidth of the pulse, the
greater the resolution of the reconstruction. Since

√
k2
x + k2

y ≤ 2k sin(θ/2), the
maximum resolution available using an imaging system of this kind is obtained
by measuring the back-scattered field. The resolution of the system is then de-
termined by the bandwidth of the pulse alone. In this mode we may summarize
the imaging method as follows:

(i) Insonify the acoustic scatterer with a pulse of acoustic radiation and record
the time history of the back-scattered field.

(ii) Repeat this procedure for all angles by rotating the object or equivalently
changing the position of the transducer.

(iii) Deconvolve each time trace.

(iv) Reconstruct the scattering function by taking the inverse Radon transform
of the deconvolved data.

Another way of reconstructing γκ is first to back-project the time trace data
without deconvolving. In this case, the back-projection function is given by

B(x, y) = P (x, y)⊗⊗γκ(x, y)

where

P (x, y) =
1

8πar
⊗ ∂

∂r
p(r + 2a), r =

√
x2 + y2.

We may then deconvolve the above equation by constructing the appropriate
inverse filter. This is obtained by taking the Fourier transform of the point
spread function which gives

P̃ (kx, ky) =
1

8πak
ikP (k) exp(2ika) =

i

8πa
P (k) exp(2ika)

where

k =
√
k2
x + k2

y .
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The inverse filter is then given by 1/P̃ (kx, ky) and the scattering function can
be reconstructed using the result

γκ(x, y) = 8πaF̂−1
2

(
exp(−2ika)

F̂2B̃(kx, ky)
iP (k)

)
.

9.4 Quantitative Diffraction Tomography

So far in this Chapter we have looked at two methods of reconstructing the
compressibility fluctuations of an acoustic material using a CW or pulsed acous-
tic field. In both cases variations in only one acoustic parameter are assumed
to generate the scattered field. This model was chosen because it produced a
relatively simple wave equation (the Helmholtz equation) which allowed us to
study inverse solutions using the Born and far field approximations without
the analysis becoming unduly complicated.

9.4.1 Solution for a Non-viscous Medium

Now that the basic inversion method has been presented, let us go back and put
some more ‘physics’ into the problem by considering a slightly more advanced
scattering model where variations in the density of the acoustic material also
contribute to the scattered field. In this case, the wave equation is (see Chapter
4)

(∇2 + k2)p = −k2γκp+∇ · (γρ∇p)
where

γρ =
ρ− ρ0

ρ
.

Once again, we use the Born and far field approximations to produce the inte-
gral equation

ps(n̂i, n̂s, k) =
ik

8πa
exp(2ika)

(∫
A

exp[−ik(n̂s − n̂i) · r]γκ(r)d2r

− 1
k2

∫
A

exp(−ikn̂s · r)∇ · [γρ(r)∇ exp(ikn̂i · r)]d2r
)
.

It is clear that the behaviour of the scattered field due to density variations is
compounded by one term which needs to be simplified. Our aim is to reduce
this term to a form that is compatible with the first, so that we may adopt the
same type of inversion scheme. Integrating by parts we can write∫

A

exp(−ikn̂s · r)∇ · [γρ∇ exp(ikn̂i · r)]d2r

=
∫
A

∇ · [γρ exp(−ikn̂s · r)∇ exp(ikn̂i · r)]d2r
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−
∫
A

γρ∇ exp(−ikn̂s · r) · ∇ exp(ikn̂i · r)d2r.

The second integral on the right hand side of the equation above can be eval-
uated directly, i.e. ∫

A

γρ∇ exp(−ikn̂s · r) · ∇ exp(ikn̂i · r)d2r

= k2

∫
A

n̂i · n̂sγρ exp[−ik(n̂s − n̂i) · r]d2r.

Ideally, we now need a physical reason for neglecting (or otherwise) the integral
over ∇ · [•]. To this end we can use Green’s theorem in the plane to write∫

A

∇ · [γρ exp(−ikn̂s · r)∇ exp(ikn̂i · r)]d2r

=
∮
C

γρ exp(−ikn̂s · rc)∇ exp(ikn̂i · rc) · n̂d�

where C is the contour enclosing A and rc denotes the position vector on the
contour C. We may now use one of two arguments. The first is to consider the
contribution to the scattered field due to scattering at the boundary defined
by C to be negligible compared to the scattering produced by the interior of
the scatterer itself. Alternatively, we can introduce the boundary condition

γρ(rc) = 0 (9.7)

in which case the relevant integral vanishes completely. This condition implies
that

ρ(rc) = ρ0.

In this form it is clear that the density of the scatterer on the boundary defining
A must be the same as the homogeneous support that surrounds the scatterer.
In this case the expression for the scattered pressure field reduces to

ps(n̂i, n̂s, k) =
ik

8πa
exp(2ika)

∫
A

exp[−ik(n̂s − n̂i) · r]f(r, θ)d2r

where
f(r, θ) = γκ(r) + γρ(r) cos θ, cos θ = n̂i · n̂s.

Hence, by using the additional boundary condition (9.7), the scattered field
generated by variations in both the compressibility and density is reduced to
the Fourier transform of a scattering function with one extra term, namely,
γρ cos θ. This result shows that the scattering of an acoustic field due to density
fluctuations is a source of dipole radiation whereas variations in the compress-
ibility represents a monopole source of scattering. This is illustrated in Figure
9.5.
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In order to develop a quantitative imaging system, we need to find a way
of reconstructing γκ and γρ independently. This is known as a two-parameter
reconstruction problem and its solution is based on exploiting the angular de-
pendence of the density variations. To see how this works, suppose that we can
recover the function f(r, θ) at any θ of our choice. If we choose two different
angles θ1 and θ2 where θ1 �= θ2, then we can write two simultaneous equations
of the form

f(r, θ1) = γκ(r) + γρ(r) cos θ1

and
f(r, θ2) = γκ(r) + γρ(r) cos θ2.

Solving these equations, we then have

γρ(r) =
f(r, θ1)− f(r, θ2)

cos θ1 − cos θ2

and

γκ(r) =
f(r, θ1) cos θ2 − f(r, θ2) cos θ1

cos θ2 − cos θ1
.

Figure 9.5: The directivity patterns produced by acoustic scattering from vari-
ations in the compressibility (monopole) and density (dipole). The difference
in the directivity provides a method of recovering the density and compress-
ibility variations independently. This is an example of quantitative acoustic
diffraction tomography.

These solutions are quantitative reconstructions and this type of imagery is
known as quantitative acoustic diffraction tomography. Let us examine how to
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obtain f(r, θ). To do this, we introduce an experimental method which allows
a two-dimensional function to be reconstructed but, at the same time, does
not need the angle between the incident and scattered fields to be changed. In
other words, we need a method of reconstructing the scattering function when
the position of the receiver, relative to the source, is fixed. This rules out any
reconstruction based on the use of a CW field because in this case the scattered
field must be measured at all scattering angles φs. Since θ is related to φi and
φs by

θ = φs − φi
this means that θ is a necessary experimental variable. The only experiment
where θ can remain fixed has already been discussed in Section 9.3, which
examined a method of diffraction tomography using a pulsed field. Therefore, if
we wish to conduct quantitative diffraction tomography based on a model where
variations in the compressibility and density are responsible for the scattered
field, we are forced to utilize a pulse mode system. Following Section 9.3, the
scattered pressure field generated by a pulse p(τ) is given by

ps(N̂, τ) =
1

8πa
∂

∂τ
p(τ + 2a)⊗

∫
A

f(r, θ)δ(τ − N̂ · r)d2r.

Radon inversion then gives

f(r, θ) = R̂−1D(φ, τ, θ)

where D is given by equation (9.6). By generating the data D at two different
values of θ, γκ and γρ can be recovered. Recall that for maximum resolution we
need the value of θ to be as close to 1800 as possible. It is therefore clear that
one experiment should be based on measuring the back-scattered field when
θ = 1800 where the reconstruction is for the function

f(r, θ = 1800) = γκ(r)− γρ(r).
This function is a measure of the acoustic impedance.

9.4.2 Solution for a Viscous Medium

The solution to the two-parameter reconstruction problem given above assumes
that the material is non-viscous. We shall now examine the type of inverse
problem that occurs when a model is considered where, in addition to variations
in the density and compressibility, scattering is also caused by variations in the
bulk and shear viscosities which are related to the scattering functions γα and
γβ (see Chapter 4). In this case, the wave equation (as derived in Chapter 4)
is given by

(∇2 + ξ2)U = −ξ2∇ · (γρ∇u) +
1

1 + ik�
∇2(γκ∇2u)

− ik�

1 + ik�

(
∇2(γα∇2u) + 2∇ · [∇ · (γβ∇∇u)]

)
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where u is the longitudinal velocity potential, U = ∇2u is the acoustic dilata-
tion, � is the relaxation length and

ξ =
k√

(1 + ik�)
.

Once again, using the Born and far field approximations, the scattered acoustic
dilatation can be written in the form

Us(n̂i, n̂s, k) =
iξ

8πa
exp(2iξa)(I1 + I2 + I3 + I4)

where
I1 =

∫
A

exp(−iξn̂s · r)∇ · [γρ∇ exp(iξn̂i · r)]d2r,

I2 = − 1
ξ2(1 + ik�)

∫
A

exp(−iξn̂s · r)∇2[γκ∇2 exp(iξn̂i · r)]d2r,

I3 =
ik�

ξ2(1 + ik�)

∫
A

exp(−iξn̂s · r)∇2[γα∇2 exp(iξn̂i · r)]d2r

and

I4 =
2ik�

ξ2(1 + ik�
)
∫
A

exp(−iξn̂s · r)∇ ·
(
∇ · [γβ∇∇ exp(iξn̂i · r)]

)
d2r.

The above integrals can be simplified using the same method as before (i.e.
the one used to solve the two-parameter problem). In each case, we integrate
by parts and use Green’s theorem in the plane to convert integrals over A to
integrals around C where C is the contour that completely encloses A. Using
the boundary conditions

γf (rc) = 0

and
n̂ · ∇γf (rc) = 0

where f = ρ, κ, α or β, the scattered dilatation becomes

Us(n̂i, n̂s, k) = − iξ
3 exp(2ika)

8πa(1 + ik�)

∫
A

exp[−iξ(n̂s − n̂i) · r]f(r, θ, k)d2r (9.8)

where
f = γκ + γρ cos θ + ik�(γρ cos θ + γα + 2γβ cos2 θ).

Note that the scattering function in this case depends on both the scattering
angle θ and the wavenumber k. Also note that when the viscosity is zero so
that � = 0, the scattering function reduces to

f = γκ + γρ cos θ.
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The directional properties of the scattering function γα are the same as scat-
tering from variations in the compressibility. However, a cos2 θ dependence
characterizes scattering from the scattering function γβ . When k� is large,
acoustic scattering is dominated by the composite scattering function

γρ cos θ + γα + 2γβ cos2 θ.

Let us now look at a quantitative reconstruction method using CW fields. Re-
call that CW diffraction tomography requires the scattered field to be measured
at all scattering angles. We therefore need a scattering function which is in-
dependent of θ. Suppose we consider a physical model where the scattering
functions γα and γβ are negligible so that the composite scattering function
becomes

f = γκ + ik�γα.

Fourier inversion of equation (9.8) then leads to the reconstruction

f(r, k) =
2ia(1 + ik�)

πξ3
exp(−2ika)

∫
|k|≤2|ξ|

exp(ik · r)Us(k)d2k.

By equating real and imaginary parts, we then obtain the quantitative recon-
structions

γκ(r) =
2a
π

Re

⎛⎜⎝ i(1 + ik�)
ξ3

exp(−2ika)
∫

|k|≤2|ξ|

exp(ik · r)us(k)d2k

⎞⎟⎠
and

γα(r) =
2a
πk�

Im

⎛⎜⎝ i(1 + ik�)
ξ3

exp(−2ika)
∫

|k|≤2|ξ|

exp(ik · r)us(k)d2k

⎞⎟⎠ .

Observe that the bandwidth of these reconstructions is determined by

2 | ξ |= 2k√
(1 + k2�2)

.

Hence, in this case, the resolution is governed by the magnitude of both the
wavenumber and the relaxation length. As the viscosity of the material in-
creases, the resolution of the reconstructions decreases. This result has an
obvious physical explanation: as the viscosity increases, both the incident and
scattered field are absorbed by a greater amount and so there is less penetra-
tion of acoustic energy into and out of the scatterer. The measured scattered
field therefore becomes weaker. When the viscosity is very large, there is prac-
tically no penetration of acoustic radiation into the scatterer and therefore no
information on the internal structure of the scatterer can be obtained.
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9.5 EM Diffraction Tomography

Let us consider how the form of the electromagnetic scattering function com-
pares with the acoustic scattering function using exactly the same type of model
and approximations that have been presented in previous Sections. Consider
a model where a body composed of two-dimensional variations in the permit-
tivity, permeability and conductivity is illuminated by an electromagnetic field
(such as a millimetric microwave field) where the polarization of the electric
vector is perpendicular to the two-dimensional plane. With

Ẽ(r, k) = ẑu(r, k), r = x̂x+ ŷy

the inhomogeneous wave equation (see Chapter 4)

(∇2 + k2)Ẽ = −k2γεẼ + ikz0σẼ−∇(Ẽ · ∇ ln ε) +∇× (γμ∇× Ẽ)

reduces to

(∇2 + k2)u = −k2γεu+ ikz0σu+∇ · (γμ∇u).

Using the same method as before, the Born scattered field is given by

us(n̂s, n̂i, k) =
ikP

8πa
exp(2ika)

∫
A

exp[−ik(n̂s − n̂i) · r]f(r, θ, k)d2r

where

f = γε + γμ cos θ − iz0
k
σ.

Here we see that γε, γμ play an identical role to γκ and γρ, respectively, and
can thus be ‘imaged’ using the same methods as those discussed when u is an
acoustic wavefield using a pulsed mode system with two different values of θ.
Similarly, σ can be imaged using a CW system where k is a constant.

9.6 Case Study: Simulation of an Ultrasonic B-
Scan

The B-scan, or Brightness-mode scan, provides a two-dimensional image which
is generated by the diffraction (back-scattering) of an ultrasonic pulse from
a cross section of the object that is scanned. In this sense a B-scan can be
taken to be a form of ultrasonic diffraction tomography based on the back-
scattered field generated by and recorded on a linear array of transducers, each
of which emits a pulse and records the back-scattered signal on a transducer-
by-transducer basis, one after the other. The received echoes are displayed
in a way that bears correspondence between the displayed scan line and the
direction of ultrasonic propagation.
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9.6.1 Introduction

One of the most fundamental features of B-scan images is that one dimension of
the image (axial) is inferred from the arrival time of echoes of a short ultrasonic
pulse as they reflect from the object, assuming that the path of the signal
is a straight line (the A-Scan). Features of the signal that have come from
reflections off structures close to the source are received earlier than those
reflected from structures deeper in the object.

The transverse dimension of the image is obtained by moving the transducer
so that each pulse is transmitted through the object in a different straight line
path. The transducer motion can be either mechanical or electronic and the
process is repeated until the region of interest has been scanned. Alternatively
a set of transducers can be employed, in which each transducer successively
emits a pulse and detects the back-scatter. This is called a phased array.

In a B-scanner an electronic pulser is connected to a transducer and excites
it so that a short pulse of ultrasound is generated. The pulse is considered to
travel in a straight line path and part of its energy is lost through the processes
of attenuation. The remaining energy is reflected from structures in the acoustic
path; these reflected ultrasonic pressure waves impinge on the transducer and
induce a motion of the receiver membrane, which is then translated into a
voltage trace via the piezoelectric effect. The position and angular direction of
the transducer are determined by position monitoring electronic circuits, which
also determine the monitor co-ordinates for the signal display.

The time varying signals that are produced with the above process can be
amplified, filtered, digitized and stored to provide data on the time history of
the back-scattered field. By computing the amplitude envelope of the recorded
signals and stacking them into columns a brightness mode (B-scan image) of
the object can be constructed, which, after undergoing grey-level quantization,
can be displayed on an appropriate VDU. The image that has been constructed
in this way is a collection of signals rather than a proper image (in the pho-
tographic sense), but provides a perfectly valid representation of a scanned
object.

9.6.2 B-scan Modalities

Different scan modalities can be used to construct a B-scan, the most widely
used being linear, sector and arc modalities as illustrated in Figure 9.6.

Linear Scan

In a linear scan, the transducer moves in a straight line and, therefore, the
transverse dimension of the image is limited by the transducer’s length of travel,
(or the size of the phased array employed) while the depth dimension (or time
dimension) is limited by the penetration depth of the beam, or the size of the
object being scanned. The main advantage with this technique is that the
resulting image consists of a uniform line density which results in a constant
spatial sampling rate of the scanned object.
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Sector Scan

In a sector scan the transducer is fixed at a point on or above the object and is
swept through an angular sector. In this case the field-of-view increases with
the depth of penetration but, because of the beam divergence, the line density
diminishes as the field-of-view expands. Because of its special field-of-view
characteristics the sector scan is particularly well suited for imaging through
narrow apertures.

Figure 9.6: Motion and image format for linear (a), sector (b) and arc (c)
B-scans.

Arc Scan

In the arc scan the transducer is moved along a circular arc which is situated
on or above the object of interest, giving rise to an image which is the inverse
of a sector format image. In this case the field-of-view is maximum near the
transducer and decreases with depth of penetration.
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Compound Linear Scan

In addition to the three scan modalities discussed above there is a fourth modal-
ity - the compound linear scan modality - which can be considered to be a
combination of the sector scan with a linear scan. The major difference be-
tween a compound and a sector scan is that, in the latter case, the scanning
angle can be as large as 45o, while in the former case, much smaller angles are
usually used. A compound linear scan is illustrated in Figure 9.7, where, for
illustrative purposes, only two scanning positions of the transducer are shown.
In compound scanning object points are imaged by more than one ultrasonic
pulse along different paths.

Figure 9.7: Motion and image format for a compound linear scan. Note that
in the compound region, the object is imaged with more than one ultrasonic
field.

One of the major difficulties with B-scanning is the detection of specular re-
flectors, which are objects whose reflection of ultrasound is direction dependent
and determined by the orientation of the transducer. The major difficulty of
imaging such objects stems from the fact that it is possible for a reflected beam
not to reach the transducer and therefore the imaging system interprets this as
an absence of reflective energy, even though a very strong reflection may have
taken place. Because of its properties, a compound scan is often used in order
to image specular reflections as well as to image objects which are positioned
behind highly reflecting or attenuating structures.

In addition to the basic B-scanning method introduced here, there are nu-
merous distinctions that can be applied to each of them. Most of the techniques
operate in ‘real time’. Another distinction often applied to B-scans is whether
a system is a ‘contact scanner’ or based on a ‘water-bath’. In the former case,
the transducer is in direct contact with the object directly while, in the latter
case, the ultrasonic field propagates in a liquid medium (usually water) before
insonifying the object. Despite the differences that exist between the numer-
ous B-scan techniques, it should be stressed that the basic concepts of B-mode
imaging introduced here apply to all of them.



294 CHAPTER 9. DIFFRACTION TOMOGRAPHY

9.6.3 Coherence

The images produced by a linear B-scanning system are examples of partially
coherent images; they provide a coherent record (i.e. a record of both amplitude
and phase information) of the time history of the ultrasonic field. This type of
imaging system is classified as a real aperture imaging system the resolution of
the images obtained depending to first order on the pulse length and the beam
width of the ultrasonic field.

Due to the coherent nature of the system, the images are characterized by
speckle patterns from which information on the characteristics of the object
can be inferred. Significant changes in the acoustic impedance at the interface
of object features are clearly visible as are the shadows caused when the attenu-
ation of the ultrasonic wavefield. However, in each case, speckle is a prominent
feature of the images. Speckle patterns are a well known feature of coherent
optics (e.g. the scattering of laser light from a rough surface). In general, any
image obtained from the scattering of radiation (electromagnetic or acoustic)
in which some measure of the phase of the radiation field is available pro-
vides a (partially) coherent image in which speckle is a primary characteristic.
Speckle pattern characterization methods can be adopted from those developed
to interpret speckle patterns in other fields of coherent imaging science (e.g.
synthetic aperture radar imaging).

9.6.4 Resolution of B-scan Images

The two resolution factors in a B-scan are the ‘lateral’ or ‘transverse’ resolution
and the ‘axial’ resolution, the former being the resolution in the direction of
the transducer motion, while the latter is the resolution in the ultrasonic pulse
propagation.

Lateral Resolution

In a focused optical system, the spacial resolution is given by 1.22λf/D which
is known as the Rayleigh criterion. This criterion describes the dependence of
the resolution on the wavelength of light λ and the characteristics of the optical
system, as described by the focal length f and the diameter D of the (circular)
aperture (see Chapter 11). Historically, this resolution criterion was proposed
in order to distinguish between two self-luminous point sources (stars), where
the optical system is operating in a recording mode only. In such cases the
impulse response or point spread function of the imaging system is given by the
Airy pattern, J2

1 (x)/x2 (ignoring scaling) where x is the transverse dimension
and J1 is the first order Bessel function.

With B-scans the imaging system operates on both transmitting and re-
ceiving mode and since, most of the time, the same transducer is used as both
source and receiver, the impulse response function of the system is described
by the square of the Airy pattern. These differences raise questions of how
B-scan image resolution is affected, the answer depending on exactly how reso-
lution is defined. If resolution is defined as the distance between the first zeros
of the impulse response function, then the resolution remains unaffected since
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the zeros of the two pattern coincide. However, it can be easily shown that
for any other definition of resolution, such as that based on a 19% dip in the
impulse response function as is sometimes used, then we have a significantly
better resolution because of the steeper slopes of the intensity function (Airy
pattern squared) as compared to the Airy pattern itself.

Another factor which affects lateral resolution is the fact that most B-
scanners have fixed focus elements, the resolution being poorer for structures
that do not lie within the focal length of the element. Resolution at the focal
depth can be improved by increasing the aperture of the imaging system but,
as a result, we get a decrease in the region over which the optimum resolution
is obtained (depth-of-focus). This can be an undesirable compromise since the
resolution improves with the size of the aperture while the depth-of-focus be-
comes smaller. To minimize this effect only weak focusing is used, but, even so,
the resolution is rather poor for reflectors that lie far from the focal distance
of a fixed focus element. However, it is possible to solve this problem by con-
structing electronically variable focusing devices which are based on the fact
that ultrasonic imaging is a coherent technique - a transducer being sensitive
to both amplitude and phase information. The transducer is subdivided into a
number of independent units which process the signals before constructing the
final image, the process involving a phase modification. Using these techniques,
it is possible to increase lateral resolution but such devices are very complex.

Although on a theoretical basis image resolution is highly dependent on
the definition employed, the question of which criterion should be used when
defining resolution in a B-scan image is academic.

Axial Resolution

The axial resolution of a B-scan image is inferred from the time of arrival of the
reflected signals and, therefore the resolution in this direction is not affected
by the focusing elements, depending mainly on the transducer bandwidth. The
larger the bandwidth, the shorter the ultrasonic pulse and, therefore, the finer
the definition along the propagation axis.

The problem that arises when dealing with broadband transducers is that
axial resolution cannot be defined anymore with the straightforward application
of a simple Rayleigh criterion; instead of having just a single wavelength a wide
spectrum of wavelengths is present.

9.6.5 Image Artifacts

Resolution improvement is a very important subject in ultrasonic imaging, the
quality of images depending on many factors in addition to simple axial- and
lateral-resolution parameters. Ultrasonic image artifacts can be the result of
different transducer and instrumentation characteristics, or they can occur as
a consequence of the physics of ultrasonic wave propagation.

Figure 9.8 illustrates a typical ultrasonic output function, the plot showing
peak amplitude against distance value, the distance being either transverse or
axial coordinates. The curve can be used in order to generate a B-mode display
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and the grey levels of the image determined from the intersection points of the
threshold values with the function. It should be noted that, for illustrative
purposes, only one amplitude signal is shown, although additional amplitude
could be added in order to obtain a more complete analysis of the imaging
procedure in real ultrasonic experiments. The recording principle illustrated
in Figure 9.8 is used to examine various ultrasonic artifacts associated with
different instrumentation and physical limitations.

Figure 9.8: A sample recording of the ‘information field’ for a B-scan: (a)
amplitude signal and (b) B-mode display.

Axial Resolution Artifacts

Axial resolution artifacts occur when the imaging system is not capable of re-
solving two point reflectors in an axial direction and will be discussed here
because of its importance in ultrasonic imaging techniques. Consider the con-
figuration illustrated in Figure 9.9, where an ultrasonic transducer is placed
over the ‘wire targets’ (i.e. good reflectors) and a series of waveforms are pro-
duced on an A-mode display (i.e. a display of reflected signal itself). These
waveforms are then used to produce a B-mode display, after applying an ade-
quate recording threshold value, which in this example is considered to be just
above zero, i.e. just above the noise level. Consideration of this setup shows
that we have a rather poor B-mode display when the pulse duration is long,
while a shorter duration pulse produces an improved B-mode image of the tar-
gets. From the above analysis, it is clear that the smaller the duration of the
pulse, the better the axial resolution obtained.
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Figure 9.9: Axial resolution artifacts.

Lateral Resolution Artifacts

A second and very important factor that affects image resolution is lateral
resolution which is proportional to the beam width. It can be defined in terms of
the capability of resolving two point reflectors in a lateral (transverse) direction.
Figure 9.10 illustrates two wire targets demonstrating that a beam consisting
of a small width generates a better representation of the two wire targets.

Figure 9.10: Lateral resolution artifacts.
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Note that, in order to achieve maximum lateral resolution, the objects to be
imaged have to be placed at the depth where the beam is focused - the depth
at which the beamwidth is a minimum.

Side-Lobe Energy Artifacts

Ultrasonic transducers possess a side-lobe energy pressure component which is
usually illustrated using a polar coordinate representation of pressure vs. angle,
at a fixed radius from the transducer surface such as the one given in Figure
9.11. The circular arc illustrates the recording threshold of the instrument.
Amplitudes which lie beyond the threshold value are used to construct the B-
scan image, while amplitudes which have values less than the threshold are not
taken into account.

Figure 9.11: Sidelobe energy artifacts.

If we assume excellent axial-resolution characteristics, we obtain excellent
imaging results when the side-lobe energy has values below the recording
threshold level, as illustrated in Figure 9.11(a). When the side-lobe energy
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component has values that extend beyond the threshold value (Figures 9.11(b)
and 9.11(c)), ultrasonic artifacts begin to appear in the image, as the wire
targets are not well defined any more and they seem to appear in different lo-
cations as the transducer is moved across them. The artifacts are more visible
when the targets lie further away from the beam axis and are therefore mainly
detected by the side-lobe energy components.

Gain-Control Effect Artifacts

The electrical voltages appearing on a transducer crystal as a result of the
received echoes are rather small and extend over a high range of values. The
pulses are in the range of 10−6 − 10−3 volts and are amplified in order to be
displayed. The gain-control governs the amplification of the signals and the
user may have to manipulate it in order to obtain a suitable number of echoes
on the VDU. As illustrated in Figure 9.12 it is possible to influence the B-
scan image formation be adjusting the gain-control settings of the recording
instrument. From the different cases illustrated in Figure 9.12, it is clear that
we can obtain significantly different images with different gain-settings, even
though the lateral resolution is considered to be the same in all cases. If the gain
is set too high, then the display will be overloaded and difficult to interpret,
since the echoes will be over-emphasized. On the other hand, a gain that is
too low may result in very few echoes being detected, again making the final
image difficult to interpret.

Figure 9.12: Sample B-scan recording, illustrating gain control artifacts.
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Artifacts Associated with the Physics of Wave Propagation

In addition to the artifacts associated with instrumentation image artifacts may
also occur even when we consider the hypothetical case of the ‘perfect instru-
ment’. These are due to the intrinsic physics of ultrasonic wave propagation,
acoustic shadows and reverberations being two of the most common artifacts
of this type, as illustrated in Figure 9.13.

Figure 9.13: Image artifacts associated with the physical aspect of ultrasonic
wave propagation; (a) acoustic shadows and (b) reverberation (due to multiple
scattering).

Shadows occur in B-scan images because of the presence of a reflector that
manifests itself in terms of a high differential acoustic impedance and does not
allow sufficient energy to propagate and detect the structures that lie behind
the reflector. This particular case is illustrated in Figure 9.13(a) where the two
point scatterers that lie behind the high impedance reflector are not imaged in
the B-scan image.

Another kind of artifact of this type is the phenomenon of reverberation as il-
lustrated in Figure 9.13(b) where a reflector of intermediate acoustic impedance
causes the appearance of several structures in the B-scan image which do not
represent existing structures. This is due to multiple scattering effects which are
particularly marked in cases were the object has a layered structure. However,
with a number of B-scanners, the user can determine whether the structures
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that appear in the image describe existing features in the object or whether
they are artifacts due to multiple scattering. In many cases where the rever-
beration is relatively weak the gain control of the instrument can be used to
eliminate this effect.

9.6.6 Theoretical Model for a B-scan Imaging System

Let us consider a model where the pressure wavefield p(r, k) is determined by
the solution to the 3D inhomogeneous wave equation (see Chapter 4)

(∇2 + k2)u = −k2γκu+∇ · (γρ∇u), r ∈ V
where

γκ =
κ− κ0

κ0
, and γρ =

ρ− ρ0

ρ
.

Here, κ and ρ are the scattering functions for the compressibility and density
respectively and k is the wavenumber

k =
ω

c0
, c0 =

1√
κ0ρ0

,

ω being the angular frequency. This model does not include physical effects
such as absorption and dispersion, i.e. the propagation and scattering of the
acoustic field u is not influenced by the viscosity of the material, only its density
and compressibility.

Consider a transducer to be a point source at r0 which emits a pulse of
ultrasonic radiation with a spectrum given by P (k). In this case the wave
equation must be modified to include this source term and so we must write

(∇2 + k2)u(r | r0, k) = −k2γκu(r | r0, k) +∇ · (γρ∇u(r | r0, k) + Pδ3(r − r0).

The Green function solution for this equation at a point rs is

u(rs | r0, k) = P (k)g(rs | r0, k)

+
∮
S

[g(r | rs, k)∇u(r | r0, k)− u(r | r0, k)∇g(r | rs, k)] · n̂d2r

+
∫
V

g(r | rs, k)[k2γκu(r | r0, k)− g(r | rs, k)∇ · (γρ∇u(r | r0, k))]d3r

where g is the solution of

(∇2 + k2)g(r | rs, k) = −δ3(r− r0).

Let
u(r | r0, k) = g(r | r0, k), r ∈ S.

Then ∮
S

[g(r | rs, k)∇g(r | r0, k)− g(r | r0, k)∇g(r | rs, k)] · n̂d2r
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=
∫
V

[g(r | rs, k)∇2g(r | r0, k)− g(r | r0, k)∇g(r | rs, k)]d3r

= −g(r0 | rs, k) + g(rs | r0, k) = 0

from the reciprocity of theorem. Under the Born approximation, we have

u(rs | r0, k) = P (k)g(rs | r0, k)

+
∫
V

g(r | rs, k)[k2γκg(r | r0, k)−∇ · (γρ∇g(r | r0, k))]d3r.

A B-scan measures the back-scattered field at r0 which we defined as

S(r0, k) = lim
rs→r0

[u(rs | r0, k)− P (k)g(rs | r0, k)]

= k2P (k)
∫
V

g(r | r0, k)[k2γκg(r | r0, k)− g(r | r0, k)∇ · (γρ∇g(r | r0, k))]d3r

Now, ∫
V

g∇ · (γρ∇g)d3r =
∫
V

∇ · (γρg∇g)d3r−
∫
V

γρ(∇g · ∇g)d3r

=
∮
S

γρg∇g · n̂d2r−
∫
V

γρ(∇g · ∇g)d3r.

Using the boundary condition

ρ(r) = ρ0, r ∈ S
the surface integral vanishes and noting that

∇g(r | r0, k) = m̂
(
ik − 1

| r− r0 |
)
g(r | r0, k) � m̂ikg(r | r0, k)

where
m̂ =

r− r0

| r− r0 |
we have

S(r0, k) = k2P (k)
∫
V

z(r)g2(r | r0, k)d3r

where f is the acoustic impedance given by

z(r) = γκ − γρ.
In the far field, the back-scattered field is given by

S(r0, k) = k2P (k)
exp(ikr0)

4πr0

∫
V

z(r) exp(−2ikn̂0 · r)d3r
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where
n̂0 =

r0

r0
.

This equation is the basic result from which we now derive a computer simula-
tion of the B-scan. Consider the case, where the axial direction is x0 and the
lateral direction y0 where x0 >> y0 and x0 >> z0 and where scattering occurs
over a cube of length L. Using Cartesian coordinates,

r0 =
√
x2

0 + y2
0 + z2

0 = x0

(
1 +

y2
0

x0
+
z2
0

x2
0

)
� z0.

Thus,

exp(−2in̂0 · r) = exp[−2ik(xx0 + yy0 + zz0)/x0] � exp(−2ikx)

and

S(y0, k) = k2P (k)
exp(2ikx0)

4πx0

∫
V

exp(−2ikx)z(x, y, z)dxdydz

= k2P (k) exp(2ikz0)

x0+L/2∫
x0−L/2

exp(−2ikx)

⎛⎜⎝ y0+L/2∫
y0−L/2

L/2∫
−L/2

z(x, y, z)dzdy

⎞⎟⎠dx.

Let

F (y0, x) =

y0+L/2∫
y0−L/2

L/2∫
−L/2

z(x, y, z)dzdy

and consider the case where we elongate the scattering volume in the x0 direc-
tion (i.e. the contribution of the scattering volume over the path length of the
beam). As the path length →∞ we can write

S(y0, k) = k2P (k)
exp(ikx0)

4πx0

∞∫
−∞

F (y0, x) exp(−2ikx)dx.

Inverse Fourier transforming, we find

s(y0, x) =
1
2π

∞∫
−∞

S(y0, k/2) exp(ikx)dk =
1

16πx0
δ(x+x0)⊗p(x)⊗ ∂2

∂x2
F (y0, x)

where

p(x) =
1
2π

∞∫
−∞

P

(
k

2

)
exp(ikx)dk

and ⊗ is the convolution operation. The convolution with the delta func-
tion (which introduces a x0 shift) can be ignored together with the scaling by
1/16πx0 since it will not affect the appearance of the image. We can therefore
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consider the back-scattered field that is recorded by the B-scanner to be of the
form

s(x, y0) = p(x)⊗ ∂2

∂x2
F (x, y0).

If we then let

f(x, y) =

L/2∫
−L/2

z(x, y, z)dz

then

F (x, y0) =

y0+L/2∫
y0−L/2

f(x, y)dy ≡ H(y0)⊗ f(x, y0)

where H(y0) is the tophat function given by

H(y0) =

{
1, | y0 |≤ L/2;
0, | y0 |> L/2.

Hence, the model for the back-scattered field becomes (replacing y0 with y for
convenience)

s(x, y) = p(x) ⊗H(y)⊗ f(x, y) = H(y)⊗ p(x) ⊗ f(x, y)

where

f(x, y) =
∂2

∂x2

L/2∫
−L/2

z(x, y, z)dz.

Finally, to simplify this result further, if we consider the impedance to be
separable in z, then the integral over z is just a constant and, ignoring scaling,
we can write

f(x, y) =
∂2

∂x2
z(x, y)

where z is the acoustic impedance function in the plane of the B-scan.
A linear B-scan displays the amplitude modulations of s(x, y) for a given

value of y - the location of a particular transducer in a linear array. This is
equivalent to computing the analytic signal of s(x, y) which is given by

a(x, y) = s(x, y) + iq(x, y)

where q(z, y) is the Hilbert transform of s(z, y), i.e.

q(x, y) =
1
πx
⊗ s(x, y).

The image that is displayed is then given by

I(z, y) =| a(z, y) |
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The convolution of f with H is a result of considering the scattering volume
to be finite in the y direction, which in turn is related to the fact that the
ultrasonic beam is taken to be of finite width. If we consider the hypothetical
case where the beam can be modeled as a pencil line beam then H(y) → δ(y)
and the effect of finite beam width is eliminated. However in reality the beam
profile is not a constant as H would imply. The beam profile can vary from one
application to the next and would ideally require careful experimentation in
order to establish the profile and its variation (if any) with x. For the purpose
of developing a simulator, if we assume that the beam profile generated close
to the transducer, i.e. on the plane z0 = 0 is Gaussian rather than a tophat,
then provided that any physical variations of the beam are slow compared with
exp(ikx) and that the energy of the beam is concentrated mainly around its
axis, then the Gaussian profile can be taken to represent the beam profile at
any point in x. This principle is the same as that used for modeling laser
beams and is a consequence of the properties of the solution to the paraxial
wave equation (see Chapter 11). Thus, we consider the case where (ignoring
scaling)

H(y) = exp(−y2/σ2
y)

the beam width being controlled by the standard deviation σy. Finally, in order
to introduce the effect of beam divergence which is usually clearly visible in B-
scan images obtained over large axial lengths (an effect that can be minimized
only by windowing small portions of the image) we can consider the expression

H(y) = exp[−y2/σ2
y(x)].

Here σy(x) represents the beam divergence profile which to a first approxima-
tion can be taken to be of the linear form

σy(x) = σy +mx

where σy is the beam width at x = 0. By adjusting the value ofm we can model
a slowly diverging beam (small m) or a rapidly diverging beam (m large). The
actual values of m used depends on the size of the B-scan image to be simulated
and its resolution (i.e. nunber of pixels) and must be adjusted by the user to
simulate a particular type of image.

The pulse profile p(x) is characteristic of the impulse response of the trans-
ducer and may be obtained from suitable experimental measurements, i.e.
recording the ultrasonic pulse profile near to the transducer as it propagates
through a homogeneous medium and reflects from a point scatterer. In practice
a B-scan utilizes a sideband pulse with a carrier frequency ∼ 106 Hz and the
recorded signals are demodulated. The effect of demodulation is to reproduce
the pulse profile which will have a specific rise time, duration and decay time
that depend on the characteristics of the B-scan. In order to facilitate a general
simulation, we consider this profile to be Gaussian. The data are then given
by

s(x, y) = exp(−x2/σ2
x)⊗ exp[−y2/σ2

y(x)] ⊗ f(x, y)
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9.6.7 Point Scattering Model

An example of a B-scan simulation for a point-scattering model where f(x, y)
is a distribution of points is given in Figure 9.14 using the example MATLAB
code given below.

function BSCAN(sigma_x, sigma_y, m, n, threshold)
%
%Input:
% sigma_x - standard deviation of pulse
% sigma_y - standard dviation of beam width
% m - beam divergence factor
% n - size of image
% threshold - threshold for computing point scatterers
%
%Compute a Gaussin noise field and normalize.
f=abs(randn(n,n));
f=f./max(max(f));
%Threshold noise field and binarize.
for i=1:n

for j=1:n
if f(i,j)>threshold

f(i,j)=1.0;
else

f(i,j)=0.0;
end

end
end
f_image=f; %Image of point scatterers.
%Compute object function.
nn=1+n/2;
for i=1:n

for j=1:n
filter(i,j)=-abs(i-nn).^2;

end
end
f=real(fftshift(ifft2(filter.*fftshift(fft2(f)))));
%Compute axial IRF.
sgx=sigma_x.^2;
for i=1:n

p(i)=exp(-((i-nn)^2)/sgx);
end
%Compute stationary axial response.
for j=1:n

for i=1:n
sx(i)=f(i,j);

end
sx=real(fftshift(ifft(fft(p).*fft(sx))));
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for i=1:n
s_x(i,j)=sx(i);
end
end
%Compute non-stationary lateral response.
for i=1:n

sy=sigma_y+m*i/n;
sgy=sy^2;
for j=1:n

p(j)=exp (-((j-nn)^2)/sgy);
end
for j=1:n

sy(j)=s_x(i,j);
end
sy=real(fftshift(ifft(fft(p).*fft(sy))));
for j=1:n
s_y(i,j)=sy(j);

end
end
s_y=s_y/max(max(s_y));
%Compute Hilbert tranform and amplitude modulations.
for j=1:n
for i=1:n

a(i)=s_y(i,j);
end
a=hilbert(a);

for i=1:n
s(i,j)=a(i);

end
end
s=abs(s);
%Show output.
subplot(1,2,1), imshow(f_image);
subplot(1,2,2), imshow(s);

Here, a random distribution of point scatterers has been generated by applying
a threshold to a random Gaussian noise field after normalization. The object
function is computed using the appropriate Fourier filter, i.e.

∂2

∂x2
f(x, y) ⇐⇒ −k2

xF (kx, ky).

The beam profile given in Figure 9.14 is obtained by executing function BSCAN
for a uniform line of point scatterers in the axial direction.

The coherent nature of this real aperture ultrasonic imaging system is clearly
evident (i.e. the speckle patterns) in the simulations provided as is the effect
of beam divergence. However, although the simulator can be extended to in-
troduce different pulse profiles (including modulation and demodulation as re-
quired), it does not include effects due to the dispersion and attenuation of an
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ultrasonic pulse which lead to a non-stationary convolution of the pulse in the
axial direction.

Figure 9.14: B-scan simulations for a distribution of point scatterers obtained
using function BSCAN(1,1,1,256,0.5) and function BSCAN(1,1,10,256,0.5) -
bottom-left and bottom-right, respectively. The top-left hand image shows the
distribution of point scatterers and the top-right image shows the beam profile
for the case when m=10.

9.7 Summary of Important Results

CW diffraction tomography

Data on diffraction pattern = Fourier transform of Born scattering function.

Resolution ∝ wavelength of CW field.

Pulsed mode diffraction tomography

Deconvolved Data on diffracted time trace = Radon transform of Born scat-
tering function

Resolution ∝ Bandwidth of pulse × sin (half the scattering angle).
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Born scattering functions

Non-viscous acoustic medium

f(r) = γκ(r) + γρ(r) cos θ

Non-conductive dielectric

f(r) = γε(r) + γμ(r) cos θ

Viscous acoustic medium

f(r, k) = γκ(r) + γρ(r) cos θ + ik�[(γρ(r) cos θ + γλ(r) + 2γμ(r) cos2 θ]

Conductive dielectric

f(r, k) = γε(r) + γμ(r) cos θ − i z0
k
σ(r)

B-scan image

For a non-viscous medium, a non-dispersive pulse profile and Gaussian beam
divergence

I(x, y) =| s(x, y) + iq(x, y) |
where

s(x, y) = p(x)⊗ exp[−y2/σ2
y(x)]⊗ f(x, y),

f(x, y) =
∂2

∂x2
z(x, y),

q is the Hilbert transform of s, z is the acoustic impedance and p(x) is the
pulse profile.

9.8 Further Reading

• Morse P M and Ingard K U, Theoretical acoustics, McGraw-Hill, 1968.
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• Roach G F (Ed.), Inverse Problems and Imaging, Longman, 1991.

• Blackledge J M (Ed.), Image Processing: Mathematical Methods and Ap-
plications, Oxford University Press, 1997.



Chapter 10

Synthetic Aperture
Imaging

Aperture synthesis is used in a wide range of applications including radar,
sonar, diagnostic ultrasound and radio astronomy. The basic principle is really
very simple. In one form or another, the resolution of an image is determined by
the size of the aperture that is used for observation. To improve the resolution
the size of the aperture must be increased. In some cases, to achieve a given
resolution, an aperture must be used which is impractical either to build or
utilize effectively. However, if a smaller aperture (a real aperture) is used and
its position changed while observations are being made, then in principle a much
larger aperture can be synthesized, the size of which depends on how far the
smaller or real aperture has been moved. The improvement in resolution that
can be obtained using this principle is quite spectacular. For example, simple
radio interferometers can be successfully operated using array lengths of up to
tens of kilometres. This allows maps to be constructed of radio emissions from
beyond our galaxy with resolutions of less than a minute of arc - better than
the resolution of the human eye!

Although the principles of aperture synthesis is the same, the details vary
according to the application. This chapter focuses on aperture synthesis using
radar. This is an electromagnetic coherent imaging technique which is used for
remote sensing from space and both civilian and military reconnaissance.

10.1 Synthetic Aperture Radar

Radar (Radio detection and ranging) has been used for many years to detect
airborne objects using ground based antennas and to image the ‘ground truth’
using airbourne platforms. The world’s first ever Radar system was constructed
in Britain in the late 1930s. It was originally based on using CW radio wave-
fields. When these radio waves were reflected from an object, a modulation in
the amplitude of the return signal occurred providing a characteristic detection
signature. The resolution of this Radar system was very poor due to the long

310
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wavelength (∼ 1km) radio waves that were available at the time but it was
instrumental in tracking enemy aircraft and giving estimates of their direction
and number during the ‘Battle of Britain’ in the late summer of 1940.

Research undertaken at Birmingham University in the early 1940s led to
the development of the cavity magnetron. In a strong magnetic field electrons
gyrate around the direction of the field-lines at a high frequency to produce
radio waves with a much shorter wavelength (λ ∼ 10−3km). These are known
today as microwaves. This technology was used almost immediately for navi-
gation in the night bomber offensive of 1943-45. Microwave pulses were used to
generate an image of the ground-truth by rotating the antenna (a microwave
‘horn’). Major advances in microwave (Radar) technology occurred in Britain
and Germany throughout the early 1940s, and a new research and development
laboratory was established at the Massachusetts Institute of Technology, USA,
to advance the systems provided to the Americans by the British as part of
the lend-lease policy. The technology at the time was based on using sideband
pulses. The range resolution was determined by the width of the pulse, and the
lateral or azimuth resolution by the width of the beam at the range required.
This was the basis for most of the Radar systems used up until the early 1960s
when an American invention led to a radical improvement in the range resolu-
tion. This was achieved by linearly frequency modulating the pulse and then
matched filtering the return ‘echo’ with its complex conjugate. The frequency
modulation was achieved by linearly increasing the intensity of the magnetic
field in the cavity magnetron over the duration of a pulse. Further develop-
ments in the 1960s and early 1970s paved the way for a new generation of high
resolution Radar systems which helped lead to the development of Synthetic
Aperture Radar in the mid 1970s (although it had been used covertly for mili-
tary and some space programmes well before that time). SAR was developed
to study the surface of the Earth (and other planets) from both spaceborne
and airborne platforms. The basic difference between spaceborne and airborne
SAR is the ‘look-down’ angle of the microwave beam that is used. Spaceborne
SAR uses look-down angles of ∼ 700 whereas airborne systems use look-down
angles ∼ 100. Both systems attempt to classify the inhomogeneous nature of
the Earth’s surface by repeatedly emitting a pulse of microwave radiation and
recording the back-scattered field.

In this Chapter attention is focused on airborne SAR which is now used
extensively for both civilian and military reconnaissance. The original space-
borne SAR - Seasat - became operational soon after its launch in June 1978 but
only functioned for a limited period of time (from July to October of the same
year) owing to malfunction. It was designed to carry out studies of the ocean
surface using a range of microwave sensors and was equipped with a 24 cm
wavelength SAR. Another satellite system - Earth Resources Satellite (ERS-1)
was launched in the early 1990s and included a 5cm wavelength SAR.

A conventional side-looking radar (a real aperture radar) operating at many
tens of kilometres is only able to obtain lateral resolutions of about a kilometre.
By synthesizing the aperture of the radar, one can obtain resolutions of a few
metres. This enhancement of resolution by three orders of magnitude, together
with the fact that radar can be used in cloud or fog, means that SAR is ideal
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for airborne reconnaissance. The quantity of data that must be recorded and
processed is typically a million independent pixels (discrete picture elements)
every second. This immense amount of data has to be examined and positions
of interest (targets) identified and extracted, ideally, in near real time.

Another important aspect of SAR reconnaissance is that, in comparison
with optical or infrared reconnaissance, radar can often pick out details on the
ground which are either invisible or difficult to distinguish with the human eye.
For example, it is possible to distinguish between different types of vegetation.
In some cases it is even possible to observe sub-surface structures in regions
where the skin depth of the ground is small and the radar can penetrate a
short distance into the ground. Many ground-based objects are good reflectors
of microwave radiation, particularly those objects that are composed from ma-
terials that are good conductors (i.e. metallic objects which have a relatively
large radar cross-section). Objects of this kind can therefore be distinguished
more easily using radar reconnaissance. This is why airborne SAR imaging is
often used for the surveillance of military hardware.

SAR systems are usually classified in terms of the wavelength that is used.
The two basic modes of operation are X-band, with a wavelength of 2.8 cm,
and L-band, with a wavelength of 24 cm. In addition to different wavelengths,
different polarizations can be used. One of the most commonly used types is
vertical polarization. This is where an electric field is emitted which points in
the vertical direction (relative to the orientation of the antenna). The back-
scattered field that is produced with the same polarization is then measured.
For this reason, the type of data produced is called vertical-vertical or VV
polarization data. In addition to the vertically polarized return, scattering by
the ground creates polarizations which differ from that of the incident electric
vector, one component being along the direction of the horizontal axis. This
is known as the depolarized return, and the type of data that is produced by
measuring are known as vertical-horizontal or VH polarization data. Alterna-
tively, an incident electric field can be produced where the electric vector points
along the horizontal axis. The data produced by measuring the like polarized
field is known as the horizontal-horizontal or HH polarization data. The data
produced by measuring the cross-polarized return in this case is known as the
horizontal-vertical or HV polarization data. Hence, in principle, there are four
modes of operation that can be used. In practice VH and HV SAR images
are not significantly different. However, the difference between VV, HH SAR
images can be considerable.

An example of a SAR image and an optical photograph was given in the
Introduction to this work (Figure 1). This is an airborne SAR image using a
2.8 cm (X-band) radar and VV polarization. This type of image is known as
a VVX SAR image (VV for vertical-vertical polarization and X for X-band).
Each resolution cell in this image corresponds to a real length of about 1.5m.
The image was obtained at a range of approximately 50 km and an altitude of
about 8 km. There are a number of interesting features in this SAR image. A
close inspection reveals that there is a variety of textures which change from
one region of the image to the next. These textures are related to physical
changes in the terrain such as the type of vegetation that is present. There is a
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particularly marked difference between rural and urban regions. An example of
this is given in Figure 10.1 which shows two SAR and (approximately) matching
optical images of a rural area consisting of a collection of fields and a small
urban region. The latter SAR image consists of features which are related to
the network of buildings, the large majority of these buildings being constructed
from non-conductive materials (brick, concrete and wood, etc.).

Figure 10.1: SAR (left) and optical (right) images of a rural (top) and urban
(bottom) region.

Much stronger reflections occur from structures that are made from conductive
materials. An example of this is given in Figure 10.2. which shows a SAR and
optical image of a small factory. A large proportion of this object is constructed
from metal panels which reflect a greater proportion of the incident microwaves
than naturally occurring objects. Hence, this building has a relatively large
radar cross-section.
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Figure 10.2: SAR (left) and optical (right) images of a small factory with a
large radar cross-section due to its construction from metal panels.

10.2 Principles of SAR

Synthetic aperture radar is a pulse-echo system which utilizes the response of
a scatterer as it passes through the beam to synthesize the lateral (azimuth)
resolution. This allows relatively high resolution images to be obtained at a
long range. The basic geometry of the system is given in Figure 10.3. Here,
and throughout the rest of this chapter, the range coordinate is denoted by x
and the tracking coordinate along the flight path is denoted by y. The latter
coordinate is referred to as the azimuth direction. The antenna emits a pulse
of microwave radiation and the return signal or echo is recorded at fixed time
intervals along the flight path.

Figure 10.3: Basic geometry of an airborne SAR imaging system.
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10.2.1 The Radar Pulse

SAR is a peak power limited system. In other words it operates at the maximum
power available. The energy of the system is therefore given by

Energy = Peak Power × Time.
In order to transmit a microwave field with enough energy to establish a

measurable return, the duration of the pulse must be made relatively long. The
length of this pulse is large compared to the wavelength and, hence the system
is based on application of a side-band spectrum. If a simple on/off pulse is
emitted then the characteristic spectrum is a narrow-band sinc function. The
frequency content of this type of pulse is not usually broad enough to obtain
adequate range resolution. For this reason, a frequency sweep or ‘chirp’ is
applied over the duration of the pulse. Even with a frequency sweep applied to
it, the pulse has a very narrow frequency band. In other words, the energy of
the pulse is concentrated near to the carrier frequency. The type of pulse that
is actually used is given by (complex form)

p(τ) = exp(ik0τ) exp(iατ2), −T/2 ≤ τ ≤ T/2

where T is the pulse length, τ is time × speed of light, α is the quadratic chirp
rate / (speed of light)2 and k0 is the carrier wave number (carrier frequency =
k0
2π× speed of light). Note that in reality the pulse is of course not a complex
but a real valued function of time. It is given by the real part of p, i.e. cos(k0τ+
ατ2). This type of pulse is just one of a number of different types of coded pulses
that can in principle be used. It is used extensively in radar systems because
of its properties for generating range resolution and it can be implemented
comparatively easily. The instantaneous phase of this pulse is k0τ + ατ2. The
rate of change of phase, or frequency modulation, is therefore k0 +2ατ which is
linear in τ . For this reason, the pulse is known as a linear frequency modulated
(FM) chirp. In general, most SARs utilize values of k0 and α where

k0 >> 1

and

α << 1.

For example, in the system used to produce the SAR images given in Figures
10.1 and 10.2,

k0 � 224m−1

and the quadratic chirp rate was 2π × 1013sec−2 giving

α � 7× 10−4m−2.
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10.2.2 The Range Spectrum

The spectrum of the FM chirp is obtained by evaluating the integral

P (k) =

T/2∫
−T/2

exp(ik0τ) exp(−iατ2) exp(−ikτ)dτ (10.1)

This is given by

P (k) =
√

π

2α

[
K

(
αT + u√

2πα

)
+K

(
αT − u√

2πα

)]
exp(−iu2/4α)

where u = k + k0 and

K(x) =

x∫
0

exp(iπx2/2)dx = C(x) + iS(x)

with real and imaginary parts

C(x) =

x∫
0

cos
π

2
x2dx

and

S(x) =

x∫
0

sin
π

2
x2dx.

The integrals above are known as Fresnel integrals. Figure 10.4 is a sketch of
the real valued pulse cos(k0τ +ατ2) and its characteristic amplitude spectrum.
Observe that the bandwidth of the pulse is determined by the value of αT .
With microwave systems this is typically two to three orders of magnitude
smaller than the carrier wavenumber k0.

10.2.3 Range Processing

Consider a single point scatterer which reflects a replica of the transmitted
pulse. At the receiver the return signal is coherently mixed down to base-band
(i.e. frequency demodulated). In practice, the field that is actually measured
is of course not a complex but a real valued signal. The imaginary part of
this signal is obtained using a quadrature filter which demodulates the return
signal using sin(k0τ) instead of cos(k0τ). This is equivalent to computing the
Hilbert transform of the signal after demodulation to base-band. The complex
or analytic signal that is obtained after demodulation is given by

exp(iατ2), −T/2 ≤ τ ≤ T/2.
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Figure 10.4: Sketch of a linear frequency modulated (chirped) pulse and its
characteristic amplitude spectrum.

At this stage, the range resolution is determined by the pulse length T . By
applying a suitable process to the return signal, we can enhance the range
resolution and hence obtain a more accurate record of the position in range of
the point scatterer. This is achieved by correlating the signal with its complex
reference function exp(−iατ2). In SAR and other pulse-echo systems which
utilize a linear FM pulse, this process is known as range compression. The
range compressed data R(τ) can be written as (u being a dummy variable)

R(τ) =

T/2∫
−T/2

exp[−iα(τ + u)2] exp(iαu2)du.

Expanding (τ + u)2, this equation becomes

R(τ) = exp(−iατ2)

T/2∫
−T/2

exp(−2iαuτ)du.

Evaluating the integral over u, we have

R(τ) = T exp(−iατ2) sinc(αTτ).
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The length of the pulse T is relatively large. As a consequence of this, the
sinc function is very narrow compared with the complex exponential. For this
reason we have

cos(ατ2) sinc(αTτ) � sinc(αTτ)

and
sin(ατ2) sinc(αTτ) � 0.

The range compressed signal can therefore be written as

R(τ) � T sinc(αTτ), T >> 1.

By defining the range resolution to be the distance between the first two zeros
of the sinc function which occur when αTτ = ±π the range resolution is given
by

Range resolution = 2π/αT metres .

Observe that, as the value of αT increases, the range resolution improves. For
a 20 μs pulse, T = 6 km and, with α = 7 × 10−4 m−2, the range resolution is
approximately 1.5 metres.

10.2.4 Azimuth Processing

As the radar travels along its flight path (repeatedly emitting a linear FM
pulse and recording the back-scattered electric field that is scattered by the
ground), the radar beam illuminates an area of the ground which depends
upon the grazing angle, its angle of divergence and the range at which the
radar operates. The width of the beam in azimuth is given by R tan(β/2)
where R is the range and β is the angle of divergence of the beam. For a
SAR system, this value corresponds to the maximum length of the synthetic
aperture as shown in Figure 10.5. In practice, β ∼ 10 and so the width of the
beam is approximately given by Rβ/2. This value determines the resolution in
azimuth of the so called Real Aperture Radar or RAR. At a range of of say 50
km with β = 10, this resolution is just under a kilometre which is very poor and
of little practical use. Hence real aperture radar images are only useful when
short ranges are involved. The whole point of SAR is to obtain high resolution
at long ranges. By studying the response of the radar in azimuth as it passes
by a scatterer, we can synthesize the resolution via the principle demonstrated
in Figure 10.6. If we consider the radar to be a point source then the field
that is produced may therefore be described by the three-dimensional Green
function. At relatively large distances from the location of the source, the
Green function can be simplified using the Fresnel approximation (see Chapter
5). This provides a description for the wavefield in the intermediate or Fresnel
zone. The wavefronts in this zone have a curvature which is parabolic as
illustrated in Figure 10.6.
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Figure 10.5: Plan view of a SAR showing the maximum length of the synthetic
aperture.

Using the geometry shown in this figure, from Pythagoras’ theorem we have

(R + δR)2 + y2 = R2

or
2RδR+ (δR)2 + y2 = 0.

If the angle of divergence of the beam is small, then δR is much less than 1.
We can then ignore the nonlinear term (δR)2 leaving the equation

2δR = −y
2

R
. (10.2)

A simple plane wave travelling along the two-way path length 2(R + δR) can
therefore be written as

exp[(−2ik0(R + δR)] = exp(−2ik0R) exp(−2ik0δR)

where k0 is the wavenumber.
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Figure 10.6: By the time the wavefield emitted by the radar has reached a point
scatterer, the curvature of the wavefront is parabolic. Scattering occurs in the
Fresnel zone. This gives a phase history that is proportional to the square of
the distance moved in azimuth.

This wave has two phase factors. The first phase 2k0R is constant but the
second phase 2k0δR is, from equation (10.2) a function of y and is given by
k0y

2/R. Hence, as the radar moves past the scatterer a quadratic phase shift
takes place. If we denote the width of the beam at R by L, then the complex
azimuth response of the radar can be written as

exp(ik0y
2/R), −L/2 ≤ y ≤ L/2

where −L/2 is the point where the scatterer enters the beam and L/2 is the
position where the scatterer leaves the beam. A plot of the azimuth response
of a SAR is given in Figure 10.7. In some cases, this response can be clearly
observed with real data when the radar passes by a strong scatterer with a
large radar cross-section. An example of this is given in Figure 10.8. If the
beamwidth is small, then this effect is not significant. Also, only if k0 is suffi-
ciently large will the effect be observed. In other words, the wavelength of the
wavefield must be small compared with the range.

The analysis above demonstrates that the azimuth response of the radar is
the same as the response in range to a linear FM pulse. Hence, by utilizing the
principles of range compression, we can enhance the azimuth resolution. This
is known as azimuth compression and, like range compression, is based on cor-
relating the complex function exp(ik0y

2/R) with its complex reference function
exp(−ik0y

2/R) over the beam width L. Hence, the azimuth compressed signal
is given by

A(y) =

L/2∫
−L/2

exp[−ik0(y + u)2/R] exp(ik0u
2/R)du.
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Expanding (y + u)2 and evaluating the integral over u, we get

A(y) = L exp(−ik0y
2/R) sinc(k0Ly/R)

� L sinc(k0Ly/R), L >> 1.

For both azimuth compression and range compression, the correlation between
the return signal and its reference may be computed in Fourier space using the
correlation theorem and a FFT.

Figure 10.7: Real (top) and imaginary (bottom) components of the theoretical
response in azimuth of a SAR to a single point scatterer, i.e. cos(k0y

2/R) and
sin(k0y

2/R), respectively.

Figure 10.8: Example of the experimental response in azimuth of a SAR to a
single point scatterer. It is clearly a noisy version of Figure 10.7.
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By defining the azimuth resolution to be the distance between the first zeros
of the sinc function which occur when k0Ly/R = ±π, the azimuth resolution
is given by

Azimuth resolution = 2πR/k0L = 2π/βk0 metres .

The microwave antenna (i.e. essentially the horn at the end of the microwave
transmission line) acts like a rectangular aperture which diffracts an otherwise
collimated beam of microwaves. Now, the Kirchhoff diffraction integral for
fixed k = k0 is given by (see Chapter 6)∫

S

exp(ik · r) exp(−ik0r̂0 · r)d2r, r̂0 =
r0

| r0 |

which, for an aperture of width w, say, and an incident plane wave propagating
in the z-direction (where k = ẑk0), becomes (with r0 ∼ z0 and ignoring scaling)

w/2∫
−w/2

w/2∫
−w/2

exp(−ik0x0x/z0) exp(−ik0y0y/z0)dxdy

= 4
sin(k0x0w/2z0)

k0x0/z0

sin(k0y0w/2z0)
k0y0/z0

.

The first zeros of this diffraction pattern in azimuth can be taken to determine
the width of the radar beam (i.e. the first lobe). These zeros occur when

k0
w

2
sin

β

2
= ±π

where β/2 = y0/z0. Hence, for small values of β,

β � 4π
k0w

and, hence,

Azimuth resolution ∝ w.

The azimuth or synthetic resolution of the SAR is therefore independent of the
wavelength!

10.2.5 Discussion

By studying the response of the radar to a point scatterer in range, and then
in azimuth, we have established the form of the SAR point spread function.
This is given by

P (x, y) = LT sinc(αTx) sinc(βk0y).

It is identical to the diffraction pattern produced by a rectangular aperture.
Thus, the (post-processed) SAR image data D(x, y) generated by scattering
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from the ground is given by the convolution of the object function for the
ground O(x, y) with the appropriate point spread function, i.e.

D(x, y) = P (x, y)⊗⊗O(x, y). (10.3)

A SAR image is a grey level display of the amplitude modulations in the data,
i.e.

ISAR(x, y) =| D(x, y) | .
The object function describes the imaged properties of the ground surface.
The conventional model for this function is the point scattering model. This is
where the object function is taken to be a distribution of point scatterers each
of which reflects a replica of the emitted pulse and can be written in the form

O(x, y) =
∑
i

∑
j

δ(x− xi)δ(y − yj).

Here, nothing is said about the true physical nature of the ground surface such
as its shape and material (dielectric) properties. In the following Section this
shortcoming is addressed.

10.3 Electromagnetic Scattering Model for
SAR

By considering the response of the radar to a single point scatterer, the ba-
sic processing technique required to recover a SAR image can be established.
However, this approach conveys no information about the possible physical in-
terpretation of a SAR image. To do this the relationship between the object
function and the physical properties of the ground surface such as its dielectric
properties and height fluctuations must be established. In this Section approxi-
mate expressions for the object functions associated with different polarizations
are derived.

10.3.1 A Physical Model for SAR

Consider the model illustrated in Figure 10.9. Here, x is the range coordinate,
y is the azimuth coordinate and z is the vertical co-ordinate. Let the ground be
composed of three-dimensional variations in the permittivity ε and conductivity
σ with height variations h. We shall assume that the relative permeability of the
ground is 1. Hence, the back-scattered field detected by the radar is produced
by variations in ε(r) and σ(r) over a region of space r = x̂x + ŷy + ẑz where
0 ≤ z ≤ h(x, y) and x̂x + ŷy ∈ A - the area of the ground illuminated by the
radar beam (i.e. the radar footprint). For z > h(x, y), ε and σ are equal to
the permittivity and conductivity of the atmosphere. The permittivity of the
atmosphere is taken to be the same as for a vacuum and the conductivity of
the atmosphere is assumed to be zero. Thus, if a denotes the altitude at which
the radar operates, then for all values of z between h and a, ε = ε0 and σ = 0.
The field that is measured in a SAR is the electric field and so we can work
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with equations for the electric field alone. From Maxwell’s equations, we can
write the basic wave equation for this field in the form (see Chapter 4)

(∇2 + k2)Ẽ = −k2γẼ + ikz0σẼ−∇(Ẽ · ∇ ln ε)

where
γ =

ε− ε0
ε0

,

k is the wavenumber and z0 is the impedance of free space (� 376.6 ohms).

Figure 10.9: Physical model for an airborne SAR.

Assuming that the scattered field only weakly perturbs the incident field, i.e.

‖Ẽs‖ << ‖Ẽi‖

and writing ε = εrε0 where εr is the relative permittivity, we obtain

(∇2 + k2)Ẽs = −k2γẼi + ikz0σẼi −∇(Ẽi · ∇ ln εr) (10.4)

where
γ = εr − 1.

Note that, in this model, the effects of using different polarizations are de-
termined entirely by the term ∇(Ẽi · ∇ ln εr). If this term is neglected, then
the behaviour of the electric field is independent of its polarization (i.e. the
wave equation remains the same when the polarization of the electric field is
changed). Our problem is to solve equation (10.4) for the scattered electric
field Ẽs and to write the solution in a form that is the same as equation (10.3)
so that the object function can be defined in terms of the physical properties of
the ground (εr, σ and h). To do this we need a suitable model for the incident
field.
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10.3.2 Green Function for Airborne SAR

Consider the radar to be a point source. We may then consider a model for
the incident field of the form

Ẽi = n̂Pg

where P is the spectrum of the pulse that the radar emits given by equation
(10.1) and g is the three-dimensional ‘out-going’ Green function given by

g(r | r0, k) =
exp(ik | r− r0 |)

4π | r− r0 | .

The geometry of an airborne SAR allows us to approximate the Green function.
Writing the path length | r− r0 | in Cartesian coordinates,

| r− r0 |= (x− x0)
(

1 +
(y − y0)2
(x − x0)2

+
(z − z0)2
(x− x0)2

)1/2

and employing the conditions

(y − y0)2
(x − x0)2

<< 1

and
(z − z0)2
(x − x0)2

<< 1

a binomial expansion gives

| r− r0 |� x− x0 +
1
2

(y − y0)2
(x− x0)

+
1
2

(z − z0)2
(x− x0)

.

This result yields an expression for the Green function in the Fresnel zone. In
this case, we retain terms which are quadratic in both the azimuth and vertical
directions. It is the inclusion of quadratic terms of this type which forms the
theoretical basis for synthetic aperture imaging. Physically, we are assuming
that the wavefront as a function of y and z has a curvature which is parabolic.
The conditions required to do this place limits on the grazing angle θ and the
angle of divergence of the radar beam β. In terms of θ and β, we may write
these conditions in the form

tan2(β/2) << 1

and
tan2 θ << 1.

It is reasonable to restrict values of θ and β to being less than or equal to 10o

when tan2 θ and tan2(β/2) are two and three orders of magnitude less than 1,
respectively. This upper limit for θ and β falls well within the values of these
parameters that are used in airborne SAR systems, where θ is typically 5o−10o

and β ∼ 1o. The above expression for the path length can be further simplified
by exploiting the fact that the range x0 at which the radar operates is large
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compared to the width of ground that is illuminated by the beam (the swath
width), i.e. we can introduce the condition

| x |
x0

<< 1.

This allows us to write

| r− r0 |= x− x0 − (y − y0)2
2x0

− (z − z0)2
2x0

.

The Green function is then given by

g =
1

4πr0
exp[ik(x− x0)] exp[−ik(y − y0)2/2x0] exp[−ik(z − z0)2/2x0].

The parameter r0 remains fixed throughout the operation of the SAR and is
known as the slant range (i.e. the distance between the radar and the scattering
region).

10.3.3 Wave Equations for SAR

Let us consider a SAR that can emit a vertically polarized electric field of the
form

Ẽi = (ẑ cos θ + x̂ sin θ)Pg (10.5)

or a horizontally polarized electric field where Ei is given by

Ẽi = ŷPg. (10.6)

Substituting equation (10.6) into equation (10.4) and taking the dot product of
each term with ŷ, the behaviour of the HH scattered field UHH is determined
by the wave equation

(∇2 + k2)UHH = −k2γPg + ikz0σPg

− ∂

∂y

(
Pg

∂

∂y
ln εr

)
, UHH = ŷ · Ẽs. (10.7)

The cross polarized scattered field in this case is obtained by taking the dot
product of each term with ẑ cos θ + x̂ sin θ giving

(∇2 + k2)UHV = −
(

cos θ
∂

∂z
+ sin θ

∂

∂x

)(
Pg

∂

∂y
ln εr

)
,

UHV = (ẑcosθ + x̂ sin θ) · Ẽs. (10.8)

In a similar way, the wave equations for the VV and VH scattered fields are
obtained by substituting equation (10.5) into equation (10.4) and taking the
dot product of each term with ẑ cos θ + x̂ sin θ and ŷ, respectively. We then
obtain



10.3. ELECTROMAGNETIC SCATTERING MODEL FOR SAR 327

(∇2 + k2)UV V = −k2γPg + ikz0σPg

−
(

cos θ
∂

∂z
+ sin θ

∂

∂x

)(
cos θPg

∂

∂z
ln εr + sin θPg

∂

∂x
ln εr

)
,

UV V = (ẑ cos θ + x̂ sin θ) · Ẽs (10.8)

and

(∇2 + k2)UVH = − ∂

∂y

(
cos θPg

∂

∂z
ln εr + sin θPg

∂

∂x
ln εr

)
,

UVH = ŷ · Ẽs. (10.9)

Notice that the behaviour of the VV and HH fields is determined by variations
in both the permittivity and conductivity whereas that of the HV and VH
fields depends on variations in the permittivity alone. This result immediately
suggests a method of quantitative imaging with SAR. By measuring UVH we
can in principle determine εr, and therefore γ(= εr − 1). Hence by measuring
UV V , with γ and εr known, we can determine σ.

In general, fluctuations in εr and therefore ln εr (as a function x, y and z)
occur on a scale that is much smaller than the wavelength. For this reason we
can write

∂

∂u

(
g
∂

∂v
ln εr

)
� g

∂2

∂u∂v
ln εr

where both u and v are equal to x, y or z. For example, from equation (10.7)

∂

∂y

(
g
∂

∂y
ln εr

)
= g

∂2

∂y2
ln εr +

∂g

∂y

∂

∂y
ln εr

= g

(
∂2

∂y2
ln εr − ik0

(y − y0)
x0

∂

∂y
ln εr

)

� g
∂2

∂y2
ln εr

provided
Ly <<

x0

k0 | y − y0 |
where Ly is the characteristic scale length over which variations in ln εr occur.
For an X-band radar operating at a range of 50 km with a beamwidth of 1 km,

Ly << 22cm

which is physically reasonable. This result allows us to reduce equation (10.7)
and write it in the form

(∇2 + k2)UHH � −k2γPg + ikz0σPg − Pg ∂
2

∂y2
ln εr. (10.10)
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Similarly, equations (10.8)-(10.9) become

(∇2 + k2)UHV � − cos θPg
∂2

∂z∂y
ln εr − sin θPg

∂2

∂x∂y
ln εr (10.11)

(∇2 + k2)UV V � −k2γPg + ikz0σPg − cos2 θPg
∂2

∂z2
ln εr

−2 cos θ sin θPg
∂2

∂z∂x
ln εr − sin2 θPg

∂2

∂x2
ln εr (10.12)

(∇2 + k2)UVH � − cos θPg
∂2

∂y∂z
ln εr − sin θPg

∂2

∂y∂x
ln εr. (10.13)

10.3.4 Determination of the Back-scattered Fields

Now that a set of wave equations has been derived, we can concentrate on
developing a solution for the back-scattered field that is observed by the radar.
To start with, we shall develop a solution for the HH field. For the time being,
let us consider the reduced wave equation

(∇2 + k2)U = −k2Pgγ + ikz0Pgσ (10.14)

After demonstrating the basic analytical method we shall return to equations
(10.10)-(10.13). Remember, we are aiming at a solution for the processed SAR
data which gives a mathematical expression for the object function in terms of
εr, σ and h.

The Green function solution to equation (10.14) for the the back-scattered
field is

U = P

∫
(k2γ − ikz0σ)g2d3r. (10.15)

The radar measures the back-scattered field at a fixed range x0 and altitude z0
over a finite distance in azimuth. Denoting the fixed range and altitude by R
and a, respectively, the kernel of equation (10.15) becomes

g2 =
1

16π2r20
exp[2ik(x−R)] exp[−ik(y − y0)2/R] exp[−ik(z − a)2/R].

Writing
X = x−R, Y = y − y0 and Z = z − a

the back-scattered field as a function of y0 and k is given by

U(y0, k) =
P

16π2r20

∫ ∫ ∫
exp[ik(2X − Y 2/R− Z2/R)](k2γ − ikz0σ)dxdydz.

Because the bandwidth of the pulse is so small compared to the carrier fre-
quency we can write k2γ and ikz0σ as k2

0γ and ik0z0σ, respectively. By taking
the inverse Fourier transform of the integral equation above, the back-scattered
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field can be written in terms of its measured time history u(y0, τ) at different
points in azimuth y0. Using the convolution theorem we then obtain

u(y0, τ) =
1

16π2r20

∫ ∫ ∫
p(τ + 2X − Y 2/R− Z2/R)(k2

0γ − ik0z0σ)dxdydz

where

u(y0, τ) =
1
2π

∞∫
−∞

U(y0, k) exp(ikτ)dk.

The pulse is of the form

p(τ) = exp(ik0τ) exp(iατ2).

Noting that k0 >> 1 and α << 1, by comparing the magnitude of terms which
make up the kernel p we obtain

p(τ + 2X + Z2/R− Y 2/R) � p(τ + 2X) exp(−ik0Y
2/R) exp(−ik0Z

2/R).

This simplification is a consequence of the result

k0 − α(Y 2 + Z2)/R � k0

and allows the scattered field to be written as

U(y0, τ) =
∫ ∫

p(τ + 2X) exp(−ik0Y
2/R)f(x, y)dxdy

where f is the scattering function given by

f(x, y) =
1

16π2r20

h∫
0

(k2
0γ − ik0z0σ) exp[−ik0(z − a)2/R]dz.

We now have an integral equation where our processing variables τ and y0
have been separated into two different functions. This is why SAR data can be
processed in range and azimuth separately. A further simplification can now
be made to f by noting that

z

a
<< 1, 0 ≤ z ≤ h

for an airborne SAR so that

(z − a)2 = z2 − 2za+ a2 � −2za+ a2.

Hence, since a/R = tan θ, where θ is the grazing angle, the scattering function
can be written as

f(x, y) =
1

16π2r20
exp(−ik0a tan θ)

h∫
0

(k2
0γ − ik0z0σ) exp(2ik0z tan θ)dz.
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We now introduce a couple of tricks which are designed entirely to write the
scattered field in a more convenient form. First of all we use the properties of
the delta function to write∫ ∫

p(τ + 2X) exp(−ik0Y
2/R)f(x, y)dxdy

=

∞∫
−∞

dτ ′p(τ ′)
∫ ∫

δ(τ ′ − τ − 2X) exp(−ik0Y
2/R)f(x, y)dxdy

=
∫
dτ ′p(τ ′)

∫
f [τ ′/2− τ/2 +R, y] exp(−ik0Y

2/R)dy.

Next, we let x = 2R−τ and x′ = τ ′+x. Then, τ ′ = x′−x, τ ′/2−τ/2+R = x′/2
and dτ ′ = dx′ and the scattered field can be written in the form

u(y0, x) =
∫
dx′p(x′ − x)

∫
f(x′, y) exp[−ik0(y − y0)2/R]dy.

To be consistent with the notation now being used for the range variable we
write y as y′ and y0 as y. The scattered field can then be written as

u(x, y) =
∫ ∫

exp[ik0(x′ − x)] exp[iα(x′ − x)2] exp[−ik0(y′ − y)2/R]

×f(x′, y′)dx′dy′.

At the receiver the scattered field, modelled by the above equation, is coherently
mixed down to base-band. This is equivalent to multiplying it by exp(ik0x)
and provides the data

d(x, y) = exp(ik0x)u(x, y)

=
∫ ∫

exp[iα(x′ − x)2] exp[−ik0(y′ − y)2/R] exp(ik0x
′)f(x′, y′)dx′dy′.

This is a 2D convolution integral, and so we may write

d(x, y) = exp(iαx2) exp(−ik0y
2/R)⊗⊗O(x, y)

where O is the object function given by

O(x, y) = exp(ik0x)f(x, y).

We can now apply the processing method which was explained in Section 10.2.
Correlating these data with the functions exp(−iαx2) and exp(ik0y

2/R) over
the pulse length T and beam width L, respectively, we obtain

D(x, y) = βRT sinc(αTx) sinc(βk0y)⊗⊗O(x, y) (10.16)

where
D(x, y) = d(x, y) �� exp(−iαx2) exp(ik0y

2/R)
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and β(= L/R) is the angle of divergence of the beam. The SAR image in then
given by

ISAR(x, y) =| D(x, y) |= βRT | sinc(αTx) sinc(βk0y)⊗⊗O(x, y) | .
Observe that this equation for D is the same as equation (10.3). However, in
this case, the object function is defined in terms of a scattering function for the
ground f .

By taking the two-dimensional Fourier transform of D(x, y), equation
(10.16) can then be written in kxky-space as

D̃(kx, ky) =
π2R

αk0
F (kx − k0, ky); −αT ≤ kx ≤ αT, −βk0 ≤ ky ≤ βk0

(10.17)
where

D̃(kx, ky) =

∞∫
−∞

∞∫
−∞

D(x, y) exp(−ikxx) exp(−ikyy)dxdy

and

F (kx − k0, ky) =

∞∫
−∞

∞∫
−∞

exp(ik0x)f(x, y) exp(−ikxx) exp(−ikyy)dxdy.

From equation (10.17), it is clear that range compression provides a sample of
the spectrum F of width 2αT located at k0. Unlike the range spectrum the
azimuth spectrum is not the result of a spectral shift from GHz to MHz. The
azimuth spectrum therefore gives base-band information on the nature of the
scattering function f band limited by 2βk0. The spectral content of f that is
acquired is therefore a rectangle of area 4αβk0T centred on (−k0, 0) in kxky
space. This is shown in Figure 10.10 which illustrates that the spectral infor-
mation (in contrast to resolution) on the ground depends on the wavelength
of the microwaves. The wavelength determines the characteristic scale length
over which scattering takes place. This leads to a marked difference between
SAR images obtained at different wavelengths. An example of this is shown in
Figure 10.11 which compares an XVV and LVV SAR image of the same region.

Let us now return to equations (10.10)-(10.13). Recall that we worked with
the reduced wave equation (10.14) in order to demonstrate the basic analytic
method. Now that this has been done we are in a position to go back and
repeat the calculation for equations (10.10)-(10.13). From equation (10.10),
the back-scattered HH field is

UHH = P

∫ ∫ ∫ (
k2γ − ikz0σ +

∂2

∂y2
ln εr

)
g2dxdydz.

This equation is identical in form to equation (10.15). The processed SAR data
can therefore be written without further proof as

DHH(x, y) = TRβ sinc(αTx) sinc(βk0y)⊗⊗OHH(x, y)
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Figure 10.10: The shaded region represents the band of the spacial frequencies
on the scattering function for the ground truth that is obtained with a SAR.

Figure 10.11: Comparison of two SAR images of the same region using different
wavlengths: λ = 2.8 cm (left) and λ = 24cm (right).
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where the HH object function is given by

OHH =
1

16π2r20
exp(−ik0a tan θ) exp(ik0x)

×
h∫

0

(
k2
0γ − ik0z0σ +

∂2

∂y2
ln εr

)
exp(2ik0z tan θ)dz. (10.18)

A similar type of model can be generated for different polarization data. To
begin with, we can evaluate the cross polarized scattered field. From equation
(10.11), the back-scattered HV field is given by

UHV = P

∫ ∫ ∫ (
cos θ

∂2

∂z∂y
ln εr + sin θ

∂2

∂x∂y
ln εr

)
g2dxdydz.

Once again the form of this equation is identical to that of equation (10.15).
Hence the processed HV SAR data is

DHV (x, y) = TRβ sinc(αTx) sinc(βk0y)⊗⊗OHV (x, y)

where the HV object function is given by

OHV =
1

16π2r20
exp(−ik0a tan θ) exp(ik0x)

×
h∫

0

(
cos θ

∂2

∂z∂y
ln εr + sin θ

∂2

∂x∂y
ln εr

)
exp(2ik0z tan θ)dz. (10.19)

From equation (10.12) it is easy to show that DV V is given by

DV V (x, y) = TRβ sinc(αTx) sinc(βk0y)⊗⊗OV V (x, y)

where
OV V =

1
16π2r20

exp(−ik0a tan θ) exp(ik0x)

×
h∫

0

(
k2
0γ − ik0z0σ + 2 cos θ sin θ

∂2

∂z∂x
ln εr

+ sin2 θ
∂2

∂x2
ln εr + cos2 θ

∂2

∂z2
ln εr

)
exp(2ik0z tan θ)dz. (10.20)

Finally, from equation (10.13), we get

DVH(x, y) = TRβ sinc(αTx) sinc(βk0y)⊗⊗OVH(x, y)

where
OVH =

1
16π2r20

exp(−ik0z tan θ) exp(ik0x)

×
h∫

0

(
cos θ

∂2

∂y∂z
ln εr + sin θ

∂2

∂y∂x
ln εr

)
exp(i2ik0z tan θ)dz. (10.21)
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10.4 Case Study: The ‘Sea Spikes’ Problem

SAR images are highly sensitive to the polarization of the field that is emit-
ted or received. In principle, this result can be used to classify regions of an
image when it is known, a priori, how certain types of terrain affect different
polarized radiation. One of the most dramatic effects occurs when microwaves
are scattered by the sea surface at low grazing incidence. An example of this
is shown in Figure 10.12.

Figure 10.12: Real aperture radar images of the sea surface using vertical (left)
and horizontal (right polarization).

This figure shows two real aperture radar or RAR images of the sea surface
using X-band HH and VV polarization. In this example, a pulse is emitted in
a fixed time interval and the VV return measured over a set period of time
(approximately 60 seconds). The radar is then switched to HH mode. Clearly,
there is a marked difference between the two images. The VV image shows
features which are due to reflections from the crests of waves that are aligned
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along the direction of the prevailing wind. These features are almost completely
lost in the HH image, although it is just possible to observe the direction of wave
motion. The HH image is dominated by a number of very intense reflections
which are known as ‘sea spikes’. This is a good example of a problem in
image understanding. To explain this effect and solve the ‘sea spikes’ problem
we need to establish the physics associated with polarization and establish a
suitable model for the sea surface. From previous results, under the Born
approximation, polarization effects are characterized by the term ∇(lnεr · Ei)
in the wave equation for the electric field. Hence, a good starting point is to
investigate the characteristics of this term subject to a simplified model of the
sea surface.

To a good approximation, the sea is a homogeneous conductive dielectric of
varying height h(x, y). We may therefore consider a model where

εr(x, y, z) = εro, z ≤ h(x, y);

σ(x, y, z) = σ0, z ≤ h(x, y)

and where [
∂εr
∂x

]
z<h

=
[
∂εr
∂y

]
z<h

=
[
∂εr
∂z

]
z<h

= 0.

Typical values for εro and σ0 are 81 and 4.3 siemens/metre, respectively. In this
case, for an X-band radar (k0 � 224m−1), k2

0γ0 � 4 × 106m−2 and k0z0σ0 �
3.6× 105 so that

k2
0γ0 − ik0z0σ0 � k2

0γ0.

A simple mathematical model for the VV and HH RAR images given in Figure
10.12 can be obtained by letting the grazing angle θ approach zero. All terms
involving sin θ can then be neglected, giving

IijRAR(x, y) = T | sinc(αTx) exp(−ik0y
2/R)⊗⊗Oij(x, y) |

where from equations (10.20) and (10.18),

OV V =
1

16π2R2
exp(ik0x)

h∫
0

(
k2
0γ0 +

∂2

∂z2
ln εr

)
dz, γ0 = εro − 1

and

OHH =
1

16π2R2
exp(ik0x)

h∫
0

(
k2
0γ0 +

∂2

∂y2
ln εr

)
dz

respectively. The VV object function is easy to evaluate, giving

OV V =
1

16π2R2
exp(ik0x)

(
k2
0γ0h+

1
εro

[
∂εr
∂z

]
z=h

)
.

The HH object function can be evaluated by using Leibniz’ formula for the
integral of a derivative, i.e.

b(x)∫
a(x)

∂

∂x
f(x, y)dy =

∂

∂x

b(x)∫
a(x)

f(x, y)dy
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+
[
f(x, y)

]
y=a(x)

da

dx
−
[
f(x, y)

]
y=b(x)

db

dx
.

We then obtain

OHH =
1

16π2R2
exp(ik0x)

(
k2
0γ0h− 1

εro

[
∂εr
∂y

]
z=h

∂h

∂y

)
.

Noting that
h∫

0

∂

∂z

(
∂ ln εr
∂y

)
dz =

1
εro

[
∂εr
∂y

]
z=h

and (using Leibniz’s formula again)

h∫
0

∂

∂y

(
∂ ln εr
∂z

)
dz = − 1

εro

[
∂εr
∂z

]
z=h

∂h

∂y

we have [
∂εr
∂y

]
z=h

= −
[
∂εr
∂z

]
z=h

∂h

∂y

since
h∫

0

∂

∂z

(
∂

∂y
ln εr

)
dz =

h∫
0

∂

∂y

(
∂

∂z
ln εr

)
dz.

Hence, the HH object function becomes

OHH =
1

16π2R2
exp(ik0x)

[
k2
0γ0h+

1
εro

[
∂εr
∂z

]
z=h

(
∂h

∂y

)2
]
.

A relatively simple expression for the VV and HH RAR images can then be
obtained by letting

1
εro

[
∂εr
∂z

]
z=h

= k0γ0 � 1.8× 104m−1.

Here it is assumed that the gradient in the vertical direction due to a change
in the permittivity across the interface between the sea and air is equal to
k0γ0εro � 1.3× 106m−1 over the imaged scene. This allows us to write the VV
and HH RAR images as

IV VRAR(x, y) = A | sinc(αTx) exp(−ik0y
2/R)⊗⊗ exp(ik0x) [1 + k0h(x, y)] |

and
IHHRAR(x, y)

= A | sinc(αTx) exp(−ik0y
2/R)⊗⊗ exp(ik0x)

[
k0h(x, y) +

(
∂

∂y
h(x, y)

)2]
|
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where A is given by

A =
γ0k0T

16π2R2
� 114T

R2
.

In this form, it is clear that the VV RAR image is a map of the height variations
h of the sea surface whereas the HH RAR image is a map of both h and (∂yh)2.
Compared to h, the nonlinear term (∂yh)2 is very sensitive to the sea state.
From this result we deduce that sea spikes are caused by rapid variations in
the height of the sea surface as a function of the azimuth direction. In other
words, the HH RAR image is dominated by features which map the location
of points where ∣∣∣∣∂h∂y

∣∣∣∣ >> k0h

on the scale of a wavelength. A simple illustration of this is given in Figure
10.13 which shows images of | sij | and | (si(j+1) − sij)2 |, where sij is a 32×32
random Gaussian distributed array which is taken to represent a surface patch
(without any deterministic patterns), each pixel being taken to be on the scale
of a wavelength. A sequence of randomly distributed spikes occurs at locations
where the difference between the (j + 1)th and jth elements of sij is relatively
large so that the nonlinear term (si(j+1) − sij)2 produces a ‘spike dominant’
effect.

Figure 10.13: Simulation of sea spikes (right) using a low resolution rough
surface patch model (left) for the sea surface.

10.5 Quantitative Imaging with SAR

The object functions for a SAR image show that the VV polarization data
are related to both the permittivity and conductivity whereas the VH cross
polarization data are related to the permittivity alone. This result provides a
method of quantitative imaging using SAR. To illustrate the principle, consider
a model where the grazing angle approaches zero and where the ground is
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composed of conductors embedded in a homogeneous dielectric. Using this
model, we can employ the following conditions

εr(x, y, z) = εro, 0 ≤ z ≤ h(x, y)

and [
∂εr
∂x

]
z<h

=
[
∂εr
∂y

]
z<h

=
[
∂εr
∂z

]
z<h

= 0.

The problem is then reduced to that of processing and combining the VV and
VH polarization data in such a way that the reflections from conductors are
isolated. As θ → 0, the SAR data for ij polarization are given by

Dij(x, y) = P (x, y)⊗⊗Oij(x, y)
where

OV V =
1

16π2R2
exp(ik0x)

⎛⎝k2
0γ0h+

1
εro

[
∂εr
∂z

]
z=h

− ik0z0

h∫
0

σdz

⎞⎠
and

OV H =
1

16π2R2
exp(ik0x)

1
εro

([
∂εr
∂z

]
z=h

∂h

∂y

)
.

If we then consider the case when

1
εro

[
∂εro
∂z

]
z=h

= k0γ0

the object functions reduce to

OV V =
k0γ0

16π2R2
exp(ik0x)

⎛⎝1 + k0h− iz0
γ0

h∫
0

σdz

⎞⎠
and

OVH(x, y) =
k0γ0

16π2R2
exp(ik0x)

∂h

∂y
.

The VV and HH processed SAR data are then given as

DV V =
k0γ0

16π2R2
P ⊗⊗ exp(ik0x)

⎛⎝1 + k0h− iz0
γ0

h∫
0

σdz

⎞⎠
and

DV H =
γ0

16π2R2
P ⊗⊗ exp(ik0x)

∂

∂y
(1 + k0h)

where P is the point spread function. The last equation can be integrated
directly giving

k0γ0

16π2R2
P ⊗⊗ exp(ik0x)(1 + k0h) = k0

y∫
DV Hdy
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and, hence, the VV polarization data can be written as

DV V = k0

y∫
DVHdy − ik0z0

16π2R2
P ⊗⊗ exp(ik0x)

h∫
0

σdz.

By defining the SAR image of the conductivity variations as

IσSAR(x, y) =
k0γ0

16π2R2
| P (x, y)⊗⊗ exp(ik0x)

h(x,y)∫
0

σ(x, y, z)dz |

we then obtain

IσSAR(x, y) =| DV V (x, y)− k0

y∫
DVH(x, y)dy | .

According to the result above, a quantitative SAR image of the conductivity
of the ground may be obtained by a relatively simple procedure. All that is
required is a suitable method of integrating the cross polarization data DV H .

10.6 Synthetic Aperture Sonar

Sonar is divided into two classes: passive sonar and active sonar. Passive
sonar is used for detecting objects in the sea by analysing the sound that they
make using short time Fourier analysis, for example. The time signature is
divided into equal segments and the amplitude spectrum of each segment is
computed. An image is then generated of the amplitude modulations as a
function of frequency and time. This reveals any dominant frequency compo-
nents in the signal and hence a possible acoustic source. If the source moves,
then a frequency shift occurs due to the Doppler effect which can be observed
in the image. This effect can be used to detect moving acoustic sources such
as submarines.

Active sonar uses acoustic waves to detect and locate objects or image re-
gions of the seabed. The principles of active sonar are very similar to those of
radar. They include sideways looking sonars which are used to produce sur-
veys of the seabed and sub-bottom profiling where high resolution information
regarding the sub-bottom of the sea bed is obtained to a depth of about ten
metres. Compared to radar, the environment (i.e. the sea) in which a sonar
must operate is much noisier due to the wide range of physical effects that can
occur. For example, turbulence in the sea (caused by temperature gradients)
generates random density fluctuations which may refract or even diffract the
sonar beam. Another important difference between radar and sonar is that the
absorption and dispersion of acoustic waves in the sea are much greater than
the absorption and dispersion of microwaves in the atmosphere. The absorp-
tion of acoustic radiation is proportional to the square of the frequency. Hence,
unlike radar, the resolution of a sonar image (i.e. its high frequency content)
is, by comparison, severely limited by the range at which it operates.
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Sideways looking sonars are usually real aperture systems. They may utilize
either amplitude coded or frequency coded pulses but more commonly resort
to frequency modulated chirps with carrier frequencies of the order of 10 kHz.
In such cases, the principle is identical to a real aperture radar. The range
resolution is given by 2π/αT metres where α is the quadratic chirp rate/(speed
of sound in sea water)2 and T is the length of the pulse. Also, as in real aperture
radar, the lateral resolution is determined by the width of the beam.

The principle of aperture synthesis may also be applied to sonar. One of
the major problems with this is due to the relatively low velocity of sound
in water (∼ 103ms−1 compared with ∼ 3 × 108ms−1 for microwaves in air).
This means that the pulse repetition frequency for synthetic aperture sonar
or SAS is much lower than in SAR. In order to sample the synthetic aperture
adequately, the position of the transducer must not change along the track by
a distance greater than its length (the real aperture). This condition means
that either the survey speed is very low or the real aperture is relatively large.
For a maximum effective range R, the period between successive transmissions
is of the order of 2R/c where c is the sound velocity in sea water. If the survey
speed is v, then the transducer will have moved between consecutive emissions
by a distance

d =
2vR
c
.

For a survey speed of 3ms−1, a sonar operating at a range of say 10 km requires
a real aperture length of 60 metres if aperture synthesis is to be utilized effec-
tively. Clearly to generate a 60 metre real aperture, a single transducer must be
replaced by a linear array of transducers. Practical problems then arise of how
the overall length of the real aperture can be kept rigid to avoid ambiguities
caused by the non-ideal behaviour of the systems platform. Nevertheless, in
principle, SAS can be used to acquire detailed high resolution surveys. We can
consider the same type of model for a SAS as the one presented for SAR. This
is illustrated in Figure 10.14. Assuming that the sea is a lossless homogeneous
medium with density ρ0 and compressibility κ0 and the seabed has height vari-
ations h(x, y) and compressibility variations κ(x, y, z), then it can be shown
that the SAS image is given by

ISAS(x, y) =| βTR sinc(αTx) sinc(βk0y)⊗⊗O(x, y) |

where

O(x, y) =
k2
0

16π2r20
exp(−ik0a tan θ) exp(ik0x)

×
h(x,y)∫
0

γκ(x, y, z) exp(2ik0z tan θ)dz,

γκ =
κ− κ0

κ0
.

The parameters in the above equations are: β - angle of divergence of the sonar
beam; T - length of the sonar pulse; R - range; α - quadratic chirp rate/(velocity
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of sound)2; k0 - carrier wavenumber of pulse; r0 - slant range of sonar beam; θ
- grazing angle of sonar; h - height variations of the seabed; κ - compressibility
of seabed; κ0 - compressibility of the sea. This result has been obtained by
solving the wave equation

(∇2 + k2)p = −k2γκPg

for the pressure field p using the analysis provided in Section 10.3. The model
used to derive this result assumes that the sea and the sea and seabed are den-
sity matched. It also assumes that acoustic absorption by the sea is negligible
which is highly idealized.

Figure 10.14: Basic geometry and physical model for synthetic aperture sonar.

10.7 Summary of Important Results

SAR point spread function

P (x, y) = βRT sinc(αTx) sinc(βk0y)

Resolution

Range resolution ∝ 1/αT

where α is the chirp rate and T is the length of the pulse.

Azimuth resolution ∝ length of the real aperture.
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SAR image

For ij polarization,

IijSAR(x, y) =| P (x, y)⊗⊗Oij(x, y) |

where Oij is given by equations (10.18)-(10.21).
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Chapter 11

Optical Image Formation

In this Chapter we introduce the principles of optical imaging and discuss the
theory of optical image formation. This is based on a linear systems theory
approach which is introduced via scalar diffraction theory and forms the basis
of Fourier optics. The principles of coherent and incoherent optical imaging are
then addressed, and the characteristics of optical beams are considered through
an analysis of the angular spectrum of plane waves and a model based on the
paraxial wave equation. Finally, a case study is given on the use of incoherent
imaging models for watermarking digital images in both soft- and hard-copy
form.

11.1 Optical Diffraction

In Chapter 6, the Kirchhoff theory of scalar diffraction was introduced. By
solving the 3D homogeneous Helmholtz equation

(∇2 + k2)u(r, k) = 0

using the Green function and Green’s theorem, it was shown that application
of the Kirchhoff boundary conditions

u = ui and
∂u

∂n̂
=
∂ui
∂n̂

on a surface S where ui is the incident field, provides a solution of the form

u(r0, k) =
ikα

4πr0
exp(ikr0)

∫
S

exp(ik · r) exp(−ikr̂0 · r)d2r, r̂0 =
r0

| r0 |

in the far field (Fraunhofer diffraction) and

u(r0, k) =
ikα

4πr0
exp(ikr0)

∫
S

exp(ik · r) exp(−ikr̂0 · r) exp
(
ik
r2

2r0

)
d2r

in the intermediate (Fresnel diffraction) where α = n̂ · k̂+ n̂ · r̂0. We shall now
use these results to develop a model for the diffraction of light by an aperture
and discuss the Fourier transforming properties of a lens.

343
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11.1.1 Fraunhofer Diffraction by an Aperture

The geometry of an ‘aperture system’ can be described using the Cartesian
coordinates

r = x̂x+ ŷy + ẑz

and
r0 = x̂x0 + ŷy0 + ẑz0.

Here, x0 and y0 are taken to describe the position on a flat screen at a distance
z0 from the diffracting aperture. Consider the following system:

(i) The aperture is illuminated by a plane wave with a fixed wavelength at
normal incidence to the aperture, i.e.

k̂ = ẑ.

(ii) The diffraction pattern is observed only at small angles so that

r̂0 � ẑ.

(iii) The aperture is ‘infinitely thin’ allowing us to consider a solution under
the condition

kz → 0.

Conditions (i) and (ii) give, with n̂ = ẑ,

α � n̂ · k̂ + n̂ · r̂0 = 2.

With condition (iii), we obtain

u(x0, y0, z0) =
i

λ

exp(ikr0)
r0

∫ ∫
exp

[
− ik
r0

(xx0 + yy0)
]
dxdy

where the integrals are taken over the surface of the aperture. This equation
gives the amplitude at (x0, y0, z0) in the far field when the aperture is illumi-
nated by a plane wave at normal incidence.

Since a point of observation lies in a plane (the observation screen) located
at a fixed distance z0 from the aperture

r0 =
√
x2

0 + y2
0 + z2

0 = z0

(
1 +

x2
0 + y2

0

z2
0

) 1
2

� z0 +
x2

0 + y2
0

2z0
.

Using this expression for r0 in the exponent exp(ikr0) but using r0 � z0 else-
where, we have

u(x0, y0) =
i

λ

exp(ikz0)
z0

exp
(
ik
x2

0 + y2
0

2z0

)∫ ∫
exp

(
− ik
z0

(xx0 + yy0)
)
dxdy.

Finally, let the aperture be filled with an arbitrary distribution f(x, y), that is
zero outside S, then
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u(x0, y0)

=
i

λ

exp(ikz0)
z0

exp
(
ik
x2

0 + y2
0

2z0

) ∞∫
−∞

∞∫
−∞

f(x, y) exp
(
− ik
z0

(xx0 + yy0)
)
dxdy.

Here, u is the amplitude of the Fraunhofer diffraction pattern produced by the
aperture amplitude function f at a distance z0 from the aperture. The aperture
function f can be taken to describe the ‘shape’ of the aperture.

Apart from the factors in front of the integrals, u is given by the 2D Fourier
transform of f evaluated at the coordinates (with k = 2π/λ)

kx =
2πx0

z0λ

and
ky =

2πy0
z0λ

.

In practice, the observed quantity (at optical frequencies) is the intensity I
given by | u |2. We can therefore write

I(x0, y0) =
1

λ2z2
0

| F̂2[f(x, y)] |2

where F̂2 is the 2D Fourier transform operator:

F̂2[f(x, y)] =

∞∫
−∞

∞∫
−∞

f(x, y) exp[−i(kxx+ kyy)]dxdy.

Examples of Fraunhofer Diffraction

Example 1: Diffraction by a rectangular aperture of size a× b
In this case,

f(x, y) =

{
1, | x |≤ a

2 , | y |≤ b
2 ;

0, otherwise.

and

F̂2[f(x, y)] =

a/2∫
−a/2

b/2∫
−b/2

exp[−i(kxx+ kyy)]dxdy = ab sinc(kxa/2) sinc(kyb/2).

The intensity pattern is therefore given by

I(x0, y0) =
a2b2

λ2z2
0

sinc2

(
πax0

λz0

)
sinc2

(
πby0
λz0

)
.
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The first minima in the x0 and y0 directions occur when

πax0

λz0
= ±π and

πby0
λz0

= ±π

respectively, i.e. when

x0 =
λz0
a
, and y0 =

λz0
b
.

The distribution for a a×a/2 aperture is given in Figure 11.1 using a logarithmic
scale.

Figure 11.1: The intensity distribution for the Fraunhofer diffraction pattern
produced by a rectangular aperture.

Example 2: Diffraction by a circular aperture with a radius of a

Here,

f(x, y) =

{
1, r ≤ a;
0, otherwise

where
r =

√
x2 + y2.
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The Fourier transform is then given by (using polar coordinates)

F̂2[f(x, y)] = 2π

a∫
0

J0(kr)rdr = πa2

(
2J1(ka)
ka

)

where k =
√
k2
x + k2

y.
The intensity is therefore given by

I(r0) =
π2a4

λ2z2
0

(
2J1(z)
z

)2

where z = 2πar0/λz0. The first minimum occurs when z = 3.83, i.e. when

rmin =
1.22λz0

a
.

The intensity distribution for this case is given in Figure 11.2 using a logarith-
mic scale.

Figure 11.2: Distribution of the intensity for the Fraunhofer diffraction pattern
produced by a circular aperture.
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In addition to the diffraction pattern produced by a circular aperture, this
pattern is also the distribution seen at the focus of a well-corrected lens when
a point monochromatic source is imaged. For a distant source z0 ∼ f where f
is the focal length of the lens. Defining the ‘F -number’ as F = f/a, we get

rmin = 1.22λF.

For λ = 500 nm and some typical camera lens stops, we have:

F -Number rmin in μm
22 13.4
11 6.7
5.6 3.3
2.8 1.7

11.1.2 Fresnel Diffraction by an Aperture

The Fresnel diffraction integral is given by (see Chapter 6)

u(r0, k) =
ikα

4πr0
exp(ikr0)

∫
S

exp(ik · r) exp(−ikr̂0 · r) exp
(
ik
r2

2r0

)
d2r.

Consider a Cartesian coordinate system where

r = x̂x+ ŷy + ẑz,

r0 = x̂x0 + ŷy0 + ẑz0

where x0 and y0 are taken to represent a position on a flat screen at a fixed
distance z0 from the aperture and let k̂ � ẑ (plane wave at normal incidence to
the aperture), r̂0 � ẑ (observations at small angles only) and kz → 0 (‘infinitely
thin’ aperture). Then,

u(x0, y0) =
i

λ

exp(ikr0)
4πr0

∮
S

exp
[
− ik
r0

(xx0 + yy0)
]

exp
[
ik

2r0
(x2 + y2)

]
dxdy.

As with the analysis associated with Fraunhofer diffraction, we substitute

r0 � z0 +
x2

0 + y2
0

2z0

into the exponent exp(ikr0) but use r0 � z0 elsewhere. Introducing the aper-
ture function f(x, y), the wavefield is then given by

u(x0, y0) =
i

λ

exp(ikz0)
z0

exp
(
ik
x2

0 + y2
0

2z0

)

×
∞∫

−∞

∞∫
−∞

f(x, y) exp
[
− ik
z0

(xx0 + yy0)
]

exp
[
ik

2z0
(x2 + y2)

]
dxdy.
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Apart from the factors in front of this integral, u is equal to the 2D Fourier
transform of

f(x, y) exp
[
ik

2z0
(x2 + y2)

]
.

The term

exp
[
ik

2z0
(x2 + y2)

]
is, in effect, a quadratic approximation to a spherical wave and thus

u ∼ spherical wave× F̂2[f × spherical wave].

Noting that

ik

2z0
(x2

0 + y2
0) +

ik

z0
(−xx0 − yy0) +

ik

2z0
(x2 + y2)

=
ik

2z0
[x2

0 − 2xx0 + x2 + y2
0 − 2yy0 + y2] =

ik

2z0
[(x0 − x)2 + (y0 − y)2],

we can write the Fresnel diffraction integral in the form

u(x0, y0) =
i

λ

exp(ikz0)
z0

∞∫
−∞

∞∫
−∞

f(x, y) exp
(
ik

2z0
[(x0 − x)2 + (y0 − y)2]

)
dxdy.

Here, we see that u is essentially (ignoring scaling constants) given by the
convolution of

f(x, y) with exp
(
ik

2z0
[x2 + y2)]

)
or

u(x, y) =
i

λ

exp(ikz0)
z0

f(x, y)⊗⊗ exp
(
ik

2z0
[x2 + y2]

)
where ⊗⊗ denotes the 2D convolution integral.

Example of Fresnel Diffraction

As an example of Fresnel diffraction, consider using the last expression for u
to evaluate the Fresnel diffraction pattern from a square aperture of width a:

f(x, y) =

{
1, | x |≤ a

2 , | y |≤ a
2 ;

0, otherwise.

In this case, u is given by

u(x0, y0) =
i

λ

exp(ikz0)
z0

a/2∫
−a/2

a/2∫
−a/2

exp
(
iπ

λz0
[(x0 − x)2 + (y0 − y)2]

)
dxdy



350 CHAPTER 11. OPTICAL IMAGE FORMATION

which can be written in the form of two integrals I1 and I2 as

u(x0, y0) =
i

λ

exp(ikz0)
z0

I1(x0)I2(y0).

Since the integrals are identical in form, we shall consider only I1 given by

I1(x0) =

a/2∫
−a/2

exp
[
iπ

λz0
(x0 − x)2

]
dx.

Let

ξ =
√

2
λz0

(x0 − x)

so that

I1(x0) =

ξ2∫
ξ1

exp
(
i
π

2
ξ2
)
dξ

√
λz0
2

where

ξ1 =
√

2
λz0

(
x+

a

2

)
and ξ2 =

√
2
λz0

(
x− a

2

)
.

Defining the Fresnel integrals

C(z) =

z∫
0

cos
(
πt2

2

)
dt, S(z) =

z∫
0

sin
(
πt2

2

)
dt

and noting that
ξ2∫
ξ1

=

ξ2∫
0

−
ξ1∫
0

we can write

I1(x0) =

√
λz0
2

([C(ξ2)− C(ξ1)] + i[S(ξ2)− S(ξ1)]).

The wavefield u is given by

U(x, y) = i
exp(ikz0)

2

×([C(ξ2)− C(ξ1)] + i[S(ξ2)− S(ξ2)])([C(η2)− C(η1)] + i[S(η2)− S(η1)])

where

η1 =
√

2
λz0

(
y +

a

2

)
and η2 =

√
2
λz0

(
y − a

2

)
.

The corresponding intensity pattern is

I(x0, y0) =
1
4
(| Lξ |2| Lη |2)
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where L(ξ) denotes the length of the vector

[C(ξ2)− C(ξ1)] + i[S(ξ2)− S(ξ1)].

The characteristic behaviour of this vector can be represented graphically by
the Cornu Spiral, which is a plot of S(z) vs. C(z), and can be used to solve
for the complex amplitude or intensity in a Fresnel diffraction problem. A
three-dimensional representation of this spiral is given in Figure 11.3.

Figure 11.3: The Cornu spiral obtained by computing the Fresnel integrals
that are obtained when a diffraction pattern is measured in the intermediate
or Fresnel zone.

11.2 The Fourier Transforming Properties of a

Lens

At the plane of focus of a well-corrected lens, the complex wavefield is (Fraun-
hofer condition)

u(x0, y0) =
i

λ

exp(ikz0)
z0

exp
(
ik
x2

0 + y2
0

2z0

)
F̂2[f(x, y)].

If a transparency whose amplitude transmittance is t(x, y) is placed just in
front of a lens and then illuminated by a unit plane wave at normal incidence,
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then the observed complex amplitude at the focal plane will be given by

u(x0, y0) =
i

λ

exp(ikf)
f

exp
(
ik
x2

0 + y2
0

2f

)
F̂ [t(x, y)]

where f is the focal length of the lens and

F̂2[t(x, y)] =

∞∫
−∞

∞∫
−∞

t(x, y) exp[i(kxx+ kyy)]dxdy; kx =
2πx0

λf
, ky =

2πy0
λf

.

Thus, the amplitude is almost given by a Fourier transform; there is an addi-
tional quadratic phase factor, and the intensity is given by

I(x, y) =
1

λ2f2
| F̂ [t(x, y)] |2 .

Can a transparency be placed at a distance d in front of the lens so as to
give an exact Fourier transform? Let the amplitude T (x, y) generated by the
transparency in front of the lens be given by the Fresnel diffraction formula

T (x, y) =
i

λ

exp(ikd)
d

t(x, y)⊗⊗ exp
[
iπ

λd
(x2 + y2)

]
.

The lens will then performs a Fourier transform on the field T and hence, in
the focal plane,

u(x0, y0) =
i

λ

exp(ikf)
f

exp
(
ik
x2

0 + y2
0

2f

)
F̂2[T (x, y)].

Using the convolution theorem and noting that since

exp(ax2)⇐⇒
√
π

a
exp[k2/(4a)]

then

F̂2

(
exp

[
iπ

λd
(x2 + y2)

])
= −iλd exp[−iλd(k2

x + k2
y)/(4π)]

and we have

F̂2[T (x, y)] = T̃ (u, v) =
exp(ikd)

d
t̃(u, v) exp[−iλd(k2

x + k2
y)/(4π)]

where t̃ = F̂2[t]. The wavefield is therefore given by

u(x0, y0) = i
1
λf

exp[ik(f+d)] exp
[
iπ

fλ
(x2

0 + y2
0)
]

exp
[
−iπ λd

(λf)2
(x2

0 + y2
0)
]
t̃(u, v)

= i
1
λf

exp[ik(f + d)] exp
[
πi

λf
(x2

0 + y2
0)
(

1− d

f

)]
t̃(u, v).
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Now, when d = f

u(x0, y0) =
i

λf
exp[2ikf ]t̃(u, v)

or, ignoring scaling constants, when d = f

u(x, y) = F̂2[t(x, y)].

Thus, there is an exact Fourier transform relationship between the front and
back focal planes of a well corrected lens system. This analysis ignores the
finite extent of the lens which causes vignetting.

11.2.1 Principles of Fourier Optics

Fourier optics is concerned with the applications which arise as a consequence
of the Fourier transforming properties of a lens. In the light of this, let us now
revisit the principles of optical imaging. Consider a 2D object function f(x, y)
which is placed at z = 0 say. Suppose we take this function to be a surface
patch which is a surface scatterer of light. If we model the surface scattering
using the Kirchhoff theory of diffraction then, in the far field, the scattered
wavefield in the plane (x0, y0) at a point z0 is essentially (i.e. ignoring scaling
and constant phase factors) given by the Fourier transform of f , i.e.

F (kx, ky) = F̂2[f(x, y)]

where
kx =

2πx0

z0λ
, ky =

2πy0
z0λ

.

Now, if the wavefield is passed through a well corrected lens, then at the focal
point of the lens the inverse Fourier transform of that field is obtained. Let the
spatial extent of the lens be given by K. Then, in the focal plane we measure

s(r) =
1

(2π)2

∫
|k|≤K

F (k) exp(ik · r)d2k

or

s(x, y) =
1

4π2

∞∫
−∞

∞∫
−∞

P (kx, ky)F (kx, ky) exp(ikxx) exp(ikyy)dkxdky

= p(x, y)⊗⊗f(x, y)

where

P (kx, ky) =

{
1,

√
k2
x + k2

y ≤ K;

0, otherwise

and p is the inverse Fourier transform of P . This is the fundamental basis for
optical imaging theory known as the Abbe theory of (optical) imaging. The lens
must be ‘ideal’, i.e. free from all aberrations and the path lengths through the
various regions of a lens must not depart from their ideal values by more than
a very small fraction of a wavelength. The fraction that is allowable depends
on how critical the application is, but varies typically from 1/10 to 1/100 of a
wavelength. A lens of this perfection is called a diffraction-limited lens.
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11.2.2 Optical Filtering

The Fourier transforming properties of a lens are invariant of the direction light
propagates through the lens. If a mirror is placed at the focal plane of a lens the
Fourier transform of the source distribution will be reflected back through the
lens to reproduce the original distribution. Alternatively the Fourier transform
of a source produced at the focus of lens can be reconstructed by employing
a second lens. This provides a system which can be used to filter the spatial
frequency components of a source distribution via the application of certain
masks in the focal plane of the first lens - spatial filtering. Spatial filtering
can be used to restore the quality of a collimated laser beam by blocking all
spatial frequencies due to the interaction of the beam with dust particles for
example. In general, any ‘noise’ induced by the (multiple) scattering of light
with a complex of sub-wavelength objects (such as dust particles) modifies the
spatial frequencies with high values and so can be removed by application of
an optical lowpass filter (a mask placed at the focal plane of a lens). The
use of a lens system to generate the Fourier transform of an image (forward
Fourier transform) and to recover an image from this transform (inverse Fourier
transform) provides an optical method of processing signals and images. This
is known as optical signal processing. It exploits the Fourier transforming
properties of a lens to process (optically filter) an image in the same way that
a Fast Fourier Transform can be used to process (digitally filter) a digital image.
This principle is illustrated in Figure 11.4

Figure 11.4: In the focal plane of a well corrected lens, the wavefield is given by
the Fourier transform of the input field t (a transmittance function t), where
it can be spatially filtered by placing an aperture in the focal plane. A second
lens is then used to recover the filtered input field.
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11.3 Linear Systems

A ‘system’ may be defined as that which produces a set of output functions from
a set of input functions. Physically, it may be an electrical circuit (with input
and output voltages for example) or an optical system where the inputs and
outputs are either complex amplitudes or intensities. From the point of view
of ‘linear systems theory’, the physical nature of the system is unimportant.

Let us represent a system via an operator L̂ say in terms of the equation

s(x, y) = L̂[f(x, y)]

where f is the input and s is the output. A linear system has the property that

L̂[af1(x, y) + bf2(x, y)] = aL̂[f1(x, y)] + bL̂[f2(x, y)]

for all inputs f1 and f2 and all constants a and b. Linearity implies that an
output function can be broken down into elementary functions, each of which
can be separately passed through the system; the total output is then the sum
of the ‘elementary’ outputs.

The ‘sampling property’ of the delta function allows us to consider any input
function to be a linear combination of weighted and displaced delta functions:

f(x, y) =

∞∫
−∞

∞∫
−∞

f(x′, y′)δ(x − x′)δ(y − y′)dx′dy′

giving an output

s(x, y) = L̂[f(x, y)] =

∞∫
−∞

∞∫
−∞

f(x′, y′)L̂[δ(x− x′)δ(y − y′)]dx′dy′.

The system response at (x, y) due to a delta function input at (x′, y′) is called
the Impulse Response Function (IRF) given by

p(x, y;x′, y′) = L̂[δ(x− x′)δ(y − y′)].
In optical imaging systems, the quantity p is called the Point Spread Function
(PSF). For a linear optical system,

s(x, y) =

∞∫
−∞

∞∫
−∞

f(x′, y′)p(x, y;x′, y′)dx′dy′.

Note that the optical diffraction formulae are of the same form: for Fraunhofer
diffraction

p(x, y;x′, y′) =
i

λ

exp(ikz)
z

exp
(
ik

(x2 + y2)
2z

)
exp

[
− ik
z

(xx′ + yy′)
]
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and for Fresnel diffraction

p(x, y;x′, y′) =
i

λ

exp(ikz)
z

exp
(
ik

2z
[(x− x′)2 + (y − y′)2]

)
.

If the impulse response function of a linear system depends only on the coor-
dinate differences (x− x′) and (y− y′), and not on each coordinate separately,
i.e.

p(x, y;x′, y′) ≡ p(x− x′, y − y′),
then we obtain an expression for p which involves the convolution relationship

s(x, y) =

∞∫
−∞

∞∫
−∞

f(x′, y′)p(x− x′, y − y′)dx′dy′.

This is an example of a stationary linear system. In optical imaging, a station-
ary optical systems is called ‘isoplanatic’. Isoplanacity requires that the point
spread function is the same for all field angles and implies that the aberrations
are independent of field angle. Many optical imaging systems are (to a good
approximation) both linear and isoplanatic.

The convolution relationship between input and output suggests using
Fourier transforms (FT) which, via the convolution theorem, gives

S(kx, ky) = F (kx, ky)P (kx, ky)

where

P (kx, ky) =

∞∫
−∞

∞∫
−∞

p(x, y) exp[−i(kxx+ kyy)]dxdy

i.e.

FT of the output = (FT of the input)×(FT of the impulse response function).

The quantity P is called the system Transfer Function (TF). In optical imaging
systems, P is called the Optical Transfer Function or OTF. The OTF is just the
2D FT of the point spread function. Note that: (i) the convolution relationship
only applies to linear stationary optical systems; (ii) there is no unique OTF for
an optical system with field-dependent aberrations (i.e. for the non-stationary
case); (iii) there is no unique OTF for an optical system when an object is
illuminated by spatially partially coherent light.

11.4 Images of Lines and Edges

Suppose we know that a particular system is linear and stationary in some
particular quantity where the ‘quantity’ is either: (i) the complex amplitude
for coherent illumination; (ii) the intensity (time averaged) for incoherent illu-
mination. How are the images of lines and edges related to the point spread
function?
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11.4.1 Lines

The image of an infinitely narrow line in the object plane is called the line
spread function. A line input can be represented by

f(x, y) = δ(x).

Hence

s(x, y) =

∞∫
−∞

∞∫
−∞

δ(x− x′)p(x′, y′)dx′dy′

or

�(x) =

∞∫
−∞

p(x, y′)dy′

where � is the line spread function. The line spread function (the image of an
infinitely narrow line) is an integration over one variable of the point spread
function. In general, the input may be at some arbitrary angle to the y - axis
and hence � will also be a function of that angle. For the special case in which
the point spread function is rotationally symmetrical, i.e.

p(r) = p(x, y); r2 = x2 + y2

the line spread function is given by the Abel transform of the point spread
function,

�(x) =

∞∫
−∞

p

(√
x2 + y′2

)
dy′ = 2

∞∫
x

p(r)rdr
(r2 − x2)

1
2
.

11.4.2 Edges

Consider the image of an opaque edge laying along the y-axis

f(x) =

{
1, x < 0;
0, x ≥ 0.

The result is called the edge spread function e which is given by

e(x) =

∞∫
−∞

∞∫
−∞

f(x− x′)p(x′, y′)dx′dy′ =

∞∫
−∞

f(x− x′)�(x′)dx′

where

�(x′) =

∞∫
−∞

p(x′, y′)dy′

or

e(x) =

x∫
−∞

�(x′)dx′.
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The edge spread function is an integration over the line spread function. Thus,
we can write

�(x) =
d

dx
e(x).

Clearly, the equation above indicates a way of measuring the line spread func-
tion from the image of an edge.

11.4.3 The Optical Transfer Function

Consider the response of a linear, stationary system to a 1D cosinusoidal input
of the form

f(x, y) = a+ b cos(kxx+ θ)

where kx is the spatial frequency and θ is the phase. Define the modulation of
this input Min as

Min =
fmax − fmin

fmax + fmin
=
b

a
.

The output s is given by

s(x) =

∞∫
−∞

∞∫
−∞

[a+ b cos(kx(x− x′) + θ)]p(x′, y′)dx′dy′.

Integrating with respect to y gives

s(x) =

∞∫
−∞

�(x′)[a+ b cos(kx(x− x′) + θ)]dx′

where � is the line spread function which, for convenience, can be considered
to be normalized to unit area, i.e.

∞∫
−∞

�(x′)dx′ = 1.

Using the result

cos(A−B) = cosA cosB + sinA sinB

the output s can be written in the form

s(x) = a+b cos(kxx+θ)

∞∫
−∞

�(x′) cos(kxx′)dx′+b sin(kxx+θ)

∞∫
−∞

�(x′) sin(kxx′)dx′

or
s(x) = a+ b cos(kxx+ θ)C(kx) + b sin(kxx+ θ)S(kx)

where

C(kx)− iS(kx) = P (kx) =

∞∫
−∞

�(x′) exp(−ikxx′)dx′.
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The function P is the 1D OTF and it is equal to the Fourier transform of the
line spread function �. Defining the modulus and phase of the OTF by

M(kx) =
√
C2(kx) + S2(kx), φ(kx) = tan−1

[−S(kx)
C(kx)

]
so that

C(kx) = M(kx) cosφ(kx), S(kx) = −M(kx) sinφ(kx)

the output s can be expressed as

s(x) = a+ bM(kx) cos[kxx+ θ + φ(kx)].

Like the input f , the output s is also cosinusoidal with the same frequency kx.
The output modulation is

Mout =
smax − smin

smax + smin
= M(kx)

b

a

so that the ratio of the output modulation to the input modulation is equal to
the modulus of the OTF. The Modulation Transfer Function or MTF is given
by

M(kx) =
Mout

Min
.

The Phase Transfer Function (PTF) φ describes the shift in phase (or position)
of the output frequency kx relative to the input. The MTF can be found
experimentally using sine wave objects or from the line spread function

M(kx) =
∣∣∣∣∫ �(x) exp(−kxx)dx

∣∣∣∣
which itself can be be found by differentiating the edge spread function.

11.4.4 Rotationally Symmetric Systems

An optical system is referred to as a rotationally symmetric system if the point
spread function and OTF are rotationally symmetric, i.e.

p(x, y) = p(r), r =
√
x2 + y2

and
P (kx, ky) = P (k), k =

√
k2
x + k2

y.

For a rotationally symmetric system, the line spread function is the same for
all angles of the line input and is related to the point spread function by the
Abel transform, i.e.

�← Abel transform→ p(r).

The OTF is the Fourier transform of the line spread function, i.e.

P (k) ← 1D FT → �(x).

The rotational symmetry of the 2D OTF and point spread function means that,
since they are 2D Fourier transform pairs, they are 1D Hankel transform pairs

P (k)← Hankel transform→ p(r).
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11.5 Linearity of Optical Imaging Systems

Consider the case where the object plane is illuminated by a plane or spherical
wave and by perfectly spatially coherent light. Let the complex amplitude
immediately after the object be denoted by Uin(x, y) and Uout(x, y) be the
complex amplitude at the image plane. Also, let the complex amplitude at
(x, y) in the output due to a unit strength point input be p(x, y;x′, y′). The
total amplitude at (x, y) due to all such points in the object plane is then given
by

Uout(x, y) =

∞∫
−∞

∞∫
−∞

Uin(x′, y′)p(x, y;x′, y′)dx′dy′.

For an isoplanatic optical system, this reduces to

Uout(x, y) =

∞∫
−∞

∞∫
−∞

Uin(x′, y′)p(x− x′, y − y′)dx′dy′.

A spatially coherent optical system is linear in the complex amplitude. Let
us now consider the case of narrowband light that is not perfectly spatially
coherent. The general complex representation of the time-varying scalar field
is called the analytic signal V (r, t); it is defined such that

Real scalar field = Re[V (r, t)].

For narrowband light, the analytic signal can be written in terms of a product
of a slowly varying function; the time varying complex amplitude U(r, t) times
exp(−iωt). Thus,

V (r, t) = U(r, t) exp(−iωt).
The instantaneous intensity is defined as

I(r, t) =| U(r, t) |2

whereas the time-averaged intensity Ī(r) (i.e. that observed by an optical
detector over a period of time T ) is given by

Ī(r) =
1

2T

T∫
−T

I(r, t)dt.

In general, the time-varying complex amplitudes are related by

Uout(x, y, t) =

∞∫
−∞

∞∫
−∞

Uin(x′, y′, t)p(x, y;x′y′)dx′dy′.

Coherent illumination implies that U(x, y, t) = U(x, y), i.e. the field does not
vary in time. For incoherent light, however, the average intensity is given by

Īout(x, y) =
1

2T

T∫
−T

| Uout(x, y, t) |2 dt =

∞∫
−∞

∞∫
−∞

p(x, y;x′, y′)p∗(x, y;x′, y′)
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×
⎡⎣ 1

2T

T∫
−T

Uin(x′, y′, t)U∗
in(x′′, y′′, t)dt

⎤⎦ dx′dy′dx′′dy′′.
The term in [ ] is called the mutual intensity of narrow-band light and is given
by

Jin(x′, y′;x′′, y′′) =
1

2T

T∫
−T

Uin(x′, y′, t)U∗
in(x′′, y′′, t)dt

or
Jin(r′, r′′) = 〈Uin(r′, t)U∗

in(r′′, t)〉.
Incoherent light is defined to be such that

J(r′, r′′) = Ī(r′)δ(r′ − r′′).

That is, two neighbouring points r′ and r′′ have uncorrelated fields, for any
r′ �= r′′. Using the definition for incoherent light above, the expression for Īout

becomes

Īout(x, y) =

∞∫
−∞

∞∫
−∞

p(x, y;x′, y′)p∗(x, y;x′, y′)

×Īin(x′, y′)δ(x′ − x′′)δ(y′ − y′′)dx′dy′dx′′dy′′
or

Īout(x, y) =

∞∫
−∞

∞∫
−∞

| p(x, y;x′, y′) |2 Īin(x′, y′)dx′dy′.

where the quantity | p(x, y;x′, y′) |2 is the intensity point spread function. For
an isoplanatic optical system, this result reduces to

Īout(x, y) =

∞∫
−∞

∞∫
−∞

Īin(x′, y′) | p(x− x′, y − y′) |2 dx′dy′.

where the bar over I is usually omitted when referring to the intensity because
a time average is always assumed.

For perfectly incoherent illumination, an optical system is linear in intensity
and, if isoplanicity holds, the output (image) intensity is equal to the input
(object) intensity convolved with the intensity point spread function.

11.6 Coherent Image Formation

With coherent light, the complex amplitude of the image is equal to that at
the object plane convolved with the amplitude point spread function (for an
isoplanatic system), i.e.

Uout(x, y) =

∞∫
−∞

∞∫
−∞

Uin(x′, y′)p(x− x′, y − y′)dx′dy′
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where

p(x, y) =

∞∫
−∞

∞∫
−∞

P (x′, x′) exp
[
− ik
z

(xx′ + yy′)
]
dx′dy′

and P is the pupil function of the optical system, i.e. the complex amplitude
in the exit pupil. The pupil function P is, for a clear pupil, defined by

P (kx, ky) =

{
exp[ikW (kx, ky)], (kx, ky) ∈ aperture;
0, otherwise

where the function W is called the Wave Aberration Function. A shaded or
apodized pupil can be handled by introducing an absorption term A,

P (kx, ky) = A(kx, ky) exp[ikW (kx, ky)].

Taking the Fourier transform of Uout and using the convolution theorem we
can write

Ũout(kx, ky) = Ũin(kx, ky)T (kx, ky)

where Ũout is the spectrum of the image amplitude, Ũin is the spectrum of
object amplitude and T is the Coherent Optical Transfer Function (COTF).
Note that

T (kx, ky) =

∞∫
−∞

∞∫
−∞

p(x, y) exp[−i(kxx+ kyy)]dxdy = P (λzkx/2π, λzky/2π).

Thus, the COTF at spatial frequency (kx, ky) is simply equal to the pupil
function at coordinates (λzkx/2π, λzky/2π).

Examples of Coherent Image Formation

Example 1: An aberration free, circular pupil of radius a. In this case

T (k) =

{
1, k ≤ a;
0, k > a

where
k =

√
k2
x + k2

y

or

P (kx, ky) =

{
1, k ≤ 2πa

λz ;
0, k > 2πa

λz .

Defining
2πa
λz

=
1

2λF
where F is the ‘F-number’ we get

Ũout =

{
Ũin, (kx, ky) ≤ 1

2λF ;
0, (kx, ky) > 1

2λF .
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In this case, there is a specific frequency cutoff at
√
k2
x + k2

y = 1/(2λF ) beyond
which no frequencies pass. Spatial features associated with spatial frequencies
greater than 1/(2λF ) are not imaged. Thus, for example, a 1D amplitude
sinusoid of frequency ≤ 1/(2λF ) has an image amplitude exactly equal to
the object amplitude but for a sinusoid of frequency > 1/(2λF ) the image
amplitude is zero.

Example 2: Find the image intensity when an object of amplitude transmit-
tance

Uin(x) = 1 + cos(k0x)

is imaged in an aberration free coherent optical system, with k0 <
1

2λF , with
and without a half-plane obstruction in the pupil.

Without the half-plane obstruction, since k0 <
1

2λF

Ũout(kx, ky) = Ũin(kx, ky)

so
Uout(x, y) = Uin(x, y) = 1 + cos(k0x)

and the intensity is given by

Iout(x, y) =| 1 + cos(k0x) |2= [2 cos2(k0x)]2,

i.e. a periodic image of frequency k0 equal to the original amplitude frequency.
With the obstruction

Ũout(kx, ky) =

{
Ũin(kx, ky), kx > 0;
0, kx ≤ 0.

Now
Ũin = δ(kx, ky) + πδ(kx − k0) + πδ(kx + k0)

and therefore

Ũout(kx, ky) = πδ(kx − k0), Uout(x, y) = π exp(−ik0x)

and
Iout(x, y) = π2

giving uniform intensity.

Example 3: Effect of aberrations (for a clear pupil).

The COTF is given by

T (kx, ky) =

{
exp[ikW (kx, ky)], (kx, ky) ∈ aperture;
0, otherwise

which is unaffected by aberrations, i.e. each sine wave is transmitted without
attenuation, provided (kx, ky) < 1

2λF . However, aberrations do give a phase



364 CHAPTER 11. OPTICAL IMAGE FORMATION

contribution to the COTF, yielding a shift of the spatial frequency components
in the image. This shift can markedly affect the intensity distribution of the
image. Consider a single cosinusoidal object with k0 <

1
2λF given by

Uin(x, y) = 2 cos(k0x).

Then
Ũin(kx, ky) = [δ(kx − k0) + δ(ky + k0)]δ(ky)

and
Ũout(kx, ky) = exp[ikW (kx, ky)]Ũin(kx, ky)

= exp[ikW (k0, 0)]δ(kx − k0) + exp[ikW (−k0, 0)]δ(kx + k0).

For an even distribution W (k0, ky) = W (−k0, ky). Thus

Ũout(kx, ky) = exp[ikW (k0, 0)][δ(k − k0) + δ(k + k0)],

Uout(x, y) = exp[ikW (k0, 0)]2 cos(k0x)

and
Iout = [2 cos(k0x)]2.

Although the aberration does affect the image amplitude (as a phase term),
there is no visible effect on the image (for this single sinusoid). For an odd
aberration W (k0, kx) = −W (−k0, ky),

Uout(x, y) = exp[ikW (k0, 0)] exp(−ik0x) + exp[−ikW (k0, 0)] exp(ik0x)

= 2 cos[k0x− kW (k0, 0)]

and
Iout(x, y) = 4 cos2[k0x− kW (k0, 0)].

In this case, the periodic images are shifted by kW (k0, 0); each frequency is
shifted differently.

11.7 Phase Contrast Imaging

Imaging in coherent light is linear in the complex amplitude. In the special
case of a weak phase object,

Uin(x, y) = exp[iθ(x, y)] � 1 + iθ(x, y), θ(x, y) << 1.

A linearity exists between the phase of the object and the intensity of the
image, as the following analysis shows.

Iout(x, y) =| Uout(x, y) |2=| p(x, y)⊗⊗Uin(x, y) |2

and therefore, using the correlation theorem (where �� denotes the 2D corre-
lation integral),

Ĩout(kx, ky) = [Ũin(kx, ky)T (kx, ky)]��[Ũin(kx, ky)T (kx, ky)]∗
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or

Ĩout(kx, ky) =

∞∫
−∞

∞∫
−∞

dk′xdk
′
y [δ(k

′
x, k

′
y)− iθ̃∗(k′x, k′y)T ∗(k′x, k

′
y)]

×[δ(k′x + kx, k
′
y + ky) + iθ̃(k′x + kx, k

′
y + ky)T (k′x + kx, k

′
y + ky)]

� δ(kx, ky) + iθ̃(kx, ky)T (kx, ky)− iθ̃∗(−kx,−ky)T ∗(−kx,−ky).
Now, θ is real and therefore

θ̃∗(−kx,−ky) = θ̃(kx, ky)

and, thus, defining Tp as

Tp(kx, ky) = T (kx, ky)− T ∗(−kx,−ky)

we get
Ĩout(kx, ky) � [δ(kx, ky) + iθ̃(kx, ky)]Tp(kx, ky)

i.e.

FT of the output intensity = FT of the input phase×Tp.
The function Tp is called the Phase Contrast Transfer Function (PCTF) which
can can be written as

Tp(kx, ky) = [T (kx, ky)−T ∗(−u,−v)] = [P (λzu, λzv)−P ∗(λzkx/2π, λzky/2π)]

where the pupil function P is given by

P (ξ, η) =

{
exp[ikW (ξ, η)], (ξ, η) ∈ aperture;
0, otherwise

and W is the aberration function. Note that if there are no aberrations then
W = 0 and Tp = 0. In other words, some kind of aberration, or phase plate,
is required to see the object phase. Suppose that a π

2 phase plate is placed in
the pupil function so that

P = exp(iπ/2).

Then

Tp(kx, ky) = exp(iπ/2)− exp(−iπ/2) = 2i
(

exp(iπ/2)− exp(−iπ/2)
2i

)
= 2i sin(π/2) = 2i

except at (kx, ky) = (0, 0) where Tp(0, 0) = 1. Hence,

Ĩout(kx, ky) = [δ(kx, ky) + iθ̃(kx, ky)]Tp(kx, ky) = δ(kx, ky)− 2θ̃(kx, ky)

so that
Iout(x, y) = 1− 2θ(x, y), θ << 1.
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This result is the basis for the phase contrast microscope. The intensity fluc-
tuation is equal to twice the phase fluctuation, with the appropriate change in
polarity. The phase contrast principle is also used in high resolution electron
microscopy. In this application it is not technically possible to make a phase
retarder, and the phase contrast is made possible by using even aberrations of
the electron lens. Then

Tp(kx, ky) = (exp[ikW (λzkx/2π, λzky/2π)]− exp[−ikW (λzkx/2π, λzky/2π)])

for even aberrations W (ξ, η) = W (−ξ,−η) and therefore

Tp = 2i sin[kW (λzkx/2π, λzky/2π)].

As before, if there are no aberrations and W = 0, then Tp = 0.

11.8 Incoherent Image Formation

In incoherent illumination, there is a linear relationship between the input Iin
and output Iout (time-averaged) intensities. For an isoplanatic optical system,

Iout(x, y) =

∞∫
−∞

∞∫
−∞

Iin(x′, y′) | p(x− x′, y − y′) |2 dx′dy′.

If p is normalized to unit volume, | p |2 is not and so we normalize it by dividing
by its infinite integral, i.e.

| p(x, y) |2
∞∫

−∞

∞∫
−∞

| p(x, y) |2 dxdy
.

The Incoherent Optical Transfer Function (IOTF) T (kx, ky) is the Fourier
transform of the (normalized) point spread function. Applying the autocor-
relation theorem to the top line and Parseval’s theorem to the bottom line,

T (kx, ky) =

∞∫
−∞

∞∫
−∞

P (ξ, η)P ∗(ξ + λzkx/2π, η + λzky/2π)dξdη

∞∫
−∞

∞∫
−∞

| P (ξ, η) |2 dξdη

where P (ξ, η) - the pupil function - is the Fourier transform of p(x, y),

P (ξ, η) =

∞∫
−∞

∞∫
−∞

p(x, y) exp
[
−i2π
λz

(ξx+ ηy)
]
dxdy.

The equation above for T basically states that the IOTF is equal to the (nor-
malized) spacial autocorrelation of the pupil function. The IOTF relates the
input and output intensity spectra, i.e.

Ĩout(kx, ky) = Ĩin(kx, ky)T (kx, ky).
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The spatial frequencies are intensity frequencies and are not the same as the
amplitude frequencies produced in a coherent optical system. This expression
for T can be written in the form

T (kx, ky) =

∞∫
−∞

∞∫
−∞

P
(
ξ − λzkx

4π , η − λzky

4π

)
P ∗

(
ξ + λzkx

4π , η + λzky

4π

)
dξdη

∞∫
−∞

∞∫
−∞

| P (ξ, η) |2 dξdη
.

From this result it follows that:

(i) normalization yields
T (0, 0) = 1;

(ii) the Fourier transform of a real quantity gives

T (−kx,−ky) = T ∗(kx, ky);

(iii) from the Schwarz inequality,

T (kx, ky) ≤ T (0, 0).

As with the coherent OTF, the modulus | T |, or Modulation Transfer Function
(MTF) describes the transfer or modulation of sinusoidal components of the
object. The phase of T describes spatial shifts of the sinusoidal components.

11.9 Coherent and Incoherent Optical Imaging

For an object function f and point spread function p, the coherent and inco-
herent images are given by

Icoherent =| p⊗⊗f |2

and
Iincoherent =| p |2 ⊗⊗ | f |2 .

Figure 11.5 shows an example of a coherent and incoherent image generated by
the coherent and incoherent point spread functions associated with a circular
aperture (shown using a logarithmic scale).

If we consider the object function to be a rough surface (on the scale of a
wavelength) then we can model this function in terms of a random distribution
of amplitudes using a random number generator. An example of the result is
given in Figure 11.6 which is based on the application of a Gaussian distributed
random field. There is a striking difference between these images. The coherent
image yields an effect called speckle which is a feature of all coherent and
partially coherent images and is due to the ‘phase mixing’ of the functions p
and f associated with the convolution operation given above.
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Figure 11.5: Simulation of the coherent (top-left) and incoherent (top-right)
point spread function for optical instruments with a circular aperture and the
memorial stone to George Green in Westminster Abbey viewed through these
system (bottom-left and bottom-right, respectively). The absolute values of
the point spread function are shown using a logarithmic grey-level scale.

Figure 11.6: Simulation of the coherent (bottom-left) and incoherent (bottom-
right) images obtained from rough surface scattering (Kirchhoff diffraction)
imaged through a square aperture with coherent (top-left) and incoherent (top-
right) point spread functions. The absolute values of the point spread functions
are shown using a logarithmic grey-level scale.
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11.10 Optical Beams

Coherent optical systems make use of laser light, some well known example
being: (i) optical communications systems and optical computing; (ii) optical
processing systems; (iii) laser diagnostic systems. One of the principal charac-
teristics of coherent (laser) light is its ‘beam forming’ property. This property
is used extensively in a wide range of applications and requires a suitable phys-
ical model to be established. In this Section we investigate the propagation
of a beam by first considering the angular spectrum of plane waves and then
investigating the solutions to the paraxial wave equation.

11.10.1 The Angular Spectrum of Plane Waves

The angular spectrum of planes waves is a way of representing a coherent optical
field in a region of free space. In this representation, any field can be described
by a sum (integral) of plane waves travelling in different directions where each
plane wave is an elementary solution of the (homogeneous Helmholtz equation.
Consider a scalar monochromatic field

u(r, t) = U(r) exp(−iωt); r = x̂x+ ŷy + ẑz

in a source free region 0 ≤ z ≤ Z. In the free space domain, the complex
amplitude U satisfies the Helmholtz equation

(∇2 + k2)U = 0; k =
ω

c
.

Let U have the following Fourier representation with respect to (x, y)

U(x, y, z) = F̂2[Ũ ] =

∞∫
−∞

∞∫
−∞

Ũ(kx, ky, z) exp[i(kxx+ kyy)]dkxdky .

Using

F̂2[∇2U ] = −(k2
x + k2

y)Ũ +
∂2Ũ

∂z2

and substituting into the Helmholtz equation, we obtain

−(k2
x + k2

y)Ũ +
∂2Ũ

∂z2
+ k2Ũ = 0

or
∂2Ũ

∂z2
= −k2Ũ + (k2

x + k2
y)Ũ = −k2

zŨ

where
k2
z = k2 − k2

x − k2
y

or

kz =

⎧⎨⎩
√
k2 − k2

x − k2
y , k2

x + k2
y ≤ k2;

i
√
k2
x + k2

y − k2, k2
x + k2

y > k2.
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The general solution to this equation is of the form

Ũ(kx, ky, z) = A(kx, ky) exp(iwz) +B(kx, ky) exp(−iwz)
where A and B are arbitrary functions (excluding the degenerate case when
w = 0). The solution for U can now be written as

U(x, y, z) =

∞∫
−∞

∞∫
−∞

A(kx, ky) exp[i(kxx+ kyy + kzz)]dkxdky

∞∫
−∞

∞∫
−∞

B(kx, ky) exp[i(kxx+ kyy − kzz)]dkxdky .

This is the angular spectrum representation of the field. The field U can be
considered to be a linear combination of functions

exp[i(kxx+ kyy ± kzz)].
Each term in this solution for U represents a plane wave which is a solution of
the same differential equation as the field itself (i.e. the Helmholtz equation).
Each term is a mode of the Helmholtz equation and the angular representation
is a mode expansion of the Helmholtz equation. The angular spectrum repre-
sentation is not a Fourier representation, i.e. it is not a 3D Fourier transform
of U , rather, it is a superposition of elementary solutions - plane waves - of the
Helmholtz equation.

There are four different types of wave:

(i)

A(kx, ky) exp[i(kxx+ kyy + kzz)]; w =
√
k2 − k2

x − k2
y , k2

x + k2
y ≤ k2

where kz is real, positive or zero (a homogeneous wave propagating from z = 0
toward z = Z).

(ii)
A(kx, ky) exp[i(kxx+ kyy + kzz)]; k2

x + k2
y > k2

where kz is purely imaginary, i.e.

A(kx, ky) exp[i(kxx+ kyy)] exp(− | kz | z)
which describes an inhomogeneous or ‘evanescent’ wave.

(iii)
B(kx, ky) exp[i(kxx+ kyy − kzz); k2

x + k2
y ≤ k2

which describes a homogeneous wave propagating from Z to the origin.

(iv)
B(kx, ky) exp[i(kxx+ kyy − kzz)]; k2

x + k2
y > k2

which describes an inhomogeneous wave propagating from Z to 0.

All four of these types of wave are, in general, necessary to represent the field
U .
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11.10.2 Half-Space Problems

Consider a half-space where a wave originating from z = 0 travels into the
space for which z > 0 and has an outgoing behaviour. Since the waves are
outgoing B(kx, ky) = 0 and thus in the half plane

U(x, y, z) =

∞∫
−∞

∞∫
−∞

A(kx, ky) exp[i(kxx+ kyy + kzz)]dkxdky.

If we now let kx = kp, ky = kq and kz = km where k is the wave number
(= ω/c) then we can write

U(x, y, z) =

∞∫
−∞

∞∫
−∞

a(p, q) exp[ik(px+ qy +mz)]dpdq

where
a(p, q) = k2A(kp, kq)

and

m =

{√
1− p2 − q2, p2 + q2 ≤ 1;√
p2 + q2 − 1, p2 + q2 > 1.

When p2+q2 ≤ 1, the mode is a plane wave propagating in a direction whose ‘di-
rection cosines’ are (p, q,m). Let us consider the relationship between U(x, y, z)
and this field at z = 0. Decomposing the boundary wave (i.e. the wave at z = 0)
into a 2D Fourier integral,

U(x, y, 0) =

∞∫
−∞

∞∫
−∞

Ũ0(kx, ky) exp[i(kxx+ kyy)]dkxdky.

According to the angular spectrum representation

U(x, y, 0) =

∞∫
−∞

∞∫
−∞

a(p, q) exp[ik(px+ qy)]dpdq.

Substituting kx = kp and ky = kq,

U(x, y, 0) =
1
k2

∞∫
−∞

∞∫
−∞

a

(
kx
k
,
ky
k

)
exp[i(kxx+ kyy)]dkxdky.

Thus,

Ũ0(kx, ky) =
1
k2
a

(
kx
k
,
ky
k

)
or

a(p, q) = k2Ũ0(kp, kq).
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Hence,

U(x, y, z) = k2

∞∫
−∞

∞∫
−∞

Ũ0(kp, kq) exp[ik(px+ qy +mz)]dpdq

=

∞∫
−∞

∞∫
−∞

Ũ0(kx, ky) exp[i(kxx+ kyy + kzz)dkzdky .

Thus, the spectral amplitude a(p, q) of each plane wave is completely specified
by a single spatial frequency component of the boundary value of the field in
the plane z = 0. The frequency of the spatial frequency components are

kx = kp, ky = kq.

Homogeneous waves exist if
p2 + q2 ≤ 1.

Hence, spatial frequencies in the boundary wave such that(
kx
k

)2

+
(
ky
k

)2

≤ 1

or
k2
x + k2

y ≤ k2

give rise to homogeneous waves. A spatial frequency kx arises from a sinusoidal
component of period 2π/Δx in the boundary wave. Therefore, periods in the
boundary wave such that

1
(Δx)2

+
1

(Δy)2
≤ 1
λ2

give rise to homogeneous waves. Periods such that

1
(Δx)2

+
1

(Δy)2
>

1
λ2

give rise to evanescent waves. Since evanescent waves decay exponentially
with distance it follows that detail in U(x, y, 0) smaller than a wavelength
is inaccessible in the far field.

11.11 The Paraxial Wave Equation

A plane wave propagating along z can be represented by the field

U(x, y, z) = A exp(ikz), k =
ω

c

and is unidirectional. An optical beam, taken to be propagating in the z-
direction, can be represented by the field

U(x, y, z) = ψ(x, y, z) exp(ikz)
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where it is assumed that: (i) ψ(x, y, z) varies slowly in comparison with
exp(ikz); (ii) ψ(x, y, z) is concentrated mainly around the axis (x, y) = (0, 0).
With these assumptions, an approximate partial differential equation for ψ
can be obtained called the Paraxial Wave Equation, whose solution provides a
mathematical description for the propagation of an optical (laser) beam.

The field U satisfies the Helmholtz equation

∇2U + k2U = 0.

Now
∂2U

∂x2
=
∂2ψ

∂x2
exp(ikz), and

∂2U

∂y2
=
∂2ψ

∂y2
exp(ikz).

Also,
∂U

∂z
=
∂ψ

∂z
exp(ikz) + ikψ exp(ikz)

and
∂2U

∂z2
=
∂2ψ

∂z2
exp(ikz) +

∂ψ

∂z
ik exp(ikz)

+ik
∂ψ

∂z
exp(ikz) + (ik)2ψ exp(ikz)

= exp(ikz)
(
∂2ψ

∂z2
+ 2ik

∂ψ

∂z
− k2ψ

)
.

Assume that ψ varies so slowly with z that∣∣∣∣∂2ψ

∂z2

∣∣∣∣ << 2k
∣∣∣∣∂ψ∂z

∣∣∣∣ .
Under this condition

∂2U

∂z2
� exp(ikz)

(
2ik

∂ψ

∂z
− k2ψ

)
and the Helmholtz equation reduces to

∂2ψ

∂x2
+
∂2ψ

∂y2
+ 2ik

∂ψ

∂z
= 0.

This equation is the paraxial wave equation or beam equation. It can be written
in the form

∇2
⊥ψ + 2ik

∂ψ

∂z
= 0

where

∇2
⊥ =

∂2

∂x2
+

∂2

∂y2

is the transverse Laplacian. The condition∣∣∣∣∂2ψ

∂z2

∣∣∣∣ << 2k
∣∣∣∣∂ψ∂z

∣∣∣∣
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implies that ∣∣∣∣ ∂∂z
(
∂ψ

∂z

)∣∣∣∣ << 4π
λ

∣∣∣∣∂ψ∂z
∣∣∣∣ .

For small changes, the change | Δ(∂ψ/∂z) | in | ∂ψ/∂z | is such that∣∣∣∣∣∣
Δ
(
∂ψ
∂z

)
Δz

∣∣∣∣∣∣ << 4π
λ

∣∣∣∣∂ψ∂z
∣∣∣∣ .

If we take Δz = λ, then ∣∣∣∣∣∣
Δ
(
∂ψ
∂z

)
∂ψ
∂z

∣∣∣∣∣∣ << 4π.

Physically, this condition implies that the change in ∂ψ
∂z over a distance of the

order of a wavelength λ is small compared to
∣∣∣∂ψ∂z ∣∣∣ itself.

11.11.1 Solution to the Paraxial Wave Equation

The paraxial wave equation is given by

∂2ψ

∂x2
+
∂2ψ

∂y2
+ 2ik

∂ψ

∂z
= 0

where
U(x, y, z) = ψ(x, y, z) exp(ikz).

Let us employ a Fourier integral representation for ψ, i.e.

ψ(x, y, z) =

∞∫
−∞

∞∫
−∞

ψ̃(kx, ky, z) exp[i(kxx+ kyy)]dkxdky.

Substituting this expression into the paraxial wave equation, we get

∞∫
−∞

∞∫
−∞

dkxdky

(
ψ̃(kx, ky, z)[(ikx)2 + (iky)2] + 2ik

∂ψ̃(kx, ky, z)
∂z

)

× exp[i(kxx+ kyy)] = 0

and, since this equality holds for all (x, y), it follows that

−(k2
x + k2

y)ψ̃ + 2ik
∂ψ̃

∂z
= 0.

Rearranging,
1

ψ̃

∂ψ̃

∂z
=

1
2ik

(k2
x + k2

y)



11.11. THE PARAXIAL WAVE EQUATION 375

or
d

dz
ln ψ̃ =

1
2ik

(k2
x + k2

y)

which has the solution

ln ψ̃ =
1

2ik
(k2
x + k2

y)z + constant

or

ψ̃(kx, ky, z) = ψ̃(kx, ky, 0) exp
[

1
2ik

(k2
x + k2

y)z
]
.

Substituting this result into the Fourier integral representation for ψ, we obtain
a general solution to the paraxial wave equation of the form

ψ(x, y, z) =

∞∫
−∞

∞∫
−∞

ψ̃(kx, ky, 0) exp
[
− i

2k
(k2
x + k2

y)z
]

exp[i(kxx+ kyy)]dkxdky.

Changing variables to kx = kp and ky = kq, we can write the solution for the
amplitude U as

U(x, y, z) = exp(ikz)

∞∫
−∞

∞∫
−∞

a(p, q) exp[ik(px+ qy)] exp
[
−ik

2
(p2 + q2)z

]
dpdq

where
a(p, q) = k2ψ̃(kx, ky, 0).

This is the solution to the Helmholtz equation in the ‘beam approximation’.

11.11.2 Angular Spectrum Representation of a Beam

Consider a field U(x, y, z) propagating into the half space z > 0 given by the
Helmholtz equation

∇2U + k2U = 0.

We may represent the field as an angular spectrum

U(x, y, z) =

∞∫
−∞

∞∫
−∞

a(p, q) exp[ik(px+ qy +mz)]dpdq

where

m =

{√
1− p2 − q2, p2 + q2 ≤ 1;

i
√
p2 + q2 − 1, p2 + q2 > 1,

a(p, q) = k2Ũ0(kp, kq)

and where Ũ0 is the 2D spatial Fourier transform of the boundary value of U
in the plane z = 0, i.e.

Ũ0(kx, ky) =
1

(2π)2

∞∫
−∞

∞∫
−∞

U(x, y, 0) exp[−i(kxx+ kyy)]dxdy.
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For the field U to behave like a beam, we require that Ũ0 must only contain
low frequency components such that

k2
x + k2

y << k2

or
p2 + q2 << 1.

The quantity m must therefore be real and positive; it is given approximately
by

m = (1− p2 − q2) 1
2 � 1− 1

2
(p2 + q2).

Under this condition, U is given approximately by

U(x, y, z) � exp(ikz)

∞∫
−∞

∞∫
−∞

a(p, q) exp[ik(px+ qy)] exp
[
−ik

2
(p2 + q2)z

]
dpdq.

This is the mathematical expression for a beam, subject to the constraint that
a(p, q) is appreciable only for values of p and q such that

p2 + q2 << 1.

Note that the field U is expressed in terms of its Fourier transform in the plane
z = 0. Also note that this expression is identical to the general solution of the
paraxial wave equation. The two approaches are mathematically equivalent.

11.11.3 Comparison with Fresnel Diffraction

The general solution to the paraxial wave equation can be written in the form

U(x, y, z) = exp(ikz)

∞∫
−∞

∞∫
−∞

Ũ0(kx, ky) exp[i(kxx+kyy)] exp
[
− iz

2k
(k2
x + k2

y)
]
dkxdky.

Substituting the expression for Ũ0 into this equation,

U(x, y, z) = exp(ikz)

∞∫
−∞

∞∫
−∞

dx′dy′dkxdkyU(x, y, 0)

×
⎡⎣ 1

(2π)2

∞∫
−∞

∞∫
−∞

exp(i[kx(x− x′) + ky(y − y′)]) exp
(
− iz

2k
(k2
x + k2

y)
)⎤⎦ .

The term in [ ] is just an inverse Fourier transform. In this form, we seek the
inverse Fourier transform of

exp
[
− iz
k

(k2
x + k2

y)
]

or exp[−iλz(k2
x + k2

y)/2π]
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which [evaluated at (x− x′, y − y′)] is equal to

i2π2

λz
exp

[
iπ

2λz
([x − x′]2 + [y − y′]2)

]
using the result

exp(−ak2) ⇐⇒
√
π

a
exp(−k2/(4a)).

Hence,

U(x, y, z) =
i

λ

exp(ikz)
z

∞∫
−∞

∞∫
−∞

U(x′, y′, 0) exp
[
iπ

2λz
([x− x′]2 + [y − y′]2)

]
dx′dy′

which is essentially the same as the (convolution form) Fresnel diffraction for-
mula. Note that this equation is valid everywhere for a beam. The Fresnel
formula can thus be applied to beam propagation, even if the Fresnel approxi-
mation is apparently violated.

11.11.4 Gaussian Beams

Gaussian beams form the basis of Gaussian beam optics. A Gaussian beam
remains Gaussian at every point along its path of propagation through an
optical system. This makes it particularly easy to visualize the distribution of a
field at any point in the system. Gaussian beams are not just of mathematical
interest; they are the basis for modelling the propagation of a laser beam.
Consequently, laser optics can be thought of in terms of a Gaussian beam
of coherent light with a plane wave front, interacting with different optical
components.

Consider the output of a laser at the plane z = 0 which has a Gaussian
beam profile of the form

U(x, y, 0) = A exp
(
− r2

w2
0

)
where r2 = x2 +y2 and w2

0 is the amplitude spot size of the beam. The spectral
amplitude of the plane waves in the angular spectrum representation is

a(p, q) = k2Ũ0(kp, kq) =
(
k

2π

)2

A

∞∫
−∞

∞∫
−∞

exp
[
−x

2 + y2

w2
0

]
exp[−ik(px+qy)]dxdy

=
Aw2

0k
2

4π
exp

[
−1

4
(kw0)2(p2 + q2)

]
.

The width of this distribution at 1/e is equal to 2/(kw0), i.e it is inversely
proportional to the beam width w0. The angular spectrum a(p, q) is only a
‘beam field’ if | a(p, q) | is appreciable for

p2 + q2 << 1.
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The amplitude of this spectrum | a(p, q) | only has significant values when

1
4
(kw0)2(p2 + q2) ≤ 1

or when
(p2 + q2) ≤ 4

(kw0)2

so that the beam condition requires that

4
(kw0)2

<< 1 or
λ2

π2w2
0

<< 1

i.e.
w0 >>

λ

π
.

This result shows that the source distribution only gives a beam (in the defined
sense of p2 +q2 << 1) if its width is very much greater that a wavelength. This
is true in physical lasers.

Given that the beam condition is satisfied, the amplitude in any plane z is
(from previous results, i.e. the solution to the paraxial wave equation) given
by

U(x, y, z) = exp(ikz)

∞∫
−∞

∞∫
−∞

a(p, q) exp[ik(px+ qy)] exp
[
−ik z

2
(p2 + q2)

]
dpdq.

Substitution of the above expression for a(p, q) into this result yields

U(x, y, z) = Ag(z) exp
(
− r2

w2
0

)
exp

[
i

(
k

(
z +

r2

2R

)
+ φ(z)

)]
where

w(z) = w0

√
1 +

(
2z
kw2

0

)2

, R(z) = z

[
1 +

(
kw2

0

2z

)2
]
,

g(z) =
w0

w(z)
, cosφ(z) =

w0

w(z)

and

sinφ(z) = −
√

1− w2
0

w2(z)
.

The function w(z) describes the behaviour of the beam radius as a function of
the distance of propagation z. The amplitude is given by

Ag(z) exp
(
− r2

w2
0

)
and the phase is given by (

z +
r2

2R

)
+ φ(z).
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The function w(z) determines the beam radius at distance z and the amplitude
distribution remains Gaussian. The angular spread of the beam θ may be
defined as

θ = lim
z→∞

(
w(z)
z

)
= lim
z→∞

1
z
w0

√
1 +

(
2z
kw2

0

)2

=
w0

z

2z
kw2

0

=
2
kw0

or
θ =

λ

πw0
.

For example, with

w0 = 1mm and λ = 63× 10−3 mm,

θ � 2× 10−4rad � 40 arc seconds

As kz →∞,

W (z)→ 2z
kw0

, R→ z, g(z)→ kw2
0

2z
=
πw2

0

λz

cosφ(z) → 0 and sinφ(z)→ −1 i.e. exp[iφ(z)] = −i
and

r2

w2(z)
� r2(kw0)2

(2z)2
=

1
4
(kw0)2a2

where
a =

r

z

giving

U(z, a) = − i

λ
A

exp(ikz)
z

(πw2
0) exp

[
−1

4
(kw0)2a2

]
, kz →∞.

The beam spread in the far field is still λ
πw0

and the intensity in the far-zone
is | U(z, a) |2.

11.12 Holographic Imaging

The principles of holographic imaging were invented in the late 1940s by the
Hungarian born Dennis Gabor in England and, later, by Yuri Denisyuk in the
USSR and Emmitt Leith in the USA in the 1950s. With the development of
coherent laser light in the early 1960s, holographic imaging underwent a number
of important developments over the following years, pioneered by Denisyuk
in Russia, Nick Phillips at Loughborough University in England and Steve
Benton at MIT, USA. More recent developments have involved the use of digital
methods for generating holograms using high resolution print and full colour
holography using red, green and blue laser light, pioneered by Hans Bjelkhagen
in America and England. However, the original invention has been attributed
to Gabor who won the Nobel prize in physics for his work in information science.
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11.12.1 Fraunhofer Analysis

The basis for holography is to use a reference beam to generate and recover
information on an object that is phase sensitive. In the far field, at a point
z0, the light wavefield scattered from a surface denoted by the object function
f(x, y) is, ignoring scaling and phase factors, given by the 2D Fourier transform,
i.e.

u(kx, ky) = F̂2[f(x, y)] =

∞∫
−∞

∞∫
−∞

f(x, y) exp(−ikxx) exp(−ikyy)dxdy

where the spatial frequencies are given by

kx =
kx0

z0
and ky =

ky0
z0

.

This result is based on the Fraunhofer approximation and the Kirchhoff bound-
ary condition for surface scattering (or the Born approximation for volume
scattering). We record the wavefield on a photographic plate to obtain a pho-
tograph, and then we take a measurement of the intensity of the wavefield | u |2
over a period of time (the exposure time). Consider the case where a beam
of coherent light (so that k is a constant) with a uniform spatial amplitude
A illuminates the surface and the scattered light is measured in the far field
together with the beam at normal incident to the photographic plate. Then,
the recording is not of | u |2 but of

| u+A |2=| u |2 + | A |2 +A∗u+Au∗.

The cross terms generated by the addition of a reference beam in the recording
of the intensity distribution of u+A (a hologram) instead of u (a photograph)
is the fundamental basis for holographic imaging and, according to Gabor, was
first conceived by him during a tennis match (which he was losing!).

If we illuminate the hologram with the reference beam, then, in the far field,
the scattered wavefield will be given by the 2D (inverse) Fourier transform of
(again ignoring scaling and phase factors) A | u+A |2, i.e.

F̂−1
2 [u(kx, ky)] = A

∞∫
−∞

∞∫
−∞

[| u(kx, ky) |2 + | A |2 +A∗u(kx, ky) +Au∗(kx, ky)]

× exp(ikxx) exp(iky)dkxdky = a(x, y) +A2[f(x, y) + f(−x,−y)]
where

a(x, y) = F̂−1
2 [A | u |2 +A3].

The function A | u |2 +A3 will vary slowly over large scales compared with the
term A∗u + Au∗. Consequently, a(x, y) will have a distribution which peaks
around the origin because of the scaling property of the Fourier transform,

f(ax, by)⇐⇒ F

(
kx
a
,
ky
b

)
.
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The pattern that is obtained when a hologram is illuminated by a plane wave
is therefore the object function f together with a reversed copy of f and a peak
at the origin. Apart from the peak, the hologram contains two images f(x, y)
and f(−x,−y) which makes viewing difficult. If the hologram is generated
using a reference beam at an angle θ to normal incidence, then the hologram
will again contain two images: one is in the original location and one displaced
by an angle of 2θ. This is the reason why an off-axis reference beam is used in
holography.

11.12.2 Digital Holography

The analysis above refers to continuous functions taken to be recorded on a
photographic plate. In digital holography, the hologram must be represented
using a digital image. What is the resolution required in terms of the size
of a pixel Δx in order to generate a digital hologram effectively? From the
sampling theorem, the sampling frequency required to represent a continuous
function accurately in digital form is the Nyquist frequency (i.e. twice the
spatial frequency bandwidth W of the image) or

Δx =
π

K

where K = 2W . Since kx = kx0/z0, we have

Δx =
πz0
kx0

=
λz0
2x0

.

For λ ∼ 10−7m, a 10cm×10cm digital hologram viewed at a distance of 1 metre,
say, requires a pixel size ∼1 nm. Further, since x0/z0 = tan(θ/2) � θ/2 where
θ is the total angle subtended by the holographic image, the pixel resolution
required to obtain a viewing angle of θ is given by

Δx =
λ

θ
.

For a fixed wavelength, the pixel resolution is inversely proportional to the
viewing angle. A digital hologram of size 1cm×1cm must therefore be composed
of ∼ 105 × 105 pixels to provide a viewing angle of just a few degrees. This
currently severely limits the size and viewing capacity of a digital hologram
that can be made compared to the normal hologram made by current optical
methods.

11.12.3 Fresnel Holograms

In the Fresnel zone, the scattered wavefield is given by (ignoring scaling con-
stants and phase factors)

u(x0, y0) =
∫ ∫

f(x, y) exp
(
ik

2z
[(x0 − x)2 + (y0 − y)2]

)
dxdy
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which is just the convolution of the object function f(x, y) with the Fresnel
kernel

exp
(
ik

2z
[(x0 − x)2 + (y0 − y)2]

)
and can therefore be computed using the convolution theorem. For fixed k the
Fresnel kernel depends on the value of z, the distance from the object plane
to the recoding plane. By computing the wavefield un for different values of
z = zn, n = 1, 2, 3, ... and summing the result, we can generate the combined
amplitude function

U(x, y) =
∑
n

un(x, y).

The hologram is then given by

| U +A |2=| U |2 +A2 +AU∗ +A∗U.

Holograms have a number of applications in science and engineering and
the technology for generating high resolution holograms optically is well es-
tablished. The use of digital holography is limited by the processing power
required for their computation and the high resolution printing or other dis-
play facilities (e.g. liquid crystal displays) needed to obtain reasonable viewing
angles. Foil holograms have been used very effectively as part of the print
security features being used on a range of products (banknotes, credit/debit
cards and personal identity cards, for example). However, this still relies on
the use of optically generated holograms because of the high resolution micro-
printing required in order to generate holograms digitally. We conclude this
chapter with a case study that approaches print security using an incoherent
optical method based on the application of digital images that can be printed
and recovered at relatively low resolution (e.g. 300 dots per inch, dpi).

11.13 Case Study: Digital Watermarking

The use of digital watermarking electronic and/or hardcopy documents is a
area of growing importance in information technology security1. The principal
model that underpins this technology is based on the fundamental imaging
equation

s = P̂ f + n

where f is the information that is to embedded in the image (the watermark),
P̂ is some linear operator and s is the output image (the watermarked im-
age). The function n, which is usually taken to be the noise, can indeed be a
noise field, but in the context of watermarking it can be any other host im-
age. The operation P̂ f can be non-stationary or non-isoplanatic but, in most
watermarking methods, an isoplanatic model is used. In such cases, the basic
watermaking model is

s = p⊗⊗f + n

1This case study is based on the research thesis of Dr K W Mahmoud, Low Resolution
Watermarking for Print Security, PhD Thesis, Loughborough University, England,
December 2004
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where p is any useful function that is of value to the watermarking process.
Watermarking is an area of cryptology that is related to the ‘art’ of hid-

ing secret information in images, or Steganography. It has an advantage over
cryptography in that, if information can be embedded in a data field that is
fully covert, then it is not immediately clear to a potential attacker that there
may be information in the data that is worth attacking. If we consider the case
where this ‘secrete information’ is an encrypted field, then watermarking can
provide a method of covert encryption.

In the field of cryptology, the operation P̂ f is referred to as the processes
of ‘diffusion’ and the process of adding noise (i.e. P̂ f + n) is referred to as the
process of ‘confusion’. One of the processes P̂ f that can be used is to convolve
f with the kernel

p(x, y) =
1

4πt
exp

[
−
(
x2 + y2

4Dt

)]
which is the Green function for the 2D diffusion equation with diffusivity D at
time t (see Chapter 6), the process p⊗⊗f being a solution to the 2D diffusion
equation for a source f(x, y) that starts to diffuse at t = 0.

In cryptography, the principal ‘art’ is to develop methods in which the
processes of diffusion and confusion are maximized, a criterion being that the
output s should ideally be dominated by the function n which in turn should be
characterized by a maximum entropy (i.e. a uniform statistical distribution).

The ability to recover f from s provides a method of authentication. If, in
addition, it is possible to determine that a copy of s has been made leading to
some form of data degradation and/or corruption that can be conveyed through
an appropriate analysis of f , then a scheme can be developed that provides a
check on: (i) the authenticity of the data s; (ii) its fidelity.

Formally, the recovery of f from s is based on the inverse process

f = P̂−1(s− n)

where P̂−1 is the inverse operator. Clearly, this requires the field n to be
known a priori. The data n can be any field that is appropriate for confusing
the information P̂ f including a pre-selected image. If the process of confusion is
undertaken in which the signal-to-noise ratio is set to be very low (i.e. ‖n‖ >>
‖P̂ f‖), then the watermark f can be hidden covertly in the data n provided the
inverse process P̂−1 is well defined and computationally stable. In this case, it
is clear that the host image n must be known in order to recover the watermark
f , leading to a watermarking scheme in which the entire field n is the ‘key’. In
addition, the operator P̂ (and its inverse P̂−1) can be key dependent (in terms
of the characteristic numerical parameters and/or coefficients from which the
operator is composed). For example, if we were to apply the Green function
above, the values of the diffusivity D and the the time t represent the keys
required to replicate the kernel in order to executed the inverse process. The
value of this operator key dependency relies on the nature and properties of
the operator that is used and whether it is compounded in an algorithm that
is required to be in the public domain for example.

Another approach is to consider the case in which the field n is unknown
and to consider the problem of extracting the watermark f in the absence of



384 CHAPTER 11. OPTICAL IMAGE FORMATION

this field. For this to be achieved, we require a process P̂ where P−1n = 0 so
that we can construct the data field

s = P̂ f + n, ‖n‖ >> ‖P̂ f‖
such that

P̂−1s = P̂−1P̂ f + P̂−1n = f.

This approach does not rely on a knowledge of n a priori. The ability to recover
the watermark only requires knowledge of the operator P̂ (and its inverse).
There are many operators P̂ that may be considered. However, it is important
that the inverse operator is not only well defined but computationally stable
and easy to implement. If we consider a stationary process where

s = p⊗⊗f + n

then, to recover f , we need to deconvolve s. One of the simplest (possibly the
simplest) ways of doing this is to correlate the data with p. In other words we
require a kernel p such that

p(x, y)��p(x, y) = δ2(x, y).

In this case, when n is not known a priori, a further condition on p is that

p(x, y)��n(x, y) = 0.

There is one (and only one) function that has these idealized properties, i.e.
the function (and ‘variations on its theme’)

p(x, y) = exp[iα(x2 + y2)]

which is the basis for imaging systems such as SAR (see Chapter 10) and is
the ‘central kernel’ for Fresnel optics, a property that is compounded in the
computation of the correlation integral

X/2∫
−X/2

Y/2∫
−Y/2

exp(−iαx2) exp(−iαy2) exp[iα(x+ x0)2] exp[iα(y + y0)2]dxdy

= exp[iα(x2
0 +y2

0)]XY sinc(αXx0)sinc(αY y0) → δ(x0)δ(y0), as

{
X →∞;
Y →∞.

However, other kernels can be considered such that the recovery of the water-
mark is based on a correlation provided appropriate pre-processing of p⊗ ⊗f
is undertaken. Thus, since

p⊗⊗f ⇐⇒ PF

where P and F are the Fourier transforms of p and f , respectively, if we
compute

Q =
P

| P |2
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then
p��q ⊗⊗f ⇐⇒ P ∗ P

| P |2F = F

and hence
p��q ⊗⊗f = f

where q is the inverse Fourier transform of Q. However, in order to compute Q,
the denominator must be regularized. For this application, regularization can
be achieved by replacing any zero that occurs in the power spectrum of p with
1. Moreover, p can be any function including a noise field. For applications
in watermarking, the diffusion of an image with a noise field provides a better
solution to the problem because: (i) a noise field provides uniform diffusion
(analogous to an optical diffuser); (ii) noise fields can be generated using ran-
dom number generators that depend on a single initial value or seed (i.e. a
private key). An example of this is shown in Figure 11.7. Here an image i1
(the ‘host image’) is watermarked by another image i2 (the ‘watermark image’)
using the result

s = r(q ⊗⊗i2) + i1

where
‖q ⊗⊗i2‖∞ = 1, ‖i1‖∞ = 1

and r, the signal-to-noise ratio, is 0.1. The function

q = F̂−1
2

[
N

| N |2
]
,

where N is the Fourier transform of the noise field n, is computed using the
random number generator

xi+1 = aximod(P ), x0 = seed

with P = 231 − 1 (a Mersenne prime number) and a = 77, the array x having
been normalized so that ‖x‖∞ = 1 and used to generate n on a row-by-row
basis. Because r = 0.1, the output is ‘dominated’ by the image i1. Here, the
seed is any integer such as

187356287276635635...

which can be based on the application of a PIN (Personal Identity Number) or
a password (e.g. ‘Enigma’, which in terms of an ASCII string - using binary
to decimal conversion - is ‘216257556149’). This approach provides a method
of watermarking one image with another. If the host image is distributed a
priori to all recipients of the hidden information, then it can be considered to
be a public key. Private keys (i.e. the seeds used to generate the noise field)
can then be used to recover the watermark on a one-by-one basis. The effect
of adding the diffused watermark image to the host image yields a different,
slightly brighter image because of the perturbation of i2 by q ⊗ ⊗i1. This
effect can be minimized by introducing a smaller signal-to-noise ratio such
that the perturbation is still recoverable by subtracting the host image from
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the watermarked image. Pre-processing the noise field to generate q has a
number of advantages: (i) it produces a relatively high-frequency and uniform
output (in terms of the distribution of grey levels) when convolved with the
watermark image; (ii) the watermark image can be recovered by correlation;
(iii) high-fidelity reconstructions of the watermark are achievable with very low
signal-to-noise ratios. This approach is based on a reversal of the roles that the
noise and point spread function play in the fundamental isoplanatic imaging
equation

s = p⊗⊗f + n.

In this application of the imaging equation, p is the noise and n is a determin-
istic function (the host image).

Figure 11.7: Example of watermarking an image with another image using
noise based diffusion. The ‘host image’ i1 (top-left ) is watermarked with the
‘watermark image’ i2 (top-centre) using the diffuser (top-right), i.e. a uniform
noise field whose pixel-by-pixel values depend upon the seed used (the private
key). The result of computing q⊗⊗i2 (bottom-left) is added to the host image
using a signal-to-noise ratio of 0.1 to obtain a watermarked image (bottom-
centre). Recovery of the watermark image i2 (bottom-right) is accomplished
by subtracting the host image from the watermarked image and correlating the
result with the noise field n. The correlation and convolution processes are
undertaken using an FFT.
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11.13.1 Low Resolution Hardcopy Watermarking

The methods discussed above provide an approach that is only effective for wa-
termarking electronic images. If the watermarked image is printed and scanned
back into electronic form, then the print/scan process will yield an array of pix-
els that will be significantly different from the original electronic image even
though it might ‘look’ the same. These differences can include the size of the
image, its orientation, brightness, contrast and so on. Of all the processes
involved in the recovery of the watermark, the subtraction of the host image
from the data s is critical. If this process is not accurate on a pixel-by-pixel
basis and deregistered for any of many reasons, then recovery of the water-
mark by correlation will not work effectively. However, if we make use of the
diffusion process alone, then the watermark can be recovered via a print/scan
because of the compatibility of the processes involved. However, in this case,
the ‘watermark’ is not covert but overt.

Depending on the printing process applied, a number of distortions will
occur which diffuse the information being printed. Thus, in general, we can
consider the printing process to introduce an effect that can be represented by
the convolution equation

sprint = pprint ⊗⊗s.

where s is the original electronic form of the diffused watermark image and
pprint is the point spread function of the printer. An incoherent image of the
data, obtained using a flat bed scanner for example (or any other incoherent
optical imaging system) will also have a characteristic point spread function
pscan. Thus, we can consider a scanned image to be given by

sscan = pscan ⊗⊗sprint

where sscan is taken to be the digital image obtain from the scan. Now, because
convolution is commutative, we can write

sscan = pscan ⊗⊗pprint ⊗⊗p⊗⊗f = p⊗⊗pscan/print ⊗⊗f

where
pscan/print = pscan ⊗⊗pprint

which is the print/scan point spread function associated with the processing
cycle of printing the image and then scanning it. By applying the method
discussed earlier, we can obtain a reconstruction of the watermark whose fidelity
is determined by the scan/print point spread function. However, in practice,
the scanned image needs to be re-sized to that of the original. This is due to
the scaling relationship

f(αx, βy) ⇐⇒ 1
αβ

F

(
kx
α
,
ky
β

)
.

The size of any image captured by a scanner or other device will depend on
the resolution used. The size of the image obtained will inevitably be different
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from the original because of the resolution and window size used to print the
watermark and the resolution used to scan the image. Since scaling in the
spatial domain causes inverse scaling in the Fourier domain, the scaling effect
must be ‘inverted’ before the watermark can be recovered by correlation since
correlation is not a scale invariant process. Re-sizing the image (using an
appropriate interpolation scheme such as the bi-cubic method, for example)
requires a set of two numbers n and m (i.e. the n×m array used to generate
the noise field and execute the diffusion process) that, along with the seed
required to regenerate the noise field, provides the ‘private keys’ needed to
recover the watermark from the diffused image. An example of this approach
is given in Figure 11.8 which shows the result of reconstructing four different
images (a photograph, finger-print, signature and text) used in the design of
an impersonalized (HSBC) debit/credit card.

Figure 11.8: Example of the application of ‘diffusion only’ watermarking. In
this example, four images of a face, finger-print, signature and text have been
diffused using the same noise field (with pre-processing) and printed on the
front (top-left) and back (bottom-left) of an impersonalized card using a 600
dpi printer. The reconstructions (bottom-left and bottom-right, respectively)
are obtained using a conventional flat-bed scanner based on a 300 dpi grey-level
scan.

The use of ‘diffusion only’ watermarking for print security can be undertaken
in colour by applying exactly the same diffusion/reconstruction methods to
the red, green and blue components independently. This provides two addi-
tional advantages: (i) the effect of using colour tends to yield better quality
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reconstructions because of the colour combination process; (ii) for each colour
component, it is possible to apply a noise field with a different seed. In this
case, three keys are required to recover the watermark.

Because this method is based on a convolution (with pre-processing) and
since

sscan = q ⊗⊗pscan/print ⊗⊗f
as discussed earlier, the recovery of the f will not be negated by the distortion
of the point spread function associated with the print/scan process, just limited
or otherwise by its characteristics. Thus, if an image is obtained of the printed
data field p⊗⊗f which is out of focus due to the characteristics of pscan/print,
then the reconstruction of f will be out of focus to the same degree. Decryption
of images with this characteristic is only possible using an encryption scheme
that is based a diffusion only approach. Figure 11.9 illustrates the recovery
of a diffused watermark printed onto a personal ID card obtained using a flat
bed scanner and then captured using mobile phone camera using colour (RGB-
mode) but presented here in grey scale. In the latter case, the reconstruction
is not in focus because of the wide-field nature of the lens used. However, the
fact that recovery of the watermark is possible with a mobile phone means that
the scrambled data can be transmitted securely and the card holders image (as
in this example) recovered remotely and transmitted back to the same phone
for authentication. This provides the necessary physical security needed to
implement such a scheme in practice and means that specialist image capture
devices are not required on site. Enhancement of the image can be undertaken
as required using the methods discussed in Part III, for example.

The diffusion process can be carried out using a variety of different noise
fields other than the uniform noise field considered here which is based on
linear congruential random number generation. Changing the noise field can
be of value in two respects: first, it allows a system to be designed that, in
addition to specific keys, is based on specific algorithms which must be known
a priori. These algorithms can be based on different pseudo uniform random
number generators and/or different pseudo chaotic number generators that
are post-processed to provide a uniform distribution of numbers. Second, the
diffusion field depends on both the characteristics of the watermark image
and the noise field. By utilizing different noise fields (e.g. Gaussian noise,
Poisson noise and so on), the texture of the output field can be changed. This
includes the application of fractal noise which is discussed in Part IV. The use
of different noise fields is of value when different textures are required that are
aesthetically pleasing and can be used to create a background that is printed
over the entire document. In this sense, variable noise based diffusion fields can
be used to replace complex print security features with the added advantage
that, by de-diffusing them, information can be recovered. Further, these fields
are very robust to data degradation created by soiling, for example. In the
case of binary watermark images, data redundancy allows reconstructions to
be generated from a binary output, i.e. after binarizing the diffusion field (with
a threshold of 50% for example). This allows the output to be transmitted in
a form that can tolerate low resolution and low contrast copying, e.g. a fax.
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Figure 11.9: Original (top-left), diffused watermark (top-right), reconstruction
using a flatbed scanner (bottom-left) and reconstruction using a mobile phone
(bottom-right). These images have been scanned in grey scale from the original
colour versions printed on to a personal ID card at 600dpi stamp-size (i.e.
2cm×1.5cm).

11.13.2 Covert Watermarking

Watermarking is usually considered to be a method in which the watermark
is embedded into a host image in an unobtrusive way. Another approach is to
consider the host image to be a data field that, when processed with another
data field, generates new information.

Consider two images i1 and i2. Suppose we construct the following function

n = F̂2

(
I1
| I1 |2 I2

)

where I1 = F̂2[i1] and I2 = F̂2[i2]. If we now correlate n with i1, then from the
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correlation theorem

i1 ��n⇐⇒ I∗1
I1

| I1 |2 I2 ⇐⇒ i2.

In other words, we can recover i2 from i1 with a knowledge of n. Because
this process is based on convolution and correlation alone, it is compatible and
robust to printing and scanning, i.e. incoherent optical imaging. An example of
this is given in Figure 11.10. In this scheme, the noise field n is the private key
required to reconstruct the watermark and the host image can be considered
to be a public key. The tolerance of this method to printing and scanning is
excellent provided the output is cropped and oriented correctly.

Figure 11.10: Example of a covert watermarking scheme. i1 (top-left) is con-
volved (with pre-processing) with i2 (top-middle) to produce the noise field
(top-right). i2 is printed at 600 dpi, scanned at 300 dpi and then re-sampled
back to its original size (bottom-left). Correlating this image with the noise
field generates the reconstruction (bottom-centre). The reconstruction depends
on just the host image and noise field. If the noise field and/or the host image
are different or corrupted, then a reconstruction is not achieved (bottom-right).
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11.13.3 Application to Encryption

One of the principal components associated with the development of methods
and algorithms to ‘break’ cyphertext is the analysis of the output generated
by an attempted decrypt and its evaluation in terms of an expected type. The
output type is normally assumed to be plain text, i.e. the output is assumed
to be in the form of characters, words and phrases associated with a natural
language such as English or German, for example. If a plain text document is
converted into an image file then the method described in the previous Section
on ‘covert watermarking’ can be used to diffuse the plain text image i2 using
any other image i1 to produce the field n. If both i1 and n are then encrypted,
any attack on these data will not be able to make use of an ‘analysis cycle’
which is based on the assumption that the decrypted output is plain text.
This approach provides the user with a relatively simple method of ‘confusing’
the cryptanalyst and invalidates attack strategies that have been designed and
developed on the assumption that the encrypted data have been derived from
plain text alone.

11.14 Summary of Important Results

Fraunhofer diffraction
u(x0, y0)

=
i

λ

exp(ikz0)
z0

exp
(
ik
x2

0 + y2
0

2z0

) ∞∫
−∞

∞∫
−∞

f(x, y) exp
(
− ik
z0

(xx0 + yy0)
)
dxdy.

The intensity is given by

I(x0, y0) =
1

λ2z0
| F̂2[f(x, y)] |2

where

F̂2[f(x, y)] =

∞∫
−∞

∞∫
−∞

f(x, y) exp[−i(kxx+ kyy)]dxdy

kx =
2πx0

z0λ
, ky =

2πy0
z0λ

.

Fresnel diffraction

u(x, y) =
i

λ

exp(ikz0)
z0

f(x, y)⊗⊗ exp
(
ik

2z0
[x2 + y2]

)
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Fourier transforming properties of a lens

There is an exact Fourier transform relationship between the front and back
focal planes of a well corrected lens. If t(x, y) is a transparency placed at the
back focal plane of a well corrected lens with focal length f then, in the front
focal plane, the distribution of the amplitude field is

u(x0, y0) =
i

λf
exp(2ikf)F̂2[t(x, y)].

Coherent image formation

Uout(x, y) =

∞∫
−∞

∞∫
−∞

Uin(x′, y′)p(x − x′, y − y′)dx′dy′

where the point spread function p is given by

p(x, y) =

∞∫
−∞

∞∫
−∞

P (x′, x′) exp
[
− ik
z

(xx′ + yy′)
]
dx′dy′

and P is the ‘pupil function’.

Incoherent image formation

Iout(x, y) =

∞∫
−∞

∞∫
−∞

Iin(x′, y′) | p(x− x′, y − y′) |2 dx′dy′

where | p |2 is the intensity point spread function.

Angular spectrum representation of plane waves

U(x, y, z) =

∞∫
−∞

∞∫
−∞

A(kx, ky) exp[i(kxx+ kyy + kzz)]dkxdky

+

∞∫
−∞

∞∫
−∞

B(kx, ky) exp[i(kxx+ kyy − kzz)]dkxdky.

Paraxial wave equation

∇2
⊥ψ + 2ik

∂ψ

∂z
= 0

where

∇2
⊥ =

∂2

∂x2
+

∂2

∂y2
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is the transverse Laplacean.

Solution to the paraxial wave equation

ψ(x, y, z) =

∞∫
−∞

∞∫
−∞

ψ̃(kx, ky, 0) exp
[
− i

2k
(k2
x + k2

y)z
]

exp[i(kxx+ kyy)]dkxdky.
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Problems: Part II

II.1 Show that if u(r, k) satisfies the partial differential equation

[∇2 + k2 + γ(r)]u(r, k) = 0

then u also satisfies the integral equation

u(r0, k) = f(r0, k) +
∫
g(r | r0, k)u(r, k)γ(r)d3r

where f(r, k) is a solution to (∇2 + k2)u(r, k) = 0 and g(r | r0, k) is a Green
function.

II.2 The electric field potential U satisfies the equation

∇2U(r, t)− 1
c2
∂2

∂t2
U(r, t) = −4πρ(r) exp(iωt)

where ρ is the charge density, ω is the angular frequency and c is the speed
of electromagnetic waves in a vacuum. Use a Green function to compute the
amplitude of the electric field potential produced by a thin antenna radiating
10m wavelength electromagnetic radiation at a distance of 1000m from the
antenna when ρ(r) = 1/(4πr2).

[Hint: Compute the Green function solution to this equation in the far field and
then use spherical polar coordinates (r, θ, φ) noting that d3r = r2drd(cos θ)dφ

in spherical polars and that
∞∫
0

sin x
x dx = π

2 ]

II.3 By considering a plane wave solution of the form

u(r, t) = exp(−αn̂ · r) exp[i(kn̂ · r− ωt)]
to the following homogeneous wave equation operators, derive dispersion rela-
tions for the absorption α and the phase velocity cp = ω/k.

(i) Electromagnetic wave propagation in a conducting medium:

∇2 − 1
c20

∂2

∂t2
− τ0 ∂

∂t
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where c0 and τ0 are constants.

(ii) Acoustic waves propagation in a viscous medium:

∇2 − 1
c20

∂2

∂t2
− τ0 ∂

∂t
∇2

where c0 and τ0 are constants.

(iii) Ultrasonic wave propagation in a dispersive material (the Leeman opera-
tor):

∇2 − 1
c20

∂2

∂t2
− τ0 ∂

∂t
− τ1 ∂

∂t
| ∇ |

where c0, τ0 and τ1 are constants and | ∇ |⇐⇒| k |.

II.4 Compute the 3D Green functions for the following time dependent wavefield
operators (where τ0 is a constant):

(i) The Klein-Gordon operator:

∇2 − 1
c2
∂2

∂t2
− τ2

0

[Hint: The Laplace Transform of the function

f(x) =

{
J0(a

√
t2 − b2), t > b;

0, t < b

is

F (p) =
exp(−b√p2 + a2)√

p2 + a2

where J0 is the Bessel function (of order 0) and a and b are positive constants.]

(ii) Electromagnetic wave propagation in a conducting medium:

∇2 − 1
c2
∂2

∂t2
− τ0 ∂

∂t

[Hint: The Laplace Transform of the function

f(x) =

{
I0(a

√
t2 − b2), t > b;

0, t < b

is

F (p) =
exp(−b

√
p2 − a2)√

p2 − a2

where I0 is the modified Bessel function (of order zero) and a and b are positive
constants.]
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(iii) Acoustic wave propagation is a viscous medium:

∇2 − 1
c2
∂2

∂t2
− τ0 ∂

∂t
∇2

[Hint: Use the results

exp(−ac√p) exp(abc/
√
p) = exp[−a(1− b)c√p]

∞∑
−∞

(−1)2Jn(2abc)p
n
2

where Jn is the Bessel function and

L̂−1(pn exp(−a√p) =
exp[−a2/(8t)]D2n+1[a/

√
2t]

2
n+1
2
√
πt1+n

where L̂−1 denotes the inverse Laplace transform and Dm is the Weber func-
tion.]

(iv) The Leeman operator for ultrasonic wave propagation in a dispersive ma-
terial

∇2 − 1
c2
∂2

∂t2
− τ0 ∂

∂t
− τ1 ∂

∂t
| ∇ |

where τ0 and τ1 are constants and | ∇ |⇐⇒| k |.
[Hint: Use the Gegenbauer integral expression for a sinc function, i.e.

sin
√
x2 + y2t√
x2 + y2

=
1

2
√

1 + β2

√
1+β2t∫

−
√

1+β2t

J0

(
α

1 + β2

√
s2 − (1 + β2)t2

)
exp

[
−i
(
y − iα

1 + β2
t

)]
ds

where x = βy − iα.

II.5 Find the Green function defined by the equation(
∇2 + σ

∂

∂t

)
G(r | r0, t | t0) = −δ3(r− r0)δ(t− t0)

by first taking the Laplace transform with respect to t and using the initial
condition

G |t=t0= 0

and the result ∞∫
0

t−3/2ea/te−ptdt =
√
π

a
e−2

√
ap.
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II.6 The propagation of a scalar wavefield u through a 1D inhomogeneous con-
tinuum with time-independent velocity profile c(x) can be described by the
equation (

∂2

∂x2
+
ω2

c2

)
u(x, ω) = 0

(i) Given that c = c0+v where v/c0 << 1 and c0 is a constant and by writing u
in the form u = exp(−ikx) +w(x, k) where | w |<< 1, show that this equation
can be reduced to the approximate form(

∂2

∂x2
+ k2

)
w(x, k) =

2k2v

c0
exp(−ikx)

where k = ω/c0.

(ii) Solve the equation above using the appropriate Green function and asymp-
totic formulation. Hence show that

w(a, τ) = − 1
2c0

dv

dτ
⊗ δ(τ + a), a→∞

where τ = 2t is the two-way travel time and ⊗ denotes the convolution integral.
Explain the physical significance of the conditions v/c0 << 1 and | w |<< 1
use to derive this result.

(iii) Let u(x, k) = exp[iks(x)] where k = ω/c0 Show that if the continuum is
characterised by a velocity profile given by c = αc0/x where α is a constant,
then as ω →∞, the solution for u defined by the original equation is given by

u(x, k) = exp
[
ik

(
β +

x2

2α

)]
where β is an arbitrary constant. Explain the physical significance of the
limiting condition (on the frequency) used to derive this result.

II.7 Find the Green function solution to the equation

(∇2 + k2)u(r | r0, k) = −k2γ(r)u(r | r0, k)− δ3(r− r0)

using the eikonal transform

u(r | r0, k) = g(r | r0, k) exp[s(r | r0, k)]

and the Rytov approximation (with homogeneous boundary conditions) where
g is the solution of

(∇2 + k2)g(r | r0, k) = −δ3(r− r0).

Compute the back-scattered field in this case.
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II.8 Solve the following integral equation using: (i) Laplace transforms; (ii) the
Neumann series

u(x) = x−
x∫

0

(t− x)u(t)dt.

II.9 Consider the equation

(∇2 + k2)u(r | r0, k) = −k2γ(r)u(r | r0, k)− δ3(r− r0), r ∈ V

where r0 is the point of a source of radiation with constant wavelength 2π/k.
Calculate the scattered field at a point rs when the field on the surface of V
is taken to be the incident field. Hence, show that as k → 0, we can derive an
exact scattering transform given by

U(rs | r0) =
1

16π2

∫
V

γ(r)
| r− r0 |

d3r
| r− rs | .

What information on the scatterer γ will the function U provide in the far
fields?

II.10 Consider a dielectric screen with a constant relative permittivity which
is of infinite extent but finite width Z in which a rectangular aperture with
an area of XY is cut. Using a scalar wave theory, show that, under the Born
approximation, the far field diffraction pattern observed in the forward image
plane (x0, y0) at z0 produced by the aperture (a ‘thick slit’) for a plane co-
herent light source (with wavelength λ) at normal incidence to the aperture is
characterized by the function

sinc
(
πx0X

λz0

)
sinc

(
πy0Y

λz0

)
.

Show that the diffraction pattern observed in the back image plane at −z0 is
characterized by the function

sinc
(
πx0X

λz0

)
sinc

(
πy0Y

λz0

)
sinc(kZ).

II.11 Given that

u(r, k) = ui(r, k) + k2g(| r |, k)⊗ f(r)u(r, k)

where ⊗ denotes the three dimensional convolution operation and g is the
solution to the equation

(∇2 + k2)g = −δ3,
show that



400 Problems: Part II

f(r) =

1
u(r, k)

∇2

(
q(r, k) ⊗ g(| r |, k)⊗ [u(r, k)− ui(r, k)]− 1

k2
[u(r, k)− ui(r, k)]

)
where q is the solution to the equation

q(| r |, k)⊗ g(| r |, k) =
1

4π | r | .

[Hint: Consider q to be a function such that ∇2(q ⊗ g) = −δ3.]

II.12 For a CW incident spherical wave originating from a point r0, the three-
dimensional Born scattered Helmholtz wavefield detected in the nearfield at a
point rs is given by

us(rs | r0, k) = k2

∫
V

g(r | r0, k)g(r | rs)γ(r)d3r

where γ is the scattering function, k is the wavenumber and g is the Green
function given by

g(r | r′, k) =
exp(ik | r− r′ |)

4π | r− r′ | .

By writing the Green functions in terms of a decomposition of plane waves, i.e.
as

g(r | r′, k) =
1

(2π)3

∞∫
−∞

d3u
exp[iu · (r′ − r)]

u2 − k2

where u =| u |, show that the inverse scattering solution is given by

γ(r) =
1

(2π)3

∞∫
−∞

d3w exp(iw · r)
(

p2

k2 − 1

)(
q2

k2 − 1

)

×
∞∫

−∞

∞∫
−∞

us(rs | r0, k) exp(−ip · r0) exp(−iq · rs)d3r0d
3rs

where w = p+q. If the incident field is a unit plane wave given by exp(ikn̂i ·r)
where n̂i is fixed, show that the inverse scattering solution is given by

γ(r) =
exp(−ikn̂i · r)

(2π)3

∞∫
−∞

d3p exp(ip·r)
(
p2

k2
− 1

) ∞∫
−∞

exp(−ip·r0)us(r0, k)d3r0.

Interpret this result in terms of an experiment designed to generate a 3D image
of γ using a square aperture. What are the factors affecting the resolution of
the image in practice?
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II.13 For a pulsed incident spherical wave originating from a point r0, the three-
dimensional Born back-scattered Helmholtz wavefield detected in the nearfield
at r0 is given by

uBS(r0, k) = k2

∫
V

g2(r | r0, k)γ(r)d3r

where γ is the scattering function, | k |< ∞ is the wavenumber and g is the
Green function given by

g(r | r0, k) =
exp(ik | r− r0 |)

4π | r− r0 | .

(i) Show that this equation can be written as

w(r0, k) =
∫
V

g(r | r0, k)γ(r)d3r

where

w(r0, k) = −16πi
d

dk

[
uBS(r0, k/2)

k2

]
.

(ii) By writing the Green function in terms of a decomposition of plane waves,
i.e. as

g(r | r0, k) =
1

(2π)3

∞∫
−∞

d3u
exp[iu · (r0 − r)]

u2 − k2

where u =| u |, show that the inverse scattering solution for a plane aperture
at a fixed position z0 is given by

γ(x, y, z) =

∞∫
−∞

∞∫
−∞

∞∫
−∞

w(x0, y0, z0, k)K(x− x0, y − y0, z − z0, k)dkdx0dy0

where
K(x− x0, y − y0, z − z0, k)

= −12iπ3

(2π)7

|k|∫
0

dρρe−i(z−z0)sgn(k)(k2−ρ2)
1
2 J0(ρ[(x − x0)2 + (y − y0)2] 1

2 )

sgn(k) =

{
+1, k ≥ 0;
−1, k < 0.

Interpret this result in terms of an experiment designed to generate a 3D image
of γ. What are the factors affecting the resolution of the image in practice?

In the programming problems that follow, n refers to the size of an image with
n×n pixels.
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II.14 Write a function to rotate a digital image (anti-clockwise) through a given
angle (specified in degrees) using the nearest neighbour approximation (without
corner clipping).

void ROTATE(float **s, float **r, int n, float theta)

where s is the input image, r is the output (rotated image) and theta is the
angle of rotation.

II.15 Use function ROTATE to compute the Radon transform of an image.

void RADON(float **s, int n)

where s is the input/output.

II.16 Write a function to reconstruct an image from it projections - to compute
the inverse Radon transform - using options for the following methods:

(i) back-projection and deconvolution.

(i) direct filtered back-projection (filtering each projection and back-
projecting);

(iii) differentiation and the Hilbert transform method of filtered back-projection
using a forward differencing method to differentiate each projection.

void IRADON(float **s, int n, int opt)

where s is the input/output and opt is a switch providing options on the method
of reconstruction given above.

Generate a synthetic image consisting of a complex of rectangles, circles and
lines, etc. Compute the Radon transform of this image and then study the
result of computing its inverse using the options available. Observe the distor-
tions that occur and account for their presence in terms of the computational
methods used.
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Digital Image Processing
Methods

403



Chapter 12

Image Restoration and
Reconstruction

Parts I and II have been concerned with the theoretical and computational
foundations of imaging science and imaging systems. Part III of this work
is concerned with methods for processing an image after is has been formed
through the utilization of some image capture device or other imaging system.

In Part II it was shown that, for imaging systems that utilize a wavefield
whose wavelength is the same order of magnitude as the scatterer, the Born
approximation provides a solution for the measured field that is based on a
Fourier transform, a result that is an inherent property of the linear systems
approach to imaging science (see Chapter 11). This result yields the funda-
mental imaging equation

s = p⊗⊗f + n

which is a direct consequence of solving the single or Born scattering problem
where f is the scattering function (the object function), p is the instrument
function (the point spread function), s is the image and n is the noise which
is taken to include all the non-ideal aspects of the imaging system that do
not conform to the weak scattering condition, including multiple scattering,
electronic noise, data error and so on. The problem then remains of how to
recover f from s. This problem is known as deconvolution. It is the principal
inverse problem in imaging science and for scatter-imaging system, is equivalent
to solving the inverse scattering problem under the Born approximation. In
previous chapters, we either ignored this problem or presented hypothetical
solutions to this problem without discussing the variety of computational issues
that can arise in practice. Deconvolution is now addressed within the context
of being a general problem in digital imaging.

12.1 Introduction

All image formation systems are inherently resolution limited. Moreover, some
images can be blurred and/or distorted due to a variety of physical effects that

404
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determine the nature of the PSF, such as motion in the object or image planes,
the effects of turbulence, light diffusion, limited aperture size and other physi-
cal effects. When an image is recorded that has been degraded in this manner,
a number of digital image processing techniques can employed to ‘de-blur’ the
image and enhance its information content. Nearly all of these techniques are
either directly or indirectly based on a mathematical model for the blurred
image which involves the convolution of two functions, i.e. the point spread
function and the object function. Hence, ‘de-blurring’ an image amounts to
solving the inverse problem posed by this model which is known as ‘deconvo-
lution’. Image restoration attempts to provide a resolution compatible with
the bandwidth of the imaging system (a resolution limited system). Image re-
construction attempt to provide a resolution that is greater than the inherent
resolution of the data (i.e. the resolution limit of the imaging system). This is
often known as super resolution. In addition to this general inverse problem,
there are specific deconvolution problems such as the reconstruction an image
from a set of projections (see Chapter 8) and specialist problems such as the
phase reconstruction problem which is addressed later on in this Chapter. The
aim of this Chapter is to discuss: (i) basic methods of solution; (ii) essential
algorithms; (iii) some applications.

Deconvolution is an inverse problem that is concerned with the restoration
and/or reconstruction of information from known data. It depends critically on
a priori knowledge of the way in which the data (the digital image) have been
generated and recorded. Mathematically, the data obtained are usually related
to some object function via an integral transform. In this sense deconvolution
is concerned with inverting certain classes of integral equation, in particular,
the convolution integral. In general, there is no exact or unique solution to the
image restoration/ reconstruction problem because it is an ill-posed problem.
We attempt to find a ‘best estimate’ based on some physically viable criterion
subject to certain conditions.

The fundamental imaging equation is a stationary model for the image s
in which the (blurring) effect of the PSF at any location in the ‘object plane’
is the same. For a coherent imaging system, p is the amplitude point spread
function and, for an incoherent system, it is the intensity PSF (see Chapter
11). Using the convolution theorem we can write this equation in the form

S = PF +N

where S, P, F and N are the (2D) Fourier transforms of s, p, f and n, respec-
tively. Assuming that F is a broadband spectrum, there are two cases we can
consider:

(i) P (kx, ky) → 0 as (kx, ky)→∞, where kx and ky are the spacial frequencies
in the x and y directions, respectively. The image restoration problem can then
be stated as ‘recover F given S’.

(ii) P (kx, ky) is band-limited, i.e. P (kx, ky) = 0 for certain values of kx and/or
ky. The image reconstruction problem can then be stated as ‘given S recon-
struct F ’. This typically requires the frequency components to be ‘synthesized’
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beyond the bandwidth of the data. This is a (spectral) extrapolation problem
which is discussed in the following Chapter.

Consider an image restoration problem that involves finding a solution for
f given that s = p ⊗ ⊗f + n where p is a Gaussian PSF given by (ignoring
scaling)

p(x, y) = exp[−(x2 + y2)/σ2]

(σ being the standard deviation) which has a spectrum of the form (ignoring
scaling)

P (kx, ky) = exp[−σ2(k2
x + k2

y)].

This PSF is a piecewise continuous function as is its spectrum. An example of
an image reconstruction problem is ‘find f given that s = p ⊗ ⊗f + n’ where
(ignoring scaling)

p(x, y) = sinc(αx) sinc(βy).

This PSF has a spectrum of the form (ignoring scaling)

P (kx, ky) = Hα(kx)Hβ(ky)

where

Hα(kx) =

{
1, | kx |≤ Kx;
0, | kx |> Kx

and Hβ(ky) =

{
1, | ky |≤ Ky;
0 | ky |> Ky.

This PSF is a piecewise continuous function but its spectrum is discontinuous,
the bandwidth of p ⊗ ⊗f being given by Kx in the x-direction and Ky in the
y-direction. In this Chapter we consider the problem of image restoration first
and then consider how to extrapolate the spectrum of a band-limited image in
the following Chapter.

12.2 Image Restoration

Let us consider a digital image that can be well-modelled using the discrete
imaging equation

sij = pij ⊗⊗fij + nij

where sij is the digital image. Suppose we neglect the term nij , then

sij = pij ⊗⊗fij
or by the (discrete) convolution theorem

Sij = PijFij

where Sij , Pij and Fij and the DFTs of sij , pij and fij , respectively. Clearly,

Fij =
Sij
Pij
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and therefore

fij = F̂−1
2

(
Sij
Pij

)
where F̂−1

2 is taken to denote the discrete (inverse) Fourier transform. Note
that

1
Pij

=
P ∗
ij

| Pij |2
which is called the Inverse Filter.

Suppose we were to implement this result on a digital computer. If Pij
approached zero (in practice a very small number) for any value of i and/or j
then, depending on the compiler, the computer would respond with an output
such as ‘... arithmetic fault ... divide by zero’. A simple solution would be to
regularize the result, i.e. use

fij = F̂−1
2

(
P ∗
ijSij

| Pij |2 +constant

)
and ‘play around’ with the value of the constant until ‘something sensible’ was
obtained which in turn would depend on the a priori information available on
the form and support of fij . The regularization of the inverse filter is the basis
for some of the methods which are discussed here. We start by considering the
criterion associated with the inverse filter.

12.3 The Inverse Filter

The criterion for the inverse filter is that the mean square of the noise is a
minimum. Since

sij = pij ⊗⊗fij + nij

we can write
nij = sij − pij ⊗⊗fij

and therefore
e = ‖nij‖2 = ‖sij − pij ⊗⊗fij‖2

where

‖xij‖ ≡
⎛⎝∑

i

∑
j

x2
ij

⎞⎠ 1
2

.

For the noise to be a minimum, we require

∂e

∂fij
= 0.

Differentiating, we obtain

(sij − pij ⊗⊗fij)��pij = 0.
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Using the (discrete) convolution and correlation theorems, in Fourier space,
this equation becomes

(Sij − PijFij)P ∗
ij = 0.

Hence, solving for Fij we obtain the result

Fij =
P ∗
ij

| Pij |2Sij .

The inverse filter is therefore given by

Inverse Filter =
P ∗
ij

| Pij |2

In principle, the inverse filter provides an exact solution to the problem when
the noise term nij can be neglected. However, in practice, this solution is
fraught with difficulties. First, the inverse filter is invariably a singular function.
Equally bad is the fact that, even if the inverse filter is not singular, it is usually
ill-conditioned. This is where the magnitude of Pij goes to zero so quickly, as
(i, j) increases, that 1/ | Pij |2 rapidly acquires extremely large values. The
effect of this is to amplify the (usually) noisy high frequency components of
Sij . This can lead to a restoration fij which is dominated by the noise in sij .
The inverse filter can therefore only be used when:

(i) The filter is non-singular.

(ii) The signal-to-noise ratio (SNR) of the data is very large (i.e. ‖pij ⊗
⊗fij‖ >> ‖nij‖).
Such conditions are rare. A notable exception occurs in computed tomography
(see Chapter 8) in which the inverse filter associated with the ‘Back-Project
and Deconvolution’ algorithm is non-singular and given by

√
k2
x + k2

y.
The computational problems that arise from implementing the inverse filter

can be avoided by using a variety of different filters whose individual properties
and characteristics are suited to certain types of data. One of the most com-
monly used filters for image restoration is the Wiener filter which is considered
next.

12.4 The Wiener Filter

An algorithm shall be derived for deconvolving images that have been blurred
by some lowpass filtering process and corrupted by additive noise. In mathe-
matical terms, given the imaging equation

sij = pij ⊗⊗fij + nij (12.1)

the problem is to solve for fij given sij , pij and some knowledge of the SNR.
This problem is solved using the least squares principle which provides a filter
known as the Wiener filter.
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The Wiener filter is based on considering an estimate f̂ij for fij of the form

f̂ij = qij ⊗⊗sij . (12.2)

Given this model our problem is reduced to computing qij or equivalently its
Fourier transform Qij . To do this, we make use of the error function

e = ‖fij − f̂ij‖2 ≡
∑
i

∑
j

(fij − f̂ij)2 (12.3)

and find qij such that e is a minimum, i.e.

∂e

∂qij
= 0.

Substituting equation (12.2) into equation (12.3) and differentiating, we get

∂e

∂qk�
= −2

∑
i

∑
j

(
fij −

∑
n

∑
m

si−n,j−mqnm

)
∂

∂qk�

∑
n

∑
m

si−n,j−mqnm

= −2
∑
i

∑
j

(
fij −

∑
n

∑
m

si−n,j−mqnm

)
si−k,j−� = 0.

Rearranging, we have

∑
i

∑
j

fijsi−k,j−� =
∑
i

∑
j

(∑
n

∑
m

si−n,j−mqnm

)
si−k,j−�.

The left hand side of the above equation is a discrete correlation of fij with sij
and the right hand side is a (discrete) correlation of sij with the convolution∑

n

∑
m

si−n,j−mqnm.

Using operator notation it is convenient to write this equation in the form

fij ��sij = (qij ⊗⊗sij)��sij .
Moreover, using the (discrete) correlation and convolution theorems, the equa-
tion above can be written in Fourier space as

FijS
∗
ij = QijSijS

∗
ij

which, after rearranging, gives

Qij =
S∗
ijFij

| Sij |2 .

Now, in Fourier space, equation (12.1) becomes

Sij = PijFij +Nij
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Using this result, we have

S∗
ijFij = (PijFij +Nij)∗Fij

= P ∗
ij | Fij |2 +N∗

ijFij

and
| Sij |2= SijS

∗
ij = (PijFij +Nij)(PijFij +Nij)∗

=| Pij |2| Fij |2 +PijFijN∗
ij +NijP

∗
ijF

∗
ij+ | Nij |2 .

Hence, the filter Qij can be written in the form

Qij =
P ∗
ij | Fij |2 +N∗

ijFij

| Pij |2| Fij |2 +Dij+ | Nij |2

where
Dij = PijFijN

∗
ij +NijP

∗
ijF

∗
ij

12.4.1 Signal Independent Noise

At first sight the result above appears to be more complicated than the original
one. However, this result can be simplified further by imposing a condition
which is physically valid in the large majority of cases. The condition is that
fij and nij are uncorrelated, i.e.

fij ��nij = 0

and
nij ��fij = 0.

In this case the noise is said to be ‘signal independent’ and it follows from the
correlation theorem that

FijN
∗
ij = 0

and
NijF

∗
ij = 0.

These conditions allow us to cancel the cross terms present in the last expression
for Qij (i.e. set Dij = 0 and N∗

ijFij = 0), leaving us with the formula

Qij =
P ∗
ij | Fij |2

| Pij |2| Fij |2 + | Nij |2 .

Finally, rearranging, we obtain the expression for the least squares or Wiener
filter,

Qij =
P ∗
ij

| Pij |2 + | Nij |2 / | Fij |2 .
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12.4.2 Estimation of the SNR

From the algebraic form of the Wiener filter derived above it is clear that this
particular filter depends on: (i) the functional form of Pij (e.g. the optical
transfer function) that is used; (ii) the functional form of | Nij |2 / | Fij |2.
The optical transfer function of an imaging system can be computed from the
point spread function by literally imaging a single point source which leaves us
with the problem of estimating the noise-to-signal power ratio | Nij |2 / | Fij |2.
This problem can be solved if we have access to two successive images recorded
under identical conditions.

Consider two digital images denoted by sij and s′ij of the same object func-
tion fij recorded using the same PSF pij (i.e. imaging system) but at different
times and hence with different noise fields nij and n′

ij . These images are given
by

sij = pij ⊗⊗fij + nij

and
s′ij = pij ⊗⊗fij + n′

ij

respectively, where the noise functions are uncorrelated and signal independent,
i.e.

nij ��n′
ij = 0 (12.4)

fij � nij = nij ��fij = 0 (12.5)

and
fij ��n′

ij = n′
ij ��fij = 0. (12.6)

We now proceed to compute the autocorrelation function of sij given by

cij = sij ��sij .

Using the correlation theorem and employing equation (12.5) we find

Cij = SijS
∗
ij = (PijFij +Nij)(PijFij +Nij)∗

=| Pij |2| Fij |2 + | Nij |2

where Cij is the DFT of cij . Next, we correlate sij with s′ij giving the cross-
correlation function

c′ij = sij ��s′ij .
Using the correlation theorem again and, this time, employing equations (12.4)
and (12.6) we get

C′
ij =| Pij |2| Fij |2 +PijFijN ′∗

ij +NijP
∗
ijF

∗
ij +NijN

′∗
ij

=| Pij |2| Fij |2 .
The noise-to-signal ratio can now be obtained by dividing Cij by C′

ij giving

Cij
C′
ij

= 1 +
| Nij |2

| Pij |2| Fij |2 .
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Re-arranging, we obtain the result

| Nij |2
| Fij |2 =

(
Cij
C′
ij

− 1

)
| Pij |2 .

Note that both Cij and C′
ij can be obtained from the available data sij and s′ij .

Also, substituting this result into the formula for Qij , we obtain an expression
for the Wiener filter in terms of Cij and C′

ij given by

Qij =
P ∗
ij

| Pij |2
C′
ij

Cij
.

In those cases where the user has access to successive recordings, the method
of computing the noise-to-signal power ratio described above can be employed.
The problem is that in many practical cases, we do not have access to successive
images and, hence, the cross-correlation function c′ij cannot be computed. In
this case, we are forced to make an approximation and consider a Wiener filter
of the form

Wiener Filter =
P ∗
ij

| Pij |2 +constant
.

The constant ideally reflects any available information on the average signal-
to-noise ratio of the image. Typically, we consider an expression of the form

constant =
1

(SNR)2

where SNR is the signal-to-noise ratio for the filter1. In practice, the exact
value of this constant must be chosen by the user.

Before attempting to deconvolve an image the user must at least have some
a priori knowledge on the functional form of the point spread function. Absence
of this information leads to a method of approach known as ‘Blind Deconvolu-
tion’. Suppose that the Point Spread Function is Gaussian, i.e.

pij = exp[−(i2 + j2)/σ2]

where σ is the standard deviation which must be defined by the user. In this
case, the user has control of two parameters: (i) the standard deviation of the
Gaussian PSF; (ii) the SNR. In practice, the user must adjust these parameters
until a suitable ‘user optimized’ reconstruction is obtained. In other words,
the Wiener filter must be ‘tuned’ to give a result which is acceptable based
on the judgment and intuition of the user. This interactive approach to image
restoration is just one of many practical problems associated with deconvolution
which should ideally be executed in real time. Figure 12.1 gives an example
of the application of the Wiener filter using a Gaussian PSF and the example
MATLAB function given below.

1which is not necessarily the same as the SNR of the data!
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function WIENER_FILTER(sigma,snr_filter)
%
%Input:
% sigma- standard deviation of Gaussian IRF
% snr_filter - signal-to-noise ratio for
% computing the Wiener filter
%
%Output:
% f - Restored image.

%Read image (assumed to be .bmp file of size n x n)

s=imread(’test’,’bmp’);

n=size(s,1); %Set size of array
nn=1+n/2; %Set mid point of array

%Convert to normalized floating point array
s=im2double(s);

%Display image
subplot(1,3,1), imshow(s);

%Compute Gaussian PSF
for i=1:n
x=i-nn;

for j=1:n
y=j-nn;
p(i,j)=exp(-((x.*x)+(y.*y))/(sigma*sigma));

end

end

%Display PSF
subplot(1,3,2), imshow(p);

%Restore image using Wiener filter:

%Transform image and PSF into Fourier space.
s=fftshift(fft2(s));
p=fftshift(fft2(p));

%Compute Wiener filter.
gamma=1./(snr_filter).^2;
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Figure 12.1: Example of the application of the Wiener filter. Original image
(left), Gaussian point spread function (center) and restoration after application
of the Wiener filter (right) using a standard deviation of 3 pixels and SNR=1.

f=(conj(p).*s)./((abs(p).*abs(p))+gamma);

%Transform back into imagfe space and
%computing the absolute value.
f=fftshift(ifft2(f));
f=abs(f);

%Normalize and display result
f=f./max(max(f));
subplot(1,3,3), imshow(f);

12.5 The Power Spectrum Equalization Filter

As the name implies the Power Spectrum Equalization (PSE) filter is based on
finding an estimate f̂ij whose power spectrum is equal to the power spectrum
of the desired function fij . In other words, f̂ij is obtained by employing the
criterion

| Fij |2=| F̂ij |2

together with the linear convolution model

f̂ij = qij ⊗⊗sij .

Like the Wiener filter the PSE filter also assumes that the noise is signal inde-
pendent. Since

F̂ij = QijSij = Qij(PijFij +Nij)
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and given that N∗
ijFij = 0 and F ∗

ijNij = 0, we have

| F̂ij |2= F̂ij F̂
∗
ij =| Qij |2 (| Pij |2| Fij |2 + | Nij |2).

Using the PSE criterion and solving for | Qij |, we obtain

| Qij |=
(

1
| Pij |2 + | Nij |2 / | Fij |2

) 1
2

.

In the absence of accurate estimates for the noise-to-signal power ratio (i.e.
| Nij |2 / | Fij |2), we approximate the PSE filter by

PSE filter =
(

1
| Pij |2 +constant

) 1
2

where
constant =

1
(SNR)2

.

Note that the criterion used to derive this filter can be written in the form∑
i

∑
j

(| Fij |2 − | F̂ij |2) = 0

or, using Parseval’s theorem,∑
i

∑
j

(| fij |2 − | f̂ij |2) = 0.

Compare this criterion with that use for the Wiener filter, i.e.

Minimize
∑
i

∑
j

(fij − f̂ij)2.

12.6 The Matched Filter

Matched filtering is based on correlating the image sij with the complex con-
jugate of the PSF pij . The estimate f̂ij of fij can therefore be written as

f̂ij = p∗ij ��sij .
Assuming that nij = 0, so that

sij = pij ⊗⊗fij
we have

f̂ij = p∗ij ��pij ⊗⊗fij
which in Fourier space is

F̂ij =| Pij |2 Fij .
Observe that the amplitude spectrum of F̂ij is given by | Pij |2| Fij | and that
the phase information is determined by Fij alone.



416 CHAPTER 12. IMAGE RESTORATION AND RECONSTRUCTION

12.6.1 Criterion for the Matched Filter

The criterion for the matched filter is as follows. Given that

sij = pij ⊗⊗fij + nij

the matched filter provides an estimate for fij of the form

f̂ij = qij ⊗⊗sij
where qij is chosen in such a way that the ratio

R =
|∑
i

∑
j

QijPij |2∑
i

∑
j

| Nij |2| Qij |2

is a maximum.
The matched filter Qij is found by first writing

QijPij =| Nij | Qij × Pij
| Nij |

and then using the (Schwarz) inequality∣∣∣∣∣∣
∑
i

∑
j

QijPij

∣∣∣∣∣∣
2

=

∣∣∣∣∣∣
∑
i

∑
j

| Nij | Qij Pij
| Nij |

∣∣∣∣∣∣
2

≤
∑
i

∑
j

| Nij |2| Qij |2
∑
i

∑
j

| Pij |2
| Nij |2 .

From this result and the definition of R given above we get

R ≤
∑
i

∑
j

| Pij |2
| Nij |2 .

Now, recall that the criterion for the matched filter is that R is a maximum.
If this is the case, then

R =
∑
i

∑
j

| Pij |2
| Nij |2

or ∣∣∣∣∣∣
∑
i

∑
j

| Nij | Qij Pij
| Nij |

∣∣∣∣∣∣
2

=
∑
i

∑
j

| Nij |2| Qij |2
∑
i

∑
j

| Pij |2
| Nij |2 .

But this is true if and only if

| Nij | Qij =
P ∗
ij

| Nij |
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because we then have∣∣∣∣∣∣
∑
i

∑
j

| Pij |2
| Nij |2

∣∣∣∣∣∣
2

=
∑
i

∑
j

| Pij |2
| Nij |2

∑
i

∑
j

| Pij |2
| Nij |2 .

Thus, R is a maximum when

Qij =
P ∗
ij

| Nij |2 .

12.6.2 The Matched Filter for White Noise

If the noise nij is white, then its power spectrum can be assumed to be a
constant, i.e.

| Nij |2= N2
0 .

In this case

Qij =
P ∗
ij

N2
0

and

F̂ij =
P ∗
ij

N2
0

Sij .

Hence, for white noise, the matched filter provides an estimate which may be
written in the form

f̂ij =
1
N2

0

p∗ij ��sij .

12.6.3 Deconvolution of a Linear FM PSF

The matched filter is frequently used in coherent imaging systems whose PSF
is characterized by a linear frequency modulated response. Two well known
examples are Synthetic Aperture Radar (see Chapter 10) and imaging systems
that use (Fresnel) zone plates. In this section we shall consider a separable
linear FM PSF and also switch to a continuous noise free functional form which
makes the analysis easier. Thus, consider the case when the PSF is given by

p(x, y) = exp(iαx2) exp(iβy2); | x |≤ X, | y |≤ Y

where α and β are constants and X and Y determine the spatial support
of the PSF. The phase of this PSF (in the x-direction say) is αx2 and the
instantaneous frequency is given by

d

dx
(αx2) = 2αx

which varies linearly with x. Hence, the frequency modulations (in both x and
y) are linear which is why the PSF is referred to as a linear FM PSF. In this
case the image that is obtained is given by (neglecting additive noise)

s(x, y) = exp(iαx2) exp(iβy2)⊗ ⊗f(x, y); | x |≤ X, | y |≤ Y.
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Matched filtering, we get

f̂(x, y) = exp(−iαx2) exp(−iβy2)�� exp(iαx2) exp(iβy2)⊗⊗f(x, y).

Now,

exp(−iαx2)� exp(iαx2) =

X/2∫
−X/2

exp[−iα(z + x)2] exp(iαz2)dz

= exp(−iαx2)

X/2∫
−X/2

exp(2iαzx)dz.

Evaluating the integral over z, we have

exp(−iαx2)� exp(iαx2) = X exp(−iαx2) sinc(αXx).

Since the evaluation of the correlation integral over y is identical we can write

f̂(x, y) = XY exp(−iαx2) exp(−iβy2) sinc(αXx) sinc(βY y)⊗⊗f(x, y).

In many systems the spatial support of the linear FM PSF is relatively long.
In this case,

cos(αx2) sinc(αXx) � sinc(αXx), cos(βy2) sinc(βY y) � sinc(βY y)

and
sin(αx2) sinc(αXx) � 0, sin(βy2) sinc(βY y) � 0

and so
f̂(x, y) � XY sinc(αXx) sinc(βY y)⊗⊗f(x, y).

In Fourier space this last equation can be written as

F̂ (kx, ky) =

{
π2

αβF (kx, ky), | k |≤ αX, | k |≤ βY ;
0, otherwise.

The estimate f̂ is therefore a band limited estimate of f whose bandwidth is
determined by the product of the parameters α and β with the spatial supports
X and Y , respectively. Note that the larger the values of αX and βY , the
greater the bandwidth of the reconstruction.

An example of deconvolving an image by correlating it with a circularly
symmetric linear FM PSF is given in Figure 12.2. In this example, an image
has been convolved with the PSF

p(x, y) =
1
2

+
1
2

cos[α(x2 + y2)]

and the reconstruction obtained by correlation alone. The result is excellent.
The PSF here is an example of a zone plate that can be used to perform the
same role as a lens in imaging systems where a conventional lens system is not
available.
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Figure 12.2: Original image of the Eiffel Tower in Paris (top-left), the PSF with
distortions due to the effect of aliasing (top-right), convolution of the image
with the PSF (bottom-left) and recovery of the image by correlating with the
PSF (bottom-right).

12.7 Maximum Entropy Deconvolution

As before we are interested in solving the imaging equation

sij = pij ⊗⊗fij + nij

for the object function fij . Instead of using a least squares error to constrain
the solution for fij , we choose to find fij such that the entropy E, given by

E = −
∑
i

∑
j

fij ln fij

is a maximum. Note that because the ln function is used in defining the En-
tropy, the Maximum Entropy Method (MEM) must be restricted to cases where
fij is real and positive.

From the imaging equation above, we can write

sij −
∑
n

∑
m

pi−n,j−mfnm = nij
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where we have just written the convolution operation out in full. Squaring
both sides and summing over i and j we can write

∑
i

∑
j

(
sij −

∑
n

∑
m

pi−n,j−mfnm

)2

−
∑
i

∑
j

n2
ij = 0.

But this equation is true for any constant λ multiplying both terms on the left
hand side. We can therefore write the equation for E as

E = −
∑
i

∑
j

fij ln fij

+λ

⎡⎣∑
i

∑
j

(
sij −

∑
n

∑
m

pn−i,m−jfnm

)2

−
∑
i

∑
j

n2
ij

⎤⎦
because the second term on the right hand side is zero anyway (for all values
of the Lagrange multiplier λ). Given this equation, our problem is to find fij
such that the entropy E is a maximum, i.e.

∂E

∂fij
= 0.

Differentiating, and switching to the notation for 2D convolution ⊗⊗ and 2D
correlation ��, we find that E is a maximum when

1 + ln fij − 2λ(sij ��pij − pij ⊗⊗fij ��pij) = 0

or, after rearranging,

fij = exp[−1 + 2λ(sij ��pij − pij ⊗⊗fij ��pij)].
This equation is transcendental in fij and, as such, requires that fij is evaluated
iteratively, i.e.

fk+1
ij = exp[−1 + 2λ(sij ��pij − pij ⊗⊗fkij ��pij)]; k = 0, 1, 2, ..., N

where f0
ij = 0 ∀ i, j, say. The rate of convergence of this solution is deter-

mined by the value of the Lagrange multiplier that is used.
In general, the iterative nature of this nonlinear estimation method is unde-

sirable, primarily because it is time consuming and may require many iterations
before a solution is achieved with a desired tolerance. We shall end this Sec-
tion by demonstrating a rather interesting result which is based on linearizing
the MEM. This is achieved by retaining the first two terms (i.e. the linear
terms) in the series representation of the exponential function leaving us with
the following equation

fij = 2λ(sij ��pij − pij ⊗⊗fij ��pij).
Using the convolution and correlation theorems, in Fourier space, this equation
becomes

Fij = 2λSijP ∗
ij − 2λ | Pij |2 Fij .
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Rearranging, we get

Fij =
SijP

∗
ij

| Pij |2 +1/2λ
.

Hence, we can define a linearized maximum entropy filter of the form

P ∗
ij

| Pij | +1/2λ
.

Notice that this filter is very similar to the Wiener filter. The only difference
is that the Wiener filter is regularized by a constant determined by the SNR
whereas this filter is regularized by a constant determined by the Lagrange
multiplier.

12.8 Constrained Deconvolution

Constrained deconvolution provides a filter which gives the user additional
control over the deconvolution process. This method is based on minimizing a
linear operation on the object fij of the form gij ⊗⊗fij subject to some other
constraint. Using the least squares approach, we find an estimate for fij by
minimizing ‖gij ⊗⊗fij‖2 subject to the constraint

‖sij − pij ⊗⊗fij‖2 = ‖nij‖2

where
‖xij‖2 ≡

∑
i

∑
j

x2
ij .

Using this result we can write

‖gij ⊗⊗fij‖2 = ‖gij ⊗⊗fij‖2 + λ(‖sij − pij ⊗⊗fij‖2 − ‖nij‖2)
because the quantity inside the brackets on the right hand side is zero. The
constant λ is called the Lagrange multiplier. The function ‖gij ⊗ ⊗fij‖2 is a
minimum when

(gij ⊗⊗fij)��gij − λ(sij − pij ⊗⊗fij)��pij = 0.

In Fourier space, this equation becomes

| Gij |2 Fij − λ(SijP ∗
ij− | Pij |2 Fij) = 0.

Solving for Fij , we obtain

Fij =
SijP

∗
ij

| Pij |2 +γ | Gij |2

where γ is the reciprocal of the Lagrange multiplier (= 1/λ). Hence, the
constrained least squares filter is given by

Constrained Least Squares Filter =
P ∗
ij

| Pij |2 +γ | Gij |2 .



422 CHAPTER 12. IMAGE RESTORATION AND RECONSTRUCTION

The important point about this filter is that it allows the user to change Gij to
suit a particular application. This filter can be thought of as a generalization
of the other filters. For example, if γ = 0 then the inverse filter is obtained, if
γ = 1 and | Gij |2=| Nij |2 / | Fij |2 then the Wiener filter is obtained, and if
γ = 1 and | Gij |2=| Nij |2 − | Pij |2 then the matched filter is obtained.

The following table lists the filters discussed so far. In each case, the filter
Qij provides a solution to the inversion of the following equation

sij = pij ⊗⊗fij + nij ,

the solution for fij being given by

fij = F̂−1
2 [QijSij ]

where F̂−1
2 stands for the 2D Discrete Inverse Fourier Transform and Sij is the

DFT of the digital image sij . In all cases, the DFT and inverse DFT can be
computed using a FFT.

Name of Filter Filter Condition(s)

Inverse Qij = P ∗
ij/ | Pij |2 Min ‖nij‖

Wiener Qij = P∗
ij

|Pij |2+|Fij |2/|Nij|2 Min ‖fij − qij ⊗⊗sij‖2;
N∗
ijFij = 0, F ∗

ijNij = 0

PSE Qij =
(

1
|Pij |2+|Fij |2/|Nij|2

) 1
2 | Fij |2=| QijSij |2;

N∗
ijFij = 0, F ∗

ijNij = 0

Matched Qij = P ∗
ij/ | Nij |2 Max

|P
i

P

j
QijPij |2

P

i

P

j

|Nij|2|Qij |2

Max Entropy Qij =
P∗

ij

|Pij |2+1/λ Max −∑
i

∑
j

fij ln fij

Constrained Qij =
P∗

ij

|Pij |2+γ|Gij|2 Min ‖gij ⊗⊗fij‖2

12.9 Phase Reconstruction and Phase Imaging

The phase reconstruction problem and phase imaging in general occurs in ap-
plications where:

(i) information on the phase is available from the recorded data and it is re-
quired to generate a phase image;

(ii) information on the phase is not available from the data and the phase needs
to be reconstructed.
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Consider an imaging system in which the Born scattered field generated by
an object function f(x, y) is measured in the far field. The recorded field in
the image plane is then given by the Fourier transform of the object function
(see Chapter 11), i.e.

F (kx, ky) =
∫ ∫

f(x, y) exp(−ikxx) exp(−ikyy)dxdy.

Now, for complex recorded data F , the object function can be obtained by
Fourier inversion. Further, if the object function is a complex function involving
data that have been generated using a time-resolved coherent system (e.g.
diffraction tomography - see Chapter 9 - or real/synthetic aperture radar -
see Chapter 10) in which the quadrature component of the recorded signals is
available, then a phase image can be generated from the object function. This
is the basis for phase imaging. However, with an incoherent imaging system,
data are only available on the recorded intensity of the field. In this case, we
do not measure

F (kx, ky) = A(kx, ky) exp[iθ(kx, ky)]

but
| F (kx, ky) |2= [A(kx, ky)]2.

In order to reconstruct the object function f(x, y) we are required to retrieve the
(Fourier) phase function θ(kx, ky). This problem and its solution have a number
of important applications, most notably in high frequency diffraction based
imaging systems such as X-ray crystallography in which X-rays are diffracted
by the atomic structure from which the solid is composed. The diffraction
pattern that is recorded is, in effect, given by the power spectrum of the atomic
structure of the crystal projected onto the image plane - the object function
f(x, y). This can be shown by considering the (Green function) solution to the
inhomogeneous Helmholtz equation

(∇2 + k2)u(r, k) = −k2γ(r)u(r, k), r ∈ V

which is given by the Lippmann-Schwinger equation (see Chapter 6)

u(r0, k) = ui(r0, k) + k2

∫
V

exp(ik | r− r0 |)
4π | r− r0 | γ(r)u(r, k)d3r

where ui is the incident field. Under the Born approximation and in the far
field,

u(r0, k) = ui(r0, k) + k2 exp(ikr0)
4πr0

∫
V

exp(−ikn̂0 · r)γ(r)ui(r, k)d3r, r0 →∞

where
n̂0 =

r0

r0
.
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Let the field u be recorded in the plane defined by the coordinates x0 and y0 at
a large distance z0 from the scatterer γ and let the scatterer have a Cartesian
volume of XY Z. Then

r0 = (x2
0 + y2

0 + z2
0)

1
2 = z0

(
1 +

x2
0

z2
0

+
y2
0

z2
0

) 1
2

� z0,
x0

z0
<< 1,

y0
z0

<< 1

n̂0 · r =
1
r0

(xx0 + yy0 + zz0) � 1
z0

(xx0 + yy0 + zz0)

and

u(x0, y0, z0, k) = ui(x0, y0, z0, k) +
exp(ikz0)

4πz0

×
X/2∫

−X/2

Y/2∫
−Y/2

Z/2∫
−Z/2

γ(x, y, z) exp
[
− ik
z0

(xx0 + yy0)
]

exp(−ikz)ui(x, y, z, k)dxdydz.

Now, if ui is a unit plane wave travelling along z, then, with ui = exp(ikz), we
have

u(x0, y0, z0, k) = exp(ikz0)

+
exp(ikz0)

4πz0

X/2∫
−X/2

Y/2∫
−Y/2

Z/2∫
−Z/2

γ(x, y, z) exp(−ikxx0/z0) exp(−ikyy0/z0)dxdydz

= exp(ikz0) +
exp(ikz0)

4πz0
F (kx, ky)

where

F (kx, ky) =

X/2∫
−X/2

Y/2∫
−Y/2

f(x, y) exp(−ikxx) exp(−ikyy)dxdy,

f(x, y) =

Z/2∫
−Z/2

γ(x, y, z)dz

and
kx =

kx0

z0
, ky =

ky0
z0

.

Thus, ignoring scaling, the diffracted field in the plane at z0 is given by the 2D
Fourier transform of the object function f which is a projection along z of the
scattering function γ.

The (Fourier) phase function is crucial in the reconstruction of the object
function. Of the two functions that characterize a complex spectrum (i.e. the
Fourier amplitude and the Fourier phase), the phase is more important in terms
of defining the spatial features of an image. This is illustrated in Figure 12.3
which shows a Fourier amplitude and phase reconstruction of an original image,
an amplitude only reconstruction and a phase only reconstruction. Clearly,
the phase only reconstruction provides a recognizable ‘measure’ of the original
image compared to the amplitude only reconstruction.
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Figure 12.3: Original image (top-left), amplitude spectrum displayed using a
logarithmic scale (top-centre), phase modulus spectrum (top-right), reconstruc-
tion using both the amplitude and phase spectra (bottom-left), amplitude only
reconstruction (bottom-centre) and a phase only reconstruction (bottom-right).

12.9.1 Phase Retrieval

The phase retrieval problem is compounded as follows:

Given | F (kx, ky) |, find f(x, y)

where

F (kx, ky) =

X/2∫
−X/2

Y/2∫
−Y/2

f(x, y) exp(−ikxx) exp(−ikyy)dxdy

In order to solve this problem we consider an object function f that is real and
of compact support A; a rectangle of size X×Y . Outside the region A the data
are zero giving an image of size, 2X × 2Y say. The object function is taken to
be at the centre of this ‘zero padded’ image. If we take an initial guess at the
object function f , then, by taking the Fourier transform of the image, we can
compute the amplitude and phase spectra which will both be of size 2X × 2Y .
But the amplitude spectrum of f is known and so we can replace the amplitude
spectrum obtained from the initial guess by the known spectrum | F | which
will be of size X ×Y . This provides us with a new complex spectrum that can
be Fourier inverted to produce a new (real) image of size 2X × 2Y . However,
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since the object function is of compact support A we can set all the data in the
image outside A to zero. This provides a new object function which can be used
to repeat the whole process on an iterative basis. In the absence of any a priori
information on the object function, the initial guess can be a constant such as
1, i.e. a ‘box-function’. This is an example of an error reduction algorithm
which is based on applying a constraint in image space and a constraint in
Fourier space given that the object function is real. It is commonly referred to
as the Fienup phase reconstruction algorithm (e.g. Feinup J R, Reconstruction
of an Object from the Modulus of its Fourier Transform’, Optics Letters 3(1),
1978) which in turn is based on the Gerchberg-Saxton algorithm (Gerchberg K
and Saxton W O, A Practical Algorithm for the Determination of Phase from
Image and Diffraction Plane Pictures, Optik, 35, 1972) designed to reconstruct
a complex valued object function f when both the modulus | f | and the Fourier
modulus | F | are known. This is a problem having applications in electron
microscopy. The basic phase reconstruction process is given in the schematic
diagram below, where A(kx, ky) is the known Fourier amplitude and the initial
object function f(x, y) is a ‘first guess’ over the known region of support (the
Feinup algorithm).

f(x, y) → F̂2[f(x, y)] → | F (kx, ky) | exp[iθ(kx, ky)]

↑ ↓

Conform to Satisfy
region of amplitude
support constraint

↑ ↓

f ′(x, y) ← Re{F̂−1
2 [F ′(kx, ky)]} ← F ′(kx, ky)

= A(kx, ky) exp[iθ(kx, ky)]

Similarly, the following diagram shows the error-reduction process for the case
when both the Fourier amplitude A and the image amplitude a are known (the
Gerchberg-Saxton algorithm)

f = a exp(iθ) → F̂2[f ] → F =| F | exp(iφ)

↑ ↓

Satisfy Satisfy
image Fourier

amplitude amplitude
constraint constraint

↑ ↓

f ′ =| f ′ | exp(iθ) ← Re{F̂−1
2 [F ′]} ← F ′ = A exp(iφ)
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Due to the large number of discrete Fourier transforms required, the conver-
gence of these phase reconstruction algorithms can be slow. Moreover, the
algorithm can stagnate and tend toward false solutions. Although there are
a number of refinements and modifications to the basic process that can be
applied, the critical issue with regard to generating a valid reconstruction for
the object function is whether or not some form a a priori information on the
object function is available. The use of a priori information for solving prob-
lems of this kind is essential. It is the basis for the material discussed in the
following Chapter where it is used to construct a weighting function in order
to extrapolate the spectrum of a band-limited image, a problem that can also
be approached using an error reduction type process (e.g. Gerchberg R W,
Super-resolution Through Error Energy Reduction, Optica Acta, 21(9), 1974).

12.9.2 Phase Imaging

Phase imaging is based on restoring the phase associated with an object func-
tion that is complex. This can occur when data have been generated using
a time-resolved coherent system (e.g. diffraction tomography - see Chapter 9
- or real/synthetic aperture radar - see Chapter 10) in which the quadrature
component (i.e. the Hilbert transform) of the recorded signals is available.

In order to recover a phase image from complex data the phase must be
unwrapped. This is based on using a logarithmic transform. Thus, let the
complex data be given by

s(x, y) = f(x, y) + iq(x, y) = A(x, y) exp[iθ(x, y)± 2πin], n = 0, 1, 2, ...

then
ln s(x, y) = lnA(x, y) + i[θ(x, y)± 2πn]

from which it follows that

θ(x, y) = Im[ln s(x, y)]∓ 2πn

providing that A(x, y) > 0. The ambiguity in the value of the phase is then
eliminated by differentiation since

∇θ(x, y) = Im[∇ ln s(x, y)] = Im
[

1
s(x, y)

∇s(x, y)
]

= Im
[
s∗(x, y)
| s(x, y) |2∇s(x, y)

]
=

1
[A(x, y)]2

[f(x, y)∇q(x, y)− q(x, y)∇f(x, y)] .

In order to make the equation scalar, we can take the divergence of both sides
to give

∇2θ(x, y) = h(x, y)

where

h(x, y) = Im
[

1
s(x, y)

∇2s(x, y)− 1
[s(x, y)]2

∇s(x, y) · ∇s(x, y)
]

=
1

[A(x, y)]2
Im

[
s∗(x, y)∇2s(x, y)− [s∗(x, y)]2

[A(x, y)]2
∇s(x, y) · ∇s(x, y)

]
.
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Figure 12.4: AM image (left) and an FM image (right) of a building (a factory)
imaged using airbourne SAR.

The phase is then obtained by solving the Poisson equation given above. This
can be achieved by applying the appropriate inverse filter, i.e.

θ(x, y) = −F̂−1
2

[
H(kx, ky)
k2
x + k2

y

]
where

H(kx, ky) = F̂2[h(x, y)].

Similarly, the terms ∇2s and ∇s can be computed through application of the
filters −(k2

x + k2
y) and i(x̂kx + ŷky), respectively. In practice, since the data s

will be noisy, it is necessary to apply a low pass filter such as a Gaussian low
pass filter to the function s(x, y) prior to phase unwrapping .

In addition to generating an unwrapped phase image, another parameter
that can be informative is the rate of change of phase and in particular the FM
(Frequency Modulation) image which is given by | ∇θ(x, y) |. An example of
such an image is given in Figure 12.4 which compares images of the amplitude
modulations (i.e. | s(x, y) |) and the frequency modulations for complex data
generated by a SAR. The FM image provides a significant improvement over the
AM image in terms of clarifying the spatial location of the primary scatterer.
This has been achieved using real zero conversion of the data (see Digital Signal
Processing, J M Blackledge, Horwood, 2003 - Chapter 5).

12.10 Non-stationary Deconvolution

Convolution is an integral operation that associates an ‘object function’ f to
another function s (the ‘data function’) via a given point spread function or
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‘instrument function’) p. The usual form for describing a stationary convolution
defined in one- and two-dimensions is

s(x) =

∞∫
−∞

f(x− x′)p(x′)dx′dy′

and

s(x, y) =

∞∫
−∞

∞∫
−∞

f(x− x′, y − y′)p(x′, y′)dx′

respectively. These equations assume that the instrument function is identical
for all points over which the object function is convolved, i.e. that the process
is stationary or isoplanatic. If the instrument function is not identical for all
points over which the object function is convolved the problem becomes a non-
stationary one. If we consider the convolution process in terms of the blurring
of an image when it is acquired, the non-stationary form will result in portions
of the image being less resolved (more blurred) than others.

Several types of non-stationary processes can occur which include:

(i) Amplitude variations that characterize an instrument function whose fre-
quency content is constant but with a variable amplitude.

(ii) Frequency variations which characterize an instrument function whose am-
plitude is constant but with a variable spectrum.

(iii) Energy conservation in which the two types of non-stationarity processes
given in (i) and (ii) above are combined such that the energy content of the
instrument function remains constant.

(iv) Shape variation which arises when the basic shape (functional form) of the
instrument function varies.

To model non-stationary convolution, the object function has been considered
to be a function of dimension 2D where D is the dimension of the convolution
operation. In the case of a 2D convolution, the object function can be written
as

p(x′, y′, x, y)

where x′ and y′ are spatial variables over the support of the PSF at a particular
point in the image and x and y are the coordinates of the point at which the
PSF is to be applied. In other words, the instrument function can be seen as
a collection of different PSFs, each of them applied at a singular point. Hence,
non-stationary deconvolution is concerned with inverting the integral equations

s(x) =

∞∫
−∞

f(x− x′)p(x′, x− x′)dx′

and

s(x, y) =

∞∫
−∞

∞∫
−∞

f(x− x′, y − y′)p(x′, y′, x− x′, y − y′)dx′dy′
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for signal and image processing, respectively.
In this case, the convolution and correlation theorems are not valid. The

instrument function gives the key as to why the convolution theorem fails in
the non-stationary case: the dimensions of the spectra of the object function
and of the instrument function are no longer compatible.

12.10.1 The Non-Stationary Convolution Operation

In discrete form the above integral equations have to be replaced by sums,
giving

s[m] =
K−1∑
k=0

f [m− k]p[k][m− k]

and

s[m][n] =
K−1∑
k=0

L−1∑
l=0

f [m− k][n− l]p[k][l][m− k][n− l]

respectively, whereK is the length of the convolution mask and L is its width. If
the kernel is non-stationary, it is not numerically optimal to have a convolution
mask of constant size. To make the modelling easier, the optimum masks can
be zero-padded so that they are of the same size.

Another issue arising with discrete deconvolution is the boundary conditions
for the object function. If the convolution mask is of size K × L, the value of
the data function is affected by the value of the object function at the K × L
points inside the mask. Hence, if the data function is to be defined on an array
of size M ×N , the value of the object function has to be known for an array of
size (M +K − 1)× (N +L− 1). In most cases, the extended array is obtained
from an original M ×N array by one of the following:

(i) Zero-padding where the object function takes on zeros outside its known
support.

(ii) End-Point extension where the boundary values are extended over the nec-
essary domain.

(iii) Wrapping where the known array is assumed to be one period of a periodic
function.

12.10.2 Convolution as an Algebraic Operation

Any discrete convolution can be considered as the multiplication of a vector
(the discrete object function) by a matrix (the discrete PSF). The resulting
vector represents the discrete data function. In 1D, the equivalence is easy to
see. For a convolution kernel of size N , the 1D non-stationary convolution is

s[m] =
N−1∑
k=0

f [m− k]p[k][m− k].
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By constructing the matrix P ≡ pij of size N ×N and the vectors f ≡ fi and
s ≡ si of size N , as

pij = p[i− 1][i− j],
fi = f [i− 1],

si = s[i− 1],

the convolution sum is

si =
N∑
j=1

pijfj.

or
P f = s.

The convolution matrix is constructed by reference to the instrument function
only. Each of its columns describe the instrument function applied at a given
point of the object function. The algebraic formulation of the convolution can
take into account all three boundary conditions mentioned above. The chosen
condition will also affect the structure of the matrix, but matrices are sparser
if zero padding is adopted.

For convolution in higher dimensions, the object function has to be trans-
formed into a 1D equivalent and the PSF can still be modelled by a matrix.
The basic idea remains the same - each PSF is described by one column of
the convolution matrix. The problem is then reduced to mapping a discrete
function of dimension D into a discrete function of dimension 1. For the 2D
case this is done by stacking up all the rows of the image to give a vector of
size N ×N . For an image of size N ×N , the linear system (of size N2 ×N2)
is constructed in the following way

pij = p[k][l][m− k][n− l]
si = s[k][l]

fi = f [k][l]

with
i = kN + l + 1 and j = (m− k)N + (n− l) + 1.

For dimensions higher than one the convolution matrices can naturally be seen
as sets of blocks, each block being similar to a 1D convolution matrix. In
general, if D is the dimension of the convolution and N is the size of the
object function support for all dimensions, then the size of the corresponding
convolution matrix is ND ×ND.

In one dimension, if the convolution is stationary and wrapping is adopted as
the boundary condition, the matrix is circulant. All the values of the columns
are shifted with respect to one another. In two dimensions, under the same
boundary conditions, the matrix is block circulant. For the non-stationary case,
no regular pattern of the matrices can be exhibited. Circulant matrices can be
diagonalized. It is interesting to note that the diagonalization is equivalent to
taking the Fourier transform of the information conveyed in one of its rows (or
columns). Hence, the convolution theorem, central in the theory of stationary
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convolution (and deconvolution) can be obtained from an algebraic starting
point. Likewise, the diagonalization of a block circulant matrix is equivalent
to computing a 2D Fourier transform.

Once the convolution matrix is obtained, deconvolution is equivalent to the
solution of a linear system of equation. However, these systems are very large
for usual signals and images. For a 128 × 128 image, the convolution matrix
has 268435456 entries. Clearly, numerical stability as well as computing time
are important challenges to be overcome if algebraic deconvolution is to be of
some value.

Solutions to this problem rely on three observations:

(i) Convolution matrices are often sparse, provided that the convolution masks
are not too large compared to the support of the object functions.

(ii) Convolution matrices are very structured; the position of all non zero entries
can be predicted from the PSF.

(iii) Point spread functions tend to have higher values at their origins, since
the influence of the point where they are applied is nearly always predomi-
nant; hence the highest entries in the matrices will usually be found near the
diagonals.

This suggests that the deconvolution problem should be approached using it-
erative methods of solution (see Digital Signal Processing, J M Blackledge,
Horwood, 2003, Chapter 9).

12.10.3 Algebraic Deconvolution in 1D

Iterative methods for solving systems of linear equations are successful when
applied to 1D non-stationary deconvolution even if the blur degradation is high
(e.g. see Figure 12.5). Two algorithms are particularly efficient for this pur-
pose: (i) the successive-under-relaxation method and (ii) the conjugate gradient
method. Further, the performance of iterative methods applied to stationary
processes are only marginally inferior to the usual restoration techniques (e.g.
the Wiener filter, PSE filter and maximum entropy deconvolution), especially
for broad convolution kernels. Moreover, signals restored using algebraic meth-
ods are qualitatively comparable to those obtained via Fourier space methods
and, hence, iterative solutions do not introduce significant instability in one di-
mension. (Instability is rather caused by the nature of the problem.) Iterative
methods are more efficient than segmentation for non-stationary deconvolution
and the quality of the result obtained by algebraic deconvolution is conditioned
by the extent to which the object image is degraded.

The most appropriate iterative method to use depends on the type of con-
volution kernel. If the kernel is smooth and wide (such as a Gaussian kernel),
under-relaxation provides optimal solutions (in terms of accuracy and com-
putational speed) with relatively few iterations (∼32 for example), typically
producing a good quality restoration for a low value of the relaxation param-
eter (typically 0.1). Conversely, if a discontinuous and narrow kernel is used
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(such as a tophat kernel), the conjugate gradient method provides an optimal
solution with relatively few iterations being required.

Figure 12.5: Non-stationary convolution of a set of 4 unit spikes for a Gaussian
kernel with energy conservation (left); the result of applying algebraic decon-
volution using successive-under-relaxation with a relaxation parameter of 0.11
and 32 iterations (centre) and the result of applying the same deconvolution
method applied to data with additive Gaussian noise and an SNR of 100 (right).

The main drawback of algebraic methods, beside the computing and storage
requirements, is the ill-conditioned characteristics of the matrices. For 1D
deconvolution, for a signal of size 128, the condition number typically takes
values as high as 1013. Consequently, algebraic restoration is very sensitive to
additive noise (e.g. see Figure 12.5). Signal-to-noise ratios defined by

SNR =
‖p⊗ f‖∞
‖n‖∞

of around of 100 are sufficient to disrupt deconvolution especially in the case of
Gaussian kernels. Fortunately, as the spectrum of the blurred data is by def-
inition limited, the application of a low pass filter as a pre-processor provides
much better restoration in the presence of (high frequency) noise. When the
convolution kernel is space limited (such as a tophat function), the sensitivity to
noise is less acute because of the broader spectrum of the data. The errors as-
sociated with algebraic non-stationary deconvolution are generally compatible
with those obtained in the stationary case.

12.10.4 Algebraic Deconvolution in 2D

The extension of iterative algorithms to 2D deconvolution is not straightforward
because the numerical stability, which is relatively sufficient in the case of
signals, is less assured. This comes from the fact that the iterative methods
make heavy use of the diagonal elements of the matrices. The ratio

aii
n∑
j=1
j �=i

aij
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where aij are the matrix elements has to be as large as possible to guarantee
a stable solution. In 1D this ratio has small values (the order of 10−3). In
2D, the number of terms in the sum over aij , which is given by the size of the
convolution mask, jumps from N to N × N . As a result, the ratio has much
smaller values; stability is aften hindered. However, if restrictions are set as
far as the extent to which the image is blurred, algebraic restoration can be
successful and is certainly more appropriate than segmenting the image into
regions where a stationary model can be applied (see Figure 12.6).

Figure 12.6: 128 × 128 test image (left); non-stationary convolution of test
image using a tophat PSF with energy conservation where the average tophat
half-width is 4 pixels (centre); restoration of the image using the conjugate
gradient method (right).

We can take full advantage of the structure of the convolution matrices. Only
the non zero entries are stored and used. Even so, the memory requirement
is often very large. One side effect of this concerns the number of page faults.
For instance, if each double (precision floating point value) is stored using 4
bytes, then, for a 128×128 images, with a convolution mask of size 16×16, the
convolution matrix will occupy 1024 Mbytes of virtual memory if all entries are
stored, and less than 16 Mbytes if only non zero entries are stored. In this last
case, with 16 Mbytes of central memory available, 0.1% of the time is spent
performing actual computations and 99.9% loading new memory pages. Thus,
2D algorithms need to be modified in order to reduce the number of page faults.
The relaxation method can be modified to a block relaxation form while, for
the conjugate gradient method the code for the computation of the product
Ax, which is central to the method, needs to be written in such a way that
each matrix block is referred to only once. It should be noted that iterative
methods leave the characteristic matrix of the linear system unaltered. Given
that convolution matrices are highly structured, it is possible to define them
in terms of their matrix structure rather than in terms of the matrix itself in
order to overcome memory issues. This comes at the price of more computing
time since each entry needs to be evaluated each time it is referred to.

The complexity of the algebraic deconvolution problem, especially in 2D,
is high, but the sparsity of the matrices involved allow iterative algorithms
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to be partially (at least, depending on the sparsity of the matrices) stable.
However, when the problem posed is based on a non-stationary model, algebraic
solutions are required since the convolution theorem (which allows an FFT to
be utilized) can only be applied for the stationary case. The choice of the best
iterative algorithm depends on the characteristics of the convolution kernel. For
broad smooth kernels, under-relaxation yields good results while the conjugate
gradient method is to be preferred for sharp narrow (space-limited) kernels.

Algebraic methods suffer from two drawbacks: (i) the convolution matri-
ces have a high condition number and therefore the restoration is sensitive to
noise but its quality can be greatly improved by a low-pass filtering applied
as a pre-processor; (ii) the algorithms are intensive both in terms of mem-
ory requirements as well as computing time. Further, they require that the
non-stationary profile of the PSF is determined very accurately, which is not
always possible. One well known example of this concerned the Hubble space
telescope. Compensating optics had to be designed and installed in order to
rectify the non-stationary de-focused images that were obtained when the tele-
scope first came into operation; an error had been made during the telescope’s
manufacture.

12.11 Discussion

Deconvolution is concerned with the restoration of a signal or image from a
recording which is resolution limited and corrupted by noise. This Chapter has
been concerned with a class of solutions to this problem which are based on
different criteria for solving ill-posed problems (e.g. the least squares principle)
in the case when the noise is additive. We have considered the case when the
object is convolved with a point spread function whose spectrum is continu-
ous (e.g. a Gaussian point spread function). Solutions to the first problem
have been discussed which are based on the Wiener filter, the Power Spectrum
Equalization filter, the matched filter and constrained deconvolution. In all
cases, knowledge of the characteristic function of the imaging system (i.e. the
point spread function) is required together with an estimate of the signal to
noise ratio (SNR). The success of the methods discussed depends on both the
accuracy of the point spread function and the SNR value used. An optimum
restoration is then obtained by experimenting with different values of SNR for
a given PSF.

In some cases the PSF may be either difficult to obtain experimentally
or simply not available. In such cases, it must be estimated from the data
alone. This is known as ‘Blind Deconvolution’. If it is known a priori that the
spectrum of the object function is ‘white’ (i.e. the average value of each Fourier
component is roughly the same over the entire frequency spectrum), then any
large scale variations in the recorded spectrum should be due to the frequency
distribution of the PSF. By smoothing the data spectrum, an estimate of the
instrument function can be established. This estimate may then be used to
deconvolve the data by employing an appropriate filter - an automatic gain
control. The optimum value of the SNR when applied to the Wiener filter, for
example, can be obtained by searching through a range of values and, for each
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restored image, computing the ratio of the magnitude of the digital gradient to
the number of zero crossings. This ratio is based on the idea that the optimum
restoration is one which provides a well focused image with minimal ‘ringing’.

The Fourier based approach to image restoration relies on the ability to
implement the convolution and correlation theorems. This requires that the
data has been recorded by an imaging system that is isoplanatic (i.e. the PSF is
stationary). When a non-stationary process is involved algebraic deconvolution
is required and the problem is reduced to finding optimal methods of solving
large systems of algebraic equations.

In the following Chapter we consider the case when the object function
is convolved with a sinc or jinc point spread function, for example, whose
spectrum is discontinuous and consequently gives rise to a band-limited image.

12.12 Summary of Important Results

Wiener filter

Given that
sij = pij ⊗⊗fij + nij

we find an estimate f̂ of the object function f by minimizing the mean square
error

e = ‖fij − f̂ij‖2

where
f̂ij = qij ⊗⊗fij.

For signal independent noise, i.e.

fij ��nij = 0 and nij ��fij = 0

qij = F̂−1
2

(
P ∗
ij

| Pij |2 + | Nij |2 / | Fij |2
)
.

Power spectrum equalization filter

Given that
sij = pij ⊗⊗fij + nij ,

and
f̂ij = qij ⊗⊗sij ,

then if
| Fij |2=| F̂ij |2

and the noise is signal independent,

qij = F̂−1
2

(
1

| Pij |2 + | Nij |2 / | Fij |2
) 1

2

.
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Matched filter

If
sij = pij ⊗⊗fij + nij ,

and
f̂ij = qij ⊗⊗sij

then

qij = F̂−1
2

(
P ∗
ij

| Nij |2
)

is that function that maximizes the ratio

R =
|∑
i

∑
j

QijPij |2∑
i

∑
j

| Nij |2| Qij |2 .

For white normalized noise when Nij = 1, ∀i, j

qij = F̂−1
2 [P ∗

ij ]

and
f̂ij = pij ��sij .

Maximum entropy filter

The solution for fij , given that

sij = pij ⊗⊗fij + nij

which maximizes the entropy E defined by

E = −
∑
i

∑
j

fij ln fij

is obtained by solving the transcendental equation

fij = exp[−1 + 2λ(sij ��pij − pij ⊗⊗fij ��pij)].

where λ is the Lagrange multiplier.

Constrained deconvolution

The solution for fij , given that

sij = pij ⊗⊗fij + nij

which minimizes
‖gij ⊗⊗fij‖
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is given by

fij = F̂−1
2

(
λ

SijP
∗
ij

λ | Pij |2 + | Gij |2
)

where λ is the Lagrange multiplier.

Phase reconstruction algorithm

An object function f which is exists over a finite region of support and is zero
outside this region and whose amplitude spectrum A(kx, ky) is known, can be
reconstructed using the following algorithm (the Fienup algorithm):

f(x, y) → F̂2[f(x, y)] → | F (kx, ky) | exp[iθ(kx, ky)]

↑ ↓

Conform to Satisfy
region of amplitude
support constraint

↑ ↓

f ′(x, y) ← Re{F̂−1
2 [F ′(kx, ky)]} ← F ′(kx, ky)

= A(kx, ky) exp[iθ(kx, ky)]
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Chapter 13

Reconstruction of
Band-limited Images

A band-limited function is a function whose spectral bandwidth is finite. All
real digital signals and images are band-limited functions. This leads us to
consider the problem of how the bandwidth, and hence the resolution of a band-
limited image can be increased synthetically using digital processing techniques.
In other words, how can we extrapolate the spectrum of a band-limited function
from an incomplete sample?

Solutions to this type of problem are important in image analysis where
a resolution is needed that is not an intrinsic characteristic of the image pro-
vided and is difficult or even impossible to achieve experimentally. The type
of resolution that is obtained by spectral extrapolation is referred to as super
resolution.

Because sampled data are always insufficient to specify a unique solution
and since no algorithm is able to reconstruct equally well all characteristics
of an image, it is essential that the user is able to play a role in the design
and execution of an algorithm and incorporate maximum knowledge of the
expected features in the available data. Hence, an important aspect of practical
solutions to the spectral extrapolation problem is the incorporation of a priori
information on the structure of an object.

Here, an algorithm is discussed which combines a priori information with the
least squares principle to reconstruct a two dimensional function from limited
(i.e. incomplete) Fourier data. This algorithm is essentially a modified version
of the Gerchberg-Papoulis algorithm to accommodate a user defined weighting
function.

439
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13.1 The Gerchberg-Papoulis Method

Let us consider the case where we have an image f(x, y) characterized by a
discrete spectrum Fnm which is composed of a finite number of samples:

−N
2
≤ n ≤ N

2
and

−M
2
≤ m ≤ M

2
.

These data are related to the image by the equation

Fnm =

X∫
−X

Y∫
−Y

f(x, y)e−i(knx+kmy)dxdy.

Here, f is assumed to be of finite support X and Y , i.e.

| x |≤ X and | y |≤ Y.

and kn, km are discrete spatial frequencies. With this data, we can define the
Band-Limited function

fBL(x, y) =
∑
n

∑
m

Fnme
i(knx+kmy)

which is related to Fnm by a two-dimensional Fourier series. Our problem is
to reconstruct f given Fnm or, equivalently, fBL. In this Section, a solution to
this problem is presented using the least squares principle. First, we consider
a model for an estimate f̂ of f given by

f̂(x, y) =
∑
n

∑
m

Anme
i(knx+kmy). (13.1)

This model is just a two-dimensional Fourier series representation of the object.
Given this model, our problem is reduced to that of finding the coefficients
Anm. Using the least squares method, we compute Anm by minimizing the
mean square error

E =

X∫
−X

Y∫
−Y

| f(x, y)− f̂(x, y) |2 dxdy.

This error is a minimum when

∂E

∂Anm
= 0.

Differentiating, we obtain

∂E

∂Apq
=

∂

∂Apq

X∫
−X

Y∫
−Y

∣∣∣∣∣f(x, y)−
∑
n

∑
m

Anme
i(knx+kmy)

∣∣∣∣∣
2

dxdy
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=

X∫
−X

Y∫
−Y

(
f(x, y)−

∑
n

∑
m

Anme
i(knx+kmy)

)
e−i(kpx+kqy)dxdy.

Thus, E is a minimum when

X∫
−X

Y∫
−Y

f(x, y)e−i(kpx+kqy)dxdy

=
∑
n

∑
m

Anm

X∫
−X

Y∫
−Y

e−i(kp−kn)xe−i(kq−km)ydxdy.

The left hand side of the above equation is just the Fourier data Fpq. Hence,
after evaluating the integrals on he right hand side, we get

Fpq = 4XY
∑
n

∑
m

Anm sinc[(kp − kn)X ] sinc[(kq − km)Y ]. (13.2)

The estimate f̂(x, y) can be computed by solving the equation above for the
coefficients Anm. This is a two-dimensional version of the Gerchberg-Papoulis
method and is a least squares approximation of f(x, y).

13.2 Incorporation of a Priori Information

Since we have considered an image f of finite support, we can write equation
(13.1) in the following ‘closed form’:

f̂(x, y) = w(x, y)
∑
n

∑
m

Anme
i(knx+kmy) (13.3)

where

w(x, y) =

{
1, | x |≤ X, | y |≤ Y ;
0, | x |> X, | y |> Y.

Writing it in this form, we observe that w (i.e. essentially the values of X
and Y ) represents a simple but crucial form of a priori information. This
information is required to compute the sinc functions given in equation (13.2)
and hence the coefficients Anm. Note that the sinc functions (in particular the
zero locations) are sensitive to the precise values of X and Y and hence small
errors in X and Y can dramatically affect the computation of Anm. In other
words, equation (13.2) is ill-conditioned.

The algebraic form of equation (13.3) suggests incorporating further a priori
information into the ‘weighting function’ w in addition to the support (spacial
extent) of the object f . We therefore consider an estimate of the form

f̂(x, y) = w(x, y)
∑
n

∑
m

Anme
i(knx+kmy)
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where w is now a generalized weighting function composed of limited a priori
information on the structure of f . If we now employ a least squares method
to find Anm based on the previous mean square error function, we obtain the
following equation

X∫
−X

Y∫
−Y

f(x, y)w(x, y)e−i(kpx+kqy)dxdy

=
∑
n

∑
m

Anm

X∫
−X

Y∫
−Y

[w(x, y)]2e−i(kp−kn)xe−i(kq−km)ydxdy.

The problem with this result is that the data on the left hand side are not the
same as the Fourier data provided Fpq. In other words, the result is not ‘data
consistent’. To overcome this problem we introduce a modified version of the
least squares method which involves minimizing the error

E =

X∫
−X

Y∫
−Y

| f(x, y)− f̂(x, y) |2 1
w(x, y)

dxdy. (13.4)

In this case, we find that E is a minimum when

Fpq =
∑
n

∑
m

AnmWp−n,q−m (13.5)

where

Wp−n,q−m =

X∫
−X

Y∫
−Y

w(x, y)e−i(kp−kn)xe−i(kq−km)ydxdy.

Equation (13.5) is data consistent, the right hand side of this equation be-
ing a discrete convolution of Anm with Wnm. Hence, using the notation for
convolution, we may write this equation in the form

Fnm = Anm ⊗⊗Wnm.

Using the convolution theorem, in real space, this equation becomes

fBL(x, y) = a(x, y)wBL(x, y)

where
fBL(x, y) =

∑
n

∑
m

Fnme
i(knx+kmy),

wBL(x, y) =
∑
n

∑
m

Wnme
i(knx+kmy)

and
a(x, y) =

∑
n

∑
m

Anme
i(knx+kmy).
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Now, since

f̂(x, y) = w(x, y)
∑
n

∑
m

Anme
i(knx+kmy) = w(x, y)a(x, y)

we obtain the simple algebraic result

f̂(x, y) =
w(x, y)
wBL(x, y)

fBL(x, y).

Here wBL is a band-limited weighting function, band-limited by the same extent
as fBL.

13.3 Example Demonstration and Applications

The algorithm presented above is based on an inverse weighted least squares er-
ror [i.e. equation (13.4)]. It is essentially an adaption of the Gerchberg-Papoulis
method modified to: (i) accommodate a generalized weighting function w(x, y);
(ii) provide data consistency [i.e. equation (13.5)]. The weighting function
w(x, y) can be used to encode as much information as is available on the struc-
tural characteristics of f(x, y). Since equation (13.4) involves 1/w(x, y), w(x, y)
must be confined to being a positive non-zero function. We can summarize this
algorithm in the form

reconstruction =
band− limited image× a priori information

band− limited a priori information

Figure 13.1 provides an example of this reconstruction method using the ex-
ample MATLAB code given below.

function SPECRTRAL_EXTRPOLATION(s,w,bw)
%
%Input:
% s - Bandlimited image
% w - a priori information
% bw - bandwidth of image
%
%Output: Null

%Compute size of images;
%arrays s & w are taken to be the same size.
n=size(s);

%Float to double and normalize data.
s=im2double(s);
w=im2double(w);

%Compute Fourier transforms of s and w
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%in optical form (using fftshift function).
s_spectrum=fftshift(fft2(s));
w_spectrum=fftshift(fft2(w));

%Compute ideal filter:
%Initialize array.
for i=1:n

for j=1:n
filter(i,j)=0;

end
end

%Compute filter
nn=1+n/2; %DC value taken to be at 1+n/2.
bw=bw/2;
for i=nn-bw:nn+bw

for j=nn-bw:nn+bw
filter(i,j)=1;

end
end

%Filter data, taking the real part of the absolute value.
s_bl=real(abs(ifft2(filter.*s_spectrum)));
w_bl=real(abs(ifft2(filter.*w_spectrum)));

%Reconstruct data.
f=w.*(s_bl./w_bl);

%Normalise data (for display).
s_bl=s_bl./max(max(s_bl)); f=f./max(max(f));

%Show images
subplot(2,2,1), imshow(s);
subplot(2,2,2), imshow(s_bl);
subplot(2,2,3), imshow(w);
subplot(2,2,4), imshow(f);

In this example, an object function has been chosen which consists of 512×
512 pixels and is composed of a boundary in the form of a thin annular ring
enclosing a region consisting of solid rectangles, circles, ellipses and a triangle.
The bandwidth of this object has been reduced to 12 pixels using a square
ideal low-pass filter giving the data shown (the Fourier data being composed
of just 12 × 12 non-zero values - 0.6% of the original data). A weighting
function is chosen which includes the support of the original object but does
not reflect its internal structure (i.e. the internal solid objects). Application of
the reconstruction method above provides the result shown.
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Figure 13.1: Reconstruction (bottom-right) of a test object (top-left) function
from band-limited data (top-right) using prior information (bottom-left).

In the previous example it is assumed that the user has access to a limited
but accurate form of information on the structure of the object including its
(compact) support or spatial extent. In some applications this is a reasonable
assumption especially in those cases where the object function has expected
features. In other cases, however, no detailed or accurate a priori information
may be available. In such cases, a priori information on the spatial support of
the object must be estimated from the data alone. A simple way of doing this
is to semi-threshold the data, i.e. apply the following process:

if vin
ij > threshold

then
vout
ij = vin

ij

else
vout
ij = 0

endif
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where vij is the value of a pixel at ij. An example of this approach is given in
Figure 13.2 based on the following example MATLAB code.

function SRT(s,bw,threshold)
%Input:
% s - Bandlimited image
% w - a priori information
% bw - bandwidth of image
%
%Output: Null
%
%Compute size of images;
%arrays s & w are taken to be the same size.
n=size(s);
%
%Normailze input array.
s=im2double(s);
%
%Compute Fourier transforms of s in
%optical form (using fftshift function).
%
s_spectrum=fftshift(fft2(s));
%
%Compute ideal filter:
%Initialize array.
for i=1:n

for j=1:n
filter(i,j)=0;

end
end
%Compute
nn=1+n/2; %DC value taken to be at 1+n/2.
bw=bw/2;
for i=nn-bw:nn+bw

for j=nn-bw:nn+bw
filter(i,j)=1;

end
end
%Filter data, taking the real part of the absolute value.
s_bl=real(abs(ifft2(filter.*s_spectrum)));
%Compute prior information by thresholding data.
s_bl=s_bl./max(max(s_bl));
w=s_bl;
for i=1:n

for j=1:n
if w(i,j)<threshold

w(i,j)=0.0;
end
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end
end
%Bandlimit data.
w_bl=real(abs(ifft2(filter.*(fftshift(fft2(w))))));
%Reconstruct data.
f=w.*(s_bl./w_bl);
%Normalize.
f=f./max(max(f));
%Show images.
subplot(2,2,1), imshow(s);
subplot(2,2,2), imshow(s_bl);
subplot(2,2,3), imshow(w);
subplot(2,2,4), imshow(f);

Here, an object function consisting of two points has been severely band-limited
by applying a 9 × 9 square (ideal) low-pass filter. Thresholding these data
provides an estimate of the support of the object (i.e. a priori information on
the location of the two points in the image original object) which is then used
to obtain the reconstruction shown.

Exactly the same technique has been used to obtain the reconstruction
given in Figure 13.3 which is an example of a SAR image (see Chapter 10).
The object at the centre of this image is a SAR image of a ship obtained
using the Saesat satellite. The image is a display of the amplitude modulations
after the bandwidth of the complex data has been reduced to remove the high
frequency ‘speckle’ generate by coherent scattering of 24 cm microwaves from
the sea surface. By thresholding the amplitude modulated image, a priori
information on the location (support) of the object is obtained. Application of
the reconstruction method provides the super-resolved image shown.

13.4 Error Reduction Algorithm

The error reduction algorithm has been discussed in Chapter 12 with regard to
the Gerchberg-Saxton algorithm for reconstructing the object function f when
both | f | and | F | are known. The same approach can be adopted to design
an iterative approach to extrapolating the spectrum of a band-limited image.
Suppose we have a band-limited image of size X × Y which is zero padded to
produce an image of size 2X × 2Y . Let the complex spectrum of the original
image be given by F ′

r + iF ′
i , which is of size Wx×Wy where Wx and Wy define

the bandwidth of the image in the x- and y-directions, respectively. If we take
the 2D DFT of the zero padded image, then a complex spectrum of size 2X×2Y
will be generated whose central spectral components can be replaced with those
of the original image satisfying the complex spectral constraint. Inverse Fourier
transforming the result will give an output (the real part) which can be space
limited to conform to the region of support. The processing cycle associated
with this algorithm is as follows:
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f(x, y) → F̂2[f(x, y)] → Fr(kx, ky) + iFi(kx, ky)]

↑ ↓

Conform to Satisfy
region of spectral
support constraint

↑ ↓

f ′(x, y) ← Re{F̂−1
2 [F ′(kx, ky)]} ← F ′(kx, ky)

= F ′
r(kx, ky) + iF ′

i (kx, ky)

Clearly, any weighting function w(x, y) can be incorporated by replacing f with
fw in the cycle above.

Figure 13.2: Reconstruction (bottom-right) of two points (top-left) from band-
limited data (top-right). Here, the a priori information (bottom-left) on the
support of the object (i.e. the approximate location of the two points in the
object function) has been obtained by semi-thresholding the band-limited data
using a threshold of 0.5.
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Figure 13.3: Super resolution of a SAR image. The complex data have been
(ideal) low pass filtered to remove the speckle and the SAR image shown (far-
left) is a display of the amplitude modulations of these data. The blurred
object at the centre of this image is a ship obtained using the 24 cm Seasat
radar satellite. By thresholding this image, an estimate of the spatial support
of the object is acquired (see centre image which in this example has been
obtained using a threshold of 0.5). This result is then used to extrapolate the
spectrum of the band-limited (complex) data (far-right).

13.5 Discussion

The problem of reconstructing a band-limited function from limited Fourier
data is an ill-posed problem. Hence, practical digital techniques for solving
this problem tend to rely on the use of a priori information to limit the class of
possible solutions. In this Chapter the least squares principle has been used as
the basis for a solution and then modified to incorporate a priori information
and provide a data consistent result. In this sense the algorithm derived belongs
to the same class as the Wiener filter and, like the Wiener filter, ultimately relies
on the experience and intuition of a user for optimization.

None of the approaches to solving the equation

sij = pij ⊗⊗fij + nij

in this Chapter and Chapter 12 have made explicit use of the statistical prop-
erties of the digital noise function nij . However, in some practical cases, the
probability density function of nij can be obtained experimentally (e.g. by ap-
plying a least squares fit to the histogram) or estimated theoretically. In this
case we can develop a different approach to the deconvolution problem that is
based on the application of Bayesian statistics.
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13.6 Summary of Important Results

Spectral extrapolation of a band-limited image

reconstruction =
band− limited image× a priori information

band− limited a priori information

Error reduction algorithm

f(x, y) → F̂2[f(x, y)] → Fr(kx, ky) + iFi(kx, ky)]

↑ ↓

Conform to Satisfy
region of spectral
support constraints

↑ ↓

f ′(x, y) ← Re{F̂−1
2 [F ′(kx, ky)]} ← F ′(kx, ky)

= F ′
r(kx, ky) + iF ′

i (kx, ky)
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Chapter 14

Bayesian Estimation
Methods

The processing techniques discussed in Chapters 12 and 13 do not take into
account the statistical nature of the noise inherent in an image. To do this,
another type of approach must be taken which is based on a result in probability
theory called Bayes rule named after the English mathematician Thomas Bayes.

14.1 Introduction to Probability and Bayes
Rule

Suppose we toss a coin, observe whether we get heads or tails, and then repeat
this process a number of times. As the number of trials increases, we expect that
the number of times heads or tails occurs is half that of the number of trials.
In other words, the probability of getting heads is 1/2 and the probability of
getting tails is also 1/2. Similarly, if a dice with six faces is thrown repeatedly,
then the probability of it landing on any one particular face is 1/6. In general,
if an experiment is repeated N times and an event A occurs n times say, then
the probability of this event P (A) is defined as

P (A) = lim
N→∞

( n
N

)
.

The probability is the relative frequency of an event as the number of trials
tends to infinity. In practice, only a finite number of trials can be conducted
and we therefore define the probability of an event A as

P (A) � n

N

where it is assumed that N is large.
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14.1.1 The Joint Probability

Suppose we have two coins which we label C1 and C2. We toss both coins
simultaneouslyN times and record the number of times C1 is heads, the number
of times C2 is heads and the number of times C1 and C2 are heads together.
What is the probability that C1 and C2 are heads together? Clearly, if m is
the number of times out of N trials that heads occurs simultaneously, then the
probability of such an event must be given by

P (C1 heads and C2 heads) =
m

N
.

This is known as the joint probability of C1 being heads when C2 is heads. In
general, if two events A and B are possible and m is the number of times both
events occur simultaneously, then the joint probability is given by

P (A and B) =
m

N
.

14.1.2 The Conditional Probability

Suppose we setup an experiment in which two events A and B can occur. We
conduct N trials and record the number of times A occurs (which is n) and the
number of times A and B occur simultaneously (which is m). In this case, the
joint probability may written as

P (A and B) =
m

N
=
m

n
× n

N
.

Now, the quotient n/N is the probability P (A) that event A occurs. The
quotientm/n is the probability that events A and B occur simultaneously given
that event A has occurred. The latter probability is known as the conditional
probability and is written as

P (B | A) =
m

n

where the symbol B | A means ‘B given A’. Hence, the joint probability can
be written as

P (A and B) = P (A)P (B | A).

Suppose that we do a similar type of experiment but this time we record the
number of times p that event B occurs and the number of times q that event
A occurs simultaneously with event B. In this case, the joint probability of
events B and A occurring together is given by

P (B and A) =
q

N
=
q

p
× p

N
.

The quotient p/N is the probability P (B) that event B occurs and the quotient
q/p is the probability of getting events B and A occurring simultaneously given
that event B has occurred. The latter probability is just the probability of
getting ‘A given B’, i.e.

P (A | B) =
q

p
.
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Hence, we have
P (B and A) = P (B)P (A | B).

14.1.3 Bayes Rule

The probability of getting A and B occurring simultaneously is exactly the
same as getting B and A occurring simultaneously, i.e.

P (A and B) = P (B and A).

Hence, by using the definition of these joint probabilities in terms of the con-
ditional probabilities we arrive at the following formula

P (A)P (B | A) = P (B)P (A | B)

or alternatively

P (B | A) =
P (B)P (A | B)

P (A)
.

This result is known as Bayes rule. It relates the conditional probability of ‘B
given A’ to that of ‘A given B’.

14.1.4 Bayesian Estimation Methods

In signal and image analysis Bayes rule is written in the form

P (f | s) =
P (f)P (s | f)

P (s)

where f is the object function that we want to recover from the signal

s(x) = p(x) ⊗ f(x) + n(x)

or image
s(x, y) = p(x, y)⊗⊗f(x, y) + n(x, y).

This result is the basis for a class of restoration methods which are known
collectively as Bayesian estimators.

Bayesian estimation attempts to recover f in such a way that the probability
of getting f given s is a maximum. In practice, this is done by assuming that
P (f) and P (s | f) obey certain statistical distributions which are consistent
with the experiment in which s is measured. In other words, models are chosen
for P (f) and P (s | f) and then f is computed at the point where P (f | s)
reaches its maximum value. This occurs when

∂

∂f
P (f | s) = 0.

Here, the function P is the Probability Density Function (PDF) which is real
and positive. The PDF P (f | s) is called the a posteriori PDF. Since the
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logarithm of a real positive function varies monotonically with that function,
the a posteriori PDF is also a maximum when

∂

∂f
lnP (f | s) = 0.

Now, using Bayes rule, we can write this equation as

∂

∂f
lnP (s | f) +

∂

∂f
lnP (f) = 0.

Because the solution to this equation for f maximizes the a posteriori PDF,
this method is known as the Maximum a Posteriori or MAP method. To
illustrate the principles of Bayesian estimation, we shall now present some
simple examples of how this technique can be applied to data analysis.

Example 1

Suppose that we measure a single sample s (one real number) in an experiment
where it is known a priori that

s = f + n

where n is noise (a single random number). Suppose that it is also known a
priori that the noise is determined by a zero mean Gaussian distribution of the
form (ignoring scaling)

P (n) = exp(−n2/σ2
n)

where σn is the standard deviation of the noise. Now, the probability of mea-
suring s given f - i.e. the conditional probability P (s | f) - is determined by
the noise since

n = s− f.
We can therefore write

P (s | f) = exp[−(s− f)2/σ2
n].

To find the MAP estimate, the PDF for f must also be known. Suppose that
f also has a zero-mean Gaussian distribution of the form

P (f) = exp(−f2/σ2
f ).

Then,
∂

∂f
lnP (s | f) +

∂

∂f
lnP (f) =

2(s− f)
σ2
n

− 2f
σ2
f

= 0.

Solving this equation for f gives

f =
sΓ2

1 + Γ2

where Γ is the SNR defined by

Γ =
σf
σn
.
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Notice that as σn → 0, f → s, which must be true since s = f + n and n
has a zero-mean Gaussian distribution. Also, note that the solution we acquire
for f is entirely dependent on the a priori information we have on the PDF
for f . A different PDF produces an entirely different solution. For example,
suppose it is known, or we have good reason to assume that, f obeys a Rayleigh
distribution of the form

P (f) = f exp(−f2/σ2
f ), f ≥ 0.

In this case,
∂

∂f
lnP (f) =

1
f
− 2f
σ2
f

and assuming that the noise obeys the same zero-mean Gaussian distribution

∂

∂f
lnP (s | f) +

∂

∂f
lnP (f) =

2(s− f)
σ2
n

+
1
f
− 2f
σ2
f

= 0.

This equation is quadratic in f . Solving it, we obtain

f =
sΓ2

2(1 + Γ2)

(
1±

√
1 +

2σ2
n

s2

(
1 +

1
Γ2

))
.

The solution for f which maximizes the value of P (f | s) can then be written
in the form

f =
s

2a

(
1 +

√
1 +

2aσ2
n

s2

)
where

a = 1 +
1
Γ2
.

This is a nonlinear estimate for f . If

σn
√

2a
s

<< 1

then
f � s

a
.

In this case f is linearly related to s. In fact, this linearized estimate is identical
to the MAP estimate obtained earlier where it was assumed that f had a
Gaussian distribution.

From the example given above, it should now be clear that Bayesian estima-
tion (i.e. the MAP method) is only as good as the a priori information on the
statistical behaviour of f - the object for which we seek a solution. However,
when P (f) is broadly distributed compared with P (s | f), the peak value of
the a posteriori PDF will lie close to the peak value of P (f). In particular, if
P (f) is roughly constant, then

∂

∂f
lnP (f)
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is close to zero and therefore

∂

∂f
lnP (f | s) � ∂

∂f
lnP (s | f).

In this case, the a posteriori PDF is a maximum when

∂

∂f
lnP (s | f) = 0.

The estimate for f that is obtained by solving this equation for f is called
the Maximum Likelihood or ML estimate. To obtain this estimate, only a
priori knowledge on the statistical fluctuations of the conditional probability
is required. If, as in the previous example, we assume that the noise is a
zero-mean Gaussian distribution, then the ML estimate is given by

f = s.

Note that this is the same as the MAP estimate when the standard deviation
of the noise is zero.

The basic and rather important difference between the MAP and ML esti-
mates is that the ML estimate ignores a priori information about the statistical
fluctuations of the object function f . It only requires a model for the statistical
fluctuations of the noise. For this reason, the ML estimate is usually easier to
compute. It is also the estimate to use in cases where there is a complete lack
of knowledge about the statistical behaviour of the object function.

Example 2

To further illustrate the difference between the MAP and ML estimate and
to show their use in signal analysis, consider the case where we measure N
samples of a real signal si in the presence of additive noise ni which is the result
of transmitting a known signal fi modified by a random amplitude factor a.
The samples of the signal are given by

si = afi + ni, i = 1, 2, ..., N.

The problem is to find an estimate for a. To solve problems of this type using
Bayesian estimation, we must introduce multidimensional probability theory.
In this case, the PDF is a function of not just one number s but a set of numbers
s1, s2, ..., sN . It is therefore a member of a vector space. To emphasize this, we
use the vector notation

P (s) ≡ P (si) ≡ P (s1, s2, s3, ..., sN ).

The ML estimate is given by solving the equation

∂

∂a
lnP (s | a) = 0
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for a. Let us again assume that the noise is described by a zero-mean Gaussian
distribution of the form

P (n) ≡ P (n1, n2, ..., nN ) = exp

(
− 1
σ2
n

N∑
i=1

n2
i

)
.

The conditional probability is then given by

P (s | a) = exp

(
− 1
σ2
n

N∑
i=1

(si − afi)2
)

and
∂

∂a
lnP (s | a) =

2
σ2
n

N∑
i=1

(si − afi)fi = 0.

Solving this last equation for a we obtain the ML estimate

a =

N∑
i=1

sifi

N∑
i=1

f2
i

.

The MAP estimate is obtained by solving the equation

∂

∂a
lnP (s | a) +

∂

∂a
lnP (a) = 0

for a. Using the same distribution for the conditional PDF, let us assume that
a has a zero-mean Gaussian distribution of the form

P (a) = exp(−a2/σ2
a)

where σ2
a is the standard deviation. In this case,

∂

∂a
lnP (a) = −2a

σ2
a

and, hence, the MAP estimate is obtained by solving the equation

∂

∂a
lnP (s | a) +

∂

∂a
lnP (a)

=
2
σ2
n

N∑
i=1

(si − afi)fi − 2a
σ2
a

= 0

for a. The solution to this equation is given by

a =

σ2
a

σ2
n

N∑
i=1

sifi

1 + σ2
a

σ2
n

N∑
i=1

f2
i

.
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Note that if σa >> σn, then,

a �

N∑
i=1

sifi

N∑
i=1

f2
i

which is the same as the ML estimate.

14.2 The Maximum Likelihood Filter

In the last Section, the principles of Bayesian estimation were presented. We
shall now use these principles to design deconvolution algorithms for digital
images under the assumption that the statistics are Gaussian. The problem is
as follows: given the real digital image

sij =
∑
n

∑
m

pi−n,j−mfnm + nij

find an estimate for fij when pij is known together with the statistics for nij .
In this Section, the ML estimate for fij is determined by solving the equation

∂

∂fij
lnP (sij | fij) = 0.

As before, the algebraic form of the estimate depends upon the model that is
chosen for the PDF. Let us assume that the noise has a zero-mean Gaussian
distribution. In this case, the conditional PDF is given by

P (sij | fij) = exp

⎡⎣− 1
σ2
n

∑
i

∑
j

(
sij −

∑
n

∑
m

pi−n,j−mfnm

)2
⎤⎦

where σn is the standard deviation of the noise. Substituting this result into
the previous equation and differentiating, we get

2
σ2
n

∑
i

∑
j

(
sij −

∑
n

∑
m

pi−n,j−mfnm

)
pi−k,j−� = 0

or ∑
i

∑
j

sijpi−k,j−� =
∑
i

∑
j

(∑
n

∑
m

pi−n,j−mfnm

)
pi−k,j−�.

Using the appropriate symbols, we may write this equation in the form

sij ��pij = (pij ⊗⊗fij)��pij
where �� and ⊗⊗ denote the 2D correlation and convolution sums, respec-
tively. The ML estimate is obtained by solving the equation above for fij . This
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can be done by transforming it into Fourier space. Using the correlation and
convolution theorems, in Fourier space this equation becomes

SijP
∗
ij = (PijFij)P ∗

ij

and thus

fij = F̂−1
2 [Fij ] = F̂−1

2

[
SijP

∗
ij

| Pij |2
]

where F̂−1
2 denotes the (2D) inverse discrete Fourier transform. Hence, for

Gaussian statistics, the ML filter is given by

ML Filter =
P ∗
m

| Pm |2

which is identical to the inverse filter.

14.3 The Maximum a Posteriori Filter

This filter is obtained by finding fij such that

∂

∂fk�
lnP (sij | fij) +

∂

∂fk�
lnP (fij) = 0.

Consider the following models for the PDFs:

(i) Gaussian statistics for the noise

P (sij | fij) = exp

⎡⎣− 1
σ2
n

∑
i

∑
j

(
sij −

∑
n

∑
m

pi−n,j−mfnm

)2
⎤⎦ .

(ii) Gaussian statistics for the object

P (fij) = exp

⎛⎝− 1
σ2
f

∑
i

∑
j

f2
ij

⎞⎠ .

By substituting these expressions for P (sij | fij) and P (fij) into the equation
above, we obtain

2
σ2
n

∑
i

∑
j

(
sij −

∑
n

∑
m

pi−n,j−mfnm

)
pi−k,j−� − 2

σ2
f

fk� = 0.

Rearranging, we may write this result in the form

sij � �pij =
σ2
n

σ2
f

fij + (pij ⊗⊗fij)��pij
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In Fourier space this equation becomes

SijP
∗
ij =

1
Γ2
Fij+ | Pij |2 Fij

where
Γ =

σf
σn
.

The MAP filter for Gaussian statistics is therefore given by

MAP Filter =
P ∗
ij

| Pij |2 +1/Γ2
.

Note that this filter is the same as the Wiener filter under the assumption that
the power spectra of the noise and object are constant. Also, note that

lim
σn→0

(MAP Filter) = ML Filter.

14.4 Super Resolution using Bayesian Methods

In Chapter 13 we discussed the problem of extrapolating the spectrum of a
band-limited image. The same problem can be tackled using a Bayesian method
as discussed in this Section. The problem is given the data

Snm ≡ S(kn, km)

=

X∫
−X

Y∫
−Y

s(x, y) exp(−iknx) exp(ikmy)dxdy, | kn |≤ Kx, | km |≤ Ky

where
s(x, y) = f(x, y) + n(x, y); −X ≤ x ≤ X, −Y ≤ y ≤ Y

obtain an estimate for f . This problem is equivalent to being given the band-
limited data

sBL = p⊗⊗s
where p is a band-limited point spread function such as a separable sinc or
jinc function (i.e. the inverse Fourier transforms of a square and circular ideal
low-pass filter respectively). As in Chapter 13, we consider a weighted linear
polynomial model for f of the form

f(x, y) = w(x, y)
∑
n

∑
m

Anm exp(iknx) exp(ikmy)

and find the discrete Fourier coefficients Anm that satisfy the equation

∂

∂Apq
lnP (s | f) +

∂

∂Apq
lnP (f) = 0
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subject to appropriate and workable statistical models for P (s | f) (i.e. the
PDF of the noise field) and P (f). For example, consider the distributions
(ignoring normalization scaling)

P (s | f) ≡ P (n) = exp

⎡⎣− 1
σ2
n

X∫
−X

Y∫
−Y

| n(x, y) |2
w(x, y)

dxdy

⎤⎦
and

P (f) = exp

⎡⎣− 1
σ2
f

X∫
−X

Y∫
−Y

| f(x, y) |2
w(x, y)

dxdy

⎤⎦ .
The equation above is then satisfied if

− 1
σ2
n

∂

∂Apq

X∫
−X

Y∫
−Y

∣∣∣∣∣s(x, y)− w(x, y)
∑
n

∑
m

Anm exp(iknx) exp(ikmy)

∣∣∣∣∣
2
dxdy

w(x, y)

− 1
σ2
f

∂

∂Apq

X∫
−X

Y∫
−Y

∣∣∣∣∣w(x, y)
∑
n

∑
m

Anm exp(iknx) exp(ikmy)

∣∣∣∣∣
2
dxdy

w(x, y)
= 0.

Differentiating, we obtain

1
σ2
n

S(kp, kq)− 1
σ2
n

∑
n

∑
m

AnmW (kp − kn, kq − km)

+
1
σ2
f

∑
n

∑
m

AnmW (kp − kn, kq − km) = 0.

Using the convolution theorem and rearranging the result, we get

f(x, y) =
Γ2

1 + Γ2

w(x, y)
wBL(x, y)

sBL(x, y)

where
Γ =

σf
σn
.

14.5 Summary of Important Results

Bayes rule

P (A)P (B | A) = P (B)P (A | B)

where P (A) is the probability of A, P (B) is the probability of B and P (B | A)
and P (A | B) are the conditional probabilities of ‘B given A’ and ‘A given B’,
respectively.
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Principles of Bayesian estimation in image processing

Given that
s(x, y) = p(x, y)⊗⊗f(x, y) + n(x, y)

find f such that
∂

∂f
lnP (s | f) +

∂

∂f
lnP (f) = 0

where P (f) is the PDF of f and P (s | f) is the PDF of n (= s− p⊗⊗f).

MAP estimates

Based on knowledge (i.e. statistical models) for both P (s | f) and P (f).

ML estimates

Assume that
∂

∂f
lnP (f) ∼ 0.

An estimate of f is then obtained based on the condition that

∂

∂f
lnP (s | f) = 0.

MAP and ML filters for Gaussian fields P (f) and P (s | f)

Given that
sij = pij ⊗⊗fij + nij

where nij and fij are Gaussian distributed with standard deviations σn and
σf , respectively,

ML filter =
P ∗
ij

| Pij |2 ;

MAP Filter =
P ∗
ij

| Pij |2 + σf

σn

.
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Chapter 15

Image Enhancement

One of the goals of image enhancement is to make the image look better. For
this reason, image enhancement is a rather subjective matter because what
‘looks better’ depends on the type of details and contrasts in the image that
the user is hoping to acquire which can include the application of resolution
enhancing algorithms. In turn these properties depend on the physical charac-
teristics of the image, the a priori knowledge that the user may have on certain
features in the image, coupled with the user’s experience, intuition and judg-
ment. Hence, not surprisingly, there have evolved a wide variety of techniques
for enhancing images which are based as much on the quality of the results
that are achieved as on the criterion for enhancement. In this Chapter some of
the more commonly used methods are discussed.

15.1 Basic Transforms

Basic transformations can be used to enhance details in an image which occur
in the dark or light regions or ‘fields’ of the image. They are trivial to compute
and in some cases have a physical significance.

15.1.1 Logarithmic Transform

The logarithmic transform is of the general form

vout(i, j) = ln vin(i, j)

where v is the value of a pixel at a location (i, j). The portion of the logarithmic
curve over which this transform is required can be adjusted by introducing a
scaling parameter α and employing the transform

vout(i, j) =
1
α

ln[1 + (eα − 1)vin(i, j)].

The addition of 1 is included to prevent problems occurring if vin = 0. The
effect of this transform is to increase the dynamic range of dark fields in an
image and decrease the dynamic range of the bright fields.

464
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The logarithmic transform is a relatively simple method of adjusting the
visual quality of an image in ‘favour’ of those features which have low grey level
values. In some cases, using a logarithmic transform of this kind to enhance an
image can be justified physically. For example, with X-ray images, the value of
a pixel at (i, j) is given by the intensity of the X-rays I as they emerge from an
object of varying thickness and density. The distribution in intensity is given
by

I(i, j) = I0 exp[−f(i, j)]

where I0 is the intensity of the X-ray source and f is a function of the X-ray
attenuating properties of the material which in turn depend on the thickness
and density of the material. If we apply the logarithmic transform to an X-ray
image of this kind, we get

ln Iout(i, j) = ln I0 − f(i, j).

In this case, the logarithmic transform provides an image which is a linear
mapping of the X-ray attenuating properties of the material described by f .

15.1.2 Exponential Transform

The exponential transform is the inverse of the logarithmic transform and has
an inverse effect on the image, i.e. it enhances detail in the bright fields of the
image while decreasing the dynamic range of grey levels in dark fields. The
basic transform is

vout(i, j) = exp[vin(i, j)].

Bases other that the exponential can also be used for this purpose by employing
the transform

vout(i, j) =
1
α

[(1 + α)vin(i,j) − 1]

where α is a variable scaling parameter defined by the user.

15.2 Histogram Equalization

Another way of enhancing an image is to apply a transform which modifies the
histogram of the image in a predetermined and desired fashion. A histogram
is a plot of the number of times that a particular grey level occurs against the
grey level. This provides a global description of the appearance of the image in
terms of the characteristic (discrete) probability density function of grey levels.
The profile or ‘shape’ of the histogram describes the density of grey levels in the
image. If the histogram peaks at a low grey level, then the image is relatively
dark and if the histogram has a concentration of pixels with a high grey level,
then the image is relatively light.

Histogram equalization attempts to generate an image whose histogram is
uniform (i.e. an image where each grey level occurs an equal number of times;
hence the term, ‘equalization’). The effect is to increase the dynamic range of
grey levels. This has a considerable influence on the visual appearance of the
image, enhancing the detail of many features in both the dark and light fields.
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We can formulate the problem in the following way: Let v represent the
value of a pixel which is confined to the range

0 ≤ v ≤ 1

where 0 represents black and 1 represents white. The pixels are quantized into
L grey levels or ‘bins’ so that their range of values is now

0 ≤ vk ≤ L, k = 0, 1, 2, ..., L

where

v0 = 0, v1 = 1, v2 = 2, ...

The probability of a grey level occurring with value vk is given by

P (vk) =
nk
N

where nk is the number of times a pixel occurs with value vk in the image and
N is the total number of pixels. The histogram is a plot of P (vk) against vk.
To equalize the histogram we require a transform T̂ which produces a range of
values

vout
k = T̂ [vin

k ]

such that

P (vout
k ) =

{
1, ∀k > 1;
0, k = 0.

(15.1)

In these terms it is clear that the basic problem is to find T̂ . This is done by
equating the cumulative histograms, i.e.

C(vout
k ) = C(vin

k ) (15.2)

where C(vout
k ) and C(vin

k ) are given by

C(vout
k ) =

k∑
i=0

P (vout
i )

and

C(vin
k ) =

k∑
i=0

P (vin
i )

respectively.
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Figure 15.1: Original image before (top-left) and after (bottom-left) histogram
equalization and the 64-bin histograms (top-right and bottom-right) respec-
tively.

The transform is then obtained by noting that if equation (15.2) holds then

C(vout
0 ) =

0∑
i=0

P (vout
i ) = P (vout

0 ) = 0 = vout
0 ,

C(vout
1 ) =

1∑
i=0

P (vout
i ) = P (vout

0 ) + P (vout
1 ) = 0 + 1 = 1 = vout

1 ,

C(vout
2 ) =

2∑
i=0

P (vout
i ) = P (vout

0 ) + P (vout
1 ) + P (vout

2 ) = 0 + 1 + 1 = 2 = vout
2 ,

and so on, i.e.

C(vout
k ) =

k∑
i=0

P (vout
i ) = vout

k .

From equation (15.2), we then have,

vout
k = C(vin

k )

which can computed directly from the original image. Thus, to enhance an
image by histogram equalization we carry out the following procedure:
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(i) normalize the image so that the largest pixel value is 1; (ii) quantize the
pixels into L levels (defined by the user); compute the histogram of the image
P (vin

k ); (iii) compute the cumulative histogram of the image

C(vin
k ) =

k∑
i=0

P (vin
i );

(iv) normalize this cumulative histogram and then quantize it into the same
number of levels L; (v) assign the value of C(vin

k ) to all the pixels with an
original grey level of vin

k .
An example of histogram equalization is given in Figure 15.1. This process

is very effective for images whose grey level distribution is narrow and shifted
toward the origin leading to an image that is relative dark. The effect of
histogram equalization is to redistribute the grey-levels over a the grey level
range while maintaining the distribution as shown in Figure 15.1.

15.3 Homomorphic Filtering

Homomorphic filtering is based on using the properties of the logarithm to
transform a multiplicative processes into an additive process. The method as-
sumes a physical model for the object function that is based on an illumination-
reflection equation of the form

f(x, y) = i(x, y)r(x, y)

where r is the reflection component, i is the illumination and f is the intensity
distribution. In general, this model has two important features which homo-
morphic filtering relies upon. (i) the illumination component is composed of
low spatial frequencies; (ii) the reflection component is composed of high spatial
frequencies.

The objective of homomorphic filtering is to separate the reflection compo-
nent from the illumination component. This is done by computing the loga-
rithm of f , i.e.

ln f(x, y) = ln i(x, y) + ln r(x, y).

The illumination and reflection components then become additive where:
(i) ln i is composed of low spatial frequencies; (ii) ln r is composed of high
spatial frequencies. By applying a suitable high pass filter (HPF) to reduce the
contribution of ln i to ln f , ln r can be extracted, i.e.

ln r(x, y) � HPF[ln f(x, y)].

Performing an exponentiation to convert the process back into an intensity
distribution then provides the reflection component

r(x, y) � exp (HPF[ln f(x, y)]) .

This method of image enhancement is known as homomorphic filtering. It re-
quires specification of the HPF. A variety of filters can be used for this purpose
which include the following:
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The Ideal High Pass Filter

The ideal high pass filter is given by

H(kx, ky) =

⎧⎨⎩0,
√
k2
x + k2

y ≤ K

1,
√
k2
x + k2

y > K.

where K is the cut-off frequency measured (in pixels) from the origin (the
point in Fourier space where kx = ky = 0 assuming the optical form of the
Fourier transform). This filter attenuates completely (i.e. sets to zero) all
those spatial frequencies that are less than or equal to the cut-off frequency
and passes without modification all those spatial frequencies that are greater
than the cut-off frequency.

The Butterworth High Pass Filter

The Butterworth high pass filter (BHPF) is an approximation to the ideal filter.
It is a continuous and circularly symmetric filter given by

B(kx, ky) =
1

1 +
(

K√
k2

x+k2
y

)2n .

The parameter n is a user-defined positive integer called the order of the filter.
As the value of n increases, the BHPF approaches the ideal filter. Image
enhancement by homomorphic filtering is usually carried out using the BHPF.
In practice, a 2D FFT is used to carry out the filtering operation and the user
may repeat this enhancing process for different values of K and n.

15.4 Light Diffusion and the High Emphasis

Filter

High emphasis filtering is based on computing the Laplacian of an image and
then subtracting the result from the image. This process provides a reconstruc-
tion which is particularly good at restoring the edges of a blurred image; it is
an example of an image ‘sharpening’ filter.

The high emphasis filtered image (which shall be denoted by f0) is related
to the input image f by

f0(x, y) = f(x, y)−∇2f(x, y).

The effect of the Laplacian is to amplify the high spatial frequencies in the
image while leaving the low spatial frequencies relatively unchanged. This can
be seen from the relationship

∇2f(x, y)⇐⇒ (k2
x + k2

y)F (kx, ky).

By subtracting∇2f from f , the low frequencies are virtually canceled out while
the high frequencies remain relatively unchanged.
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15.4.1 Light Diffusion Model

High emphasis filtering is based on a physical model for an image that is as-
sumed to have been degraded (i.e. blurred) through a process of diffusion1.
Consider the 3D homogeneous time dependent wave equation

∇2u− 1
c2
∂2

∂t2
u = 0

where c is the speed of light. Let

u(x, y, z, t) = φ(x, y, z, t) exp(iωt)

where it is assumed that field φ varies significantly slowly in time compared
with exp(iωt) and note that

u∗(x, y, z, t) = φ∗(x, y, z, t) exp(−iωt)
is also a solution to the wave equation. Differentiating

∇2u = exp(iωt)∇2φ,

and

∂2

∂t2
u = exp(iωt)

(
∂2

∂t2
φ+ 2iω

∂φ

∂t
− ω2φ

)
� exp(iωt)

(
2iω

∂φ

∂t
− ω2φ

)
when ∣∣∣∣∂2φ

∂t2

∣∣∣∣ << 2ω
∣∣∣∣∂φ∂t

∣∣∣∣ .
Under this condition, the wave equation reduces to

(∇2 + k2)φ =
2ik
c

∂φ

∂t

where k = ω/c. However, since u∗ is also a solution,

(∇2 + k2)φ∗ = −2ik
c

∂φ∗

∂t

and thus,

φ∗∇2φ− φ∇2φ∗ =
2ik
c

(
φ∗
∂φ

∂t
+ φ

∂φ∗

∂t

)
which can be written in the form

∇2I − 2∇ · (φ∇φ∗) =
2ik
c

∂I

∂t

where I = φφ∗ =| φ |2. Let φ be given by

φ(r, t) = A(r, t) exp(ikn̂ · r)
1The author is grateful to Dr K I Hopcraft, Nottingham University, England for suggesting

this approach.
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where n̂ is a unit vector and A is the amplitude function. Differentiating, and
noting that I = A2, we obtain

n̂ · ∇A =
2
c

∂A

∂t

or (
∂

∂x
+

∂

∂y
+

∂

∂z

)
A(x, y, z, t) =

2
c

∂

∂t
A(x, y, z, t)

which is the unconditional continuity equation for the amplitude A of a wave-
field

u(r, t) = A(r, t) exp[i(kn̂ · r + ωt)]

where A varies slowly with time.

15.4.2 Diffusion Equation for the Intensity

The equation

∇2I − 2∇ · (φ∇φ∗) =
2ik
c

∂I

∂t

is valid for k = k0 − iκ (i.e. ω = ω0 − iκc) and so, by equating the and real
and imaginary parts, we have

D∇2I + 2Re[∇ · (φ∇φ∗)] =
∂I

∂t

and
Im[∇ · (φ∇φ∗)] = −k0

c

∂I

∂t

respectively, where D = c/2κ, so that under the condition

Re[∇ · (φ∇φ∗)] = 0

we obtain
D∇2I =

∂I

∂t
.

This is the diffusion equation (see Chapter 5) for the intensity of light I. The
condition required to obtain this result can be justified by applying a boundary
condition on the surface S of a volume V over which the equation is taken to
conform. Using the divergence theorem

Re
∫
V

∇ · (φ∇φ∗)d3r = Re
∮
S

φ∇φ∗ · n̂d2r =
∮
S

(φr∇φr + φi∇φi) · n̂d2r.

Now, if
φr(r, t)∇φr(r, t) = −φi(r, t)∇φi(r, t), r ∈ S

then the surface integral is zero and

D∇2I(r, t) =
∂

∂t
I(r, t), r ∈ V.
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This boundary condition can be written as

∇φr
∇φi = −tanθ

where θ is the phase of the field φ which implies that the amplitude A of φ is
constant on the boundary (i.e. A(r, t) = A0, r ∈ S, ∀t), since

∇A0 cos θ(r, t)
∇A0 sin θ(r, t)

= −A0 sin θ(r, t)∇θ(r, t)
A0 cos θ(r, t)∇θ(r, t) = −tanθ(r, t), r ∈ S.

15.4.3 Imaging a Diffused Intensity Field

Suppose we record the intensity I in the xy-plane for a fixed value of z. For
z = z0, let

f(x, y, t) = I(x, y, z0, t)

so that
∂

∂t
f(x, y, t) = D∇2f(x, y, t).

Let this two-dimensional diffusion equation be subject to the initial condition

f(x, y, 0) = f0(x, y).

Then, at any time t > 0, it is assumed that light diffusion is responsible for blur-
ring the image f0 and that, as time increases, the image becomes progressively
blurred. The problem is to find f0 from f at some time t > 0. High emphasis
filtering is based on a solution to this problem that uses an approximation to
the Taylor series expansion for f .

Suppose that we record the diffusion blurred image f at a time t = T . The
Taylor series for f at t = 0 may then be written as

f(x, y, 0) = f(x, y, T )− T
[
∂

∂t
f(x, y, t)

]
t=T

+
T 2

2!

[
∂2

∂t2
f(x, y, t)

]
t=T

+ ...

Let us approximate this function be neglecting all terms after the second term.
Using the diffusion equation, we obtain

f(x, y, 0) � f(x, y, T )− T
[
∂

∂t
f(x, y, t)

]
t=T

= f(x, y, T )−DT∇2f(x, y, T ).

Now, since
f(x, y, 0) = f0(x, y)

we have
f0(x, y) = f(x, y, T )−DT∇2f(x, y, T ).

The equation for high emphasis filtering given earlier applies to the case when
DT = 1 but the value of DT can be changed if the user requires control over
the process. Introducing the coefficient α = DT we can use the equation

f0(x, y) = f(x, y)− α∇2f(x, y). (15.3)

The effect of increasing the value of α is to amplify the high frequency content
of f . By lowering the value of α, the influence of the high frequencies in f on
f0 is decreased.
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15.4.4 Computational Method

Image enhancement by high emphasis filtering can be implemented by com-
puting the digital Laplacian. This is achieved by applying a centre differencing
scheme, i.e.

∇2fij = f(i+1)j + f(i−1),j + fi(j+1) + fi(j−1) − 4fij

for α = 1 From this result, we have

f0
ij = fij −∇2fij = 5fij − f(i+1)j − f(i−1)j − fi(j+1) − fi(j−1)

where
f0
ij ≡ f0(i, j).

The values of the pixels at the edges of the image (the boundary conditions)
must be specified. For example, these pixels can be set to the value of their
nearest neighbour, i.e.

f0
i1 = f0

i2, f0
iN = f0

i(N−1)

and
f0
1j = f0

2j, f0
Nj = f0

(N−1)j .

The digital Laplacian is a shift invariant linear operation. Applying this op-
eration to a digital image fij is the same as convolving the image with the
two-dimensional array (the FIR filter)⎛⎝ 0 1 0

1 −4 1
0 1 0

⎞⎠ .

Hence, computing f0
ij is the same as convolving fij with the FIR filter⎛⎝ 0 −1 0

−1 5 −1
0 −1 0

⎞⎠ .

An example of the application of this filter is given in Figure 15.2. Given the
simplicity of the process, the result can be remarkably good, provided that
the degradation of the image conforms to a light diffusion model (i.e. to the
diffusion equation).

15.4.5 Multiple Order Solution

If we record an image at a time t = T then, by Taylor expanding f at t = 0,
we can write

f(x, y, 0) = f(x, y, T ) +
∞∑
n=1

(−1)n

n!
T n

[
∂n

∂tn
f(x, y, t)

]
t=T
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Figure 15.2: Original image (left) - rings of Saturn - and an enhanced image
(right) using the high emphasis filter.

The high emphasis filter derived earlier is obtained by neglecting terms in the
series above for n > 1 giving an approximate solution for the deblurred image
f0. If we include all the terms in this series, then an exact solution for f0 can
be obtained. This can be done by noting that (from the diffusion equation)

∂2f

∂t2
= D∇2 ∂f

∂t
= D2∇4f

∂3f

∂t3
= D∇2 ∂

2f

∂t2
= D3∇6f

and so on. In general we can write[
∂n

∂tn
f(x, y, t)

]
t=T

= Dn∇2nf(x, y, T ).

Substituting this result into the series for f0 given above, we get

f0(x, y) = f(x, y, T ) +
∞∑
n=1

(−1)n

n!
(DT )n∇2nf(x, y, T )

and for DT = 1

f0 = f −∇2f +
1
2!
∇4f − 1

3!
∇6f + ...
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15.5 Noise Reduction

Noise refers to a variety of unwanted disturbances due to measuring and record-
ing errors of all types and interference from external sources. All signals and
images have some degree of noise present in them. The amplitude of the noise
may vary considerably. Also, depending on the type of imaging system used,
noise may be confined to a range of frequencies or exist over the entire spec-
trum of the image. In the latter case, the noise is referred to as white noise in
analogy with white light which is composed of a range of different frequencies
(in the visible part of the electromagnetic spectrum). Noise which is confined
to a band of frequencies is sometimes referred to as coloured noise. The con-
tamination of signals and images by noise has important consequences for all
types of processing.

The aim of a noise reduction algorithm is primarily to enhance the visual
quality of an image by eliminating features which are random and uncorre-
lated. In general, noise tends to corrupt the higher frequency content of most
images where the energy of the data spectrum is usually low. Thus, one way
of reducing noise is by attenuating the high frequency components of the data
over a range of frequencies which can be selected and adjusted by the user to
provide optimum results. This can be achieved by applying a low pass filter.

15.5.1 The Low Pass Filter

As the name suggests, the low pass filter passes the low frequencies of the data
spectrum and attenuates the high frequencies.

The Ideal Low Pass Filter

The ideal low pass filter is given by

H(kx, ky) =

⎧⎨⎩1,
√
k2
x + k2

y ≤ K;

0,
√
k2
x + k2

y > K.

where K is the cut-off frequency. This type of filter attenuates (i.e. sets to
zero) all the spatial frequencies above the cut-off frequency and retains without
modification all those frequencies less than or equal to the cut-off frequency.

The Butterworth Low Pass Filter

The discontinuous nature of the ideal low pass filter causes ringing to occur in
the filtered output. This phenomenon is known as the Gibbs effect and can
be reduced by employing low pass filters which are continuous functions. A
well known and widely used filter of this type is the Butterworth low pass filter
(BLPF) which is given by

B(kx, ky) =
1

1 +
(√

k2
x+k2

y

K

)2n
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where n is the order of the filter. This parameter is a positive integer and
determines the rate at which the filter approaches zero.

15.5.2 The Neighbourhood Averaging Filter

The neighbourhood or moving averaging filter is a spatial domain technique.
A window is chosen which encloses a predetermined neighbourhood of pixels.
The average value of the pixels enclosed by this window is then computed and
assigned to the pixel at the centre of the neighbourhood. By moving the window
and repeating this process, a neighbourhood averaged image is obtained. The
size of the window is defined by the user. Although different-shaped windows
can be employed, a square window is easier to use in practice. The windows
are typically 3×3, 7×7, 9×9, etc. The effect of computing the average of a
neighbourhood of pixels is to eliminate any sudden jumps in the grey level
which could be caused by some noise process. This is demonstrated in the
following example: suppose we have the 3×3 neighbourhood⎛⎝ 2 2 3

3 30 2
1 3 2

⎞⎠ .

Compared with the numbers 1,2 and 3, the number 30 is relatively large and
can be taken to be a digital representation of a noise spike. The average value
of this group of numbers is 5.3. By assigning this value to the central pixel we
obtain the neighbourhood ⎛⎝ 2 2 3

3 5.3 2
1 3 2

⎞⎠ .

The value of the central pixel is now compatible with its neighbours. Hence, the
noise spike is removed. We can express the neighbourhood averaging process
as

sij =
1
M

∑
(n,m)∈S

fnm

where S is the window enclosing n×m neighbours whose centre is located at
(i, j) and M is the total number of pixels (enclosed by S). This process is the
same as convolving the data with the kernel

pij =
1
M

⎛⎜⎜⎜⎝
1 1 . . . 1
1 1 . . . 1
...

...
...

...
1 1 . . . 1

⎞⎟⎟⎟⎠ .

The problem of computing the neighbourhood average of the pixels at the
extreme edge of the image is overcome by zero padding, for example. For a
5×5 window the frame of zeros must be 2 pixels wide. The original image is
then extracted after completing the neighbourhood averaging process.
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The main problem with neighbourhood averaging is that it tends to blur
the image. It therefore has a similar effect to the low pass filter in that high
frequency noise is reduced at the expense of image sharpness. One way of
reducing this effect is by using a thresholding process to leave unchanged those
regions of an image with large variations in the grey level. This can be done
by employing the following process:

if | fij − sij |< threshold
hij = sij
else
hij = fij
endif

where
sij = pij ⊗⊗fij

and hij is the output. If | fij − gij | is greater or equal to the threshold, then
the image remains unchanged. Regions of the image where | fij − gij | is large
correspond to places where there is an abrupt change in the value of the grey
level. For this reason, application of the thresholding process given above helps
to reduce high frequency noise while preserving the original sharpness of the
image and, therefore, important features such as its edges.

15.6 The Median Filter

The aim of all noise-reducing processes is to suppress noise without blurring
or degrading the original image. With low pass filters achieving optimum re-
sults often requires a considerable amount of trial and error. In the case of
neighbourhood averaging, the application of a threshold can go some way to
preserving image sharpness. However, once again, choosing the right threshold
involves the user having to test a range of different values. These problems
can be overcome to a limited extent be employing another filter known as the
median filter. The basic idea is the same as the neighbourhood averaging fil-
ter except that, instead of computing the average of the neighbourhood we
compute the median of the neighbourhood.

The median m of a set of numbers is such that half of the numbers in the
set are less than m and half are greater than m. Thus, suppose we have a set
of five numbers say

(1, 2, 3, 4, 5)

then the median of these numbers is 3. Similarly, the median of the numbers

(7, 19, 20, 30, 31, 49, 69, 72, 81)

is 31 because it is the fifth largest value of the set (there are four numbers less
than 31 and four numbers greater than 31). As with neighbourhood averaging,
the size of the neighbourhood is defined by the user - typically 3×3, 7×7, 9×9,
etc. In a 3×3 neighbourhood, the median is the 5th largest value. In a 5×5
neighbourhood, the median is the 13th largest value and so on. In practice,
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the median of a neighbourhood of pixels can be found by reordering them as
a sequence of increasing numbers. For example, suppose we have the following
3×3 neighbourhood of pixels ⎛⎝ 2 6 3

14 81 2
13 4 1

⎞⎠ .

First, we convert this 3×3 matrix into the row vector

(2, 6, 3, 14, 81, 12, 13, 4, 1).

Then, we reorder these numbers as a sequence of increasing values

(1, 2, 3, 4, 6, 12, 13, 14, 81).

The median of this sequence is then the fifth largest value which is 6. This
example is a good illustration of why median filtering reduces noise spikes. In
comparison with the other numbers in the neighbourhood above, 81 is relatively
large and can be taken to represent a noise spike. The median filter replaces
this value with the median of the neighbourhood, i.e. 81 is replaced by 6 and
the neighbourhood becomes ⎛⎝ 2 6 3

14 6 12
13 4 1

⎞⎠ .

If some of the numbers in the set are the same, then the equal values are
grouped together. For example, suppose we have the set

(5, 6, 20, 10, 11, 10, 12, 13, 10)

where the number 10 occurs three times. Reordering these numbers in ascend-
ing values, the three 10’s are grouped together, thus:

(5, 6, 10, 10, 10, 11, 12, 13, 20).

The median of this set is still the fifth largest value which in, this example, is
10.

The example given above demonstrates that the principal function of a me-
dian filter is to force pixels with very distinct values to be more like their neigh-
bours. The problem of computing the median of those pixels at the extreme
edge of the image is dealt with in exactly the same way as in the neighbour-
hood averaging filter, e.g. zero padding. An example of the application of a
median filter is given in Figure 15.3. Compared with the neighbourhood aver-
aging filter, it provides a superior result in the case when a the image has been
corrupted by isolated noise spikes.
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Figure 15.3: Original image (top-left); original image with additive noise spikes
(top-right); noisy image after application of a 3 × 3 neighbourhood averaging
filter (bottom-left) and after applying a 3× 3 median filter (bottom-right).

15.7 Summary of Important Results

Histogram equalization

The basic process is

voutk =
k∑
i=0

P (vink )

where v is the value of a pixel located at (i, j) and P is the probability of a
grey level occur with value vk.

Homomorphic filtering

Basic problem is: Given

f(x, y) = i(x, y)r(x, y)

where f is the data, i is the illumination component and r is the reflection
component, recover r. The solution to this problem is as follows:
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(i) Apply the homomorphic process

ln f = ln i+ ln r.

(ii) Apply a high pass filter to recover ln r

ln r � HPF[ln f(x)].

(iii) Apply exponentiation to recover r

r = exp(ln r) � exp[HPF(ln f)].

High emphasis filter

Assumes that the blur in an image is due to a process of light diffusion, i.e.
convolution by a low-pass Gaussian filter. The restored image f0 is given by

f0(x, y) = f(x, y)−DT∇2f(x, y)

where f is the blurred image, D is the diffusivity and T is the period over which
diffusion has occurred. The higher order solution (i.e. the solution to an order
n) is given by

f0(x, y) = f(x, y, T ) +
∑
n

(−1)n

n!
(DT )n∇2nf(x, y, T ).

Butterworth low pass filter

B(kx, ky) =
1

1 +
(√

k2
x+k2

y

K

)2n

where K is the cut-off frequency and n is the order of the filter (a user-defined
positive integer).

Neighbourhood averaging filter

sij =
1
M

∑
(n,m)∈S

fij

where S is the window containing n×m pixels whose centre is located at (i, j)
and M is the total number of pixels in the image.

Median filter

The median m of a set of numbers is such that half the numbers are less
than m and half the numbers are greater than m. The median filter operates
in the same way as the neighbourhood averaging filter except that instead of
computing the average of the neighbourhood, it computes the median of the
neighbourhood.
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Problems: Part III

In the questions that follow, n is the size of the input/output array.

III.1 Write a function to convolve a given object function with a point spread
function using FFT2D.

void CONVOLVE(float **f, float **p, float **s, int n)

where f is the object function, p is the point spread function and s is the image.

Generate a digital image consisting of two discs of unit amplitude with a diam-
eter of 10 pixels and with (x,y) coordinates of (54,64) and (74,64). Convolve
this image with a Gaussian point spread function. Observe the effect of varying
the width of the point spread function.

III.2 Write a function to autocorrelate an image using FFT2D.

void AUTOCOR(float **f, float **s, int n)

where f is the input image and s is the output image. Observe the result of
autocorrelating different images.

III.3 Write a function to cross-correlate two digital images using FFT2D.

void CROSCOR(float **f, float **p, float **s, int n)

where f and p are the input images and s is the output.

III.4 Write a subroutine to restore an image using the Wiener filter.

float WIENER(float **s, float **p, float **f, int n, float snr)

where s is the digital image (input), p is the point spread function, f is the
restored image (output) and snr is the signal-to-noise ratio.

482



Problems: Part III 483

III.5 Using function CONVOLVE, convolve the image and image with a Gaus-
sian point spread function so that the features in the image become blurred.
Attempt to restore this blurred image with function WIENER using a range
of values for snr between 1 and 100. Repeat the restoration when a Gaussian
noise field is added to the image before application of the Wiener filter and
study the effect on the restoration.

III.6 Write a function to restore an image using the Power Spectrum Equaliza-
tion Filter.

void PSE(float **s, float **p, float **f, int n, float snr)

where s is the digital image (input), p is the point spread function, f is the
restored image (output) and snr is the signal-to-noise ratio. Repeat the question
above using this filter.

III.7 Write two functions to lowpass filter an image using a rectangular window
and an elliptical window.

void ILF_RECT(float **f, float **s, int x, int y, int n)

void ILF_ELLIPSE(float **f, float **s, int nx, int ny, int n)

where f is the input, s is the filtered output, x and y defines the (x,y) window
size in pixels.

III.8 Write a function to process an image using the generalized logarithmic
transform

void LOGTRAN(float **s, int n, float a)

where s is the input/output and a is the amplitude control.

III.9 Write a function to process an image using the generalized exponential
transform

void EXPTRAN(float **s, int n, float a)

where s is the input/output and a is the amplitude control.

III.10 Write a function to ‘histogram equalize’ an image.

void HISTEQ(float **s, float **f, int n, int l)
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where s is the input, f is the output and l is the number of grey levels.

Test this function using some ‘dark field’ images.

III.11 Write a function to highpass Butterworth filter a digital image.

void BHF(float **s, int n, int cut, int ord)

where s is the input/output, cut is the cutoff frequency (in pixels) and ord is
the ‘order’ of the filter.

III.12 Write a function to homomorphic filter a digital image using the Butter-
worth highpass filter.

void HOMOFIL(float **s, int n, int cut, int ord)

where s is the input/output, cut is the cutoff frequency and ord is the ‘order’
of filter.

Working with ord=4, test this algorithm for on a range of image.

III.13 Write a function to high emphasis filter a digital image using an FIR
filter with an appropriate kernel based on the result

O = I −∇2I

where I is the input image and O is the output.

void HEFIL(float **s, int n)

where s is the input/output.

III.14 By centre differencing of the Laplacian ∇2, compute the FIR kernels for
the second and third order high emphasis filters based on the results

O = I −∇2I +
1
2
∇4I

and
O = I −∇2I +

1
2
∇4I − 1

6
∇6I

respectively where I is the input image and O is the output image. Compare
the result of applying the first and second order high emphasis filters to an
image that has been ‘diffused’ via the application of a Gaussian lowpass filter.

III.15 Write a function to low-pass Butterworth filter an image
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void BLF(float **s, int n, int cut, int ord)

where s is the input/output, cut is the cutoff frequency and ord is the order of
filter.

Working with ord=4, evaluate this process using a range of images.

III.16 Write a function to filter a digital image using the moving average prin-
ciple.

void MOVAV(float **s, int n, int w)

where s is the input/output and w is the window size.

III.17 Write a function to median filter a digital image.

void MEDIAN(float **s, int n, int w)

where s is the input/output and w is the window size

III.18 Study and compare the performance of the moving average and median
filters by adding a random Gaussian noise field to an image. Repeat this study
for the case when the noise field consists of some isolated noise spikes obtained
by applying a threshold to a noise field with random Gaussian deviates.



Part IV

Pattern Recognition and
Computer Vision
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Chapter 16

Segmentation and Edge
Detection

Image analysis and pattern recognition involves the use of image processing
methods that are designed in an attempt to provide a machine interpretation
of an image. Many of these ‘methods’ are based on models and computa-
tional procedures that are consistent with those that have already been cov-
ered in this work such as convolution, correlation, Fourier analysis and moving
window-based data processing. In Part IV of this work, the principal themes of
pattern recognition are considered, including methods of image segmentation
as discussed in this Chapter.

Pattern recognition uses a range of techniques and image processing meth-
ods which are not necessarily based on any one particular theme or unified
theoretical approach. The main problem is that, to date, there is no complete
theoretical model for simulating the processes that take place when a human
interprets an image generated by the eye. Hence, machine or computer vision
remains a rather elusive subject area in which automatic inspection systems
are advanced without having a fully operational theoretical framework as a
guide. Vision can be thought of as a process of linking parts of the visual field
(objects) with stored information or templates about their significance for the
observer. There are a number of questions concerning vision such as: (i) what
are the goals and constraints? (ii) what type of algorithm or set of algorithms
is required to effect vision? (iii) what are the implications for the process given
the types of hardware that might be available? (iv) what are the levels of
representation required to achieve vision?

The levels of representation are dependent on what type of segmentation can
and/or should be applied to an image. For example, we may be able to produce
a primal sketch from an image via some measure of the intensity changes in a
scene which are recorded as place tokens and stored in a database. This allows
sets of raw components to be generated, e.g. regions of pixels with similar
intensity values or sets of lines obtained by isolating the edges of an image
scene and computed by locating regions where there is a significant difference
in the intensity. However, such sets are subject to inherent ambiguities when
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computed from a given input image and associated with those from which an
existing data base has been constructed. Such ambiguities can only be overcome
by the application of high-level rules, based on how humans interpret images,
but the nature of this interpretation is not always clear. Nevertheless, parts
of an image will tend to have an association if they share size, colour, figural
similarity, continuity, shading and texture, for example. For this purpose, we
are required to consider how best to segment an image and what form this
segmentation should take.

The identification of the edges of an object in an image scene is an important
aspect of the human visual system because it provides information on the basic
topololgy of the object from which an interpretative match can be achieved.
In other words, the segmentation of an image into a complex of edges is a
useful pre-requisite for object identification. However, although many low-
level processing methods can be applied for this purpose, the problem is to
decide which object boundary each pixel in an image falls within and which
high-level constraints are necessary. Figure 16.1 illustrates the problem. This
is a binary image of a Dalmatian dog (which can be seen toward the centre of
the image) under a tree casting shade. Clearly, it is difficult to imagine how,
by segmenting the pixels in to sets (edge contours or otherwise), their overall
organization into objects (such as ‘tree’ and ‘dog’) can be achieved. Thus, the
question is, which comes first, recognition or segmentation?

Figure 16.1: Although this photograph is actually a composition of black shapes
on a white surface, the mind organizes the elements, based on past experience,
into the image of a Dalmatian dog.

Compared to image processing, computer vision (which incorporates ma-
chine vision) is more than automated image processing. It results in a conclu-
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sion, based on a machine performing an inspection of its own. The machine
must be programmed to be sensitive to the same aspects of the visual field as
humans find meaningful.

Segmentation is concerned with the process of dividing an image into mean-
ingful regions or segments. It is used in image analysis to separate features or
regions of a pre-determined type from the background; it is the first step in
automatic image analysis and pattern recognition. Segmentation is broadly
based on one of two properties in an image: (i) similarity; (ii) discontinuity.
The first property is used to segment an image into regions which have grey
levels within a predetermined range. The second property segments the image
into regions of discontinuity where there is a more or less abrupt change in
the values of the grey levels. This is used to detect the boundaries or edges of
features in the image, and is known as edge detection.

16.1 Correlation and the Auto-covariance

Function

Correlation is one of the principal methods for recognizing a specific pattern
in an image. Suppose we have an feature in an image fij which matches a
template image tij . If we compute the correlation function given by

cij = tij ��fij ≡
∑
n

∑
m

t(i+n)(j+m)fnm

then the correlation image or surface cij will contain a maximum value (a ‘peak’
or ‘point’) at the position in the image fij which matches the template tij . A
simple example is shown in Figure 16.2. Here, some text is used to illustrate
the principle where the letter ‘y’ occurs just once in the image. By correlating
the image with a template of this letter (i.e. the data obtained by cropping this
feature from the image) a maximum or ‘point’ is obtained at the position where
the template matches perfectly the image feature. By isolating this point and
recording the coordinates in the image plane at which it occurs, the pattern and
its location in the image can be ‘recognized’. This method relies on a number of
limiting conditions: (i) the orientation of the pattern must be the same as that
of the template; (ii) the scale of the pattern must be the same; (iii) the template
should be a good representation of the pattern. In practice, this is not always
possible and several image processing methods are required to implement this
method of pattern recognition in practice. Nevertheless, the correlation method
introduced here is a principal approach in pattern recognition, once the pattern
of interest has been decided upon and extracted from the image.

Given that fij is the pixel value at position ij in the image, for shift-invariant
images (i.e. images that have been formed from a stationary or isoplanatic
process), the normalized autocorrelation function is defined as

cij =
1
c00

(fij ��fij).
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This result can be derived from differences in the form of a normalized difference
correlation function since∑

n

∑
m

[fnm − f(i+n)(j+m)]2 =

∑
n

∑
m

[f2
nm−2f(i+n)(j+m)fnm+f2

(n+i)(m+j)]
2 = 2

∑
n

∑
m

[f2
nm−f(i+n)(j+m)fnm]

= 2

(
c00 −

∑
n

∑
m

f(i+n)(j+m)

)
= 2c00

(
1− 1

2
cij

)
.

As most images are a mixture of deterministic and random processes (e.g.
additive noise), it is useful to subtract the mean and then calculate the auto-
correlation. This is termed the auto-covariance function which is defined as

Cij =
∑
n

∑
m

[fnm − 〈fij〉][f(i+n)(j+m) − 〈fij〉]

where 〈fij〉 is the mean value of fij .

Figure 16.2: A text image (top-left) and a template of the letter ‘y’ (top-right
enlarged) obtained from a crop of the text image. The result of correlating the
text image with this template yields a point in the correlation surface (bottom-
left) at the position in the image where the template and the feature match
(bottom-right enlarged).
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For a template tij the covariance function is given by

Cij =
∑
n

∑
m

[fnm − 〈fij〉][t(i+n)(j+m) − 〈tij〉]

where 〈tij〉 is the mean of tij .
The correlation function and the covariance function are two important

metrics used in pattern recognition. The problem is to decide what feature(s) of
an image to extract in order to generate a template that is robust and relatively
insensitive to noise. The template is typically constructed be processing the
image first in order to isolate features that may be based on pixel similarity,
discontinuity, and statistical measures (including measures of the texture).

16.2 Thresholding

Thresholding is a relatively simple approach to segmenting an image into re-
gions of similarity. The basic principle is to group pixels within a common
range of grey levels into a pre-determined set. The simplest method is the
single-band fixed threshold. This is based on first normalizing the image so the
pixels have values which lie between 0 and 1, i.e.,

0 ≤ vij ≤ 1

where v is the value of the pixel at (i, j). Single-band fixed thresholding con-
verts an image of this type into binary form consisting of just 0’s and 1’s by
application of the following processes:

if vin
ij > threshold

vout
ij = 1

else
vout
ij = 0

where 0 < threshold < 1. This process can be used to isolate features in
an image with a large intensity by applying a threshold which is close to 1.
Examples where this technique is sometimes used include imaging with radar.
Here, the image is composed of amplitude fluctuations caused by objects either
in the air or on the ground which reflect microwaves. These modulations are
related to the radar cross section (see Chapter 10). Radar operators are usually
concerned with isolating targets with a large radar cross section from their
surroundings which give rise to a feature known as clutter. By applying the
process above, objects with a relatively large radar cross section can be isolated
from the rest of the image.

In some cases, it is preferable to retain the grey level variations that occur
above the threshold. This is known as semi-thresholding and is achieved by
applying the following process:

if vin
ij > threshold

vout
ij = vinij
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else
vout
ij = 0

The thresholding principle can be extended to incorporate a number of different
classes. This is known as multi-band fixed thresholding and is based on the
following process:

vout
ij = 0 if 0 ≤ vin

ij < t1;

vout
ij = 1 if t1 ≤ vin

ij < t2;

vout
ij = 2 if t2 ≤ vin

ij < t3

and so on where t1, t2, t3, ... are different thresholds.

16.3 Edge Detection

One of the most important expects of the human visual system is the way in
which it appears to make use of the outlines or edges of objects for recognition
and the perception of distance and orientation. This has led to a theory for the
human visual system which is based on the idea that the visual cortex contains
a complex of feature detectors that are tuned to edges and segments of various
widths and orientations. For this reason, the detection of the edges in an image
can play an important role in the analysis of an image.

Edge detection is basically a method of segmenting an image into regions
of discontinuity. In other words, it allows the user to observe those features of
an image where there is a more or less abrupt change in grey level or texture
- indicating the end of one region in the image and the beginning of another.
Like other methods of image analysis, edge detection is sensitive to noise. For
this reason, detected edges can occur in places where the transition between
regions is not abrupt enough or else edges can be detected in regions of an
image where the texture is uniform.

In simple terms, edge detection makes use of differential operators to detect
changes in the gradients of the grey levels. It is divided into two main categories:
(i) first order edge detection; (ii) second order edge detection. As the name
suggests, first order edge detection is based on the use of a first order derivative
whereas second order edge detection is based on the use of a second order
derivative, in particular, the Laplacian ∇2.

To detect edges in an image we aim to highlight or emphasise changes in
the value of the pixels. Mathematical derivative operations are ideally suited
for this purpose. The first derivative, ∂/∂x, shows extremes at an edge and the
second derivative, ∂2/∂x2, crosses the zero axis where the edge has its steepest
gradient.

16.3.1 First Order Edge Detection

First order edge detection is based on computing the gradient of an image in
x and y and observing the locations in the image where it changes abruptly. If
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the image is denoted by the function f(x, y) then the basic idea is to compute

∇f(x, y) = x̂
∂

∂x
f(x, y) + ŷ

∂

∂y
f(x, y)

and then display the gradient magnitude defined by

| ∇f |=
√(

∂f

∂x

)2

+
(
∂f

∂y

)2

.

A threshold can be applied so that only a fraction of the gradients present
in the image are retained. A binary image composed of 1’s and 0’s is then
obtained which is a display of all the points in the image where its gradient is
larger than the value of the threshold that is applied.

16.3.2 Digital Gradients

In many ways the different gradient methods used for edge detection result from
attempts to find digital approximations to ∇f . The approximations available
are compounded in a class of operators known as digital gradients. A contin-
uous function f(x) can be expanded about a point x = Δx, say, as a Taylor
series

f(x+ Δx) = f(x) + Δx
d

dx
f(x) +

(Δx)2

2!
d2

dx2
f(x) + ...

If we neglect all the terms which occur after the second term, then we obtain an
approximation for the derivative of f at Δx, given by the difference equation

d

dx
f(x) =

f(x+ Δx) − f(Δx)
Δx

.

With partial derivatives we have

∂

∂x
f(x, y) =

f(x+ Δx, y)− f(x, y)
Δx

and
∂

∂y
f(x, y) =

f(x, y + Δy)− f(x, y)
Δy

.

Thus, with a digital image fij , we can replace the partial derivatives with the
differences

Dxfij = f(i+1)j − fij
and

Dyfij = fi(j+1) − fij .
These operations are equivalent to convolving fij with the kernel (−1, 1) in the
x-direction to give Dxfij and convolving fij with (−1, 1) in the y-direction to
give Dyfij . The kernels or (FIR) filters which are used to convolve a digital
image in this way are called masks. They are shift invariant operators which
allow us to write the former difference equations in the form

Dxfij = Dx ⊗ fij ,
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Dyfij = Dy ⊗ fij
where

Dx =
( −1 1

)
and

Dy =
( −1

1

)
.

The equivalence of digital gradient operations and discrete convolutions (i.e.
FIR filters) with certain types of masks is an important result in the theory
and practice of edge detection.

The differencing scheme derived above generates output values for the digi-
tal gradients centred at (i+1/2, j) and (i, j+1/2). This differencing is actually
only one of a number of different arrangements that can be used. For example,
to obtain digital gradients centred at (i, j), we use the differencing scheme

Dxfij =
1
2
[f(i+1)j − f(i−1)j ],

Dyfij =
1
2
[fi(j+1) − fi(j−1)]

since
∂

∂x
f(x, y) � f(x, y)− f(x+ Δx, y)

Δx
;

∂

∂x
f(x, y) � f(x−Δx, y)− f(x, y)

Δx
and, hence,

∂

∂x
f(x, y) � f(x−Δx, y)− f(x+ Δx, y)

2Δx
.

In this case, the masks are given by

Dx =
1
2
( −1 0 1

)
and

Dy =
1
2

⎛⎝ −1
0
1

⎞⎠ ≡ 1
2
( −1 0 1

)T
.

To detect edges independent of orientation, a gradient operator (a vector
operator) is defined as

G =
√
Dx ·Dx +Dy ·Dy.

The gradient magnitude G is calculated with an operator · via the following
procedure. The two values Dx and Dy are calculated separately and squared.
The two values are then added and the square root of the sum provides the
result. To simplify the calculations an alternative is sometimes used, namely

G = |Dx|+ |Dy|.
The angle of gradient θ(G) is also a useful quantity and is given by

θ(G) = tan−1

(
Dy

Dx

)
.

There are a number of variants on this theme, that give different emphasis to
detecting different types of edges which are discussed below.
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16.3.3 The Roberts Edge Detector

The masks discussed so far provide a first approximation to computing the
gradient of an image in the x- and y-directions which results in an emphasis on
horizontal and vertical lines. Consequently, they are not good at detecting the
edges at 45o, for example. The Roberts gradient is based on approximating
first order gradients using cross-differences, where the gradient magnitude is
given by

Gij =
√

[fij − f(i+1)(j+1)]2 + [f(i+1)j − fi(j+1)]2

which is based on application of the masks

Dx =
1
2

(
1 0
0 −1

)
and

Dy =
1
2

(
0 −1
1 0

)
.

However, these masks operate on a relatively small array of pixels and are
consequently relatively sensitive to noise. Practical applications of digital gra-
dients such as the Roberts operator usually require pre-processing to reduce
the level of noise inherent in an image. Another approach is to consider digital
gradients that operate on a larger pixel array.

16.3.4 The Sobel Edge Detector

The Sobel edge detector is an extension which includes a degree of smoothing
to reduce automatically certain artefacts caused by noise. The larger the filter
array the more noise reduction will occur with fewer edges being detected, but
as the filter becomes too large useful edges may not be detected. The Sobel
filter is based on the following digital gradients:

Dx =
1
8

⎛⎝ −1 0 1
−2 0 2
−1 0 1

⎞⎠ , Dy =
1
8

⎛⎝ −1 −2 −1
0 0 0
1 2 1

⎞⎠ .

16.3.5 The Prewitt Edge Detector

The Prewitt edge detector is based on the following digital gradients:

Dx =
1
6

⎛⎝ −1 0 1
−1 0 1
−1 0 1

⎞⎠ , Dy =
1
6

⎛⎝ −1 −1 −1
0 0 0
1 1 1

⎞⎠ .

16.3.6 The Compass Edge Detector

This detector is designed to avoid the sensitivity that a filter has for specific
orientation of an edge. A set of different filters is employed detecting specific
angles, for the gradient Gi. The resulting gradient is then computed as G =
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max{Gi : i = 1 to n}. Various kernels can be used. As an example, the first
two compass Sobel filters are:

0o :

⎛⎝ −1 0 1
−2 0 2
−1 0 1

⎞⎠ , 45o :

⎛⎝ 0 1 2
−1 0 1
−2 −1 0

⎞⎠ .

Any other filter can be used to create a set of compass filters. A few common
ones include the Prewitt filter,

0o :

⎛⎝ −1 1 1
−1 −2 1
−1 1 1

⎞⎠ , 45o :

⎛⎝ 1 1 1
−1 −2 1
−1 −1 1

⎞⎠ ,

the Kirsch filter

0o :

⎛⎝ −3 −3 5
−3 0 5
−3 −3 5

⎞⎠ , 45o :

⎛⎝ −3 5 5
−3 0 5
−3 −3 −3

⎞⎠ ,

and the Robinson filter

0o :

⎛⎝ −1 0 1
−1 0 1
−1 0 1

⎞⎠ , 45o :

⎛⎝ 0 1 1
−1 0 1
−1 −1 0

⎞⎠ .

16.3.7 Nine Dimensional Operators

Given a set of 3 × 3 filters, a complete basis is formed with nine orthogonal
filters. There is obviously an infinite number of sets to choose from. For
completeness, it is worth mentioning at this point one example, namely, a set
containing four filters for edge detection (w1–w4), four filters for line detection
(w5–w8) and the last filter, w9, which is a simple averaging filter as defined
below.

⎛⎝ 1
√

2 1
0 0 0
−1 −√2 −1

⎞⎠ ⎛⎝ 1 0 −1√
2 0 −√2
1 0 −1

⎞⎠ ⎛⎝ 0 −1 −√2
1 0 −1√
2 1 0

⎞⎠
w1 w2 w3

⎛⎝−√2 −1 0
−1 0 1

0 1
√

2

⎞⎠ ⎛⎝ 0 1 0
−1 0 −1

0 1 0

⎞⎠ ⎛⎝ −1 0 1
0 0 0
1 0 −1

⎞⎠
w4 w5 w6

⎛⎝ 1 −2 1
−2 4 −2

1 −2 1

⎞⎠ ⎛⎝ −2 1 −2
1 4 1
−2 1 −2

⎞⎠ ⎛⎝ 1 1 1
1 1 1
1 1 1

⎞⎠
w7 w8 w9
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16.3.8 The Canny Edge Detector

In developing the filters discussed above, two problems are encountered. As the
data elements are discrete, it is not always obvious how to calculate a gradient
value and, in the presence of noise, many spurious edges can become apparent.
Increasing the size of the filter can alleviate these anomalies. The Canny edge
detector is designed to combat some of these problems and consists of three
main stages:

• Gaussian blur the image to reduce the amount of noise and remove speck-
les within the image. It is important to remove the very high frequency
components that exceed those associated with the gradient filter used,
otherwise, these can cause false edges to be detected.

• Gradient detect using one of the above filters, creating two images, one
containing the gradient magnitudes G, and another containing the orien-
tation θ(G). The most common implementations use a simple symmetric
discrete first order derivative.

• Threshold the gradient magnitudes above a certain minimum threshold
value so that only major edges are detected. As well as this minimum
low threshold value, a high threshold value is also specified. On any
connected line, at least one of the edge points has to exceed this high
value. This removes small or insignificant line segments.

By controlling the standard deviation of the Gaussian blurring operation,
and the high and low threshold values, most general edges can be detected. If
it is known a priori what kind of edge is to be detected and the kind of noise
that is present in the image, then an alternative filter can be applied instead
of the Gaussian filter.

16.3.9 Programming Example: Sobel Edge Detection

As an example of edge detection in practice, the following MATLAB function
is used to apply the Sobel edge detector which outputs of the following: Dx,
Dy, G =| Dx | + | Dy |, tan−1(Dy/Dx) and G after conversion to a binary
image through application of a user defined threshold.

function Sobel(threshold)

%Input: threshold - threshold for binarization
%
%Output: None

%Read image (assumed to be .tif file)
f=imread(’filename’,’tif’);

%Convert to normalized floating point array



498 CHAPTER 16. SEGMENTATION AND EDGE DETECTION

f=im2double(f);
f=f./max(max(f));

%Show image
figure(1)
subplot(2,3,1), imshow(f);

%Compute Sobel FIR filter Dx and Dy
Dx(1,1)=-1; Dx(1,2)= 0; Dx(1,3)= 1;
Dx(2,1)=-2; Dx(2,2)= 0; Dx(2,3)= 2;
Dx(3,1)=-1; Dx(3,2)= 0; Dx(3,3)= 1;
Dx=Dx/8;
Dy(1,1)= 1; Dy(1,2)= 2; Dy(1,3)= 1;
Dy(2,1)= 0; Dy(2,2)= 0; Dy(2,3)= 0;
Dy(3,1)=-1; Dy(3,2)=-2; Dy(3,3)=-1;
Dy=Dy/8;

%Apply filter using MATLAB conv2 ’valid’ option
Dx=conv2(f,Dx,’valid’);
Dy=conv2(f,Dy,’valid’);

%Display normalized absolute values of Dx and Dy
ADx=abs(Dx); ADx=ADx./max(max(ADx));
ADy=abs(Dy); ADy=ADy./max(max(ADy));
subplot(2,3,2), imshow(ADx);
subplot(2,3,3), imshow(ADy);

%Compute the gradient magnitude
G=ADx+ADy;

%Normalize and display result
G=G./max(max(G));
subplot(2,3,4), imshow(G);

%Compute the angle of gradient usin MATLAB angle function
c=complex(Dy,Dx);
theta=angle(c);

%Display normalized absolute value
theta=abs(theta); theta=theta./max(max(theta));
subplot(2,3,5), imshow(theta);

%Threshold gradient magnitude image using MATLAB im2bw function
TG=im2bw(G,threshold);
subplot(2,3,6), imshow(TG);
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An example of the output produced by this function for a threshold value
of 0.2 is given in Figure 16.3.

Figure 16.3: An image of Isaac Newton (top-left), Dx (top-centre), Dy (top-
right), G =| Dx | + | Dy | (bottom-left), tan−1(Dy/Dx) (bottom-centre) and
G after binarization with threshold = 0.2 (bottom-right).

16.4 Second Order Edge Detection

Second order edge detection is based on computing the second derivative in
x and y and observing the locations in the image where zeros occur. The
Laplacian of the image given by

∇2f(x, y) =
∂2

∂x2
f(x, y) +

∂2

∂y2
f(x, y)

is used for this purpose. A binary image is then generated by applying the
following process:

If ∇2fin ≥ 0 then
fout = 1
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else
fout = −1

The positions where fout changes from 1 to -1 or from -1 to 1 are then obtained
and a binary grey level display presented. In other words, the value of any
pixel where fout changes from 1 to -1 or from -1 to 1 is set to 1 and all other
pixels are set to zero.

The Digital Laplacian

Expanding the function f(x+ Δx) as a Taylor series, we have

f(x+ Δx) = f(x) + Δx
∂

∂x
f(x) +

(Δx)2

2!
∂2

∂x2
f(x) + ... (16.1)

If we express the function f(x−Δx) in the same way, we get

f(x−Δx) = f(x)−Δx
∂

∂x
f(x) +

(Δx)2

2!
∂2

∂x2
f(x) + ... (16.2)

Neglecting all terms of order (Δx)3 and above, and then adding equations
(16.1) and (16.2), we get

f(x+ Δx) + f(x−Δx) = 2f(x) + (Δx)2
∂2

∂x2
f(x)

Rearranging, we have

∂2

∂x2
(x) =

f(x+ Δx)− 2f(x) + f(x−Δx)
(Δx)2

.

For partial derivatives we have

∂2

∂x2
f(x, y) =

f(x+ Δx, y)− 2f(x, y) + f(x−Δx, y)
(Δx)2

and
∂2

∂y2
f(x, y) =

f(x, y + Δy)− 2f(x, y) + f(x, y −Δy)
(Δy)2

.

From these results the digital Laplacian∇2
ij operating on an image fij becomes

∇2
ijfij = f(i+1)j − 2fij + f(i−1)j + fi(j+1) − 2fij + fi(j−1)

or, after collecting terms,

∇2
ijfij = f(i+1)j + f(i−1)j + fi(j+1) + fi(j−1) − 4fij .

This operation can be written in terms of the convolution of fij with an ap-
propriate mask, i.e.,

∇2
ijfij = maskij ⊗⊗fij
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where

maskij =

⎛⎝ 0 1 0
1 −4 1
0 1 0

⎞⎠ .

The digital Laplacian operator, ∇2
ij , can be defined as, ∇2

ij = D2
x +D2

y where

D2
x =

(
1 −2 1

)
, D2

y =
(

1 −2 1
)T

since

∇2
ij = ( 1 −2 1 ) +

⎛⎝ 1
−2
1

⎞⎠ =

⎛⎝ 0 1 0
1 −4 1
0 1 0

⎞⎠ .

The main advantage of the second derivative is that it is orientation indepen-
dent. To detect an edge with the digital Laplacian, we looking for a position
where the values cross zero. For this reason a ‘signum operator’ is often applied
which creates a black and white image, with black representing positive values
and white representing negative values.

16.5 The Marr-Hildreth Method

One of the major difficulties with real images is that changes in grey level can
and do occur over a wide range of scales. For this reason, edges over a range of
different scales cannot be obtained unless the image is filtered first. By applying
a band-pass filter to an image, we can view separately the edges occurring at
different scales. There are two physical considerations that, together, determine
the appropriate smoothing process (i.e. the band-pass filter): (i) the motivation
for band-pass filtering the image is to reduce the range of scales over which
variations in grey level take place; (ii) the filtered output should be spatially
localized. In other words, the contribution to each pixel in the filtered image
should arise from a smooth average of nearby points. The filter should therefore
be smooth and band-limited in the frequency domain with a small standard
deviation. It should also be smooth and localized in the spatial domain (i.e. its
spatial standard deviation should be small). There is only one distribution that
optimizes both these conditions, namely, the Gaussian distribution (ignoring
scaling)

g(x, y) = exp[−(x2 + y2)/σ2]

where σ is the standard deviation. An important property of this distribution
is that its Fourier transform is of the same form, i.e. ignoring scaling,

G(kx, ky) = exp[−σ2(k2
x + k2

y)].

By changing the value of σ the edges at different scales can be obtained by
finding the zero crossings of the function

∇2
ij ⊗⊗gij ⊗⊗fij.

Convolution of an image with a Gaussian function blurs the image, with a de-
gree of blurring proportional to σ. This means that, in a single operation, we
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have noise reduction and edge detection at the zero crossings. In fact the 3× 3
matrix representation for the digital Laplacian described earlier uses a quan-
tised Gaussian with σ = 1/2. A set of different scaled edge detection images
can be created representing different Gaussian filters. This technique for edge
detection is known as the Marr-Hildreth method after the authors important
contribution to the subject (On the theory of edge detection, Proceedings of the
Royal Society, London, B 207: 127-217, 1980). The Marr-Hildreth algorithm
is not only an edge detector; it is the result of one of the first approaches in
pattern recognition to be based on a model for the human visual system. The
basic idea is that our ability to recognize and interpret different objects in an
image scene is based on matching the edges of the scene over different frequency
scales. Now, ignoring scaling

exp[−r2/σ2]⊗⊗∇2f(x, y) ⇐⇒ −k2 exp[−σ2k2]

where
r =

√
x2 + y2 and k =

√
k2
x + k2

y

which is a band-pass filter whose band depends on the value of σ. By varying σ,
we can obtain the edges of an image at different frequency bands. Techniques
using threshold values, similar to those used in the Canny edge detector, can
be applied to remove possible small or insignificant edges. With zero crossing
detection the Marr-Hildreth edge detector has the great advantage that regions
are automatically defined as being totally enclosed. This can help immensely
when we wish to cluster areas together.

16.6 Pixel Clustering

Detecting major edges in an image gives an indication as to how far away
from any location there is a sharp change in image content. This does not
necessarily define specific enclosed regions. Multiple line detections at different
resolutions will also give possibly contradictory information as regards edge
positions. It is often only by further definition of the type of segmentation
required that useful segmentation decisions can be made. This further problem
is solved to some extent by applying clustering algorithms. Application of a
given filter merely indicates how likely pixels are to be included within a part
of a structure. To represent these structures it is then required to group pixels
together into separate regions. It is noted that certain images could inherently
have no convenient dividing lines to segment images into regions; in such a case,
further a priori information is required. A simple example of this is a smooth
graduation. There are two techniques for grouping pixels together, either by
region splitting, giving a top-down approach, or by region growing, giving a
bottom-up approach.

16.6.1 Region Splitting

The basic concept is to look at the image as a whole and consider it as one
region. If all the pixels within this region are in some way similar then keep
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this as a single region, otherwise split the region into sub-areas and repeat the
process.

The splitting strategy is often deterministic, and commonly consists of four
equal quadrants. This means that, after the image has been completely de-
fined as a large set of regions, many neighbouring regions may contain similar
properties. A merging stage is required to re-group these regions together.

16.6.2 Region Growing

The alternative technique is to start with a known seed pixel within a region
of interest, then grow the region from this pixel by adding neighbouring pixels
that have some similarity. The filling algorithm can consider whole groups
of pixels in any order as is convenient. To cover the whole of the image this
process needs to be repeated with different seed pixels for each different region.

16.7 Clustering Tools

Many techniques are available for detecting specific edge features within an
image. These include filters for the detection of lines, ellipsoids and other
specific geometric shapes. In this section, a selection of the tools available to
aid edge segmentation and the clustering process are presented.

16.7.1 The Hough Transform

The Hough transform was briefly mentioned in Chapter 8 in terms of its ap-
plications to computer vision and in relation to the Radon transform. The
transform is a useful tool aimed at extracting the locations of regular curves
such as lines or circles.

A line detecting Hough transform is calculated by considering all the de-
tected edge points and representing all possible lines through these points.
Consider a point (x0, y0), then the set of all lines through this point is repre-
sented as the set of all possible values of (r, θ) that satisfy

r = x0 cos θ + y0 sin θ.

By considering the sum of the sets of all lines through all edge points, we
construct the Hough transform. To reconstruct these lines the inverse process,
called de-Houghing (e.g. via application of the inverse Radon transform), is
applied by selecting, often by thresholding, the main peaks and then creating
the lines resulting from the values of (r, θ). As might be expected, the Hough
transform is very resilient to noise and gaps in the edges. It has the disadvan-
tage that the whole image is considered at once, which means that for accurate
representation it is preferable for the object to fill the full field of view. The
use of the gradient, θ(G), function can be used to emphasise the directional
component.

By changing the parametric equation which constructs the Hough transform,
other Euclidean objects other than lines can be detected, for example, circles
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[
r2 = (x0 − a)2 + (y0 − b)2

]
or ellipses

[
(x0 − a)2/s+ (y0 − b)2/t = 1

]
. If there

is no simple equation to define the surface a lookup table can be used to define
the shape of the feature. This generalised Hough transform then specifies all
possible scales and orientations.

16.7.2 Histogram Manipulation

If the image is considered homogeneous, that is, operations on the pixels do
not depend on the position of the pixel in the image, then the intensity values
can be visualised with a histogram. A first-order histogram of an image is a
vector containing the number of occurrences of each intensity quantisation level,
H(v). Histograms are one of the first and simplest analytical tools available
and often show the distortions in the acquisition hardware. The probability
density function (PDF) is the proportion of each grey scale value within the
image. If each pixel has unit area, this can be calculated from the histogram
by normalisation, so

p(v) =
1
A
H(v)

where A is the area of the image. For an 8-bit image, the grey values vary
from zero representing black to 255 representing white. The histogram can be
simply extended to its second-order, which is a measure of the joint occurrence
of pairs of pixels separated by a specific distance. The cumulative distribution
function (CDF) is also sometimes used and given as

P (v) =
∫ v

0

p(x)dx =
1
A

∫ v

0

H(x)dx

Using indirect operations that change the histogram is a very easy way of
thresholding or highlighting certain features within an image.

Histogram equalization has been discussed in Chapter 15 and is a good
method for modifying the dynamic range of an image to achieve automatic
enhancement. Areas within the histogram that are very common are given a
larger ‘slice’ of the available grey scale range, and areas that are uncommon have
a reduced ‘slice’ of the range. The aim is for the final image to have a histogram
with the property that its CDF has an equal fraction for all grey value levels.
The transformation from an original image I through the histogram value to
its equalised value is calculated simply from the CDF itself. Consider a grey
value v within image I, then the final value is q(v) given by

q(v) = gmaxP (v)

where gmax is the largest allowable grey level. A simpler operation, which
often results in a less harsh enhancement, is the use of contrast stretching.
This process involves scaling a range of the histogram to cover a larger range.
Consider scaling the range x . . . y to a new range p . . . q, then each pixel value
d is scaled using

v′ =
(v − x)(q − p)

(y − x) + p
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This method is ideal for expanding an image around a peak in the histogram.
If we allow the x . . . y range to just cover all of the non-zero section of the
histogram, and the range p . . . q to cover the whole range then the process is
termed histogram normalization.

Another common modifying process is histogram gamma (γ) correction,
which converts a linear interpolation of intensity values with an exponential
law. This is designed to approximate to the logarithmic characteristics of the
human visual system. In general, the formula for converting a grey value v to
the gamma corrected version v′ is

v′ = a(vγ) + b

where a and b bound the resulting values to some range. All these histogram
operations may improve visibility for human inspection and aid the interactive
image processing. Unfortunately, for many automated scientific processes a
linear relationship between intensity and grey value is often essential.

16.7.3 Morphological Operations

Morphological operations combine an image with a structuring element, often
a 3 × 3 matrix. They process an image pixel by pixel according to the neigh-
bourhood pixel values. Morphological operations are often applied to binary
images, although techniques are available for grey level images.

We present here the basic operations. The most common are used for high-
lighting or removing features, for example as edge detectors or for noise sup-
pression. For all these operations we have an initial image, I and a structuring
element S that is centred on pixel ij by shifting S to Sij .

Dilation and Erosion

In dilation, position ij is included in the dilation of I by S if the intersection
is non-zero which we define as

I ⊕ S = {(ij) : Sij ∨ I �= 0}
where ∨ denotes the logical AND operator. A process of region filling can be
constructed using the dilation process. We can define the imageX0 to represent
a single pixel within the region, and define E to represent the edge map of the
region. Then by iterating

X i+1 =

⎡⎣X i ⊕
⎛⎝ 1 1 1

1 1 1
1 1 1

⎞⎠⎤⎦ ∧E
where ∧ denotes the logical OR operation, we converge to filling the entire
region.

Erosion is the dual of dilation and position ij is included in the erosion of
I by S whenever S is a subset of I, i.e.

I � S = {(i, j) : Sij ⊆ I}.
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The process is useful when detecting and separating objects that are slightly
touching. Because erosion is the dual of dilation, each can be defined in terms
of each other so that

I � S = I ⊕ S, I ⊕ S = I � S.

Opening and Closing

This operation is simply an erosion followed by a dilation operation that uses
the same structuring element. Small minor elements of a structure are removed
without increasing the size of the structure.

The dual of opening is closing and involves a dilation followed by an erosion.
Closing has the property of filling in small holes. To achieve more severe
opening or closing operations, the process can involve multiple erosions followed
by the same number of dilations. For opening ◦ and closing • these can be
defined as

I ◦i S = (I

i︷ ︸︸ ︷
�S . . .� S)

i︷ ︸︸ ︷
⊕S . . .⊕ S, I •i S = (I

i︷ ︸︸ ︷
⊕S . . .⊕ S)

i︷ ︸︸ ︷
�S . . .� S .

Hit and Miss Transform

The most general operation is the hit and miss transform �, which uses a
structuring element that contains both 1’s and 0’s. These represent foreground
and background pixels that in general can detect any feature. A position ij is
included in the dilation of I by Sij whenever there is an exact match. We can
define this general operator by considering two structural elements S1 and S2

defined as
S1 = {(i, j) : Si,j = 1}, S2 = {(i, j) : Si,j = 0}.

Then
I % S = (I � S1) ∨ (I ⊕ S2).

As an example, the following four structure elements can be used as corner
detectors:⎛⎝ 1

0 1 1
0 0

⎞⎠ ,

⎛⎝ 1
1 1 0

0 0

⎞⎠ ,

⎛⎝ 0 0
1 1 0

1

⎞⎠ ,

⎛⎝ 0 0
0 1 1

1

⎞⎠
and end points of a skeleton can be detected with the following:⎛⎝ 0 1 0

0 0 0

⎞⎠ ,

⎛⎝ 0 0
1 0
0 0

⎞⎠ ,

⎛⎝ 0 0 0
0 1 0

⎞⎠ ,

⎛⎝ 0 0
0 1
0 0

⎞⎠

Thinning and Thickening
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A process of thinning �� and thickening ��, can be achieved via the hit and
miss operator with the following definitions;

I �� S = I ∨ (I % S), I �� S = I ∧ (I % S).

Examples of different structuring elements with regard to the thinning process
are as follows: ⎛⎝ 1 1 1

1 1 1
1 1 1

⎞⎠
which deletes all those pixels that do not have a neighbouring background pixel
and ⎛⎝ 0 0 0

0 1 0
0

⎞⎠ ,

⎛⎝ 0 0 0
0 1 0

0

⎞⎠
which, together with their rotational analogues, can be used to remove small
spikes from a structure. For this reason they are termed ‘pruning’ operators.
Continual use of pruning can be undertaken until convergence removes all ele-
ments except those that form closed loops.

Finally, an example of a set of structuring elements used within the thick-
ening process is ⎛⎝ 1 1

1 0
1 0

⎞⎠ ,

⎛⎝ 1 1
0 1

0 1

⎞⎠ .

Along with the related rotations, this set of structure elements converges to
produce a convex hull approximation to any structure. However, this method
does not necessarily have fast convergence rates.

16.8 Hierarchical Data Structures

Image information is often defined as multi-resolutional and can be described as
having different classifications at different resolutions. This can be intuitively
described by considering cartography where different scaled maps contain very
different types of information and are used in many different ways dependent
upon scale. Most of the filters described so far have fixed and finite sizes and,
although it is possible to create a large set of filters for all possible resolutions,
a favoured option is to modify the data structure holding the image. One
strategy is to allow the image to hold automatically many different resolutions
at the same time within a pyramid data structure. Two pyramid types are
commonly used, a Gaussian pyramid and a Laplacian pyramid.

A Gaussian pyramid structure is defined to consist of a set of images each
smaller by a factor of 2 in both the horizontal and vertical directions. The
reduced image pixels are sampled with a blurring filter. For example, in the
2×2 case, a binomial filter simply requires averaging the four pixel values. Not
all levels of the pyramid structure are required as the higher levels can become
very small, yielding minimal information. For this reason the pyramid is cut
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off at a certain stage to minimise the storage required. The high resolution
level is often referred to as fine and the blurred levels are termed as coarse.

The total extra storage space requirement is minimal, as is the extra com-
putational time required to apply filters at all levels rather than just at the
very fine level. If the original image is an n × n array where n = 2k then the
number of pixels N for the Gaussian pyramid is

N =
(
2k
)2 +

(
2k−1

)2 +
(
2k−2

)2 +
(
2k−3

)2 + · · ·
=

(
2k
)2 [1 + 1/

(
22
)

+ 1/
(
24
)

+ 1/
(
26
)

+ · · · ]
≤ (

2k
)2 22/

(
22 − 1

)
=
(
2k
)2 4/3 = (4/3)n2.

From the Gaussian pyramid, the Laplace pyramid can be derived very sim-
ply. Each Laplace level is created by subtracting the smoothed from the un-
smoothed at each of the Gaussian levels. The top level is then a copy of the
equivalent Gaussian level. Using similar inverse operations on the Laplacian
pyramid we can reconstruct the original image.

To create the Gaussian pyramid we consider some averaging filter. In the
simple case a 2× 2 binomial filter,

Gx = B1 =
1
2
(

1 1
)

is sometimes sufficient. A recommendation is to use an even, separable and
symmetric 5×5 smoothing filter, G = GxGy, where Gx = ( γ β α β γ ).
This gives a degree of overlapping for the results of each higher level pixel.
Larger filters are usable but with a corresponding cost in computational time.
The following two properties then need to hold:

• The average grey value should be conserved. This means that α + 2β +
2γ = 1.

• Each point should contribute equally to the level above. The contribution
from an even point is equal to α+ 2γ, and the contribution from an odd
point is 2β. So α+ 2γ = 2β.

Thus β = 1/4 and α + 2γ = 1/2 and the resulting set of filters are then
of the form ( 1/8− x/2 1/4 1/4 + x 1/4 1/8− x/2 ). Commonly used
examples are:

x = 1
2 , gives negative end points, 1

8 ( −1 2 6 2 −1 ).

x = 1
4 , gives the smaller binomial filter, B2 = 1

4 ( 0 1 2 1 0 ).

x = 1
8 , gives the popular binomial filter, B3 = 1

16 ( 1 4 6 4 1 ).

x = 1
16 , gives an alternative filter, 1

32 ( 3 8 10 8 3 ).

x = 0, gives a more square filter, 1
8 ( 1 2 2 2 1 ).

x = − 1
4 , gives an alternative filter, 1

4 ( 1 1 0 1 1 ).

The binomial filter has the disadvantage of not being a very sharp function.
Binomial filters can be computed from the binomial distribution, in a similar
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way to Pascal’s triangle. They have the property that they balance kernel size
with variance σ2.

Binomial Filter σ2

B0 ( 1 ) 0
B1 1/2 ( 1 1 ) 1/4
B2 1/4 ( 1 2 1 ) 1/2
B3 1/8 ( 1 3 3 1 ) 3/4
B4 1/16 ( 1 4 6 4 1 ) 1
B5 1/32 ( 1 5 10 10 5 1 ) 5/4
B6 1/64 ( 1 6 15 20 15 6 1 ) 3/2
B7 1/128 ( 1 7 21 35 35 21 7 1 ) 7/4
B8 1/256 ( 1 8 28 56 70 56 28 8 1 ) 2
B9 1/512 ( 1 9 36 84 126 126 84 36 9 1 ) 9/4
B10 1/1024 ( 1 10 45 120 210 252 210 120 45 10 1 ) 5/2

This can mean that very large binomials are required for only moderate values
for the standard deviation. For example, when σ = 5 the binomial B100 needs
to be used that covers over 100 pixels. Alternative smoothing functions whose
standard deviation is large compared with the kernel size can be used. For
example, by slightly changing the binomial filter’s rate of curvature we have

Ba,b = [I − (I −B2)a]b.

Now a controls the steepness of the transition and b controls the cut-off position.
A second alternative is to use the same averaging function but with pixels that
are further spread out. Using the Jähne suffix naming scheme:

Bx−y =
(

1 0
0 1

)
, Bx+y =

(
0 1
1 0

)
,

B2x =
(

1 0 1
)
, B2y =

⎛⎝ 1
0
1

⎞⎠ ,

Bx−2y =
(

1 0 0
0 0 1

)
, Bx+2y =

⎛⎝ 0 1
0 0
1 0

⎞⎠ ,

B2x−y =

⎛⎝ 1 0
0 0
0 1

⎞⎠ , B2x+y =
(

0 0 1
1 0 0

)
.
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16.9 Summary of Important Results

Correlation (matched filtering)

If tij is a feature (template) that is present somewhere in fij (with the same
orientation and scale), then

sij = tij ��fij
has a maximum value at the (central) position in fij where this feature occurs.

Covariance function For a template tij the covariance function is given by

Cij =
∑
n

∑
m

[fnm − 〈fij〉][t(i+n)(j+m) − 〈tij〉]

where 〈tij〉 is the mean of tij and 〈fij〉 is the mean of fij .

Thresholding and binarization

Given that 0 ≤ vij ≤ 1

if vin
ij > threshold

vout
ij = 1

else

vout
ij = 0

where 0 < threshold < 1

Example edge detecting filters

The Roberts edge detector

Dx =
1
2

(
1 0
0 −1

)
, Dy =

1
2

(
0 −1
1 0

)

The Sobel operator

Dx =

⎛⎝ −1 0 1
−2 0 2
−1 0 1

⎞⎠ , Dy =

⎛⎝ −1 −2 −1
0 0 0
1 2 1

⎞⎠

The Prewitt operator

Dx =

⎛⎝ −1 0 1
−1 0 1
−1 0 1

⎞⎠ , Dy =

⎛⎝ −1 −1 −1
0 0 0
1 1 1

⎞⎠
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Mask for the digital Laplacian ∇2
ij

maskij =

⎛⎝ 0 1 0
1 −4 1
0 1 0

⎞⎠
Marr-Hildreth algorithm

Locate the zero crossings associated the function

gij ⊗⊗∇2fij

where gij is a Gaussian lowpass filter for different values of the filter’s standard
deviation.
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Chapter 17

Statistical Modelling and
Analysis

Statistical imaging uses methods from stochastic field theory, statistical mod-
elling techniques and information theory in an attempt to classify an image or
regions of an image that are of statistical significance. It is an approach that
is broadly based on an analysis of the Probability Density Function (PDF) of
grey and/or colour levels just as Fourier based image processing is based on an
analysis of the spectrum of an image. This includes developing approaches to
modelling the PDF of an image from basic random walk principles.

The statistics of an image can be classified into two main types, those as-
sociated with a coherent and those of an incoherent image. The statistics of
an incoherent image are variable, i.e. the PDF of an incoherent image varies
considerably from one image to another. However, the statistics of a coherent
image have a common form that is characterized by a PDF with a negative
exponential of the type (ignoring scaling) xα exp(−βx). Thus, the PDF of a
coherent image has a characteristic ‘shape’ whereas the shape of the PDF of
an incoherent image is arbitrary. This is illustrated in Figure 17.1 which shows
the intensity histograms of two incoherent images and Figure 17.2 which shows
the histograms of two coherent images, a laser speckle pattern and a synthetic
aperture radar image. In both cases, statistical methods can be used to pro-
cess and/or analyse images by computing different statistical parameters for
the image as a whole or by applying a moving window to segment the image
statistically. In the latter case, information on the variations of a statistic
across an image can provide a means for its classification.

Depending on the nature of a distribution, various image processing and
transformation methods can be used to segment an image. A well known
example is a method of automatic binerization that can be applied to an in-
coherent image when its distribution is bi-modal, i.e. has two distinct modes
(two isolated maxima). In such cases, the threshold used for binarization can
be taken to be the minimum value that occurs between the two modes which
is a measure of the mid point between the dark and bright fields.
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Figure 17.1: Two incoherent images (left) and their 256-bin histograms (right).

Figure 17.2: Two coherent images (a laser speckle pattern - top-left - and a
synthetic aperture radar image - bottom-left) and their 256-bin histograms
(right).
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An example of this is given in Figure 17.3 which shows the binarization of an
incoherent image after it has been quantized into a 5-bit image to obtain a gross
statistical distribution compounded in a 32-bin distribution. This distribution
is clearly bi-modal with a minimum value between the two modes occurring at
the 17th bin. This gives a threshold of 17/32 = 0.5313, where it assumed that
the original 8-bit image has been normalized to floating point values between
0 and 1 inclusively.

Figure 17.3: Binarization of an 8-bit image (top-left) after re-quantization to a
5-bit image (top-right) to provide a 32-bin histogram (bottom-left) from which
a minimum value (in this case, the 17th bin) can be acquired and applied as
the threshold to give a binary image (bottom-right) - an optimal demarcation
between the dark- and bright-fields.

17.1 Random Scattering Theory

Statistical analysis ideally requires a model for the physical behaviour of the
random variable(s) that is derived from basic principles. In the case of statis-
tical signal and image analysis, this typically involves modelling the scattered
field in terms of its interaction with an ensemble of ‘scattering sites’ based on
an assumed stochastic process. If the density of these scattering sites is low
enough so that multiple scattering is minimal, then we can apply Born scat-
tering to develop a model for the intensity of a wavefield interacting with a
random Born scatterer.

In the far field, the Born scattered field (i.e. the scattering amplitude) is
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given by the Fourier transform of the scattering function (see Chapter 6). If
this function is known a priori, then the scattering amplitude can be deter-
mined. This is an example of a deterministic model. If the scattering function
is stochastic (i.e. a randomly distributed scatterer) such that it can only be
quantified in terms of a statistical distribution (i.e. the Probability Density
Function - denoted by Pr) then we can simulate the (Born) scattered field by
designing a random number generator whose output conforms to this distri-
bution. The Fourier transform of this stochastic field then provides the Born
scattering amplitude. Thus, given a three dimensional Helmholtz scattering
function γ(r), r ∈ V with Pr[γ(r)] known a priori, the scattering amplitude
A is given by

A(N̂, k) = k2

∫
V

exp(−ikN̂ · r)γ(r)d3r

where N̂ = n̂s−n̂i (the difference between the directions in which the scattered
and incident wavefields propagate) and γ(r) is a stochastic function whose
deviates conform to the PDF Pr[γ(r)]. This approach is the basis for the
computation of the speckle patterns given in Figure 11.6.

17.1.1 Autocorrelation of the Scattering Function

The intensity of the scattering amplitude is given by

I(N̂, k) =| A(N̂, k) |2= A(N̂, k)A∗(N̂, k)

= k4

∫
V

exp(−ikN̂ · r)γ(r)d3r
∫
V

exp(ikN̂ · r′)γ∗(r′)d3r′.

Using the autocorrelation theorem, we have

I(N̂, k) = k4

∫
V

exp(−ikN̂ · r)Γ(r)d3r

where Γ is the autocorrelation function given by

Γ(r) =
∫
V

γ(r′)γ∗(r′ + r)d3r′.

This result allows us to evaluate the intensity of the Born scattered ampli-
tude by computing the Fourier transform of the autocorrelation function of the
scattering function which is taken to be composed of a number of scatterers dis-
tributed at random throughout V . This requires the autocorrelation function
to be defined for a particular type of random scatterer.

Consider the case when the scattering function is such that its autocorrela-
tion function is radially symmetric and the intensity is given by [using spherical
polar coordinates (r, φ, ψ)]

I(N̂, k) = k4

2π∫
0

dψ

1∫
−1

d(cosφ)

R∫
0

drr2 exp(−ik | n̂s − n̂i | r cosφ)Γ(r).
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Now,

| n̂s − n̂i |=
√

(n̂s − n̂i) · (n̂s − n̂i) =
√

2(1− cos θ), cos θ = n̂s · n̂i
where θ is the scattering angle (i.e. the angle between the incident and scattered
fields). Using the half angle formula

1− cos θ = 2 sin2(θ/2)

we have
| n̂s − n̂i |= 2 sin(θ/2)

and integrating over ψ and cosφ we have

I(θ, k) =
2πk3

sin(θ/2)

R∫
0

sin[2kr sin(θ/2)]Γ(r)rdr.

If we now consider the case when kR << 1 (i.e. the wavelength is large com-
pared to the characteristic size of the scatterer - a condition that is consistent
with the weak scattering approximation used to derive the result above), then
we have

sin[2kr sin(θ/2)] � 2kr sin(θ/2)

and

I(θ, k) = 4πk4

R∫
0

Γ(r)rdr.

With regard to the autocorrelation function, the correlation of any function
with itself produces a central peak at the point where the two functions match.
We should therefore expect the autocorrelation function to consist of a peak
with off-peak values that decay rapidly away from the position of the peak (i.e.
its maximum value). In general, the maximum value will occur at r = 0 where
the value of the autocorrelation function is given by

〈γ2〉 =
∫
V

| γ(r) |2 d3r

Thus, if we let
Γ(r) = 〈γ2〉c(r)

where c is the normalized correlation function given by

c(r) =
Γ(r)
〈γ2〉

then we can write
I(θ, k) = 4πk4〈γ2〉f(R)

where

f(R) =

R∫
0

c(r)rdr.
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Note that the angular dependence of the intensity will depend on the char-
acteristics of the Born scattering functions derived in Chapter 9, e.g. for a
conductive dielectric

〈γ2〉 = 〈(γε + γμ cos θ)2〉+
z2
0

k2
〈σ2〉 ≤ 〈γ2

ε 〉+ 〈γ2
μ〉 cos θ +

z2
0

k2
〈σ2〉

and for a viscous acoustic medium,

〈γ2〉 = 〈(γκ + γρ cos θ)2〉+ (k�)2〈(γρ cos θ + γλ + 2γμ cos2 θ)2〉

≤ 〈γ2
κ〉+ 〈γ2

ρ〉 cos2 θ + (k�)2(〈γ2
ρ〉 cos θ + 〈γ2

λ〉+ 4〈γ2
μ〉 cos4 θ).

17.1.2 Autocorrelation Function Models

Once the autocorrelation function is known, the Born scattered intensity can be
computed by evaluating the Fourier transform of this function. Thus, a random
medium can be characterized via its autocorrelation function by measuring the
scattered intensity and inverse Fourier transforming the result. However, the
characteristics of the autocorrelation function can formulated by considering
its expected spectral properties since

Γ(r) = γ(r)� γ(r)⇐⇒| Γ̃(k) |2

where Γ̃ is the Fourier transform of γ and k is the spatial frequency vector.
Hence, in order to evaluate the most likely form of the autocorrelation function
we need to consider the properties of the power spectrum of the scattering
function. If this function is ‘white’ noise for example (i.e. its Power Spectral
Density Function or PSDF is a constant), then the autocorrelation function is a
delta function whose Fourier transform is a constant. However, in practice, we
can expect that few scattering functions have a PSDF characterized by white
noise, rather, the PSDF will tend to decay as the frequency increases. We can
consider a model for the PSDF based on the Gaussian function

| Γ̃(k) |2= Γ2
0 exp

(
−k

2

�20

)
for example, where Γ0 = Γ̃(0), k =| k | and �c defines the correlation length.
This form yields an autocorrelation function which is of the same type, i.e.
a Gaussian function. If the geometry of the scattering function is self-affine,
then we can model the scattering function as a random scattering fractal whose
PSDF is characterized by

| Γ̃(k) |2∼ 1
k2q

where q > 0 is the Fourier dimension (see Chapter 18). In this case, the
autocorrelation function is characterized by (see Appendix C)

Γ(r) ∼ 1
r3−q
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where r =| r |. Other issues in determining the nature of the autocorrelation
function are related to the physical conditions to which the scatterer should
conform. For example, if the mean value of the scattering function over V
is zero, then the integral of the autocorrelation function must also be zero.
Thus, Γ(r) cannot simply fall off exponentially to zero as r increases; it must
be negative to a sufficient extent that its average value is zero. The simplest
form of the autocorrelation function satisfying these requirements is

Γ(r) = 〈γ2〉
(

1− r2

r20

)
exp

[
−
(
r2

r20

)]
where r0 is a scale factor approximately equal to the mean radius of the random
distributed scatterers.

By way of an example, suppose we consider a scatterer that is characterized
by a Gaussian autocorrelation function, i.e.

Γ(r) = 〈γ2〉 exp

[
−
(
r

�c

)2
]
.

The intensity is then given by

I(θ, k) = k4〈γ2〉
∞∫

−∞
exp(−ikN̂ · r) exp(−r2/�2c)d3r.

Noting that
∞∫

−∞
exp(−ikx) exp(−ax2)dx =

√
π

a
exp[−k2/(4a)]

we have

I(θ, k) = k4�3cπ
3
2 〈γ2〉 exp

(
−k

2�2c
2

sin
θ

2

)
.

Now, if k�c << 1, then the intensity is given by

I(θ, k) ∼ (�ck)4

�c
〈γ2〉

whose scale is determined by the size of the wavelength relative to the correla-
tion length and whose PDF is determined by the PDF of 〈γ2〉.

The method discussed above can be used to model the (Born) scattered
intensity from a random medium which requires an estimate of the autocorre-
lation of the scattering function to be known. However, this approach assumes
that the density of scattering sites from which the scatterer is composed is low
so that the Born approximation is valid. When the density of scattering sites
increases and multiple scattering is present, the problem become progressively
intractable. Then we resort to a purely stochastic approach which involves
developing a statistical model, not for the scattering function, but for the scat-
tered field itself. An introduction to this approach is provided in the following
Section.
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17.2 Statistical Modelling Methods

A signal s(t) can, quite generally, be written in terms of the amplitude modu-
lations A(t) and the instantaneous phase Θ(t) as

s(t) = A(t) exp[iΘ(t)] = f(t) + iq(t)

where q is the quadrature component given by the Hilbert transform of f (see
Digital Signal Processing, Horwood, 2003). Thus, at a given point in time t, we
can consider the signal to be given by A exp(iΘ). Let us suppose that A is the
result of many interactions that can be viewed in terms of a random walk in
the complex plane. From one point (a scattering site) to the next in this plane,
we can consider each step, in general, to have a random amplitude a and a
random phase θ. The amplitude A is then taken to be the resultant amplitude
after many steps.

17.2.1 Random Phase Walks

Consider a random walk in the complex plane where the amplitude remains
constant but where the phase changes, first by a constant factor and then by
a random value between 0 and 2π.

Coherent Phase Walk

In the first case, let the amplitude taken from one step to the next be a and
let the phase increase by a constant factor of θ at each step. After n steps, the
resulting signal at a time t is given by

A exp(iΘ) = a+ a exp(iθ) + a exp(2iθ) + ...+ a exp[i(n− 1)θ)]

= a[1 + exp(iθ) + exp(2iθ) + ...+ exp[i(n− 1)θ]

= a
[1− exp(inθ)]
[1− exp(iθ)]

= a
exp(inθ/2)[exp(−inθ/2)− exp(inθ/2)]

exp(iθ/2)[exp(−iθ/2)− exp(iθ/2)]

= a exp[i(n− 1)θ/2)]
sin(nθ/2)
sin θ/2

.

Now, when n is large (i.e. for many steps),

α = (n− 1)θ/2 � nθ/2

and when θ << 1 (small phase changes only),

sin(θ/2) � θ

2
� α

n

and hence

A exp(iΘ) = na exp[i((n− 1)/2)θ]sincα where sincα =
sinα
α

.
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The amplitude is therefore given by (ignoring scaling by sincα)

A = na

which is proportional to the number of steps n. The intensity I is given by

I = n2a2.

Incoherent Phase Walk

Let us now consider the case when the phase changes randomly between 0 and
2π. After n steps, the resulting signal at time t is given by

A exp(iΘ) = a exp(iθ1) + a exp(iθ2) + ...+ a exp(iθn)

= a
n∑

m=1

exp(iθm).

The intensity is then given by

I = a2

∣∣∣∣∣
n∑

m=1

exp(iθm)

∣∣∣∣∣
2

= a2
n∑

m=1

exp(iθm)
n∑

m=1

exp(−iθm)

= a2

⎡⎣n+
n∑

j=1,j �=k
exp(iθj)

n∑
k=1

exp(−iθk)
⎤⎦ .

Now, in a typical term

exp(iθj) exp(−iθk) = cos(θj − θk) + i sin(θi − θk)

of the double summation, the functions cos(θj − θk) and sin(θj − θk) have
random values between ±1. Consequently, the double sum reduces to zero as
n increases and the intensity is

I = na2.

The resultant amplitude is therefore given by

A =
√
na

which is proportional to the square root of the number of steps taken. The
above results are directly applicable to coherence in optics and imaging in
general. If the amplitude of a light source is given by the quantity a, then its
intensity is proportional to a2; n coherent sources yield a resulting amplitude
na and a total intensity of n2a2. However, incoherent sources have random
phases; n such sources, each of amplitude a, yield a resulting amplitude

√
na

with intensity na2.
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17.2.2 Diffusion and Fractional Diffusion Processes

If we consider a to be the average distance a particle travels before it randomly
interacts or collides with another particle (its mean free path) rather than the
average amplitude of a scattered wave before it scatters from another scattering
site, then after n collisions (where n is taken to be the average time interval
between collisions) the particle will, on average, have travelled a distance of
a
√
t from its initial position at t = 0. Here, it is assumed that the direction in

which a particle travels after a collision is determined by any value between 0
and 2π. The average distance travelled by the particle depends on the square
root of time rather than time itself. This is not to say that all the particles in an
ensemble of particles will have travelled a distance

√
ta but that this distance

is the most probable and represents a statistical average. This is a feature of all
classical diffusion processes which can be described by the diffusion equation
with a diffusivity D. The dimensions of diffusivity are length2/time and must
be interpreted in terms of a characteristic distance of the process which varies
with the square root of time.

As shown in Chapter 5, the Green function to the 1D homogeneous diffusion
equation (

∂2

∂x2
− 1
D

∂

∂t

)
u(x, t) = 0

for a diffusivity D is given by

u(x, t) = p(x, t)⊗ u(x, 0)

where ⊗ denotes the convolution over x, u(x, 0) = u(x, t) at t = 0 (i.e. the
initial value of the diffusive field u) and

p(x, t) =

√
1

4πDt
exp

(
− x2

4Dt

)
.

Thus, for an initial (spatial) impulse u(x, 0) = δ(x− x0)

u(x, t) =

√
1

4πDt
exp

(
− x2

0

4Dt

)
.

Now, if the time dependence of the diffusive field is measured at a fixed point
in space close to the origin of the impulse, then we can consider the asymptotic
result

u(t) ∼ 1√
Dt

, x0 → 0.

Based on the random phase walk analysis given in the previous Section, by
induction we can interpret

√
D as being a measure of the mean free path a.

The basic result of our random phase walk model, i.e.

A(t) = a
√
t

describes the process of Brownian motion (first considered by Albert Einstein
in 1905). Fractional Brownian motion is a generalization of this result to

A(t) = atH , H ∈ (0, 1]
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where H is the Hurst exponent. By induction, this is equivalent to generalizing
the homogeneous diffusion equation to(

∂2

∂x2
− 1
Dq

∂q

∂tq

)
u(x, t) = 0, q ∈ (0, 2]

for a stationary process, or to(
∂2

∂x2
− 1
Dq(t)

∂q(t)

∂tq(t)

)
u(x, t) = 0, q ∈ (0, 2]

for a non-stationary process which describes a field u generated by fractional
diffusive processes. Fractional diffusive processes are, thus, intermediate be-
tween diffusive processes proper (random phase walks with H = 0.5) and
‘propagative process’ (coherent phase walks for H = 1). Solutions to equa-
tions of this type are explored in more detail in the following chapter.

17.3 Phase Distribution Analysis

The statistical characteristics of a digital signal/image may vary in time/space
respectively. In such a case these non-stationary characteristics ideally require
a suitable model to be formulated. Suppose we consider a hypothetical signal
s(t) whose amplitude A(t) is determined by random phase walks over a finite
period of time T1. At the end of this period, we suppose that the signal switches
instantaneously to one whose amplitude is determined by coherent phase walks
over a period time T2 say, i.e.

A(t) =

{
a
√
t, t ∈ [0, T1);

at, t ∈ [T1, T1 + T2).

We can extend this idea to one in which the signal continues to switch from one
state to another, remaining in any given state for an arbitrary period of time.
Now, taking a random or coherent phase walk to be a walk in the complex
plane, we can describe the process in terms of the analytic signal

s(t) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
a exp[iθR(t)], t ∈ [0, T1);
a exp[iθC(t)], t ∈ [T1, T1 + T2);
a exp[iθR(t)], t ∈ [T1 + T2, T1 + T2 + T3);
...

where θR denotes the random phase (i.e. for any time t over the interval in
which a random phase walk occurs, θR has a randomly chosen value between 0
and 2π radians) and θC denotes the coherent phase (i.e. for any time t over the
interval in which a coherent phase walk occurs, θC << 1 has the same value)
as illustrated (for the discrete case) in Figure 17.4.
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Figure 17.4: Example of a non-stationary (discrete) phase walk with instanta-
neous transitions for the random-coherent-random case.

What type of statistical analysis could we apply to such a signal in order to
segment it into statistically significant intervals of time? Clearly, the PDF of
the amplitude a of such a signal will be characterized by a delta function

Pr[a(t)] = δ(x− a)
but the PDF of the phase will change from one that is characterized by a delta
function

Pr[θC(t)] = δ(θ − θC)

for coherent phase walks to one that is characterized by a uniform distribution
in which

Pr[θR(t)] =
1
2π

∀θR ∈ [0, 2π]

for random phase walks. This is of course a highly idealized model and in reality
we should expect that: (i) the amplitude a will not be a constant; (ii) the phase
will not change instantaneously at a point in time from being determined by a
constant value to a uniformly distributed deviate. Nevertheless, the argument
above serves to highlight the importance of analyzing the phase distribution
in addition to the amplitude distribution (conventional statistical analysis) of
a signal for the purpose of segmenting it into regions of statistical significance
with regard to the non-stationary model proposed.

Having established the rationale for a ‘phase distribution analysis’, we can
generalize the idea further as follows. If a random phase walk is characterized
by A(t) = a

√
t and a coherent phase walk by A(t) = at, then the intermediate

case should be characterized by

A(t) = atH , 0.5 < t < 1
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But this relationship is the basis for the generalization of Brownian motion
to fractional Brownian motion as discussed in the previous Section. We can
interpret fractional Brownian motion is terms of a random phase walk in which
the phase distribution changes from being a constant to a delta function as the
Hurst exponent H changes from 0.5 to 1, respectively. In turn, this transitory
behaviour can be cast in terms of the fractional diffusion equation(

∂2

∂x2
− 1
Dq(t)

∂q(t)

∂tq(t)

)
u(x, t) = 0, 1 ≤ q(t) ≤ 2, ∀t

giving diffusive behaviour for the case when q = 1 (diffusion equation) and
propagative behaviour for the case when q = 2 (wave equation). A general
solution to this equation for an inhomogeneous stochastic source is developed in
Digital Signal Processing, Horwood, 2003 which yields a method of segmenting
a digital signal by computing the Fourier dimension q over a moving window.

Given that

Pr[θ(t)] =

⎧⎪⎨⎪⎩
1
2π ∀θ ∈ [0, 2π], H = 0.5;
d(θ), H ∈ (0.5, 1);
δ(θ − θC), H = 1.

where d(θ) is the phase distribution for the intermediate case (fractional Brow-
nian motion), another approach is to compute d(θ) over a moving window and
look for a characteristic change in d(θ) (i.e. a robust statistical signature) as a
function of time that proves to be of value in the segmentation process. This
can include the computation of a range of statistical parameters such as the
mean, the mode, the variance and other statistical moments (see Section 17.5)
appropriate to the type of distribution associated with a given signal.

17.4 Fully Coherent Scattering Processes

The use of random walk methods of the type introduced in Section 17.2 can be
used as the basis for generating a range of stochastic scattering models. The
random phase walks considered so far are limited to the fact that the amplitude
a is taken to be a constant (a measure of the mean free path). We shall now
consider a model for the distribution of intensities observed in a fully coherent
image when the scattering of a wavefield from one site to the next is taken to
be a random walk in the plane with arbitrary amplitude and phase variations.
In this case, we detect a coherent wavefield E (the electric field for example)
given by

E =
N∑
j=1

rj exp(iφj) = R exp(iΦ)

where r, φ and N are independent random variables. Both r and φ are assumed
to be continuous random variables and N is discrete. We can write E as a
vector, whose components are the real and imaginary parts of E, i.e.

E = (Ereal, Eimag).
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It is useful to work in terms of the characteristic function of a complex random
variable

U = (Ureal, Uimag)

defined as (2D inverse Fourier transform)

C(U) = 〈exp(iE ·U)〉 =
∫

exp(iE ·U)P (E)dE

where the integral is taken to over all E and where P (E) is the Probability
Density Function (PDF) of E. Thus, P can be computed from C via the 2D
Fourier transform, i.e.

P (E) =
1

(2π)2

∫
exp(−iE ·U)C(U)dU

where the integral is taken over all U.
The aim of this calculation is to find an expression for P . This is done

by first computing C(U) = 〈exp(iE ·U)〉 and then taking the inverse Fourier
transform to evaluate P . The calculation of the characteristic function will be
based on the following assumptions:

(i) The phase is uniformly distributed which represents strong scattering.

(ii) The scattering events at each site are independent.

(iii) N conforms to a negative binomial distribution of the form

PN =
(
N + α− 1

N

)
(N̄/α)N

(1 + N̄/α)N+α

where N̄ is the mean of the distribution and α is a ‘bunching’ parameter.
Clearly α > N̄ for PN to be a proper PDF. Assumption (iii) above is based on
a birth-death-migration processes which is representative of the distribution of
scatterers.

To find 〈exp(iE ·U)〉 we write E and U in terms of their real and imaginary
components, i.e.

E = (R cosΦ, R sinΦ), U = (U cosχ,U sinχ)

where U ≡|U |. Here R is the resultant amplitude and Φ is the resultant phase
that is detected:

E ·U = R cosΦU cosχ−R sin ΦU sinχ

= U

N∑
j=1

rj(cosφj cosχ− sinφj sinχ) = U

N∑
j=1

rj cos(φj + χ).

Hence, the characteristic function for a random walk with N steps is

CN (U) = 〈exp[iU
N∑
j=1

rj cos(φj + χ)]〉.
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Since exp(x1 + x2 + ...+ xN ) = exp(x1) exp(x2) exp(x3)... exp(xN ),

CN (U) = 〈
N∏
j=1

exp[iUrj cos(φj + χ)]〉.

The variables r, φ and N are independent. Assumption (ii) given above means
that rj is independent of rk, i.e. a scattering event at site j is independent of
a scattering event at site k. The net effect of this assumption is to eliminate
conditional probabilities from the scattering process. In this case, the product
can be taken outside the average, giving

CN (U) =
N∏
j=1

〈exp[iUrj cos(φj + χ)]〉.

The term 〈exp[iUrj cos(φj + χ)〉 is an average over both the amplitude distri-
bution and the phase distribution. Assuming that the phases are uniformly
distributed (strong scattering), the integral for the phase can be written as

〈exp[iUrj cos(φj + χ)]〉φ =
∫
∀φ

exp(iUrj cos(φ + χ)Pj(φ)dφ

where Pj is the uniform phase distribution defined as

Pj(φ) =

{
1
2π , −π ≤ φ < π;
0, otherwise.

Consider the integral

I =

π∫
−π

exp[iUrj cos(φ + χ)]dφ.

To evaluate this integral we use the following identity

exp(iα cos θ) = J0(α) + 2
∞∑
k=1

ikJk(α) cos kθ

where Jk is the Bessel function of order k. Then

I =

π∫
−π

[
J0(α) + 2

( ∞∑
k=1

ikJk(α) cos kθ

)]
dθ

= [J0(α)θ]π−π +

[
2

∞∑
k=1

ik

k
Jk(α) sin kθ

]π
−π

= 2πJ0(α).

Hence,
〈exp(iE ·U)〉φ = 〈exp[iUrj cos(φj + χ)]〉φ = J0(Urj)
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where
U =

√
U2

real + U2
imag

and

CN (U) =
N∏
j=1

〈J0(Urj)〉r

where

〈J0(Urj)〉r =

∞∫
0

J0(Ur)Pj(r)dr.

Here Pj(r) is the PDF for r. Now, if all the scattering processes are similar,
then they will all have the same PDF and therefore

N∏
j=1

〈J0(Urj)〉r = 〈J0(Ur)〉Nr =

⎛⎝ ∞∫
0

J0(Ur)P (r)dr

⎞⎠N

.

This result depends on the number of steps N which is itself a random variable,
and, in order to proceed further, we must consider a PDF for N . For this
purpose we consider the negative binomial distribution - assumption (iii) - and
develop an expression for the characteristic function for the mean N̄ of N . This
is given by

CN̄ (U) =
∞∑
N=0

PNCN (U)

=
∞∑
N=0

(
N + α− 1

N

)
(N̄/α)N

(1 + N̄/α)N+α
〈J0(Ur)〉Nr

=
∞∑
N=0

(N + α− 1)!
N !(α− 1)!

(
(N̄/α)〈J0(Ur)〉r

1 + N̄/α

)N 1
(1 + N̄/α)α

=
1

(α− 1)!(1 + N̄/α)α

∞∑
N=0

(N + α− 1)!
N !

μN

where

μ =
(N̄/α)〈J0(Ur)〉r

1 + N̄/α
.

Now,

∞∑
N=0

(N + α− 1)!
N !

μN = (α−1)!
(

1 + αμ+
α(1 + α)

2!
μ2 + ...

)
= (α−1)!(1−μ)−α

and therefore we can write

CN̄ (U) =
(α− 1)!

(α− 1)!(1 + N̄/α)α
1

(1 − μ)α



528 CHAPTER 17. STATISTICAL MODELLING AND ANALYSIS

=
(1 + N̄/α)α

(1 + N̄/α)α(1 + N̄/α− (N̄/α)〈J0(Ur)〉r)α

=
(

1 +
N̄

α
(1− 〈J0(Ur)〉r)

)−α
.

The calculation of 〈J0(Ur)〉r is based on a small but important modification
whereby we scale r according to r → r/

√
N̄ . Thus, we consider

〈J0(Ur)〉r =

∞∫
0

P (r)J0(Ur/
√
N̄)dr.

As N̄ →∞, this modification of the definition of 〈J0(Ur)〉r allows us to employ
the Frobenius series for J0, i.e.

J0(x) = 1− x2

4
+
x4

26
− ...

then

〈J0(Ur)〉r =

∞∫
0

P (r)dr − 1
4

∞∫
0

U2r2

N̄
P (r)dr +

1
26

∞∫
0

U4r4

N̄2
P (r)dr − ...

= 1− 1
4
U2

N̄
〈r2〉+

1
26

U4

N̄2
〈r4〉 − ...

where

〈rn〉 =

∞∫
0

rnP (r)dr.

Hence, we can write

CN̄ (U) =
[
1 +

N̄

α

(
1−

(
1− 1

4
U2

N̄
〈r2〉+

1
26

U4

N̄2
〈r4〉 − ...

))]

=
(

1 +
1
4
U2

α
〈r2〉 − 1

26

U4

N̄α
〈r4〉+ ...

)−α

and

C(U) = lim
N̄→∞

CN̄ (U) =
(

1 +
1
4
U2

α
〈r2〉

)−α
.

This result allows us to compute the PDF of E = R exp(iΦ) which can be
obtained by evaluating the Fourier integral of C(U), i.e.

P (E) =
1

(2π)2

∫
∀U

exp(−iE ·U)C(U)dU

=
1

(2π)2

π∫
−π

∞∫
0

exp(−iE ·U)(
1 + 1

4
U2

α 〈r2〉
)αUdUdχ.
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Integrating over χ generates a Bessel function as before

P (E) =
1
2π

∞∫
0

UJ0(UR)(
1 + 1

4
U2

α 〈r2〉
)α dU.

Evaluating the final integral gives

P (E) =
1

2π2α−1

Rα−1

Γ(α)

(
4α
〈r2〉

) 1+α
2

Kα−1

[
R

(
4α
〈r2〉

) 1
2
]

whereKα−1 is a modified Bessel function. The PDF of the amplitude follows by
integrating P (E) over all values of the phase Φ. However, P (E) is independent
of Φ and so this integral yield 2π, i.e.

P (R) =

π∫
−π

P (E)RdΦ = 2πRP (E)

P (R) can therefore be written as

P (R) =
β1+α

2α−1Γ(α)
RαKα−1(βR)

where

β =
(

4α
〈r2〉

) 1
2

.

This is the so called ‘K-distribution’ which is a feature of most fully coherent
images.

The calculation given above illustrates the way in which the PDF of an
image can be derived subject to a model for the distribution of the phase (in
this case, a uniform phase distribution representing strong scattering) and a
statement of the characteristics of the random walk (in this case, a negative
binomial distribution for the number of steps N). The PDF derived can then
be used to characterize an image statistically by computing the parameters α,
β and 〈r2〉. For a statistically stationary image, these values are computed
from data obtained over the entire image. For a statistically non-stationary
image, a moving window method can be applied to segment the image.

17.5 Statistical Moments

Statistical moments provide a measure of the statistical characteristics of an
image which can be used to classify the image in its entirety or used to segment
it using a moving window where the window is sufficiently large to provide
a statistically significant result. For coherent images, in which a model for
the PDF is derivable from first principles, classification can be undertaken
using the model derived. However, with incoherent images, this is not always
possible because of the arbitrary nature of their PDFs (see Figure 17.1). For
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incoherent images there are a range of statistical classification methods that
can be applied. The first of these are the statistical moments. Given an image
fkl we can calculate its local mean or expected value over a window W , centred
in the image position ij as

μij = 〈fkl〉ij =
1
N

∑
k,l∈W

fi−k,j−l.

The variance, σ2, is a measure that characterizes how the values deviate from
the mean value,

σ2
ij =

1
N

∑
k,l∈W

(fi−k,j−l − μij)2

and a whole family of local moments can be calculated using

μnij = [〈(fi−k,j−l − μij)n〉]
1
n

for n = 1, 2, ... The standard deviation, σ, is equivalent to the second moment.
Two other popular statistics are skewness,

sij =
1
σ3
ij

1
N − 1

∑
k,l∈W

(fi−k,j−l − μij)3

and the kurtosis,

αij =
μ4
ij

σ2
ij

.

A related measure calculated from the image derivatives is the total variance,
V . This consists of the sum of gradient values throughout the window W . Any
of the different gradient operators, G, as discussed in Chapter 16, can be used
to compute

Vij =
∑
k,l∈W

Gi−k,j−l.

A commonly used indicator to describe the information content of any set of
data is Shannon’s formula for entropy. It is worth pointing out that Shannon’s
entropy was originally defined for all information streams. We will consider it
here in terms of image data:

E1 = −
N−1∑
n=0

pn log2

1
pn
.

This gives order-1 entropy1 where pn is the probability of pixel value n, in the
range 0. . .N − 1, of occurrence. This formula results in a single number that
gives the minimum average code length if every pixel is encoded independently
of the other pixels. Entropy is, in effect, a measure of the information content
of the image.

1There is some disagreement in terminology and, although it is called first order entropy,
it is often also written as order-0 entropy.
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Order-m entropy can also be calculated by extending the formula. By defin-
ing Pm(x1, x2, . . . , xm) as the probability of seeing the sequence of m pixels
x1, x2, . . . , xm we have

Em = −
N−1∑

x1,x2,...,xm=0

Pm(x1, x2, . . . , xm) log2

1
Pm(x1, x2, . . . , xm)

.

Further, defining 〈·〉 as the expected value, the full entropy of data is given by

Emax = − lim
m→∞

1
m

〈
log2

1
Pm(x1, x2, . . . , xm)

〉
.

This limit always exists if the data stream is stationary and ergodic. These
numbers (i.e. E1, E2, ..., Em, Emax) can be calculated over a local moving win-
dow and used to segment an image into a multiplicity of information measures.

17.6 Noise and Statistical Tests

The simulation of noise holds a very important place in image synthesis, image
processing and image analysis. Noise can be defined in terms of its PDF and/or
its PSDF. In the latter case, many noise types can be classified in terms of a
spectrum with the form k−q as a function of the temporal or spatial frequency
k. For example, white noise has a spectral exponent q = 0 and, like white light,
has all frequencies equally represented. As q becomes larger the name for the
noise changes from white to black.

Spectral exponent q Colour
0 white
1 pink
2 brown
>2 black

White noise can be integrated over time to create brown noise, where q = 2.
Brown noise can be used to model many kinds of statistical fluctuations, most
prominently in the field of gambling. (Brown noise is named after the Scottish
botanist Robert Brown who discovered it within the motion exhibited by a
small particle that is totally immersed in a liquid or gas.) In between white
and brown there is a whole range of alternatives including pink noise when
q = 1. Pink noise has equal power in octave frequencies, which has made
it popular as a hearing test signal, for example. This is because pink noise
stimulates all parts of the auditory system within the human ear evenly, so it
is the hearing equivalent of white noise. Pink noise occurs in other physical
systems including resonance in semiconductor devices for example. At the
other extreme, when q > 2, it is referred to as black noise. In statistics, black
noise signals are associated with catastrophic events, including, for example, a
financial market collapse, floods, earthquakes, extinctions, etc. This is because
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it predicts events that come in groups. The temporal behaviour of these noise
fields can be unified via the stochastic fractional partial differential equation(

∂2

∂x2
− τq ∂

q

∂tq

)
u(r, t) = n(r, t), q ≥ 0

where n is a white noise field (see Digital Signal Processing, Horwood Publish-
ing, 2003, Chapter 17).

17.6.1 Computing Noise Fields

Most digital computers have methods for creating white noise via a pseudo
random number generator. Methods of computing pseudo random numbers are
covered Digital Signal Processing, Horwood Publishing, 2003, Chapter 14 which
includes the generation of pseudo chaotic number streams. In this Section,
we briefly revisit the basis for designing pseudo random number generating
algorithms for reasons of completeness with regard to the remit of this Chapter.

Since a computer is a truly deterministic machine, it is rather perverse for
it to be able to create random values. For this reason great care needs to
be considered when creating noise of any type. This Section digresses with a
discussion of a few algorithms to perform this task adequately.

Linear Congruence Method

Within most computers there is a system described as a pseudo random number
generator. The first rule is to be very wary of using this operator as within the
history of computer design there have been many poor implementations. The
vast majority use a linear congruence method that is very simple but requires
care in use. The algorithm produces a string of (integer) values x0, x1, x2, . . .
each calculated from the previous value, where

xj+1 = (axj + c)mod P.

The initial value, x0, is often specified by the user as a seed value. The sequence
is highly deterministic and has the property that it will always loop within a
maximum of P different values. For example, if we assign a = 7, c = 12, P = 30
and x0 = 0, we obtain the following sequence:

0, 12, 16, 4, 10, 22, 16, 4, 10, 22, . . .

As in this example, the loop length can be very short. This limitation can cause
very poor results, especially when considering a small range or using multiple
dimensions. An inadequate choice for the constants a, c and P can lead to
very limited and at times unusable ranges. The most famous case occurred
in early IBM PCs within the inbuilt random number generator. It is noted
that the longest sequence possible is equal to P , so a large P is recommended.
The following conditions allow a linear congruence sequence to have a period
of length P :
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• c is relatively prime to P ;

• b = a− 1 is a multiple of p, for every prime p dividing P ;

• b is a multiple of 4 if P is a multiple of 4.

In addition to the standard linear congruential generator discussed so far,
a number of ‘variations on a theme’ can be considered such as the iteration

xi = (a1x
2
i−1 + a2xi−1 + a3)modP

or
xi = (a1x

3
i−1 + a2x

2
i−1 + a3xi−1 + a4)modP

and so on, where an are predefined.

Shuffling

An extra stage which helps further randomise the values is to shuffle the values
within a temporary storage. Unless a very poor choice of values for a, c, and P
has been made, this approach can insure a consistent random number stream.
The algorithm is very simple and can be applied to post filter any random
number generator. First initialise an array x[1..100] with random numbers
from a random number generator RAND() say, and set y to the last random
number calculated. To create the next random number, we use the following
pseudo code

j = 1 + Int(100 ∗ y)
y = x[j]
x[j] = RAND()
Output y

This simple indirection works as it frees the list of random numbers from se-
quential correlation. The exact size of the array, x[. . .], is most of the time
irrelevant.

Additive Generators

Additive generators create very long cycles of values. A typical algorithm com-
mences by initialising an array xi with random numbers (not all of which
are even) so that we can consider the initial state of the generator to be
x1, x2, x3, .... We then apply

xi = (xi−a + xi−b + ...+ xi−m)mod2n

where a, b, ...,m and n are assigned integers.
An example of this method is the ‘Fish generator’ in which

xi = (xi−55 + xi−24)mod232.

The algorithm commences by initialising an array x[1..55] with random num-
bers, not all of which are even. Then two pointers are initialised, j is set to 24,
and k is set to 55. To create the next random number we apply the following:
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x[k] = (x[k] + x[j]) mod 2e

decrease k and j by 1
if j = 0 then j = 55
if k = 0 then k = 55
Output x[k]

This algorithm has repeatedly proved itself to be very reliable, and universally
popular. It is fast as no multiplication operations are required, and can work
equally well with floating point numbers as with integers. The period of the
sequence of random numbers is also very large, being of the order 2f(255 − 1),
where 0 ≤ f ≤ e. The initial choice of values 24 and 55 is very important to
achieving a large loop length.

Further examples include the linear feedback shift register given by

xn = (c1xn−1 + c2xn−2 + cmxn−m)mod2k

which, for specific values of c1, c2, ...cm, has a cycle length of 2k.

Gaussian Noise Generation

We now introduce an algorithm for creating random numbers which have a
normal or Gaussian distribution. This probability distribution has zero mean
and standard deviation of one, and is given by

p(y)dy =
1√
2π

exp
(
−y

2

2

)
.

The Box-Muller algorithm is used to create two independent normal dis-
tributed values, y1 and y2, using the Box-Muller transform.

repeat
v1 = RAND()
v2 = RAND()
R2 = v2

1 + v2
2

until R2 ≤ 1

y1 = v1

√
−2 lnR2

R2

y2 = v2

√
−2 lnR2

R2

The basis for this method is as follows. Assume we wish to create two values
y1 and y2; we first create two uniform random values, x1, x2 on (0, 1). This can
be written as

y1 =
√
−2 lnx1 cos 2πx2 and y2 =

√
−2 lnx1 sin 2πx2

or, equivalently,

x1 = exp
(
−1

2
(
y2
1 + y2

2

))
and x2 =

1
2π

tan−1 y2
y1
.
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We can now calculate the joint probability distribution of the two y’s, with the
following:

p(y1, y2)dy1dy2 = p(x1, x2)
∣∣∣∣∂(x1, x2)
∂(y1, y2)

∣∣∣∣ dy1dy2
where |∂(x1, x2/∂(y1, y2| is the Jacobian determinant. Thus,

∣∣∣∣∂(x1, x2)
∂(y1, y2)

∣∣∣∣ =

∣∣∣∣∣ ∂x1
∂y1

∂x1
∂y2

∂x2
∂y1

∂x2
∂y2

∣∣∣∣∣ = −
[

1√
2π

exp
(
−y

2
1

2

)][
1√
2π

exp
(
−y

2
2

2

)]
.

This means that y1 and y2 are independent. So this method creates two Gaus-
sian distributed values from two uniformally distributed random values as re-
quired. A further trick is to create v1, v2 as two points on a unit circle; then
two simplifications can be made as

sin 2πx2 = v1/R and cos 2πx2 = v2/R

where R =
√
v2
1 + v2

2 , and x1 = R2.

17.6.2 Statistical Tests

The preceding results allow us to choose the parameters for a deterministic
random number generator that has a large cycle. Then begins the long series
of tests essential before one can assert the suitability of these parameters to
produce a random sequence. The most commonly applied initial tests are the
Chi-squared and Kolmogorov-Smirnov tests. Such tests establish whether the
numbers from the sequence are correctly distributed. We now present a brief
overview of the procedures involved.

Chi-squared Test

Assume that observations can fall into one of n different outcomes, and the
expected probability for the kth outcome is pk. If there are N independent
observations, with Yk of them falling into outcome k, the Chi-squared statistic
is given by

χ2 =
∑

1≤k≤n

(Yk −Npk)2
Npk

and is the measure of deviation from the expected.
Given n possible outcomes we need to be able to find out when χ2 is too

large or too small. The table below tells us how likely a value of χ2 is. Consider
the entry s found in row n, column p which states that the probability that χ2

is less than s is p if the number of samples is suitably large enough. Thus, if,
over a series of tests, χ2 is often abnormally too large or too small, then that
probability generator should be considered suspect.
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p = 5% p = 25% p = 50% p = 75% p = 95%
n = 5 0.71 1.92 3.36 5.39 9.45
n = 10 3.33 5.90 8.34 11.39 16.92
n = 20 7.26 11.04 14.34 18.25 25.00

Kolmogorov-Smirnov Test

The Chi-squared test relies on the distribution giving n distinct outcomes.
Often the outcomes cover a very large range. A similar procedure can be
carried out by defining the empirical distribution function,

Fn(x) =
Number of xi ≤ x, 1 ≤ i ≤ N

N
.

This gives us two measures, K+
n that gives the greatest deviation from F when

Fn is greater than F , and K−
n that gives the greatest deviation when Fn is less

than F , i.e.

K+
n =

√
nmax

x
[Fn(x)− F (x)] and K−

n =
√
nmax

x
[F (x) − Fn(x)].

Similarly to the Chi-squared test, there exists an equation to calculate how
likely a series of tests are.

p = 5% p = 25% p = 50% p = 75% p = 95%
n = 5 0.0947 0.3249 0.5245 0.7674 1.1392
n = 10 0.1147 0.3297 0.5426 0.7845 1.1688
n = 20 0.1298 0.3461 0.5547 0.7975 1.1839
n = 30 0.1351 0.3509 0.5605 0.8036 1.1916

≈
√

1
2 ln 1

1−p − 1
6
√
n

Alternative Tests

To be sure of the randomness of numbers, further tests may be necessary. We
outline a few of the popular ones.

Serial independence looks at the independence one value has over the next.
Pairs of numbers can then be considered as single values.

Gap analysis looks at the distance of the occurrence of one value to the next
time it appears again.

The poker test considers the number of similar elements within a group of
random numbers. The number of k-tuples with r different values, when there
are n possible values, can be Chi-square tested with the probability,
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pr =
n(n− 1) . . . (n− r − 1)

nk

(
k
r

)
.

The Coupon test is related to the poker test and looks at the length of
segments required to get a complete set of all the integers 0 to d. The Chi-
squared test can be applied to the set Yi, d ≤ i ≤ t for some arbitrary t > d.
Yi contains the number of occurrences where the complete set occurs within a
segment of exactly i length, and Yt includes the number of occurrences when
the segment length is ≥ t. The number of observations is then N = t− d+ 1.
Defining k = t− d+ 1 the corresponding probability distribution is given by

pk =

⎧⎪⎪⎨⎪⎪⎩
d!
dk

(
r − 1
d− 1

)
, d ≤ k < t;

1− d!
dt−1

(
t− 1
d

)
, k = t.

The permutation test creates a sequence of groups each having t elements.
There are t! relative orderings in which the elements in each group can occur.
Again a Chi-squared test can be applied to this sequence of permutations with
k = t! and pk = 1/t!

The run test examines the length of monotonic sequences, either up or down.
These length sequences are not independent as long as runs are likely to be
followed by short ones and vice versa. To simplify the probabilities, a process
of throwing away the element that follows a run makes them independent again.
Then a Chi-squared test can be carried out.

Many other tests can be employed to deal with subsequences or correlations
between elements and special tests for analysing test sets that are smaller than
the possible number of categories can be developed. Special care also needs to
be considered when dealing with algorithms that require a set of numbers at a
time, for example within multidimensional sets.

Testing random number generators is useful for one main reason; to confirm
to a third party that the random number generator being used is correct for
their algorithm and will not cause spurious results. The simple recommendation
is to always be prepared to look at the output of a random number generator
and perform at least one test. It is important to remember that there are many
poor pseudo random number generators that can sometimes only show their
flaws under certain conditions. A sequence that passes one test may easily fail
on another.

17.7 Texture Segmentation

No adequate definition of texture exists, because we have few insights into the
detailed operation of the human visual system. A simple test as to whether
a region contains a texture is to ask: if the region were expanded, would its
contents be predictable from the original contents?
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Segmentation is the process by which image sub-units are assigned to objects
in a scene. There are three main types of segmentation in practice: pixel based
methods, edge based methods and region based methods. Such techniques
often require a priori knowledge of the types of texture present and are typically
applied to rectangular regions which are iteratively reduced in size until internal
homogeneity is achieved. Neighbouring regions are then tested in an attempt
to form aggregations of uniform texture.

Three commonly used techniques for classifying texture are:

• Frequency space analysis.

• Spatial grey level dependence (co-occurrence) matrices. This technique
computes a matrix of measures taken from the digitised image and then
defines features (such as texture entropy, correlation, local homogeneity,
etc.) as functions on this new matrix.

• Directional autocorrelations to determine periodicity. Here, an attempt
is made to discover if there is any repeating pattern in a given direction.
This technique involves taking pixels adjacent in some direction and cor-
relating them with themselves after shifting them by one pixel, two pixels,
etc.

• Fractal analysis. There is a fundamental relationship between texture
and fractals which is explored in the following Chapter.

17.8 Summary of Important Results

Random Born scattering

The intensity of the scattering amplitude generated by a random Born scat-
terer is given by the Fourier transform of the autocorrelation function of the
scattering function γ(r):

I(N̂, k) = k4

∫
V

exp(−ikN̂ · r)Γ(r)d3r

where N̂ = n̂s − n̂i and Γ(r), the autocorrelation function, is given by

Γ(r) =
∫
V

γ(r′)γ∗(r′ + r)d3r′

The autocorrelation function and the PSDF

Γ(r) = γ(r)� γ(r)⇐⇒| Γ̃(k) |2
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Coherent phase walk

The resultant amplitude A of a coherent phase walk with amplitude a after
time t is

A(t) = at

Random phase walk

The resultant amplitude A of a random phase walk with amplitude a after time
t (Brownian motion) is

A(t) = a
√
t

Fractional random phase walk

The resultant amplitude A of a fractional random phase walk with amplitude
a after time t (fractional Brownian motion) is

A(t) = atH , H ∈ (0, 1]

where H is the Hurst exponent.

Strong coherent scattering PDF - the K-distribution

P (R) =
β1+α

2α−1Γ(α)
RαKα−1(βR)

where

β =
(

4α
〈r2〉

) 1
2

.

Segmentation with statistical moments

For an image fij that is segmented using a moving window W

μnij = [〈(fi−k,j−l − μij)n〉]
1
n

where
μij = 〈fkl〉ij =

1
N

∑
k,l∈W

fi−k,j−l

Order-m entropy

Em = −
N−1∑

x1,x2,...,xm=0

Pm(x1, x2, . . . , xm) log2

1
Pm(x1, x2, . . . , xm)
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Noise types

For a noise field with a characteristic PSDF of the form k−q:

Spectral exponent q Colour
0 white
1 pink
2 brown
>2 black

Linear congruence method for pseudo random number generation

xj+1 = (axj + c)modP
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Chapter 18

Fractal Images and Image
Processing

Fractal signals were discussed in Digital Signal Processing, Horwood, 2003
(Chapter 17) and some case studies given on the applications of fractal ge-
ometry to signal analysis. In this Chapter, we extend the study of fractal
geometry to include fractal images and consider applications on the synthesis
of images, their segmentation (fractal dimension segmentation) and analysis.

18.1 Introduction

Fractal geometry is the the geometry of self-similarity in which an object ap-
pears to look similar at different scales - an obvious concept when observing
naturally occurring features, but one that has only relatively recently started
to be applied to various branches of science and engineering. This concept can
be applied to systems of varying physical size depending on the complexity and
diversity of the fractal model that is considered. It is of philosophical interest
to view the Universe itself as a single fractal, the self-similar parts of which
have yet to be fully categorized; those naturally occurring objects for which
fractal models abound being smaller subsets of a larger whole. This view is
closely related to the concept of chaotic systems in which the dynamical behav-
ior of the system cannot necessarily be pre-determined. Such systems exhibit
self-similarity when visualized and analyzed in an appropriate way (i.e. an
appropriate phase space). In this sense, the geometry of a chaotic system may
be considered to be fractal.

Self-similarity is a very general term. There are two distinct types of self-
similarity: (i) deterministic self-similarity in which the fractal is composed of
distinct features which resemble each other in some way at different scales
(feature scale invariance); (ii) statistical self-similarity in which the features of
the fractal may change at different scales but whose statistical properties at all
scales are the same (statistical scale invariance).

Deterministic fractals associated with (i) above are usually generated

541
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through some iterative process and are remarkable for the complexity that
can be derived through the simplest of iterative procedures. The way in which
the output from these systems is viewed graphically and interpreted geometri-
cally changes from one fractal to another but the overall principle remains the
same.

Statistically self-similar fractals are those used to model a variety of natu-
rally occurring objects (background noise, clouds, landscapes, coastlines, etc.).
They can be generated through a variety of different stochastic modelling tech-
niques. They can also be considered to be the solution to certain classes of
stochastic differential equations of fractional order.

Fractal geometry is a consequence of the computing revolution and its de-
velopment has gone hand-in-hand with advances in digital data processing and
computer graphics. However, the principles of fractal geometry have been stud-
ied for many years and began with the French School of mathematics in the
late Nineteenth Century. This included French mathematicians such as Jules
Henri Poincaré who was one of the first mathematicians in history to conceive
the idea that a dynamical system (and a Newtonian one at that) could not be
predicted deterministically. He was in effect describing the principles of chaos
as a result of re-evaluating an award winning piece of work he had undertaken
early in his career on the orbits of multiple interacting bodies.

Figure 18.1: Fractal geometry and chaos and different fields of study.

Chaos is the study of functions which exhibit patterns or fields that are sim-
ilar at different scales (see Digital Signal Processing, Horwood, 2003, Chapter
14). Today algorithms abound that are used to generate fractals and chaotic
fields that ideally depend on: (i) an understanding of the physical (typically a
nonlinear) system; (ii) a clear and concise mathematical definition of the field
properties. Further, there are a range of applications based on fractals and
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chaos that have been developed including time series analysis, speech process-
ing, data compression, segmentation, terrain modeling, image synthesis, music,
financial forecasting, biomedical engineering, digital communications and in-
formation technology security. The development of fractal geometry has been
undertaken through many different fields of study and it now has an important
contribution to make to these fields (see Figure 18.1)

Before the turn of the Nineteenth Century, it was believed that all continu-
ous function must be differentiable in at least one location. It was well known
that a continuous function may not be differentiable at a specific point, for
example at x = 0 in the function f(x) =| x |. Having established a consistent
approach to calculus by introducing the limiting condition for a derivative, i.e.
defining a derivative as

df

dx
= lim

δx→0

f(x+ δx)− f(x)
δx

where δx �= 0, Karl Wilhelm Weierstrass (1815-1879), was one of the first to
create a function that was nowhere differentiable but still continuous. This is a
function that has the property that the first derivative df/dx, and subsequently
all higher order integer derivatives, cannot be found. A version of this function
is based on an infinite sum of cosine curves, given by

f(x) =
∞∑
n=1

an cos(bnπx)

where a is an odd integer, b ∈ (0, 1) and ab > 1 + 3π/2. After the publication
of this result, other mathematicians followed with slight alternatives. Giuseppe
Peano (1858-1952), for example, introduced the first deterministic space filling
function in 1890 which passes arbitrarily close to any point in the plane. The
uses of these functions at the time was not apparent and many mathematicians
were alarmed at the loss of differentiation as a ‘constant’. Hermite defined them
as a ‘dreadful plague’, and Poincaré wrote in his collected works (Volume II,
page 130), ‘Yesterday, if a new function was invented it was to serve some
practical end; today they are specially invented only to show up the arguments
of our fathers, and they will never have any other use’.

It was not until the 1920’s, when nowhere differentiable functions were used
to construct good models for Brownian motion, that such functions started to
be appreciated for their practicability. By this time the idea of Weierstrass
functions had gone from an interesting peculiarity to become the start of a
new field within mathematics. The growing interest in random motion and
stochastic field theory led, in the late 1930s, to Paul Lévy (1886-1971) asking a
simple but profound question: Under what circumstances does the distribution
associated with a random walk of a few steps look the same as the distribution
after many steps (except for scaling)? This question is the same as asking
under what circumstances do we obtain a random walk that is statistically
the same at different scales. One of Paul Lévy’s research students was Benoit
Mandelbrot who later coined the phrase ‘fractal’ geometry (e.g. in his most
famous book The Fractal Geometry of Nature, Freeman, 1982) as the study of
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geometric objects, either deterministic or stochastic, that are self-similar, i.e.
look the same at different scales. The term fractal is derived from the Latin
adjective fractus. The corresponding Latin verb frangere means ‘to break’,
to create irregular fragments. In addition to ‘fragmented’ fractus can also
mean ‘irregular’, both meanings being preserved in fragment. The geometry of
nature appears to have a fundamental feature which is that the shapes of things
look the same at different scales (self-similarity) or at least have an affinity at
different scales (self-affinity). This includes complex dynamical systems such
as the structure of a society at a point in history and the evolution of society
over time. The way in which we tend to perceive this ‘geometry’ is in terms of
‘texture’, ‘an elusive notion which mathematicians and scientists tend to avoid
because they can not grasp it... and... much of fractal geometry could pass as
an implicit study of texture’ (B Mandelbrot).

Euclidean geometry (a term that derives from Euclid of Alexadra who pub-
lish his Elements around the year 300 BC and provided a systematic devel-
opment of much of Greek mathematics up to that point) is based on ideas,
axioms, theorems and results that are associated with simple objects - trian-
gles, squares, circles, lines, etc. Some abstract concepts are required in order to
maintain consistency such as defining two parallel lines as those that meet at
infinity. However, the underlying philosophy of Euclidean geometry is that we
can combine primitive objects to build-up and construct complex ones. To do
this we first need to analyze a complex object in terms of its ‘elements’ to con-
struct a simple set of primitives. This is the basis for the construction of most
man-made objects and computational Euclidean geometry including computer
aided design, solid geometry, etc. It is also the basis which we tend to use for
analysing a complex problem. Fractal geometry is based on looking at things
in terms of the ‘big picture’ and observing the fact that the ‘smaller pictures’
look similar. It uses ideas, axioms, theorems and so on associated with complex
objects with repeating patterns, and includes abstract concepts such as infi-
nite repeatability. Hence, unlike Euclidean geometry, the philosophy of fractal
geometry is to construct an object by classifying it in terms of its repetitive
underlying structure and repeating this structure again and again. This is the
basis upon which many natural object and dynamical systems appear to be
based. For example, consider Figure 18.2 which shows a number of grey scale
images of natural objects and scenes - a tree, fern, rock, lava, etc. In each case,
the image is of an object that, at first sight, appears relatively complex with
different textures. However, if we ‘look’ at the object imaginatively enough in
terms of its repeating patterns at different scales, then this complexity starts to
be seen for what it is - self-similar simplicity! This principle is emphasized in
Figure 18.3 which shows three images of a fern at different scales to illustrate
the principle that ‘self-similarity over limited ranges of scale is very common
in nature’.

While mathematicians and scientists may find texture ‘hard to grasp’, artists
and musicians have understood it for many years. Impressionist paintings are
studies in texture, initiated by English artists such as J M W Turner in the mid-
Eighteenth Century, extended by the French school of impressionism by artists
such as Claude Monet and developed further by modernists such as Jackson
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Pollack (see Figure 18.4). Much of the music of composers such as Debussy,
Ravel and Scriabin, for example, are studies of musical texture. Indeed, the
art, music and languages of most cultures exhibit properties that are fractal,
from the stylized versions of self-repeating patterns associated with Islamic art
to Japanese art and the work of M C Escher (see Figure 18.5), for example.

Figure 18.2: Some example images of natural objects; from top to bottom and
from left to right: a tree, rock, lava, a cloud, a forest, sage, a water fall and
fern.
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Figure 18.3: Three images of a Fern at different scales illustrating the principle
of self-similarity.

Figure 18.4: Texture by Claude Monet (top-right) taken from the painting
shown (top-left) and texture by Jackson Pollock (bottom).
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Figure 18.5: Examples of self-similarity in Islamic art (top-left), self-similarity
by the Japanese artist K Hokusai from the 1800s (bottom-left), and an example
of deterministic self-similarity by the Dutch graphic artist M C Escher (right).

The picture of the wave given in Figure 18.5 is an interesting ‘reflection’ on
the perceptive Chinese proverb ‘In every way one can sea the shape of the sea’.
Although very complex, the sea surface has dynamic structures (waves) which
are similar at different scales, i.e. waves within waves. The images given in
Figure 18.5 are different from those previously given in that the repeating pat-
terns are deterministic, particularly the example of self-similarity by Escher.
Deterministic fractals are fractals that have structures or shapes that are the
same at different scales (such as the fern given in Figure 18.3), whereas random
fractals are fractals whose structural distribution is similar at different scales.
Self-similarity is not only a feature of nature, art, music, society and so on,
it is also part of the way in which we imagine or ‘image’ physical concepts.
For example, in the early fifteenth century (around 1505-1510), The Polish as-
tronomer and cleric, Nicolaus Copernicus changed the way in which we imaged
the solar system from the Ptolemaic theory where the planets and the Sun or-
bited the Earth to a heliocentric system in which all the planets, including the
Earth, orbit the sun (Concerning the Revolutions, first published in 1543). In
the early seventeenth century, Galileo Galilei introduced the concept of moons
orbiting the planets when, in 1610, he discoved the moons of Jupiter. In 1913,
following Ernest Rutherford’s discovery of an atomic nucleus, Neils Bohr pro-
posed a model for the hydrogen atom in which the electron orbits the nucleus,
an orbit determined by a discrete energy level from which he provided a model
that explained the hydrogen spectrum. This is the same basic idea (in terms of
the ‘images’ of the physical system we use as a model) but at vastly different
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scales. There is something intellectually and aesthetically pleasing about un-
derstanding things in terms of self-similar models, in addition to such models
often providing a ‘best fit’ to the ‘known data’. In physics, the model that
would appear to be an underlying theme and a possibly unifier is the ‘wave
model’. In our models for the nucleus, the atom, for electromagnetism and
gravity for example, the mechanics of waves as described by wave-type equa-
tions is a central theme (e.g. Schrödinger’s equation in quantum mechanics,
the wave equation for electromagnetic fields obtained by decoupling Maxwell’s
equations and the gravity wave equation obtained by decoupling Einstein’s
equations for a gravitational field). In this sense, physics is the study of ‘waves
within waves’.

18.2 Geometry and Dimension

Dimension is a concept and not necessarily a reality. We are all used to the
concept of one-, two- and three-dimensions together with the fourth-dimension,
time t, our four dimensional world being inter-related through Einstein’s the-
ory of relativity in which the speed of light c0, which defines a length c0t, is
taken to be a universal constant. Higher or hyper dimensions, i.e. 5, 6, 7, ...
dimensions, are abstractions but are nevertheless of fundamental significance in
modern theoretical physics. However, coming to terms with dimension in terms
of ‘imaging’ has taken ‘time’. For example, pre-Renaissance painting often ex-
hibits a two-dimensional ‘flatness’ with distortions in perspective. During the
Renaissance, new methods were developed to include perspective in paintings
that ‘reflected’ the reality of imaging a three-dimensional world. Cubist art of
the early Twentieth Century was an attempt to express four dimensions (or
else an attempt to overcome a severe lack of talent!) - see Figure 18.6. Com-
ing to terms with dimension has not only taken its time from the point of the
evolution of art and the society which it reflects but is one of the most impor-
tant aspects of our intellectual development, a point that is developed in the
following (taken from Porter E and Gleik J, Nature’s Chaos, Scribner, 1990):

‘When a child draws a tree, a green mass sits on top of a brown trunk, as if the
basic shape were a Popsicle. A child’s cloud is a smoothly rounded bulk, perhaps
with a wavy or scalloped edge. These are not the clouds we see. They are
lightly stylized forms, like the international symbols for Railrood Crossings or
No Smoking. As children or adults we own a repertoire of such stylized images,
like ideograms in Chinese painting. First they help us to see - for without such
templates, our minds are powerless to shift the welter of sensations that bombard
our eyes and ears. But they hinder our seeing too. The rivers, the clouds, the
snowflakes of our perpetual toolkits miss much of nature’s true complexity - the
intricate recursion, the convoluted flows within flows within flows. Our mental
lightning bolts are z’s, our volcanoes are inverted and decapitated cones, our
rivers are lines. Nature’s are not so simple’.
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Figure 18.6: Examples of medieval art (top) high Renaissance art (centre) and
Cubism (bottom).
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Just as it takes some imagination and practice to ‘think’ in terms of multiple
integer or topological dimensions, so it requires some further imagination to
extend or generalize the idea of an integer dimension to a fractional dimension.
After all, it took some 5000 years to generalize the concept of a whole number
to a decimal number. (The Islamic world brought the decimal number system
from India - where the concept of zero was first invented - in about 750 AD but it
did not take hold in Europe for another 500 years after that.) Thus, the concept
of a fractional or fractal dimension requires an appropriate introduction.

Suppose we cut up some simple 1D, 2D and 3D Euclidean objects (a line, a
square surface and a cube, for example), make exact copies of them and then
keep on repeating the copying process. Let N be the number of copies that we
make at each stage and let r be the length of each of the copies, i.e. the scaling
ratio. Then we have

NrD = 1, D = 1, 2, 3, ...

The similarity or fractal dimension is that value of D which is usually (but not
always) a non-integer dimension ‘greater’ that its topological dimension (i.e.
0,1,2,3,... where 0 is the dimension of a point on a line) and is given by

D = − log(N)
log(r)

.

To illustrate this principle, let us consider the following examples.

Example 1: Cutting and copying lines with deletion

Suppose we cut up a line into lines of equal length, throw away one or more
of the lines (deletion) and then keep on repeating or ‘iterating’ the process.
At each iteration, NrD = 1 where 0 < D < 1. For example, suppose we cut
a line into three lines of equal length, delete one of the lines and continually
repeat the process. At each stage of this process N = 2 and r = 1/3 and
D = − log(2)/ log(1/3) = log(2)/ log(3) = 0.6309297536.... Suppose that we
cut the line into four lines of equal length, delete two of them and repeat the
process iteratively; then, N = 2, r = 1/4 and D = log(2)/ log(4) = 0.5. The
sets obtained at each stage of the process are examples of Cantor sets or fractal
dust.

Example 2: Cutting and copy lines with addition

Suppose we cut up a line (an ‘initiator’) into smaller lines of equal length, add
one (a ‘generator’) or a number of the lines (addition) and iterate. In this case,
NrD = 1 where 1 < D < 2. This process produces fractal curves of which
there are many types. Suppose we iterate in such way that N = 4 and r = 1/3,
as shown in Figure 18.7, which is an illustration of a curve known as the triadic
von Koch curve. The fractal dimension of this curve is D = log(4)/ log(3) =
1.261859507.... For the case when N = 8 and r = 1/4, we obtain the quadratic
von Koch curve whose fractal dimension is D = log(8)/ log(4) = 1.5 and that
is also shown in Figure 18.7.
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Figure 18.7: The triadic (left) and quadratic (right) von Koch curves.

Example 3: Cutting and copying surfaces with deletion

The previous example provided an illustration of some well known fractals with
a fractal dimension D ∈ (1, 2) based on cutting and copying lines with addition.
However, fractals of this type can be generated by cutting and copying surfaces
with deletion. Referring to Figure 18.8, this approach provides fractals with
higher fractal dimensions such as the ‘Sierpinski triangle’, whereN = 3, r = 1/2
at each step and D = log(3)/ log(2) = 1.584962501..., and the ‘Sierpinski car-
pet’ where N = 8, r = 1/3 at each step andD = log(8)/ log(3) = 1.892789261...
Observe in Figure 18.8 that the ‘texture’ of the Sierpinski carpet is greater than
that of the Sierpinski triangle, a result that is reflected in the increased value
of the fractal dimension D.

Example 4: Cutting and copying volumes with deletion

Just as fractal curves can be generated by either cutting and copying surfaces
with deletion or cutting and copying lines with addition, so the same principle
applies to generating fractal surfaces. As an example, and referring to Figure
18.9, suppose we cut up a cube into a set of cubes of equal length, delete one
(or a number) and then keep on repeating the process. Then NrD = 1 where
2 < D < 3. In Figure 18.9, N = 20, r = 1/3 and D = log(20)/ log(3) =
2.726833028.... This produces a fractal surface known as a Menger sponge;



552 CHAPTER 18. FRACTAL IMAGES AND IMAGE PROCESSING

this is an object which, as k → ∞, acquires an infinite surface area and zero
volume. The Menger sponge after four iterations is shown in Figure 18.10.

Figure 18.8: The Sierpinski triangle (left) and carpet (right).

Figure 18.9: Generation of the Menger Sponge.

Figure 18.10: The Menger Sponge after four iterations.
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18.3 Fractal Curves and Fractal Signals

The examples given in the previous Section are those for generating fractal
dusts, curves and surfaces which can be undertaken by a process of deletion or
addition. The principles given are general and provide the basis for generating
an unlimited variety of fractals. However, we can theoretically extend the idea
to include fractal volumes and fractal time where, in each case, the fractal
dimension is greater than the topological dimension as given in the following
table.

Fractal type Fractal Dimension
Fractal Dust 0 < D < 1
Fractal Curve 1 < D < 2
Fractal Surface 2 < D < 3
Fractal Volume 3 < D < 4
Fractal Time 4 < D < 5
Hyper-fractals 5 < D < 6
...

...

In each case, as the value of the fractal dimension increases, the fractal becomes
increasingly ‘space-filling’ in terms of the topological dimension which the frac-
tal dimension is approaching. In each case, the fractal exhibits structures that
are self-similar. A self-similar deterministic fractal is one where a change in the
scale of a function f(x) by a factor of a produces a smaller version, reduced in
size by a, i.e.

f(ax) = af(x).

A self-affine deterministic fractal is one where a change in the scale of a function
f(x) by a factor a produces a smaller version reduced in size by a factor aq,
q > 0, i.e.

f(ax) = aqf(x).

However, the regular fractal curves of the type discussed in the previous Section
are not functions of the type f(x). So how are they related to f(x)? The answer
is through parametrization. Since the computation of a regular fractal curve,
for example, is a discrete process, it can be taken to be given by a set of discrete
point xi, yi in the xy-plane. Here, both xi and yi can be treated as independent
digital signals. For a continuous fractal curve, these signals will be given by
x(t) and y(t) and the fractal curve composed of an infinite set of coordinate
points [x(t), y(t)]. Given these data and any point of origin in the plane, we
can compute unique amplitude A(t) and phase θ(t) signals given by

A(t) =
√
x2(t) + y2(t) and θ(t) = tan−1

[
y(t)
x(y)

]
.

The amplitude A for any value of t is the chord length from the origin to a
point on the fractal curve. This signal will have properties that reflect the
characteristics of the fractal curve, the most fundamental of which is a 1/kq
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spectral power law as illustrated in Figure 18.11 for a Euclidean curve (a circle)
and a hypothetical fractal curve enclosing the origin.

Figure 18.11: Chord length parametrization of a circle and its spectrum (top)
and a chord length parametrization of a fractal curve and its spectrum (bot-
tom).

If the spectrum F (k) of a fractal f(x) is proportional to k−q, its Power Spectral
Density Function (PSDF) will be given by

P (k) =| F (k) |2= c

kβ

where c is a constant and β = 2q. Taking logarithms, we obtain

log(P ) = C − β log(k), C = log(C).

A plot of log(P ) against log(k) will therefore produce a line with a gradient
of −β. Consider the example fractals given in Figure 18.12 and Figure 18.13
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for the ‘Dragon curve’ (D = 1.3652...) after 3 iterations and for the ‘Peano
curve’ (D = 1.8888...) after 4 iterations, respectively. In each case, the discrete
chord length signal Ai =

√
x2
i + y2

i is shown together with a bi-logarithmic
plot (using natural logarithms - LN) of its power spectrum as a function of
frequency. The broken line running through these bi-logarithmic spectra is a
least squares fit to the data obtained by computing C and β using the least
squares method in which the error function

e(C, β) =
N∑
i=1

(lnPi− ln P̂i)2 =
N∑
i=1

[lnPi− (C −β ln ki)]2; Pi > 0, ki > 0, ∀i

is a minimum and where Pi, i = 1, 2, ..., N is the positive half-space data
(excluding the DC), the solutions for q and C, respectively, being given by

β =
N

N∑
i=1

(lnPi)(ln ki)−
(
N∑
i=1

ln ki

)(
N∑
i=1

lnPi

)
(
N∑
i=1

ln ki

)2

−N
N∑
i=1

(ln ki)2

and

C =
1
N

N∑
i=1

lnPi +
β

N

N∑
i=1

ln ki.

Figure 18.12: The ‘Dragon curve’ (left), the discrete chord length signal (top-
right) and its bi-logarithmic PSDF showing a least squares fit to the data
(bottom-right).



556 CHAPTER 18. FRACTAL IMAGES AND IMAGE PROCESSING

Figure 18.13: The ‘Peano curve’ (left), the discrete chord length signal (top-
right) with its bi-logarithmic PSDF showing a least squares fit to the data
(bottom-right).

Compared to the parametrization of a circle, for example, which is a smooth
line with a dimension of 1, fractal curves have significantly more structure
which is reflected in their frequency content. The spectrum of the chord length
signal for the circle is composed of a DC component whose value is determined
by the radius of the circle. The spectrum of the chord length of a fractal
curve has components which decrease in amplitude as the frequency increases.
This reflects the finer structure that exists over smaller scales. So what is the
connection between a signal with a PSDF of the form

P (k) =| F (k) |2= c

kβ

and the equation for a self-affine curve, i.e.

f(ax) = aqf(x)?

The connection comes from considering the spectrum of f(x) to be a filtered
version of a uniform or ‘white’ spectrum N(k), so that

F (k) =
N(k)
(ik)q

.

Now using the convolution theorem

f(x) = h(x)⊗ n(x) =

∞∫
−∞

h(x− y)n(y)dy

where (see Appendix C)

h(x) =
1
2π

∞∫
−∞

1
(ik)q

exp(ikx)dk =
α1(q)
x1−q , α1(q) =

1
(2i)q

√
π

Γ
(

1−q
2

)
Γ
(
q
2

) .
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But, if N(k) is a uniform spectrum, then

N(k) =
1
a
N

(
k

a

)
or

n(x) = n(ax).

Hence,

f(x) = α1(q)

∞∫
−∞

n(ay)
(x− y)1−q dy =

α1(q)
aq

∞∫
−∞

n(z)
(ax− z)1−q dz =

1
aq
f(ax)

or
aqf(x) = f(ax).

The key point here is to note that

aqf(x) = f(ax) =⇒ | F (k) |2 scales as
1

| k |2q
where we defined q to be the ‘Fourier dimension’. Further, if we define a
fractional derivative using a generalization of the result

dn

dxn
f(x)⇐⇒ (ik)nF (k), n = 1, 2, 3

to
dq

dxq
f(x) ⇐⇒ (ik)qF (k), q > 0

then we can define a (parametrized) fractal curve in terms of the solution to
the fractional differential equation

dq

dxq
f(x) = n(x).

18.4 Random Scaling Fractals and Texture

Texture is a word that is commonly used in a variety of contexts but is at best
a qualitative description of a sensation. Visual texture can be associated with
a wide range of signals and images, but the term cannot be taken to quantify
any particular characteristic. How then can we quantify texture mathemati-
cally - is there a specific and unique definition for texture? To begin with, we
can state that textural information is not well defined in terms of Euclidean
geometry. Most objects can be divided into regions containing either: (i) de-
terministic information (where Euclidean geometry is usually applicable); (ii)
textural information (which is not easily described by Euclidean geometry).

Whether a fractal is deterministic or random, its spectral characteristics
obey the same basic scaling law. Figure 18.14 shows a randomized version
of the triadic von Koch curve, for example, obtained by randomly changing
the orientation of the ‘amplitude’ at each iteration. Although this randomized
curve looks different from the regular curve given in Figure 18.7, its fractal and
Fourier dimensions are the same.
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Figure 18.14: Randomization of the triadic von Koch curve.

The inverse-q power law is found throughout nature. It is a scaling law
that is as universal as the inverse square law is in describing gravitational
(Newton’s law) and electric (Coulomb’s law) fields. However, very few natural
shapes are regular fractals, the majority are statistically self-affine, i.e. random
scaling fractal curves or surfaces where, as we zoom into the fractal, the shape
changes, but the distribution of lengths remains the same, i.e.

Pr[f(ax)] = aqPr[f(x)]

where Pr denotes the Probability Distribution Function or PDF. The value of q
associated with this result provides a way of measuring the texture of an image.
Typically one or more ‘measures’ for texture can be defined and a moving
window applied to the data. For each window position, each of the texture
measures is computed. If only one measure is defined then one ‘measure image’
is produced. If more than one measure is defined, then some sort of clustering
algorithm (which converts a multiple numeric field into a single field) is needed
to reduce the several measure images into one final image. In addition, scaling
can be applied, whereby the window size is gradually decreased, giving rise to
yet more measure-images at different scales.

Natural vision systems appear to be good at segmenting texture, i.e. at
recognizing similarity between sub-patterns in an image. Texture gradients are
important cues to 3D shape in the visual sense, and the role of texture may be
primarily to help locate objects in visual space by analysis of texture gradients.
When examining textures, we tend to look for deviations from uniform texture
with a view to ‘labelling’ objects with a common textural property.

Finding suitable definitions for the texture of an image is important for
developing an automatic means of extracting textural features that agrees with
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human sensory perception. There are six measures of texture that are of value
for classifying a given texture.

Coarseness: coarse versus fine. Coarseness is the most fundamental textu-
ral feature. In a narrow sense, coarseness is synonymous with texture. When
two patterns differ only in scale, the magnified one is coarser. For patterns with
different structures, the bigger its element size, and/or the less its elements are
repeated, the coarser it is felt to be.

Coarseness is a measure of scale in microtexture within an image. A simple
procedure that detects the largest size at which repetitive patterns are present
is as follows:

• Take averages at every point in a digital image fij at different scales, k,
which are a power of 2. This defines the arrays

Ak(x, y) =
x+2k−1−1∑
i=x−2k−1

y+2k−1−1∑
j=y−2k−1

fij/22k.

• Calculate the differences between neighbouring averages which are non-
overlapping. This is calculated in both horizontal h and vertical v direc-
tions,

Eh,k(x, y) = |Ak(x− 2k−1, y)−Ak(x+ 2k−1, y)|,
Ev,k(x, y) = |Ak(x, y − 2k−1)−Ak(x, y + 2k−1)|.

• Pick the largest size which gives the maximum value,

S(x, y) = 2n, where En = max{Eh,1, Ev,1, Eh,2, Ev,2, . . .}.

• Finally, take an average as the coarseness measure, Fcrs = 〈S(x, y)〉.

Contrast: high contrast versus low contrast. The simplest method of
varying signal or image contrast is by stretching or shrinking its amplitude or
grey scale respectively. By changing the contrast of an image, we alter the image
quality, not the image structure. When two patterns differ only in grey-level
distribution, the difference in their contrast can be measured. However, more
factors are supposed to influence the contrast difference between two texture
patterns with different structures. The following factors are considered for a
definition of contrast: (i) dynamic range; (ii) polarization of the distribution of
dark-field and bright-field regions in the grey-level histogram or ratio of dark
and bright areas; (iii) sharpness of edges (images with sharp edges have higher
contrast); (iv) period of repeating patterns.

Two of the four factors discussed above have a major influence on the con-
trast within an image.
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1. Dynamic range of grey levels, specified most commonly as the standard
deviation σ.

2. Polarization of the distribution the grey level histogram (i.e. a bias to-
ward the dark and bright field). The kurtosis, α4 = μ4/σ2, is used where
μ4 is the fourth moment about the mean and σ2 is the variance (see
Chapter 17 - Statistical Moments).

Combining these two factors, we have a measure for contrast given by Fcon =
σ/(α4)n.

Directionality: directional versus non-directional. This is a global prop-
erty over a region. Directionality involves both element shape and placement
rule. It can be divided into two groups, mono-directional and bi-directional.
If only the total degree of directionality is considered then orientation of the
texture pattern does not matter, i.e. patterns which differ only in orientation
should have the same degree of directionality.

The values defined for the gradient angle θ(G) (see Chapter 16) can be
quantized into a histogram, H . The position and number of peaks can be used
to extract the type of directionality. To quantify this feature, the sharpness, or
variance, of np peaks, positioned at angles θp can be calculated. By defining
wp as the range of angles between two valleys, we have, without normalization,

Fdir = np

np∑
1=p

∑
θ∈wp

(θ − θp)2Hd(θ).

Line-likeness: line-like versus blob-like. This concept is concerned with
the shape of a texture element. It is expected that this feature supplements
the major ones previously mentioned, especially when two patterns cannot be
distinguished by directionality.

Having calculated G and θ(G) for all locations, a definition of line-likeness
considers how probable the direction, at a specific point, is similar to one at a
certain distance away. A matrix, Pd(i, j), is defined as the relative frequency
with which two points on an edge, separated by a distance d, have direction
codes i and j. A measure of line-likeness follows from

Flin =

n∑
i=1

n∑
j=1

Pd(i, j) cos[(i− j)2π/n]

n∑
i=1

n∑
j=1

Pd(i, j)
.

Regularity: regular versus irregular. This is a property concerning vari-
ations in the placement of pixel clusters. However, it can be supposed that
variations of elements, especially in the case of natural textures, reduces the
regularity on the whole. Additionally, a fine structure tends to be perceived as
regular.
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Four different features have been described so far, and regularity can be
thought of as how much these features change over an image. The standard
deviation σ of these four features can be used, so that

Freg = 1− (σcrs + σcon + σdir + σlin).

Roughness: rough versus smooth. This description was originally intended
for tactile textures, not for visual textures. However, when we observe natural
textures, we are usually able to compare them in terms of rough or smooth. It
is debatable as to whether this subjective judgment is due to the total energy
of changes in grey-level or due to our imaginary tactile sense.

The value of using fractal geometry for image analysis lies in its potential
to classify an image into different regions of texture by using for example the
fractal dimension or the Fourier dimension as a measure for texture. Take, for
example, the images given in Figure 18.15 which shows sections of the histology
of a patient with normal skin and a patient with chronic dermatitis. There is a
significant difference in the texture between the two images; in such cases, the
Fourier dimension can be used as a measure of this difference assuming that
the Fourier dimension is constant over the entire image, i.e. that the image is
both fractal and stationary.

Figure 18.15: Histology of normal skin (left) and chronic dermatitis (right).

Naturally occurring fractals differ from the strictly mathematically defined
fractals in that they do not display statistical or exact self-similarity over all
scales. Rather, they display fractal properties over a limited range of scales.
Given that natural surfaces can be approximated as fractals over a range of
scales, it is necessary to examine how the imaging process maps fractal surfaces
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into grey-level surfaces. The image of a fractal surface is itself a fractal surface
under the following conditions: (i) the surface is Lambertian; (ii) the surface
is illuminated by (possibly several) distant point sources; (iii) the surface is
not self-shadowing. Under these conditions, we can use a range of ‘fractal
parameters’ to segment images through the computation of fractal dimensions
which give a measure of the ‘roughness’, or texture. For example, a high
value fractal dimension indicates a rough image or surface whereas a low value
indicates a smooth image or surface. Several methods have been developed to
calculate the fractal dimension of signals and images which are discussed in the
following Section.

18.5 Methods of Computing the Fractal Dimen-
sion

As with many other techniques of digital signal and image processing, the com-
putation of the fractal dimension can be undertaken in ‘real space’ (processing
the data directly) or in ‘transform space’ (processing the data after taking an
appropriate integral transform). In the latter case, use can be made of the
Fourier transform, as the Power Spectral Density Function (PSDF) of a fractal
image has the expected inverse q-power scaling law.

In general, there is no unique and general rule for computing the fractal di-
mension. A number of algorithms exist to compute the fractal dimension which
can be broadly categorized into two families: (i) size-measure relationships,
based on recursive length or area measurements of a curve or surface using
different measuring scales; (ii) application of relationships based on approxi-
mating or fitting a curve or surface to a known fractal function or statistical
property, such as the variance.

By way of a brief introduction to the methods associated with (i) above,
consider a simple Euclidean straight line � of length L(�) over which we ‘walk’
a shorter ‘ruler’ of length δ. The number of steps taken to cover the line
N [L(�), δ] is then L/δ which is not always an integer for arbitrary L and δ.
Since

N [L(�), δ] =
L(�)
δ

= L(�)δ−1

⇒ 1 =
lnL(�)− lnN [L(�), δ]

ln δ
= −

(
lnN [L(�), δ]− lnL(�)

ln δ

)
which expresses the topological dimension DT = 1 of the line. In this case, L(�)
is the Lebesgue measure of the line and if we normalize by setting L(�) = 1,
the latter equation can then be written as

1 = − lim
δ→0

[
lnN(δ)

ln δ

]
since there is less error in counting N(δ) as δ becomes smaller. We also then
have N(δ) = δ−1. For extension to a fractal curve f , the essential point is that
the fractal dimension should satisfy an equation of the form

N [F (f), δ] = F (f)δ−D
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where N [F (f), δ] is ‘read’ as the number of rulers of size δ needed to cover a
fractal set f whose measure is F (f) which can be any valid suitable measure of
the curve. Again we may normalize, which amounts to defining a new measure
F ′ as some constant multiplied by the old measure to get

D = − lim
δ→0

[
lnN(δ)

ln δ

]
where N(δ) is taken to be N [F ′(f), δ] for notational convenience. In practice,
if we are dealing with a digital signal (a sampled curve) rather than an abstract
continuous curve, which has precise fractal properties over all scales, then

D = −
〈

lnN(δ)
ln δ

〉
(18.1)

where we choose values δ1 and δ2 (i.e. the upper and lower bounds) satisfying
δ1 < δ < δ2 over which we do some sort of averaging processes denoted by 〈 〉.
The most common approach is to look at the bi-logarithmic plot of lnN(δ)
against ln δ, choose values δ1 and δ2 over which the plot appears to be straight
and then apply a least squares fit to the straight line within these limits.

18.5.1 The Least Squares Approximation

All algorithms discussed in this section use a least squares approach to com-
puting the fractal or Fourier dimension. It is therefore worth briefly reviewing
this technique. Let fi, i = 1, 2, ..., N be a real digital function consisting on
N elements and let f̂i be an approximation to this function. We assume that
f̂i is the expected form of the data fi. The least squares error e is then defined
as

e =
N∑
i=1

(fi − f̂i)2.

In most cases, algorithms for computing the fractal dimension use logarithmic
or semi-logarithmic plots to fit the results of a given algorithm to a line. In
these cases, we are interested in finding the slope m and in certain cases the
constant c of the line

f̂i = mxi + c.

To find the best fit, we are required to minimize the error e which is taken
to be a function of m and c. This is achieved by finding the solutions to the
equations

∂e

∂m
= 0 and

∂e

∂c
= 0.

Differentiating with respect to m and c gives

N∑
i=1

xi(fi −mxi − c) = 0
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and
N∑
i=1

(fi −mxi − c) = 0.

Solving for m and c we obtain

m =
N

N∑
i=1

fixi −
(
N∑
i=1

fi

)(
N∑
i=1

xi

)
N

N∑
i=1

x2
i −

(
N∑
i=1

xi

)2

and

c =

N∑
i=1

fi −m
N∑
i=1

xi

N
.

This approach can also be used when the data is two-dimensional (a digital
image or grey level surface) where we are required to approximate the data fij
by a function

f̂ij = mxij + c.

The result (i.e. the expressions form and c) is the same as above except that the
summation is over i and j. In the following Sections, algorithms for computing
the data used to calculate the fractal dimension with the least squares method
are discussed. Some of these algorithms are based on the following relationship

Length = c(Step)m

which can be linearized thus

ln(Length) = ln(c) +m ln(Step).

Here, length represents the measurement of the curve or surface using a ‘ruler’
of size Step and m is the slope of the log-log plot which has a simple algebraic
relationship with the fractal dimension D, depending on the algorithm used.

18.5.2 The Walking-Divider Method

This method uses a chord length (Step) and measures the number of chord
lengths (Length) needed to cover a fractal curve. The technique is based on
the principle of taking smaller and smaller rulers of size (Step) to cover the
curve and counting the number of rulers (Length) required in each case. This
approach is based on a direct interpretation of equation (18.1) where N(δ) ≡
Length and δ ≡ Step are estimated in a systematic fashion. It is a recursive
process in which the Step is decreased (typically halved) and the new Length
calculated. Here, the input signals are taken to be of size N , where N is a
power of 2 because of the recursive nature of the method. A least squares fit to
the bi-logarithmic plot of Length against Step gives m, where D = −m. This
part of the calculation essentially provides an estimate of the average gradient
in equation (18.1) as illustrated in Figure 18.16.
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Figure 18.16: Illustration of the walking-divider method for computing the
fractal dimension D of a signal showing four iterations and the least squares
fit.

The walking-divider method suffers from a number of problems. First of
all, the initial Step must be carefully chosen. An appropriate starting value
is half of the average distance between the points. Clearly, the computation
of the initial value, and the procedure required to count the number of Steps,
makes this algorithm time consuming.

18.5.3 The Box Counting Method

Box counting involves covering a fractal with a grid of n-dimensional boxes or
hyper-cubes with side length δ and counting the number of non-empty boxes
N(δ). For signals, the grid is one of squares and, for images, a grid of cubes.
Boxes of recursively different sizes are used to cover the fractal. Here again,
an input signal with N elements or an image of size N × N is used as input,
where N is a power of 2. The slope m obtained in a bi-logarithmic plot of the
number of boxes used against their size then gives the fractal dimension (also
known as the Box or Minkowski dimension) where D = −m. The principle is
illustrated in Figure 18.17.

Successive divisions by a factor of two are used for the box Size to give a
regular spacing in the bi-logarithmic plot and least squares fit. In practice, a
regular grid is usually applied (see Figure 18.18) to the data and the non-empty
boxes counted.

The behaviour of this algorithm is such that the greater the number of
points used for the least squares fit, the better the estimate of the fractal
dimension. The optimum number of boxes for a given size required to compute
an accurate fractal dimension can be obtained by mapping the entire image
with boxes (cubes) and then identifying the lower box and higher box covering
the surface.
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Figure 18.17: Illustration of the box counting method for computing the fractal
dimension D of a signal showing 4 iterations and the least squares fit.

In general, box counting algorithms behave well and produce accurate estimates
for fractal dimensions between 1 and 1.5 for digital signals and between 2 and
2.5 for digital images; they are easy to code and fast to compute. Outside this
range (i.e. for higher fractal dimensions), they tend to give less accurate results,
underestimating in most cases and saturating near 0.6 above the topological
dimension.

Figure 18.18: Illustration of irregular and regular grids used for the box count-
ing algorithm.

For a smooth one-dimensional curve of unit length, we expect that

N(δ) =
1
δ
, δ → 0.
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The box counting measure is a generalization of this measure to

N(δ) =
1
δD

, δ → 0

or, taking logarithms,

D = − lnN(δ)
ln δ

.

18.5.4 The Prism Method

The prism method is based on the idea of box counting in which, instead of
counting the number of boxes in a region for a given size, the area based on
four triangles defined by the corner points is computed and summed over a
grey level surface. The triangles define a prism based on the elevated corners
and a central point computed in terms of the average of the four corners. A
bi-logarithmic plot of the sum of the prisms’ areas for a given base area gives
a fit to a line whose slope is m in which D = 2 −m The basic computational
engine for this algorithm is similar to that for the box counting method, but is
slower due to the number of multiplications implied by the calculation of the
areas.

18.5.5 Hybrid Methods

Hybrid methods calculate the fractal dimension of 2D surfaces using 1D meth-
ods. This approach is based on the relationship between the fractal dimensions
of a surface’s contours (1D fractal curves), for example, and the fractal dimen-
sion of the surface itself, namely

D2 = 1 +D1

where D1 is the average of the fractal dimensions of each contour line and D2

is the fractal dimension of the surface. In principle, this result holds for any
algorithm used to compute D1.

Contour Lines Method

This algorithm is based on extracting the contour lines at a particular elevation
in a grey-level surface, computing their fractal dimensions D(1,n) using the
walking-divider method, for example, and then finding the general 2D fractal
dimension D via the formula

D = 1 +
1
N

N∑
n=1

D1n.

The results are generally close to those computed using the box counting
method for fractal dimensions between 2.1 and 2.4.

Vertical Slice Averaging
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This approach considers the fractal dimension of the surface to be the normal
average of all the vertical slices in the x- and y-directions plus 1. To add
flexibility, this technique can be implemented with the possibility of computing
either or both directions (rows and/or columns) and to consider only a limited
number of slices. Another choice can be made with regard to the 1D algorithm
used to compute the fractal dimensions.

Robust Fractal Estimator

This method improves the accuracy of computing the fractal dimension of a
surface by computing the fractal dimension of the vertical slices in the x- and
y-directions plus 1, and generating a new map of the fractal dimensions created
where each point is defined by the average fractal dimensions of the two profiles
intersecting at that position. The average value of the map is then taken to be
the fractal dimension of the surface.

Perimeter-Area Relationship

For non-fractal closed curves in the plane, the perimeter � is related to the
enclosed area A by

� = c
√
A

where c is a constant for a given type of shape (e.g. for squares c = 1 and for
circles c = 2

√
π). We can generalize this equation for the case of closed fractal

curves to give

� = c
(√

A
)D

, 1 < D < 2.

This generalized perimeter-area relationship can be used to classify different
objects in an image that are characterized by a closed contour.

18.5.6 Power Spectrum Method

The power spectrum method is based on the expected form of the PSDF of a
fractal which is given by

P̂i =
c

kβi

where c is a constant, ki ≡| ki | and β = 2q. Let Pi, i = 1, 2, 3, ..., N be the
data obtained by taking the discrete Fourier transform of a digital fractal signal
fi and retaining the positive half space data (because the power spectrum is
symmetric) excluding the DC value (because at k0 = 0 a singularity occurs)
and assume that Pi > 0∀i. We can then construct the error function

e(β,C) =
N∑
i=1

(lnPi − ln P̂i) =
∑
i

[lnPi − (C − β ln ki)]2

where C = ln c. The error function is a minimum when

∂e

∂β
= 0 and

∂e

∂C
= 0.
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Differentiating and solving the linear equations for β and C, we obtain

β =
N

N∑
i=1

(lnPi)(ln ki)−
(
N∑
i=1

ln ki

)(
N∑
i=1

lnPi

)
(
N∑
i=1

ln ki

)2

−N
N∑
i=1

(ln ki)2

and

C =
1
N

N∑
i=1

lnPi +
β

N

N∑
i=1

ln ki.

Unlike the previous methods discussed, this method of computing the Fourier
dimension q = β/2 is non-iterative and is immediately generalizable to fractal
surfaces, when β and C are given by

β =

N2
N∑
i=1

N∑
j=1

(lnPij)(ln kij)−
(

N∑
i=1

N∑
j=1

ln kij

)(
N∑
i=1

N∑
j=1

lnPij

)
(

N∑
i=1

N∑
j=1

ln kij

)2

−N2
N∑
i=1

N∑
j=1

(ln kij)2

and

C =
1
N2

N∑
i=1

N∑
j=1

lnPij +
β

N2

N∑
i=1

N∑
j=1

ln kij

where it is assumed that Pij is the data in the positive half space of the 2D
power spectrum excluding the DC component. In either case, the power spec-
trum can be computed using a fast Fourier transform. The constant c provides
a measure of the energy E of the fractal since from Parseval’s theorem

E =

∞∫
−∞

| f(x) |2 dx =
1
2π

∞∫
−∞

| F (k) |2 dk =
c

2π

∞∫
−∞

1
| k |β dk.

The ratio c/q therefore provides a measure for an image that emphasizes regions
where the intensity is high and the frequency content (texture) is low when
computed on a moving window basis.

18.6 The Fourier and Fractal Dimensions

The relationship between the Fourier dimension q and the fractal dimension
D can be determined by considering the box counting method for analysing a
statistically self-affine signal, specifically, a fractional Brownian signal whose
amplitude is given by (for unit step length)

A(t) = tH , H ∈ (0, 1]
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where H is the Hurst dimension (see Chapter 17). Consider a fractal signal
covering a time period Δt = 1 which is divided up into N = 1/Δt equal
intervals. The amplitude increments ΔA are then given by

ΔA = ΔtH =
1
NH

= N−H .

Using the box counting method, with boxes of length δ = N−1, the number of
boxes required to cover each interval is

ΔAΔt =
N−H

N−1
= N1−H

so that
N(δ) = NN1−H = N2−H .

Now, since the box counting dimension D is related to N(δ) by

N(δ) =
1
δD

, δ → 0,

then, by inspection,
D = 2−H.

Thus, a Brownian signal, where H = 1/2, has a fractal dimension of 1.5. For
higher topological dimensions DT , using a similar box counting measure, we
have

D = DT + 1−H.
This algebraic equation provides the relationship between the fractal dimension
D, the topological dimension DT and the Hurst dimension H . We can now
determine the relationship between the Fourier dimension q and the fractal
(box counting) dimension D.

Consider a fractal signal f(x) over an infinite support with a finite sample
fX(x), given by

fX(x) =
{
f(x), 0 < x < X ;
0, otherwise.

A finite sample is essential as otherwise the power spectrum diverges. Further-
more, in reality f(x) is a random function and for any experiment or computer
simulation we must necessarily take a finite sample. Let FX(k) be the Fourier
transform of fX(x), PX(k) be the power spectrum and P (k) be the power
spectrum of f(x). Then

fX(x) =
1
2π

∫ ∞

−∞
FX(k) exp(ikx)dk,

PX(k) =
1
X
|FX(k)|2

and
P (k) = lim

X→∞
PX(k).
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The power spectrum gives an expression for the power of a signal for particular
harmonics. P (k)dk gives the power in the range k to k + dk. Consider a
function g(x), obtained from f(x) by scaling the x-coordinate by some a > 0,
the f -coordinate by 1/aH and then taking a finite sample as before, i.e.

gX(x) =
{
g(x) = 1

aH f(ax), 0 < x < X ;
0, otherwise.

Let GX(k) and P ′
X(k) be the Fourier transform and power spectrum of gX(x),

respectively. We then obtain an expression for GX in terms of FX ,

GX(k) =
∫ X

0

gX(x) exp(−ikx)dx =
1

aH+1

∫ X

0

f(s) exp
(
− iks

a

)
ds

where s = ax. Hence

GX(k) =
1

aH+1
FX

(
k

a

)
and the power spectrum of gX(x) is

P ′
X(k) =

1
a2H+1

1
aX

∣∣∣∣FX (ka
)∣∣∣∣2

and, as X →∞,

P ′(k) =
1

a2H+1
P

(
k

a

)
.

Since g(x) is a scaled version of f(x), their power spectra are equal, and so

P (k) = P ′(k) =
1

a2H+1
P

(
k

a

)
.

If we now set k = 1 and then replace 1/a by k we get

P (k) ∝ 1
k2H+1

=
1
kβ
.

We have produced a signal that is statistically similar and is defined by the
value H . Now since β = 2H + 1 and D = 2−H , we have

D = 2− β − 1
2

=
5− β

2
.

The fractal dimension of a fractal signal can be calculated directly from β
using the above relationship. This method also generalizes to higher topological
dimensions giving

β = 2H +DT .

Thus, since
D = DT + 1−H,
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we have that β = 5 − 2D for a fractal signal and β = 8 − 2D for a fractal
surface or, more generally,

β = 2(DT + 1−D) +DT = 3DT + 2− 2D

and
D = DT + 1−H = DT + 1− β −DT

2
=

3DT + 2− β
2

,

the Fourier dimension being given by q = β/2.

18.7 Other Dimensions and Higher Order Frac-
tals

In general, the fractal dimension alone is not sufficient to quantify a given tex-
ture. Many quite different fractals can have the same value of fractal dimension
since

D = − lnN
ln r

= − lnNγ

ln rγ

for all values of γ. For this reason, other fractal measures are required to
supplement the fractal dimension in an attempt to uniquely define ‘texture’.

18.7.1 The Fractal Signature

Many methods of computing the fractal dimension depend on the use of the
equation

M(ε) = cεDT −D

for some measured property M which is a function of scale ε, where c is a
constant and DT is the topological dimension. A single value of D can then be
computed using a bi-logarithmic least squares fit. If, however, we use the fact
that M(1) = c we can compute D for ε = 2, 3, ... A plot of D against ε then
gives the fractal signature. Natural imagery, such as a dense tree background
gives a slowly changing, essentially constant signature. An image consisting of
a single edge, for example, gives a low D at small ε rising to D = 3 at ε = 4.

18.7.2 The Correlation Dimension and Signature

Each pixel in a grey-level image can be regarded as a point in a three dimen-
sional space Xk = [i, j, gij] where i and j are the spatial coordinates of a pixel
and gij is the grey level at these coordinates. For each pixel, a cube of size
2ε+ 1 is constructed centred on the pixel. The number of points X� that fall
inside this cube is counted for various values of ε. The probability, C(ε), that
at least one point lies within the cube can then be obtained by dividing the
number of points by the cube volume:

C(ε) =
1

N(2ε+ 1)3

N∑
k=1

∑
�=1
� �=k

H(ε− | Xk −X� |)
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where N is the number of pixels in the image (if we are considering the whole
image or the number of pixels in a moving window - for the purpose of seg-
mentation) and

H(ξ) =

{
1, ξ ≥ 0;
0, ξ < 0.

C(ε) conforms to the equation

C(ε) = c(2ε+ 1)3−DC

where DC is the correlation dimension. Here, a single value of DC can be
computed by the normal bi-logarithmic least squares fit, or we may compute
C(0) = c and then compute a value of C(ε) for ε = 1, 2, .... In the latter case,
we obtain the correlation signature as a plot of DC against ε. For an image,
the values of DC range from two to three. A highly correlated surface gives a
correlation dimension close to two whereas a highly uncorrelated surface gives
a value close to three.

18.8 The Information Dimension

Given that pi is the probability that an element i is populated, we can define
an information function to be of the form

I = −
N−1∑
i=0

pi(δ) ln pi(δ).

The information or Rényi dimension is then given by

DI = − lim
δ→0

I

ln δ
= lim

δ→0

N−1∑
i=0

pi(δ) ln pi(δ)

ln δ
.

When every element i is equally likely, then we have the property that,

N−1∑
i=0

pi(δ) = Npi(δ) = 1, pi =
1
N

and therefore, in this specific case, the relationship

DI = lim
δ→0

N1∑
i=0

1
N ln 1

N

ln δ
= lim

δ→0

lnN−1

ln δ
= − lim

δ→0

lnN
ln δ

= D,

and it follows that if

I ≤ −
N−1∑
i=0

1
N

ln
1
N

then
DI ≤ D.
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18.9 The Lyapunov Dimension

Consider the iterative system

fn+1 = F (fn) = f + εn

where εn is a perturbation to the value of f at an iterate n which is independent
of the value of f0. If the system converges to f as n → ∞ then εn → 0 as
n → ∞ and the system is stable. If this is not the case, then the system
may be divergent or chaotic. Suppose we model εn in terms of an exponential
growth (σ > 0) or decay (σ < 0) so that

εn+1 = c exp(nσ)

where c is an arbitrary constant. Then ε1 = c, ε2 = ε1 exp(σ), ε3 = ε1 exp(2σ) =
ε2 exp(σ) and thus, in general, we can write

εn+1 = εn exp(σ).

Noting that

ln
(
εn+1

εn

)
= σ

we can write
N∑
n=1

ln
(
εn+1

εn

)
= Nσ.

Thus, we can define σ as

σ = lim
N→∞

1
N

N∑
n=1

ln
(
εn+1

εn

)
.

The constant σ is known as the Lyapunov exponent. Since we can write

σ = lim
N→∞

1
N

N∑
n=1

(ln εn+1 − ln εn)

and noting that (using forward differencing)

d

dx
ln ε � ln εn+1 − ln εn

δx
= ln εn+1 − ln εn, δx = 1

we see that σ is, in effect, given by the mean value of the derivatives of the
natural logarithm of ε. Note that, if the value of σ is negative, then the
iteration is stable and will approach f since we can expect that as N → ∞,
εn+1/εn < 1 and, thus, ln(εn+1/εn) < 0. If σ is positive, then the iteration will
not converge to f but will diverge or, depending on the characteristics of the
mapping function F , will exhibit chaotic behaviour. The Lyapunov exponent
is a parameter that is a characterization of the ‘chaoticity’ of the signal fn
which, in turn, can be taken to be a measure of its texture. In particular, if we
compute σN using N elements of the signal fn and then compute σM using M
elements of the same signal, we can define the Lyapunuv dimension as

DL =

{
1− σN

σM
, σM > σN ;

1− σM

σN
, σM < σN .
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18.9.1 Lacunarity

The term lacunarity comes from the Latin lacuna meaning gap. The most
straightforward illustration comes from considering the class of Cantor dusts
for which the fractal dimension (in this case, the similarity dimension) is given
byD = − lnN/ ln r whereN is the number of copies of a real line on the interval
[0, 1] and r < 1 is the scaling factor. Clearly, there is an infinite set of different
[N, r] which give the same D. For example the classic triadic Cantor set [2, 1/3]
gives the same D as [4, 1/9], [8, 1/27], etc. The appearance of these point-sets
will, however, be quite different. The difference lies in the way the gaps are
distributed. We can define the lacunarity of deterministic fractal sets such
as the Cantor set discussed above. Such definitions are, however, unsuitable
for random fractals and require suitable candidate definitions of lacunarity for
the class of random fractals. These definitions are based on the idea of mass
distribution. Consider, for example, a curve f(x): (i) if the curve has negative
values, then translate so that it is non-negative; (ii) consider the values of f as
representing mass so that we regard f as a mass distribution over the support
of f . We can consider definitions such as

L1 =
〈∣∣∣∣ f〈f〉 − 1

∣∣∣∣〉
and

L2 =

〈(
f

〈f〉 − 1
)2
〉

=
〈f2〉
〈f〉2 − 1

for the pth-order lacunarity Lp, where 〈 〉 denotes the mean. Note that the
second definition can be expressed as the variance divided by the square of the
mean. The definitions are not dissimilar to generalized statistical moments (see
Chapter 17), and we can consider a general lacunarity measure such as

Lp =
〈∣∣∣∣ f〈f〉 − 1

∣∣∣∣p〉
1
p

.

This provides a ‘key’ to the higher order fractals approach which is discussed
next.

18.9.2 Higher Order Fractals and Dimensions

In principle, there are an unlimited number of fractal or generalized dimen-
sions. Further, the fractal dimension alone is not sufficient to characterize a
fractal set and is only one of a number of generalized dimensions that can be
considered. These generalized dimensions are defined via a measure theoretic
analysis in ‘real space’. The use of transforms and, in particular, the Fourier
transform, applies principally to the Fourier dimension. This approach differ-
entiates between regions in an image with different Fourier dimension, but not
regions with the same Fourier dimension but differing correlation dimension,
information dimension and so on. A good example follows from the result that
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the fractal dimension D of the sum of two fractal curves C1 and C2, with fractal
dimensions D1 and D2 is given by

D = max[D1, D2].

Suppose, for example, that D1 is significantly larger than D2; C2 could be a
square wave for example, in which case D2 = 1. Whilst it is clear to the eye
that the merged curve is quite different from C1 (or C2), the same value of
fractal dimension is found for the merged curve and C1.

The need for multi-fractal measures can easily be grasped by considering the
definition and calculation of the box dimension. Consider the case of a point-
set with a large but finite number of points N embedded in fractal dimensional
space where we cover the set with a uniform grid of hypercubes of size δ and
count the number M(δ) of non-empty boxes. Such a strategy does not include
information concerning the distribution of the number of points in the non-
empty boxes.

Suppose there are Nk points in the kth hypercube and let pk = Nk/N . The
similarity dimension (which takes account only of the total of non-empty boxes
M(δ) and not the Nk) is then given by

D = − lim
δ→0

lim
N→∞

lnM(δ)
ln δ

.

The information (or Renyi) dimension is defined by

DI = − lim
δ→0

lim
N→∞

S(δ)
ln δ

where

S(δ) = −
M(δ)∑
k=1

pk ln pk.

The correlation dimension is

DC = lim
δ→0

lim
N→∞

lnC(δ)
ln δ

where
C(δ) =

1
N2

∑
i�=j

H(δ− | Xi −Xj |)

and H is the Heaviside step function. C(δ) counts the number of points whose
distance | Xi −Xj | is less than δ. D,DI and DC are the first three numbers
of a hierarchy of generalized dimensions Dq for q ≥ 0, i.e.

D = lim
q→0

Dq, DI = lim
q→1

Dq, DC = lim
q→2

Dq

and for q = 3, 4, ..., n we have correlation dimensions associated with triplets,
quadruplets and n-tuplets of points. Further, Dq forms a non-increasing series

Dq > Dq′ for any q′ > q
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with the inequality replaced by an equality if and only if the fractal is homo-
geneous. Hence, various dimensions previously introduced quite independently
form a general series. Moreover, a general expression for Dq can be obtained
given by

Dq =
1

(q − 1)
lim
δ→0

ln
(∑

i

pqi

)
ln δ

.

18.10 Fractal Images and Mandelbrot Surfaces

The fractal geometry of nature is often associated with systems undergoing a
phase transition. When a phase transition occurs, a system becomes charac-
terized by the interconnectivity of its elements rather than by the elements
themselves. The structures that are formed from this interconnectivity are
governed by the universal power law

System(size) ∝ 1
sizeq

where q > 0. Here, the term ‘system’ is a generic term representative of some
definable parameter that can be measured over different scales of a certain size.
With fractal images, the term ‘size’ relates to the level of detail that can be
resolved which is determined by the frequency content of the spectrum. Fractal
images are therefore characterized by a frequency distribution or spectrum
given by

Spectrum(frequency) ∝ 1
(frequency)q

where q is the Fourier dimension. Why should this distribution produce an
image that is self-similar? Suppose we have a complex spectrum N(k) where
k = x̂kx + ŷky which is characteristic of white noise, i.e. has an amplitude
spectrum that is a constant. Then, the (complex) spectrum of a fractal image
is given by

U(k) =
N(k)
(ik)q

and the fractal image u(r) where r = x̂x + ŷy is given by the inverse Fourier
transform

u(r) = F̂−1
2

[
N(k)
(ik)q

]
=

1
(2π)2

∞∫
−∞

∞∫
−∞

N(k)
(ik)q

exp(ik · r)d2k.

Using the convolution theorem,

u(r) = h(r) ⊗⊗n(r) =

∞∫
−∞

∞∫
−∞

h(r− r′)n(r′)d2r′

where
n(r) = F̂−1

2 [N(k)]
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and
h(r) = F̂−1

2 [(ik)−q].

Now the n-dimensional Fourier transform of rq is given by (see Appendix C)

∞∫
−∞

rq exp(−ik · r)dnr =

(
q
2 + n − 1

)
!(− q

2 − 1
)
!

2q+nπn/2k−q−n

and, hence, the function h is given by (for n = 2)

h(r) = α2(q)
1

r2−q

where

α2(q) =
iq

2qπ

[− (q−2
2

)− 1
]
!(

q−2
2

)
!

.

Thus, we can write the fractal image as

u(r) = α2(q)n(r) ⊗⊗ 1
r2−q

.

But this equation has a characteristic scaling property, i.e.

u(r) = α2(q)

∞∫
−∞

∞∫
−∞

n(ar′)
| r− r′ |2−q d

2r′ =
α2(q)
aq

∞∫
−∞

∞∫
−∞

n(y)
| ar− y |2−q d

2y =
1
a2
u(ar)

where y = ar′ and thus

Pr[u′(r)] =
1
aq

Pr[u(ar)]

where Pr denotes the Probability Density Function (PDF). This equation is
telling us that the PDF of the stochastic field u(ar) at a scale a > 0 is the same
as the PDF of the field u(r) scaled by aq which describes a statistically self-affine
image or surface. A Mandelbrot surface is a fractal image where q ∈ (1, 2). The
range of values of q corresponds to fractal dimensions D ∈ (3, 2), respectively.
However, the self-affine nature of u(r) is valid for all values of q > 0 and so
q can take on values below and above the range q ∈ (1, 2) which defines a
Mandelbrot surface. Hence, we can define a statistically self-affine image as
one in which

Pr[u′(r)] =
1
aq

Pr[u(ar)], q > 0

and a Mandelbrot surface as one where

Pr[u′(r)] =
1
aq

Pr[u(ar)], q ∈ (1, 2).

There is an interesting connection between this result and the solution to the
fractional Poisson equation

∇qu(r) = n(r).
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If we use the n-dimensional fractional Riesz operator

∇q ≡ 1
2π

∞∫
−∞

dnk(ik)q exp(ik · r), k ≡| k |

then, upon Fourier transforming the fractional Poisson equation, we have

(ik)qU(k) = N(k) or U(k) =
N(k)
(ik)q

giving (ignoring scaling by α2)

u(r) =
1

r2−q
⊗⊗n(r), r ≡| r | .

Hence, a self-affine surface can be considered to be the solution to a 2D frac-
tional Poisson equation with a white noise source term n(r), i.e.

∇q(Fractal surface) = white noise, q > 0.

Note that a statistically self-affine volume can be defined as the solution to

∇qu(r) = n(r), r = x̂x+ ŷy + ẑz

which is given by (ignoring scaling)

u(r) =
1

r3−q
(r)

where⊗ denotes the 3D convolution integral. This result is a direct consequence
of the scaling law

Spectrum ∝ 1
(frequency)q

just as the Coulomb’s inverse square law (in three dimensions)

Electrostatic force ∝ 1
(distance)2

yields the 3D Poisson equation

∇2φ(r) = ρ(r)

where φ is the electric field potential and ρ is the charge density whose solution
is (ignoring scaling)

φ(r) =
1
r
⊗ ρ(r).
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18.10.1 Computing a Self-affine Surface

Taking n to be a white Gaussian noise field, we can compute a fractal image
| u | say by using the convolution theorem and filtering the spectrum of n with
k−q where k =

√
k2
x + k2

y avoiding the singularity at k = 0 by setting the DC
level of u to be that of n. This is this basis for the example MATLAB function
that follows.

function FRACTAL_SURFACE(seed, q, size)

%
%Input:
% seed - initiator for random number generator.
% q - Fourier dimension.
% n - image size
%

%Set state of random number generator using the randn function.
randn(’state’,seed);

%Compute a random Gaussian noise field using the randn function.
n=randn(size,size);

%Compute the Fourier transform using fft2 function with a shift.
n=fftshift(fft2(n));

%Filter the spectrum avoiding singularity at zero frequency.
s=1+size/2;
for i=1:size

for j=1:size
k=((i-s)^2+(j-s)^2)^0.5;
if k > 0

u(i,j)=n(i,j).*k^(-q);
else

u(i,j)=n(i,j); %DC of u = DC of n.
end

end
end

%Inverse Fourier tranform.
u=real(fftshift(ifft2(u)));

%Take absoute value, scale (normalize) and display.
u=abs(u);
u=u./max(max(u));
imshow(u);
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The output of this function for seed=1, size=128 and values of q=1.1, 1.2,
1.3,..., 1.9 is shown in Figure 18.19. As the value of q increases, the texture
becomes smoother as a result of the high frequency components of the Gaussian
noise field being suppressed further.

Figure 18.19: A random fractal image for (left-to-right and top-to-bottom)
values of the Fourier dimension q between 1.1 and 1.9, in steps of 0.1.

Note that the PDF of the noise field used can vary provided that its spectrum
is white. Thus, the mean value of a Gaussian noise field can be adjusted as
required as can the type of noise (non-Gaussian) that is generated.

18.10.2 Tailoring a Fractal Surface

The smoothness of a fractal surface depends on the value of the Fourier dimen-
sion but its form (i.e. large scale shape or global topology) is determined by the
random number generating algorithm and the seed used to generate the noise
field n. Hence, we do not know the global topology of the surface until it has
been computed using an algorithm of the type given in the previous Section.
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How can we incorporate a priori information on the large scale structure of a
fractal surface and thus tailor it accordingly. A solution to this problem is to
replace the white noise field n by (1 − t)n + tf , where f is some user defined
function and 0 ≤ t ≤ 1 is a ‘transmission coefficient’. The fractal surface can
then be considered to be a solution to the equation

∇qu(r) = (1 − t)n(r) + tf(r), t ∈ (0, 1).

This solution requires that F (k) does not approach zero as fast as k−q. If
this cannot be guaranteed then the a priori information can be encoded in the
phase of the source function and the fractal computed by solving the equation

∇qu(r) = F−1
2 [| N(k) | exp(i(1− t)θN + itθF )], t ∈ [0, 1]

where θF and θF are the Fourier phase spectra of n and f , respectively.
In principle, any suitable algorithm developed for computational geometry

can be used to compute the surface f(x, y). For example, we can generate a
smooth surface by applying an appropriate filter to a collection of user defined
control points and/or patches. Smoothness is guaranteed if a filter is used that
is a variation diminishing smoothing kernel, one such example being a Gaussian
filter. An example is given in Figure 18.20 where the control surface has been
hand sketched as shown, filtered using a Gaussian low-pass filter to obtain f
and used to generate a fractal surface using the source term (1− t)n+ tf with
t = 0.3, a Fourier dimension of 1.35 and where n and f have been normalized
(i.e. ‖n(r)‖∞ = 1 and ‖f(r)‖∞ = 1).

Figure 18.20: Control surface (left) based on hand sketched surface patches,
the result of applying a Gaussian low-pass filter to the control surface (centre)
and the fractal surface (left) for q = 1.35 and t = 0.3.

18.10.3 Fractal Flow, Divergent and Rotational Fields

If we model a fractal surface in terms of a solution to the equation

∇qu(r) = n(r)
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where n can incorporate a priori information on the surface as discussed in the
previous Section, then we can extend the principle under the Reisz operator
for a fractional Laplacian to flow, divergent and rotational field.

Flow Fields

We consider a 2D flow field in terms of the solution to(
∂qx

∂xqx
+

∂qy

∂yqy

)
u(x, y) = n(x, y)

where for qx < qy the flow is the the x-direction and for qy < qx the flow is the
y-direction, the values of qx and qy determining the ‘flow rate’. The flow field
is computed by applying the appropriate filter which, in this case, is given by
(kqx
x + k

qy
y )−1.

Divergent Fields

A divergent fractal field can be considered to be the solution to

∇q · u(r) = n(r), r ∈ A
where r = x̂x+ ŷy and n is taken to be of compact support A, i.e. confined to
an area A. If we let u = ∇φ where φ is the field potential, then

∇1+qφ(r) = n(r)

whose solution provides a scalar fractal field φ obtained by applying a k−(1+q)

filter. The divergent field is then given by

u(x, y) =
(
x̂
∂

∂x
+ ŷ

∂

∂y

)
φ(x, y)

where the partial differentials can be computed using the filters ikx and iky,
respectively.

Rotational Fields

A random scaling rotational field can be considered to be the solution to the
equation

∇q × u(r) = n(r), r ∈ A.
Now let1

∇×∇q × u = −∇1+qu +∇(∇q · u)

and consider the case when the fractional divergent field is zero. We then have

∇1+qu = −∇×∇q × u = −∇× n

or
∇1+qu(x, y) =

∂

∂y
nx − ∂

∂x
ny

1A generalization of the result ∇×∇× u = −∇2u + ∇(∇ · u) - see Chapter 1
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where nx and ny are the components of the noise source in the x- and y-
directions, respectively. By computing the terms ∂xny and ∂ynx using the
filters ikx and iky, respectively, the rotational field can computed by using two
different seeds to generate nx and ny and applying a k−(1+q) filter in the usual
way. Examples of a flow, a divergent and a rotational fractal field are given
in Figure 18.21. The flow field has been generated using Fourier dimensions of
qx = 1.0001 and qy = 1.9999 and 256×256 pixels. The divergent and rotational
fields have also been generated using 256×256 pixels for a Fourier dimension
of 0.7 (i.e. 1 + q = 1.7) and noise fields which are of compact support where√

k2
x + k2

y ≤ a2

with a = 32 pixels. The rotational field has been generated by seeding ny with
the same seed plus 1 as that used to generate nx.

Figure 18.21: Examples of a random scaling flow field (left), divergent field
(centre) and a rotational field (right).

Dynamic Fractal Images

Dynamic fractal simulation has value in the case when a time dependent model
is required for the formation of a random scaling fractal. One approach is to
consider a time varying Fourier dimension q(t). In this case, we can consider
the solution of the equation

∇q(t)u(r, t) = n(r, t)

where the time dependent behaviours of q and n are taken to be slowly varying.
Each time ‘frame’ at which u is computed for a given value of q is determined
by the position of the window over which n is constructed from a larger noise
field.
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18.11 Generalized Random Scaling Fractal
(RSF) Models

The PSDF associated with a fractal image (i.e. the k−2q model) is not appro-
priate to all noise types and/or to the whole spectrum. Most images do have
a high frequency decay but the complete power spectrum may have character-
istics for which the 1/k2q power law is not appropriate. Spectral partitioning
can be used to extract the most appropriate part of the spectrum for which the
1/k2q power law applies. Is there a more general model which can be used to
characterize a wider variety of PSDFs of which the k−2q law is a special case?
Developing theoretically valid models for the spectral characteristics (PSDF)
and/or the PDFs of stochastic fields is one of the principal aims of statistical
mechanics. Ideally, what is required is a ‘shape’ for the PSDF which charac-
terizes all possible cases. To this end, we consider a PSDF of the form

P (k) =
ck2p

(k2
0 + k2)q

which is a generalization of the Bermann process

P (k) =
ck2p

k2
0 + k2

that is, in turn, a generalization of the Ornstein-Uhlenbeck process

P (k) =
ck

k2
0 + k2

where c and k0 are constants, p > 0 and q > 0. Here, both p and q can be
considered to be Fourier dimensions which together with k0 provides a way of
‘shaping’ the PSDF of a stochastic field. For k > 0, the function P (k) > 0∀k
has as maximum when

d

dk
lnP (k) =

2p
k
− 2kq
k2
0 + k2

= 0

or when
d

dk
P (k) =

(
2p
k
− 2kq
k2
0 + k2

)
P (k) = 0.

This implies that the maximum value of P (k) occurs at a value of k = kmax

given by

kmax = k0

√
p

q − p , q > p.

The value of P (k) at this point is therefore

Pmax ≡ P (kmax) =
ck2p

max

(k2
0 + k2

max)q
= ck

2(p−q)
0

pp

qq
(q − p)q−p.

Beyond this point, the PSDF decays and its asymptotic form is dominated by
a k−2q power law which is consistent with RSF signals and many noise types at
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the high frequency end of their power spectra. At low frequencies, the power
spectrum is characterized by the term k2p. The 2D stochastic function that is
characterized by this PSDF is given by (using the Riesz operator)

u(r) = F−1
2

[
(ik)p

(k − ik0)q
N(k)

]
= h(r)⊗⊗∇pN(r), k =| k |

where

h(r) = F̂−1
2

[
1

(k − ik0)q

]
.

Now since (see Appendix C)

∞∫
−∞

∞∫
−∞

rq−2 exp(−ikn̂ · r)d2r =
α2

kq

then ∞∫
−∞

∞∫
−∞

rq−2 exp[−i(k − ik0)n̂ · r]d2r =
α2

(k − ik0)q

and hence

F̂−1
2

[
1

(k − ik0)q

]
=

1
α2

exp(−k0n̂ · r)rq−2.

Hence, ignoring scaling by α2

u(r) =
exp(−k0n̂ · r)

r2−q
⊗⊗∇pn(r)

whose scaling property is

Pr[u(ar, k0/a)] =
aq

ap
Pr[u(r, k0)].

Here, as we scale r by a, the characteristic frequency k0 is scaled by 1/a, a
result that is analagous to the scaling property of the Fourier transform, i.e.

u(ar) ⇐⇒ 1
a
U

(
k
a

)
.

The interpretation of this result is that, as we zoom into the image u(r, k0), the
distribution of amplitudes (i.e. the PDF) remains the same (subject to scaling
by ap−q and the characteristic frequency of the image increases by a factor of
1/a. We can consider the equation

u(r) =
exp(−k0n̂ · r)

r2−q
⊗⊗∇pn(r)

to be a solution to the fractional differential equation

∇qu(r) = exp(k0n̂ · r)∇pn(r)
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since
exp(−k0n · r)∇qu(r) ⇐⇒ (k − ik0)q

and
∇pn(r)⇐⇒ (ik)pN(k).

Parameter Estimation

Clearly, all the results discussed above reduce to the ‘normal’ theory of RSF
signals when p = 0 and k0 = 0, but this model provides a much greater degree
of flexibility in terms of characterizing the PSDFs of many noise types, nearly
all of which have some degree of statistical self-affinity and PSDFs with power
laws of irrational form.

In terms of using this model to characterize texture, we consider the
case where a suitable combination (some cluttering algorithm) of the pa-
rameters p, q, k0 and c is taken to be a measure of texture, in particular,
the parameters p and q - their product for example. In this case, we are
required to obtain estimates for these parameters associated with the data
uij ; i = 1, 2, ...N, j = 1, 2, ..., N . The general four parameter problem is not
easily solved, primarily because of difficulties in linearizing P (k) with respect
to k0. However, suppose that a good estimate for k0 can be obtained, then we
can compute estimates for p, q and c using a standard least squares method by
constructing a logarithmic least squares estimate in the usual way, i.e. consider
(with C = ln c)

e(g, q, C) =
N∑
i=1

N∑
j=1

(lnPij − ln P̂ij)2

where Pij is the discrete power spectrum (taken to be the positive half space
data excluding the DC component) of uij and

P̂ij = ck2g
ij /(k

2
0 + k2

ij)
q

is its expected form. In this case,

e(g, q, C) =
N∑
i=1

[lnPij − 2p lnkij − C + q ln(k2
0 + k2

ij)]
2

which is a minimum when

∂e

∂p
= 0,

∂e

∂q
= 0,

∂e

∂C
= 0.

Differentiating, the set (p, q, C) is given by the solution to the following linear
system of equations⎛⎝ a11 a21 a31

a12 a22 a32

a13 a23 a33

⎞⎠⎛⎝ p
q
C

⎞⎠ =

⎛⎝ b1
b2
b3

⎞⎠
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where

a11 = −2
N∑
i=1

N∑
j=1

(ln kij)2, a21 = 2
N∑
i=1

N∑
j=1

ln(k2
0 + k2

ij) ln kij ,

a31 = 2
N∑
i=1

N∑
j=1

ln kij , a12 = −
N∑
i=1

N∑
j=1

(ln kij) ln(k2
0 + k2

ij),

a22 = −
N∑
i=1

N∑
j=1

[ln(k2
0 + k2

ij)]
2, a32 = −

N∑
i=1

N∑
j=1

ln(k2
0 + k2

ij),

a13 =
N∑
i=1

N∑
j=1

ln kij , a23 =
N∑
i=1

N∑
j=1

ln(k2
0 + k2

ij), a33 = N

b1 =
N∑
i=1

N∑
j=1

(lnPij)(ln kij), b2 =
N∑
i=1

N∑
j=1

(lnPij)[ln(k2
0 + k2

ij)]

and

b3 =
N∑
i=1

N∑
j=1

lnPij .

An initial estimate for k0 can be obtained from the result

k0 = kmax

√
q − p
p

, q > p

where kmax is the frequency corresponding to the maximum value of the power
spectrum. The value of kmax can be estimated by applying a smoothing process
to the power spectrum (a moving average filter for example) and then comput-
ing the mode of the resulting distribution. Having obtained an estimate for
kmax, we consider the case when k0 = kmax which will give a first approxi-
mation to the parameter set (p, q, C). Iteration can then be used, where the
initial estimates of p and q are used to compute a new value for k0, and the
linear system of equations given above solved to obtain a second estimate of
the parameter set (p, q, C) and so on.

18.12 Multi-fractal Analysis

Defining and solving the image segmentation problem depends on both the
classical Euclidean approach and the non-Euclidean fractal approach. Each
has its advantages with regard to different image types. However, a ‘route’
between the two cases is possible that relies on the definition of the Hölder
continuity.

The Hölder continuity defines a limit on the smoothness of a function and
although it is not used as a form of fractal dimension it is strongly related. A
function f has a Hölder continuous order, λ, when

|f(x)− f(y)| ≤ k|x− y|λ ∀x, y
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where k is a constant. An alternative way of defining this is by using the
modulus of continuity,

w(δ) = sup
|x−y|≤δ

|f(x)− f(y)|

so
w(δ) ≤ kδλ.

The exponent, λ, is thus given by

λ =
− lnk + lnw(δ)

ln δ
.

If we ignore the constant term ln k and consider a two dimensional small neigh-
bourhood around a point (x, y), then we can describe a digital ‘coarse-grained’
local Hölder order,

λx,y(i) =
ln cx,y(i)

ln i
where i is the size of the neighbourhood, and cx,y(i) is some capacity measure
acting on the points within the neighbourhood

λx,y = lim
i→0

λx,y(i).

Next, we consider the two sets

Eλ =
{
(x, y) such that lim

i→0
λx,y(i) = λ

}
N i
ε(λ) = card {(x, y) such that λx,y(i) ∈ [λ− ε, λ+ ε]} .

We can now define ϕh(λ) as the Hausdorff dimension (DH) of Eλ and consider
the double limit

ϕg(λ) = lim
ε→0

lim
i→0

lnN i
ε(λ)

ln i
.

Each point in an image can then be described by a pair of values (λ, ϕ(λ)).
ϕh measures the Hausdorff dimension of the set of points that have a certain
λ, which gives a geometric description of the singularities. ϕg approximately
defines the probability distribution of the singularities. We now consider a
process that estimates ϕg with the following algorithm:

for each i
compute all λx,y(i)

end for
let λmin = min {λx,y(i)}
let λmax = max {λx,y(i)}
for each i

create histogram with k cells of the λx,y(i) values
[
N i

0, . . . , N
i
k−1

]
end for
ϕg(λ) calculated from a linear regression on (lnN i

j , ln i)
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The values λmin and λmax define the size of the i histograms so that they are
comparable. The algorithm is only an approximation and for certain cases can
yield unsatisfactory results. The number of cells in the histograms is arbitrary
and does not take into account the ε limit in the definition of N i

ε .
We have a choice of capacity measure cx,y(i); this can be related to the

previously defined wδ with the following, by considering W as the set of points
within the neighbourhood around (x, y) that is defined by i:

cx,y(i) = sup
m,n∈W k,l∈W

|fm,n − fk,l|

or, as an alternative, centreing it in the middle of the neighbourhood,

cx,y(i) = sup
m,n∈W

|fm,n − fx,y|.

Further examples of different capacity measures include those that are designed
to detect and analyse different kinds of singularities, such as

cx,y(i) = max
m,n∈W

|fm,n|

cx,y(i) = min
m,n∈W

|fm,n|

cx,y(i) =
∑

m,n∈W
|fm,n|

and
cx,y(i) = card {(m,n) such that fm,n ≡ fx,y, m, n ∈W} .

In practice, we can consider a series of square neighbourhoods, where i specifies
the length of one side; then it is a simple process of creating the crude Hölder
orders, λ(i). The values of λ and ϕg are calculated via linear regression on the
first few values of i. Different capacities detect different types of singularities;
for example, the capacity given above is ideal for detecting lines hidden within
lots of noise. In this case, a slight modification can be applied that counts the
number of ‘similar’ values,

cx,y(i) = card {(m,n) such that |fm,n − fx,y| < 3, m, n ∈W} .
All of these resulting images can be used as measure images that can be used
within the segmentation and clustering algorithms. This provides a first order
digital approximation to multi-fractal image analysis.

18.13 Case Study: Fractional Light Diffusion

In Chapter 15, a diffusion model for light was derived compounded in the
diffusion equation for the intensity of light I given by(

∇2 − 1
D

∂

∂t

)
I(r, t) = 0
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where D is the diffusivity. In terms of a random phase walk model (see Chapter
17), this equation represents the case when the intensity of light measured is
the result of strong multiple scattering by an optical diffuser, the most likely
resultant amplitude after a time t being given by a

√
t where a is the mean free

path (of propagation). For a deterministic or coherent phase walk, the resultant
amplitude is given by at. This is equivalent to the case when scattering is a weak
perturbation of the incident field, compounded in the use of a constant phase
value θ << 1. Physically, a deterministic phase walk describes a propagative
rather than a diffusive process which is compounded in the solution to the wave
equation (

∇2 − 1
c2
∂2

∂t2

)
u(r, t) = 0

where c is the wave speed and I =| u |2. It is therefore of value to consider a
solution to the fractional diffusion equation given by(

∇2 − 1
Dq

∂q

∂tq

)
I(r, t) = 0, 1 < q < 2

whereD is the fractional diffusivity and q is the Fourier dimension, as a descrip-
tion for the case when the scattering processes are intemediate (neither strong
nor weak scattering) - the case of a fractional diffuser. This is analagous to the
case of fractional Brownian motion with scaling law atH where 0.5 < H < 1 is
the Hurst exponent.

In this Section we consider the solution to the fractional diffusion equation
above and derive a method of fractional de-diffusion (the inverse of diffusion)
which is analagous to the high emphasis filter for the fully diffusive case. This
provides another approach to computing the Fourier dimension that can be
used to segment a fractal image.2

18.13.1 Green Function Solution to the Fractional Dif-
fusion Equation

Consider the fractional diffusion equation for the intensity I given by

Dq∇2I(r, t) =
∂q

∂tq
I(r, t)

where D is the fractional diffusivity and I0(r) = I(r, t = 0) (the initial con-
dition). For q = 1, the solution to this equation in the infinite domain (see
Chapter 5) for dimensions n = 1, 2 and 3 is (with σ = 1/D)

I(r0, τ) = σ

∫
I0(r)G(r | r0, τ)dnr.

Here,

G(R, τ) =
1
σ

( σ

4πτ

)n
2

exp
[
−
(
σR2

4τ

)]
H(τ)

2This case study is based on a research project undertaken by the author for Microsharp
Corporation Limited, England
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which is the solution to(
∇2 − σ ∂

∂t

)
G(R, τ) = −δn(R)δ(τ).

For the functional case, let us consider the same basic solution but where the
Green function is given by the solution of(

∇2 − σq ∂
q

∂tq

)
G(R, τ) = −δn(R)δ(τ)

where σq = 1/Dq. Using the Riesz operator for the time derivative (see Ap-
pendix A), we can transform this equation into the form

(∇2 + Ω2
q)g(r | r0, ω) = −δn(r− r0)

where

g(r | r0, ω) =

∞∫
−∞

G(r | r0, τ) exp(iωτ)dτ,

Ω2
q = −iωσ,Ωq = ±i(iωσ)q/2.

For q = 2, this equation becomes

(∇2 + k2)g(r | r0, ω) = δn(r− r0)

where k = ±ωσ. This equation defines the Green function for the time inde-
pendent wave operator in n dimensions, the ‘out going’ Green functions being
given by (see Part II, Chapter 6)
n = 1 :

g(r | r0, k) =
i

2k
exp(ik | r − r0 |);

n = 2 :
g(r | r0, k) =

i

4
H0(k | r− r0 |)

� 1√
8π

exp(iπ/4)
exp(ik | r− r0 |)√

k | r− r0 |
, k | r− r0 |>> 1

where H0 is the Hankel function, and
n = 3 :

g(r | r0, k) =
1

4π | r− r0 | exp(ik | r− r0 |), n = 3.

Generalizing these results, for q ∈ [1, 2], by writing the exponential function in
its series form, with R =| r− r0 | we have, for Ωq = i(iωσ)q/2,

n = 1:

G(R, τ) =
1
2π

∞∫
−∞

i

2Ωq
exp(iΩqR) exp(iωτ)dω
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=
1
2π

∞∫
−∞

dω exp(iωτ)
i

2(iωσ)q/2

(
1−R(iωσ)q/2 +

R2

2!
(iωσ)q − ...

)

=
1

2σq/2
1

τ1−(q/2)
− 1

2
Rδ(τ) +

∞∑
n=1

(−1)n+1

2(n+ 1)!
Rn+1σnq/2δqn/2(τ);

n = 2:

G(R, τ) =
1
2π

∞∫
−∞

dω exp(iωτ)
exp(iπ/4)√

8π
exp[−(iωσ)q/2R]√

iR(iωσ)q/4

=
1√
8πR

1
2π

∞∫
−∞

dω exp(iωτ)
(

1
(iωσ)q/4

− (iωσ)q/4R+
1
2!

(iωσ)3q/4R2 − ...
)

=
1√
8πR

1
σq/4τ1−q/4 −

√
R

8π
σq/4δq/4(τ)

+
1√
8π

∞∑
n=1

(−1)n+1

(n+ 1)!
R(2n+1)/2σ3nq/4δ3nq/4(τ);

n = 3:

G(R, τ) =
1
2π

∞∫
−∞

dω exp(iωτ)
exp[−(iωσ)q/2R]

4πR

=
1

4πR
1
2π

∞∫
−∞

dω exp(iωτ)[1− (iωσ)q/2R +
1
2!

(iωσ)qR2 − ...]

=
δ(τ)
4πR

− 1
4π
σq/2δq/2(τ) +

1
4π

∞∑
n=1

(−1)n+1

(n+ 1)!
Rnσ(n+1)q/2δ(n+1)q/2.

These are the Green functions for the fractional diffusion equation in one-, two-
and three-dimensions. Simplification of these infinite sums can be addressed be
considering suitable asymptotics, the most significant of which (for arbitrary
values ofR) is the case when the (fractional) diffusivityD is large. In particular,
we note that, as σ → 0,

g(R, τ) =
1

2σq/2τ1−(q/2)
− 1

2
Rδ(τ), n = 1;

g(R, τ) =
1√

8πRσq/4τ1−(q/4)
, n = 2;

g(R, τ) =
δ(τ)
4πR

, n = 3.

Thus, in 2D, we can consider a solution to the fractional diffusion equation(
Dq∇2 − ∂q

∂tq

)
I(r, t) = 0, I(r, t = 0) = I0(r)
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of the form (for t0 = 0 and at time t = T )

I(x, y) =
1

2
√

2π
1

(DT )1−q/4
1

(x2 + y2)
1
4
⊗⊗I0(x, y), D →∞

which should be compared with the solution to the 2D diffusion equation, i.e.
(see Chapter 5)

I(x, y) =
1

4πDT
exp

[
−
(
x2 + y2)

4DT

)]
⊗⊗I0(x, y).

We see that when the diffusivity is large and the diffusion time t = T is small
such that DT = 1, the difference between an image obtained by a full 2D
diffuser (see Chapter 15) and a fractional 2D diffuser is compounded in the dif-
ference between the convolution of the initial image with (ignoring scaling) the
functions exp(−R2/4) and 1/

√
R. Compared with the Gaussian, the function

R−1/2 decays more rapidly and hence will have broader spectral characteris-
tics. This leads to an output that is less blurred than that produced by the
convolution of the input with a Gaussian which, in the context of the fractional
diffusion model introduced, is to be expected.

Optical diffusers are used in a range of applications including the de-
pixelation of Liquid Crystal Displays (LCDs). This becomes especially im-
portant when the LCD is composed of relatively few elements and is viewed
at close range, e.g. LCD goggles. A common technique is to produce a thin
film that is composed of a randomly distributed complex of scatterers (micro-
spheroids whose relative permittivity is different from that of the body of the
film) that is overlaid onto the LCD. The goal is to produce a diffuser that
‘manages’ the light in such a way that it depixelates the LCD while minimizing
the angular distribution of light. This requires the manufacture of a fractional
optical diffuser, an example of which is given in Figure 18.22. This shows the
effect of a ‘light management film’ manufactured by Microsharp Corporation
Limited (http://www.microsharp.co.uk).

Figure 18.22: Illustration of the application of a fractional optical diffuser to
a low resolution LCD. The effect of the diffuser is to eliminate the pixelation
(central area) generated by the regular LCD lattice (edges) while minimizing
the angular field of view.
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18.13.2 Fractional De-Diffusion

Let I0 be represented as a Taylor series at some time T > 0, i.e.

I(r, 0) = I(r, T ) + T

[
∂

∂t
I(r, t)

]
t=T

− T 2

2!

[
∂2

∂t2
I(r, t)

]
t=T

+ ...

Now since
∂u

∂t
=

∂1−q

∂t1−q
∂q

∂tq
u

then from the fractional diffusion equation

∂u

∂t
= Dq ∂

1−q

∂t1−q
∇2u

and
∂2

∂t2
u =

∂

∂t

(
∂u

∂t

)
=

∂

∂t

(
Dq ∂

1−q

∂t1−q
∇2u

)
= Dq ∂

1−q

∂t1−q
∇2 ∂u

∂t

= Dq ∂
1−q

∂t1−q
∇2

(
Dq ∂

1−q

∂t1−q
∇2u

)
= D2q ∂

1−q

∂t1−q

(
∂1−q

∂t1−q
∇4u

)
so that, in general,

∂nu

∂tn
= Dnq ∂

n(1−q)

∂tn(1−q)∇2nu.

Now, the operator
∂−q

∂t−q

defines a fractional intgral. Using the Riemann-Liouville definition for a frac-
tional integral3,

∂−q

∂t−q
I(r, t) =

1
Γ(q)t1−q

⊗ I(r, t)

and we can write the Taylor series for the field at t = 0 in terms of the field at
t = T as

I(r, 0) = I(r, T ) +
TDq

Γ(q)

[
∂

∂t

(
1

t1−q
⊗∇2I(r, t)

)]
t=T

− T 2D2q

2!Γ(2q)

[
∂2

∂t2

(
1

t1−2q
⊗∇4I(r, t)

)]
t=T

+
T 3D3q

3!Γ(3q)

[
∂3

∂t3

(
1

t1−3q
⊗∇6I(r, t)

)]
t=T

− ...

For the case when T << 1,

I(r, 0) = I(r, T ) +
TDq

Γ(q)

[
∂

∂t

(
1

t1−q
⊗∇2I(r, t)

)]
t=T

3see Blackledge J M, Digital Signal Processing Horwood, 2003 - Chapter 17.
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and under the condition that[
∂

∂t

(
1

t1−q
⊗ I(r, t)

)]
t=T

= I(r, T )

we can write
I(r, 0) = I(r, T ) +

TDq

Γ(q)
∇2I(r, T ).

Thus, for an image I(x, y) recorded in the image plane at z = 0, say, after the
image I0 has been fractionally diffused over a period of time T , we have

I0(x, y) = I(x, y) +
TDq

Γ(q)
∇2I(x, y).

18.13.3 Image Segmentation Metric

The result above provides us with an approach to estimating q given I and I0
as follows: let

P (x, y) =| I0(x, y)− I(x, y) |, and Q(x, y) =| ∇2I(x, y) |

then, with R(x, y) = P (x, y)/Q(x, y),

〈R(x, y)〉 =
TDq

Γ(q)

where

〈R(x, y)〉 =
∫ ∫

R(x, y)dxdy∫ ∫
dxdy

.

Hence,
lnT − ln Γ(q) + q lnD = M

where M is the metric (i.e. a measure of q) given by

M = ln〈R〉 ≤ ln
( 〈P 〉
〈Q〉

)
.

For an image I which has been formed by the fractional diffusion of a uniform
light source in which I0 is a constant,

I − I0 =
TDq

Γ(q)
∇2(I − I0)

and with J = I − I0
M = ln

( 〈J(x, y)〉
〈| ∇2J(x, y) |〉

)
which can be applied on a moving window W basis in order to segment an
image formed through short time fractional diffusion with variable q. The
computation of 〈I〉(x,y)∈W (the moving average filter) and 〈| ∇2I |〉(x,y)∈W
(moving average of the second order edge detector) is relatively simple. The
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averaging process is optional and, depending upon the application, M can be
computed directly from an image I using the result

M(x, y) = ln[I(x, y)]− ln[∇2I(x, y)].

An application example is given in Figure 18.23 for an image generated by the
scattering of a uniform laser light field incident on an aerosol obtained from
the injection of fuel into the combustion chamber of a gas turbine engine.

Figure 18.23: Image (left) generated by the scattering of a uniform laser light
source from a fuel aerosol recorded in the plane and an image of |M | (right).

18.13.4 Discussion

The use of a fully diffusive process for modelling strong (multiple) scattering has
been extended to model intermediate scattering by generalizing the diffusion
equation to fractional order q ∈ (1, 2). The rationale for this approach follows
that of a random walk model in which diffusive processes characterized by a
t

1
2 scaling law and propagative processes characterized by a t1 scaling law are

generalized to a scaling law of the form tH , where 1
2 < H < 1 is the Hurst

exponent. The homogeneous diffusion equation provides a series solution to
the inverse problem in which a Gaussian blurred image can be restored using
an appropriate FIR filter which depend on the order of the solution that is
considered (i.e. the number of terms in the Taylor series). This approach can
be extended to include fractional diffusion by computing the appropriate Green
function in terms of an infinite series which, for the case when the (fractional)
diffusivityD is large, reduces to the form R−1/2 for the two-dimensional case. A
FIR filter (a fractional high emphasis filter) can then be designed which scales
as TDq/Γ(q) compared with TD for the fully diffusive case when T << 1.
This leads to the proposition of a new algorithm for segmenting an image into
regions of similarity based on a measure of the Fourier dimension q - the metric
M .
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18.14 Summary of Important Results

Basic fractal equation

NrD = 1, D = − lnN
ln r

Basic fractal signature

System(size) ∝ 1
(size)q

, q > 0

Deterministic self-affinity

f(ar) = aqf(r)

Stochastic self-affinity

Pr[f(ar)] = aqPr[f(r)]

PSDF for a statistical self-affine fractal

P (k) =
c

kβ
, β = 2q

where c is a constant

Measure theoretic estimation of the fractal dimension

D = −
〈

lnN(δ)
ln δ

〉

Bi-logarithmic least square estimate

For an n-dimensional fractal of size Nn

β =

Nn
∑
i

∑
j

...(lnPij...)(ln kij...)−
(∑

i

∑
j

... ln kij...

)(∑
i

∑
j

... lnPij...

)
(∑

i

∑
j

... ln kij...

)2

−Nn
∑
i

∑
j

...(ln kij...)2

and
C =

1
Nn

∑
i

∑
j

... lnPij... +
β

Nn

∑
i

∑
j

... ln kij...
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Relationship between D,DT , H and β = 2q

D = DT + 1−H = DT + 1− β −DT

2
=

3DT + 2− β
2

,

Equation for an isotropic random scaling fractal

∇qu(r) = n(r)

Equation for a tailored RSF surface

∇qu(r) = (1− t)n(r) + tf(r), t ∈ (0, 1)

Equation for a divergent RSF surface

∇q · u(r) = n(r), r ∈ A

Equation for a rotational RSF surface

∇q × u(r) = n(r), r ∈ A.

Equation for a generalized random scaling fractal

∇2u(r) = exp(k0n̂ · r)∇pn(r)

Fractional Diffusion Equation(
∇2 − 1

Dq

∂q

∂tq

)
I(r, t) = 0

Fractional Diffusion Segmentation Metric

M = ln
( 〈I〉
〈| ∇2I |〉

)
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Chapter 19

Coding and Compression

Image coding and compression is used mainly for data storage, the transmis-
sion of digital images over a network and in some cases for encryption. In this
final Chapter1 we discuss the current popular methods of coding images and
compressing image data. First, we take a general look at why compression is
important and then study some of the more popular compression techniques
including the JPEG standard and, following the material discussed in the pre-
vious chapter, fractal image compression.

19.1 The Reasons for Compression

The first major practical uses of continuous tone digital images were on early
telegraph lines, at the beginning of the Twentieth Century. The most common
initial technique was to use specially created character sets that simulate a half-
tone pattern. This allowed an image to be transmitted by regular telegraph
personnel. With the interest in news pictures, whose value is only high while
the news is ‘hot’, cables were installed connecting the main capitals of the
western world. Earlier, images crossing the Atlantic by ship took the better
part of a week or more.

In 1921 publication of the first pictures transmitted between the Daily Mir-
ror in London and the Daily News in New York established the Bartlane system.
This was one of the first image coding schemes to be patented. The system
reduced the transmission time across the Atlantic to a matter of two or three
hours per picture. It remained in successful operation, dealing with nearly 500
pictures of important news events, prior to the outbreak of the Second World
War in 1939. Then practical digital image compression techniques started to
be used.

There are two main forms of compression; either lossless, where no informa-
tion is lost and an exact copy of the image is reproduced, or lossy, where only
an approximation to the original is created. For important data, including sci-
entific and medical images, lossless coding has often been considered essential.

1Based on material from: Turner M J, Blackledge J M and Andrews P A, ‘Fractal Geom-
etry in Digital Imaging’, Academic Press, 1998.
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This is because the possible future uses of the data could easily be unknown
and a degree of loss in fidelity might be unacceptable. Note that data resulting
from any lossy method is often compressed itself with a lossless method.

19.2 Lossless Coding Methods

One of the first uses of digital image lossless compression was with the encoding
and storage of Landsat Satellite images. Landsat 1, formerly known as ERTS-A
(Earth Resources Technology Satellite-A), launched on July 23, 1972, was the
first of a series of satellites designed to point toward the Earth. The resulting
reliability, use and longevity of this satellite series caused a problem when the
image data needed to be stored. The original Landsat 1 lasted six times longer
than its designed life expectancy, creating, as a consequence, six times as much
data. These satellites can produce megabytes a day, which is a reasonable
amount of data today. Unfortunately, back in the 1970s, the data had to be
stored on many large digital tapes in a carefully controlled environment. The
resulting storage requirements were reflected in the cost of using expensive
warehouse facilities. Lossless compression was required as the exact final use
of the data was unknown and it was believed to be unacceptable to throw
any piece of information away. Analysing the statistical nature of the images
resulted in a reduction by a factor of two or three which relates directly to a
saving of storage space and cost. Modern lossless coding methods are now used
in all kinds of data transfer and storage, from simple modem links or facsimile
machines to the general purpose archiving of data. Most of these methods use
one of two main techniques, or possibly a combination:

Probability or statistical coding

Coding methods that exploit the fact that most digital information is not ran-
dom and it is possible to predict values. These techniques code each input
symbol into a variable length code determined by how likely it is to occur.

Dictionary or substitution coding

Methods that store either with explicit direction or by learning strings of sym-
bols which are more likely to occur. These techniques code a sequence of input
symbols into a fixed or variable length code.

19.2.1 Probability Coding

A probability coder is one which when given a probability of occurrence for each
possible input symbol, pi, produces a code for each symbol such that its length
is inversely proportional to its probability. An optimal probability coder is one
which produces an average code length equal to Shannon’s entropy formula

E = −
N−1∑
i=0

pi log2

1
pi
.
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Shannon-Fano Coding

Shannon’s coding scheme, which was discovered independently by R M Fano
and C E Shannon, uses the simple algorithm:

• Divide the set into two almost equal halves based on the probabilities.

• Mark one half with a 0 and the other with a 1.

• Repeat the division until each half contains just one item.

This forms a binary tree that gives an average code length for the symbols which
lie between [E,E + 1]. Note that Shannon-Fano coding does not necessarily
produce optimal codes for any given set of symbols.

Huffman Coding

Shortly afterwards, D A Huffman developed the Huffman coder. Huffman codes
are described as an optimal probability coder when all the probabilities are
integral powers of 1

2 . For any set of symbols there are possibly many Huffman
codes and an algorithm for deterministically creating one of these codes is as
follows:

• List all symbols in order of probability.

• Successively combine the two symbols of the lowest probability to form a
composite symbol with joint probability, marking one side with a 0 and
the other with a 1.

• Once a complete binary tree is formed, the code representing each leaf
symbol is the path to that leaf.

It is also possible to create a canonical Huffman tree, which has all its leaves
at unique depths in the tree, with minimal loss of efficiency. This allows each
leaf to be represented compactly as a single bit length. It should be noted that
this code does not have any codeword as a prefix of another codeword. This is
called a prefix-free or comma-free code.

Arithmetic Coding

As stated above, Huffman and Shannon-Fano codes are only optimal when
probabilities are integral powers of 1

2 . When probabilities of actual symbols
do not fit this criterion either a poor code is produced or joint probabilities of
symbols have to be considered, which increases the complexity. AC (Arithmetic
Coding) is a technique which codes the stream of input symbols into a real
number in the range [0, 1). Each input symbol is given a sub-range proportional
to the size of its probability, and encoding a symbol is achieved by returning
any number in its sub-range. To make the process iterative, the whole sub-
range is returned and this is used as the new current range to encode the next
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symbol. In practice, AC can be implemented for speed using scaled arithmetic
on up to 256 symbols with up to 12 bits of information for probabilities. This
slight approximation does not affect the performance, which for long coded
sequences approaches Shannon’s entropy.

The coder should be thought of and implemented separately from the model,
which allows for adaptive models to exist. By adjusting the symbol probabilities
as symbols arrive it is possible to have the model adjust as the input stream
changes. The most common form of adaptation is simply to keep a frequency
count of all symbols and divide this by the total number of frequencies to obtain
the probability. When the sum of the frequencies is greater than a pre-defined
maximum, all the frequencies are halved. Adaptive models out-perform static
models for virtually all data streams.

Separating the model from the coder means that it is relatively easy to
change the probabilities on the fly. This means that reducing the number
of symbols to code is a simple matter of specifying the redundant symbols
probabilities as zero. The arithmetic coder, as specified, caters for up to 256
symbols with a range from [0, 1) specified using 12-bit fixed arithmetic. Versions
which can handle 216 symbols and up to 24-bit precision are used when extra
flexibility is required.

19.2.2 Fractal Analysis of Arithmetic Coding

An alternative way of visualising arithmetic coding is as a fractal multi-lens
photocopier. Consider that there is a lens for each symbol, i, with the two
important properties that none of the resulting images overlap and the full
image is covered by the sum of all the lenses. The scaling of the image for
each lens is proportional to the probability that the symbol the lens represents
occurs, pi. Now, given a known seed position, consisting of a single dot, x0,
encoding a string of n symbols is then a process of iteratively choosing the lens
that corresponds to the next character and transforming with this lens.

Given the number of characters in the input string, n, and the final position
of the dot, x, the operations of an arithmetic coder have been performed and
the original message can be retrieved without error. For this fractal photocopier
machine to act like a perfect arithmetic coder the lenses should not only be
non-overlapping but also need to cover the area fully.

If each of the lenses shrinks the image by a factor of 1/pi then any value in a
region xk ∈ Ik that is base 2 accurate will be sufficiently accurate to represent
the dot, x. If we define that the input stream contains ni occurrences of symbol
i whose probability is pi, the minimum number of bits required to represent xk
is

Length of Output Stream = − log2

n∏
i=1

pni

i .

The resulting compression ratio is then given by
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Length of Output Stream
Length of Input Stream

= − 1
N

log2

n∏
i=1

pni

i

= −
n∑
i=1

ni
N

log2 pi

where

N =
n∑
j=1

nj

and for a large input string,

ni
N

=
ni
n∑
j=1

nj

≈ pi.

This means the compression ratio approaches first order Shannon’s entropy, E.

19.2.3 Dictionary or Substitution Coding

The basic idea behind substitution coders is to replace an occurrence of a
phrase or sequence of bytes by a reference to a previous occurrence of that
phrase. There are two main families of coders named after Jakob Ziv and
Abraham Lempel who first proposed them.

LZ77: Window Substitution Compression

LZ77 coders have a window of the last n bytes of data encountered. When a
new phrase is in this window, it is encoded as a displacement and a length.
The most common implementation is derived from the LZSS scheme. The
LZSS maintains both an n byte window and a lookahead buffer. The coding
algorithm is as follows:

loop until lookahead buffer empty
get a pointer (position, match) to the longest match
if length > MINIMUM MATCH LENGTH

output a (position, length) pair
shift the window length character along

else
output the first character in the lookahead buffer
shift the window 1 character along

end if
end loop

Variants of this method apply extra coding to the output stream; these have
included simple variable-length code (LZB) and dynamic Huffman code (LZH).
Most of the popular commercial archivers, including pkzip, are variants of the
LZ77 algorithm.
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LZ78: Dictionary Compression

LZ78 coders work by storing phrases into a dictionary and substituting phrases
as dictionary entries. The most popular implementation is T Welch’s LZW.
In LZW a 4K dictionary is used, initially with the 256 individual bytes. The
remaining 3840 entries refer to phrases. The coding algorithm is as follows:

S = NULL
loop until end of stream

E = INPUT SYMBOL
if S*E exists in the dictionary

S = S*E
else

output dictionary code for phrase S
store S*E in dictionary
S = E

end if
end loop
output dictionary code for phrase S

As the dictionary is built up during the coding process no entries need to be
transmitted. A variant LZC, used in the UNIX compress program, have variable
length dictionary pointers starting at 9 bits. Alternative versions include LZT,
which uses a least-recently-used algorithm to discard and replace uncommon
phrases once the dictionary becomes full, and LZMW, which concatenates the
previous two phrases rather than just concatenating single characters.

19.3 Lossy Coding Methods

Different lossless coding techniques can be simply compared by measuring the
compression ratios for different sources. Unfortunately, the compression ratios
achievable are often fairly low. Heavily textured images are rarely compressed
by more than a factor of two, if at all. To gain higher compression ratios a
solution is to encode only an approximate representation of the image data.
For images which are to be presented and analysed visually, the loss of quality
or fidelity can be imperceptible with reasonable levels of compression ratio, up
to 20-60 to 1.

The emphasis on lossless compression is understandable, but attitudes have
changed as lossy compression methods are more clearly understood. Satellite
images are now being distributed in a lossy form for speed of access with the
original lossless data being made available when required. Many satellites now
have a lossy compression mode on-board to speed up image transmission with,
in certain cases, no uncompressed original data being transmitted at all. An-
other sector is medical imaging which for years has resisted lossy compression
methods mainly for legal and liability reasons. However, the use of very well
controlled lossy techniques within this sector is now being undertaken. This
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has involved as much legal scrutiny as technical in order for this new standard
to be usable within a hospital2

19.3.1 Joint Photographic Expert Group (JPEG)

The JPEG standard incorporates different modes of image compression. The
most common method is baseline sequential compression using the discrete
cosine transform. The compression system applies the following algorithm3

split the image up into 8× 8 blocks
for each block

transform using the Forward Discrete Cosine Transform and
quantise the 64 coefficients according to a quality parameter
output the DC term, as the difference from the previous DC
for each of the other 63 coefficients

if the coefficient is non-zero
output the number of proceeding zeros
output the coefficient value

end if
end for

end for

The output stream is entropy encoded using either an arithmetic or Huffman
coder. Decompression is achieved by applying the reverse operations. It is the
quantisation stage which results in a high compression ratio as well as reducing
the quality of the image.

The discrete cosine transform is a variant on the Fourier transform and for
a fixed size, in this case 64 elements, can be specified as a real matrix. The
forward and inverse DCT for this specific case are given by

akl =
1
4
KkKl

7∑
i=0

7∑
j=0

fij cos
(2i+ 1)kπ

16
cos

(2j + 1)lπ
16

, 0 ≤ k, l ≤ 7,

fij =
1
4

7∑
k=0

7∑
l=0

KkKlakl cos
(2i+ 1)kπ

16
cos

(2j + 1)lπ
16

, 0 ≤ k, l ≤ 7

where

Kn =
{ 1√

2
, n = 0;

1, 1 ≤ n ≤ 7.

2The official algorithm involved in the lossless JPEG standard has never been popular
and can be consistently surpassed with alternative compressors. The ISO JPEG committee
did launch a new lossless standard JPEG-LS in the mid-1990s that has a highly controlled
near lossless mode.

3The coefficient that scales the constant basis function is called the DC term and the
other 63 coefficients are called AC terms. This relates historically to the use of the DCT for
analysing electrical circuits that have both direct and alternating currents.
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The coefficients akl are then quantised by a user definable array qkl, giving

a′kl = Round
(
akl
qkl

)
.

The coefficients in the quantisation array are based upon the human visual sys-
tem with less emphasis given to higher frequencies to which it is less sensitive.

19.3.2 Segmentation Based Compression

We describe one of the many different segmentation techniques. The Contour
Tree File Format (CTFF) is an image descriptor designed to store the two
dimensional spatial structure of an image as a set of nodes. Each node con-
sists of a homogeneous region, for example constant colour. Three parameters
completely define a contour node: a colour value, an absolute location and a
boundary description that describes the outside edge of the contour. A set
of contour nodes then defines the whole image. The parameter information
describing this set of contour nodes splits into three streams to be coded by a
modified adaptive arithmetic coder. The contour tree format can easily deal
with all different types of imagery, including continuous tone and colour images,
within its structure.

For any particular image the list of contours can be very large. A hierarchical
structure called a contour tree stores those contours totally enclosed by another
contour as its children. The structure commences with an imaginary contour
defining the image boundary and having all other contours as its children.

The structure defined is similar to a quadtree in the sense that nodes sub-
divide the image space, but all of its structure is dictated by the original image
rather than by arbitrary division. This means that every single piece of infor-
mation in the contour tree is related to the original image. In a similar way
to the quadtree, the contour tree represents the entire image and for certain
image types can provide an ideal lossless image compression system. This is
one of the properties of the contour tree that makes it so useful for image repre-
sentation. Other potential properties of the contour tree include using it as an
intermediate format for doing fast spatial image operations on the tree directly
rather than on a raster representation.

Once a contour tree has been created for the raster image, a simple algorithm
can be developed to decide if two neighbouring contours should be merged
together to form a larger single contour. Although this merging can result in
a more complex contour, it is likely that the entropy of the whole contour tree
is reduced. A single threshold value T is defined which may be increased to
increase the amount of merging. There are four psychovisual based rules that
govern the merging criteria:

(i) The size of the smaller contour is critical and its area is proportional to
the possibility of being recognised as a separate region. The noticeability of an
object to the human eye is proportional to its area.

(ii) The intensity ratio over background intensity is treated proportionally with
the possibility of merger. Average light intensity follow Weber’s rule, namely,
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that there exists a value n under certain conditions such that a change in
intensity δI is only noticed when it is greater than n% of the background
intensity I. This is accurate only for average light intensities and short exposure
times.

(iii) The Mach factor is considered for neighbouring intensities; this states that
light objects appear lighter at the boundary with darker objects and vice-versa.
The values of the overshoot of the response and its position are very subject
dependent. Overshoot values of 50% the difference in intensity for bright edges,
and 25% the difference in intensity for dark edges are considered. This means
that intensity values brighter than the brightest and darker than the darkest
have to be stored and dealt with within the contour structure.

(iv) The maximum ‘historic’ difference of contour intensity values is considered,
not just the current value for each contour. This means that as a contour
expands the intensities of its constituent contours are still considered.

Defining I1 and I2 to be the maximum ‘historical’ log intensity values for two
contours, M to be the Mach adjusting function and S to specify the size of
the smallest contour; then if T > Abs[M(I1)−M(I2)] +S the contours should
merge together. The algorithm used is iterative in operation:

sort the children of all nodes in order of size
flatten all contours in depth to first order
create a linked list of these semi-sorted contour nodes

for each contour I1 in linked list
for all neighbouring contours I2

select contour to minimise Abs[M(I1)−M(I2)]
end for
if T > Abs[M(I1)−M(I2)] + S

merge contours together
remove contours I1 and I2 from linked list
add merged contour to end of linked list

else
remove contour I1 from linked list

end if
end for

With careful choice of the above rules, it can be arranged so that the entropy
for the combined contour node is less than the sum of the entropy of the two
nodes. This provides a way of reducing the overall contour tree’s entropy while
increasing the compression ratio achieved during encoding.
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19.4 Fractal Image Compression

Thus far, we have justified the use of compression techniques and discussed
some of the popular algorithms used for image compression, in particular, the
JPEG standard and the contour tree format. There are many different variants
on all compression techniques such as the application of the wavelet transform
(see Digital Signal Processing, Horwood, 2003, Chapter 5) instead of the cosine
transform and continued improvements of vector quantization based methods.

We have seen that fractals can mimic other coders, for example within the
arithmetic coder. This demonstrates the flexibility of the fractal transform.
We now exploit the descriptive ability of fractal transforms and develop some
techniques leading to a fractal image compressor.

An intriguing concept is that, if fractal geometry is so powerful at describing
and creating a complex synthetic image, then inversely it should be an ideal
candidate for representing and compressing natural images. To define a set
of fractal transforms, we need to discuss the use of iterated function systems.
This allows the conversion of an image into a set of simple transforms. A
common metaphor to describe this process is the (hypothetical) creation of a
multi-lens photocopier. This photocopier is similar to a normal photocopier
with the following features:

• Each lens represents a copy of the original image which is transformed.
This transformed image is allowed to overlap with any of the images of
the other lenses.

• Each lens strictly reduces the size of the original image.

• The photocopier operates in an infinite loop, feeding back the output
copy as the input to the next stage.

Each of the lenses acts as a transform code and the combination creates the
Iterated Function System (IFS).

The main principle of fractal coding an image is the observation that self-
similarity is found within images and is extractable. This employs an affine
transform that has the following form:

wi

(
x
y

)
=
(
ai bi
ci di

)(
x
y

)
+
(
ei
fi

)
=
(
aix+ biy + ei
cix+ diy + fi

)
.

The affine transform allows all possible two dimensional transformations,
including rotation, shearing and translation as well as most the important
issue of scaling to be performed. An IFS consists of a set of these transforms
which in some way make up a whole image. Affine transforms are not the only
kind of transform that can be used but they have proved themselves to be
very convenient. The fundamental idea behind a fractal compression system
is that if an image can be defined in terms of a self-similar set of transforms,
and each transform can be described with an affine transform, then a complete
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description of the image can be achieved within the numbers in the set of affine
transforms.

Two properties need to be defined, that of contractive mapping which spec-
ifies that a final image is achievable and the collage theorem which shows how
affine transforms can be combined.

19.4.1 The Contractive Mapping

The contractive mapping principle ensures that there exists a unique fixed point
value. A transformation w is contractive on two points, x, y, if the distance,
d(·), is of the form,

d(w(x), w(y)) < sd(x, y)

for some s < 1. This means that points will always be brought together, by
a factor s. Thus, when a contractive transformation is repeated iteratively,
the points will converge to a single point. This single point remains fixed and
invariant with further transformations. Furthermore the Contractive Mapping
Fixed Point Theorem states: ‘If X is a complete metric space and W : X → X
is contractive then W has a unique fixed point g’. To prove this we will use
iteration. Given x ∈ X , create the sequence of points,

W 0(x) = x,W 1(x) = W (x), . . .,W i(x) =

i︷ ︸︸ ︷
W (. . .W (x)) . . .).

Now, given the distance relation,

d(W i+1(x),W i+2(x)) < sd(W i(x),W i+1(x)).

So at each step the distance to the next point in the sequence is smaller than
the distance from the previous point by a factor of s < 1. As we are taking
geometric steps and the space has no gaps, being a metric space, we must
converge onto a single point. Denote this fixed point

g = lim
i→∞

W i(x)

which is unique. Consider that there are two fixed points, x1 and x2, so
W (x1) = x1 and W (x2) = x2. As W is contractive, then

d(x1, x2) < sd(W (x1),W (x2)) = sd(x1, x2)

but as s < 1 this inequality cannot hold and therefore the fixed point g = x1 =
x2 is unique for any initial value of x.

This means that we are looking for a contractive operator F whose fixed
point g = Fg is the best possible approximation of the original image.

The IFS Theorem expands on this to state that given a set of contractive
transforms, W = {wi : i = 1, . . . , N}, with a transform defined as

W (x) =
N⋃
i=1

wi(x), ∀x ∈ X
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then the contractive factor is s,

d(W (x),W (y)) ≤ sd(x, y)

which will have a unique fixed point, or attractor of the IFS, g, such that,

g = W (g) = lim
i→∞

W i(x), ∀x.

19.4.2 Hausdorff Distance Functions

For point sets, the normal distance functions have to be slightly modified and
the Hausdorff function is a suitable representation. Given a complete metric
space (X, d), we can define the Hausdorff space, H where H(X) represents the
space whose points are the compact subsets of X , excluding the empty set. We
can now define h, the Hausdorff metric that defines the distance between the
sets A and B ∈ H(X), by

h(A,B) = max{d(A,B), d(B,A)}

where
d(A,B) = max{d(x,B) : x ∈ A}

and
d(x,B) = min{d(x, y) : y ∈ B}

d, being the standard distance function. The set of standard Euclidean distance
functions are commonly used. These are defined as

dp(x, y) = (|xp − yp|) 1
p .

Absolute error (d1) and mean squared error (d2) are the most widely used
parameters. We now have a measure that indicates, in a general sense, how
similar two images are.

19.4.3 IFS and the Collage Theorem

An IFS code consists of {wi, pi : i = 1, 2, . . . , N}, where the wi are the affine
transformation and each has an optional associated probability, pi. We will
discuss the use of the probability codes later. Previously, we have discussed
the design of a multi-lens photocopier which recursively photocopied the same
image. We can now define this machine with each lens being described with a
single affine transform.

The best way of displaying these IFS codes is via a table which lists the com-
ponents of the affine transforms, wi, and the probabilities, pi. The Sierpinski
triangle, for example (see Chapter 18), requires three transforms each scaling
the image by a half and translated in the appropriate manner as compounded
in the following table:



19.4. FRACTAL IMAGE COMPRESSION 613

i ai bi ci di ei fi pi
1 0.5 0 0 0.5 0 0 0.33
2 0.5 0 0 0.5 100 0 0.33
3 0.5 0 0 0.5 50 50 0.33

The photocopy or deterministic algorithm takes any original image and
applies all the transforms at the same time to the whole of the image, creating
a new image. The process is repeated as many times as is required to create a
final image as close as possible to the IFS attractor.

An alternative approach to creating the attractor is by using a random ap-
proach. The random approach uses the probability values and involves choosing
an initial starting point and randomly transforming it by one of the wi’s ac-
cording to the probability. Given N affine transforms, the probabilities are
often calculated with regard to a measure theory, using the simple formulae

pi ≈ |det wi|
N∑
j=1

|det wj |
=

|aidi − bici|
N∑
j=1

|ajdj − bjcj|

where det denotes the determinant. This means that the probability is propor-
tional to the size of the transformed image. The set of points encountered will
converge on the attractor of the IFS.

The two methods create the same attractor. Both versions are reasonably
fast and are used to create very realistic images. The introduction of the prob-
abilities for applying the transforms in the random process allow a technique to
produce grey scale images. These enable certain areas to be visited more often
and then have a corresponding increase in contrast. A way of visualising this
process is to modify the photocopier so that each copy of the original image is
modified with respect to contrast in accordance to the transform’s probability.

To create large complex images from many transforms we can use the collage
theorem. This states that given an IFS code {wi, pi : i = 1, 2, . . . , N}, with
contractive factor 0 ≤ s < 1, then

h

(
T,

N⋃
i=1

wi(T )

)
≤ δ

where T is in the Hausdorff metric space. Then

h(T, g) ≤ δ

1− s
where g is the attractor of the IFS. So, combining them we have

h(T, g) ≤ 1
1− sh

(
T,

N⋃
i=1

wi(T )

)
.

Given that we wish to find a set of transforms that have a specific attractor,
the collage theorem tells us that if in order for T and g to be close it is sufficient
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that

T and
N⋃
i=1

wi(T )

are close. If we consider a collage or encoding error,

εc = h

(
T,

N⋃
i=1

wi(T )

)
and a decoding error, εd = h(T, g) then we have an upper bound for εd as

εd =
1

1− sεc.
For compression purposes, the requirement is such that we wish for the

number of transforms, N , to be as small as possible with εd below a specified
quality level. The solution to this very general problem is computationally
intensive and is not trivial to solve automatically. It was originally called the
‘Graduate Student Algorithm’ and involved the following steps:

acquire a graduate student
place the student in a room with a picture and a computer
lock the door

and wait . . .
unlock when the picture has been reverse engineered

In other words, to create high quality images from a small set of transforms
requires many hours of supervised operation.

19.4.4 PIFS Compression System

The PIFS compression system provides a more flexible transform with a parti-
tioned IFS (PIFS), which solves some of the limitations of the standard IFS. A
PIFS relates one area of an image to another which is similar. We define large
areas called domain blocks that are associated with smaller areas called range
blocks. Each range block is defined as being similar with respect to an affine
transform with its associated domain block.

A compression system employing PIFS involves splitting the image into a
non-overlapping set of range blocks and then allocating an affine transform from
a domain block to each range block. Each domain block needs to be strictly
larger than the range block to make the system contractive. The coding process
then follows the following two stages:

(i) The Encoding Process The encoding process involves searching, for each
range block, a domain block that is closest in similarity and then encoding a
relevant transform and location.

(ii) The Decoding Process Starting with an initial image, possibly just a
plain grey scale image, the set of PIFS transforms are repeatedly applied until
the attractor is closely reached.
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The collage theorem tells us that this set of transforms, one for each range
block, will have an attractor that is similar to the original image.

19.4.5 Range-Domain Algorithm

We now wish to use this PIFS to encode grey scale images. The general algo-
rithm for all range-domain fractal coding methods is given below. This creates
the set W =

⋃
i

wi.

divide the image into a set of non-overlapping ranges Ri
mark all ranges as uncovered
while there exists an uncovered Ri

choose domain Di and map wi such that
distance = min(Ri − wi(Di))

if (distance < T (Threshold) or size Ri < minimum)
mark Ri as covered
output transformation wi and location Di

else
partition Ri into smaller regions
remove Ri from the list

end if
end while

There is an arbitrary choice of threshold value, T , which gives an indication
of the quality or similarity required. The minimum size is included to stop
detailed searching of very small range sizes which could reduce to a couple of
pixels.

The key problem with the algorithm is the searching process, where the
minimum domain is found. The order of complexity is multiplied by the number
of possible domains, Di, as well as the number of possible contractive affine
transforms, wi. Choosing a restrictive partitioning strategy and a simplified
set of transforms reduces the complexity of the algorithm.

We now present a practical version of this system for encoding arbitrary grey
scale images. The first point to consider is a slight modification to the affine
transform to accommodate grey scale information. Two extra parameters, si
and oi, specify the contrast and brightness, respectively. The affine transform
can then be considered as

wi

⎛⎝ x
y
z

⎞⎠ =

⎛⎝ ai bi 0
ci di 0
0 0 si

⎞⎠⎛⎝ x
y
z

⎞⎠+

⎛⎝ ei
fi
oi

⎞⎠ =

⎛⎝ aix+ biy + ei
cix+ diy + fi

siz + oi

⎞⎠ .

To extract the contrast and brightness values from a domain (Di = {⋃m
j=1 dj})

and a range (Ri = {⋃n
j=1 rj}), we simply transform the domain block with the

affine transformation, giving D′
i = {⋃n

j=1 d
′
j}, and then minimise the result,

δi = D′
i −Ri =

n∑
j=1

(sid′j + oi − rj)
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assuming there are n pixels in the range block. This can be calculated using
the least squares approximation, and gives us

si =
n2

n∑
j=1

d′jrj −
n∑
j=1

d′j
n∑
j=1

rj

n2
n∑
j=1

d′j −
(

n∑
j=1

d′j

)2

and

oi =

n∑
j=1

rj − si
n∑
j=1

d′j

n2
.

The distance δi can be calculated giving

δi =

n∑
j=1

r2j + si

(
si

n∑
j=1

(d′j)
2 − 2

n∑
j=1

d′jrj + 2oi
n∑
j=1

d′j

)
+ oi

(
oin

2 − 2
n∑
j=1

rj

)
n2

.

Different distance functions can be used and absolute error is a useful alterna-
tive to the mean squared error.

19.4.6 Partitioning Strategies

The choice of partitioning strategy is arbitrary, with any method that divides
a range block Ri into a smaller non-overlapping set being acceptable. An
obvious solution is to use a quadtree division which divides each range block
into four smaller quads. Triangular range blocks can also be used which are
not constrained to the restriction of having 90◦ edges. Such modifications
allow more flexibility in the choice of domains and affine transforms, aiming to
increase the compression ratio without reducing the quality.

19.4.7 Choice of Affine Transformations

In this specific case the range and domain regions are all square. The number
of simple transforms that can be applied is limited to the following:
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Type Transformation matrix

Identity
(

1 0
0 1

)

Rotation by 90o
(

0 −1
1 0

)

Rotation by -90o
(

0 1
−1 0

)

Rotation by 180o
( −1 0

0 −1

)

Horizontal reflection
(

1 0
0 −1

)

Vertical reflection
( −1 0

0 1

)

Reflection by 45o
(

0 1
1 0

)

Reflection by -45o
(

0 −1
−1 0

)

This restricts the coding for each of the transforms to simply representing one
of eight choices, which can be encoded into just three bits. Two values have to
be encoded that describe the contrast, si, and brightness, oi.

19.4.8 Searching Strategies

For large images there are potentially many domain blocks that need to be
searched for each iteration of the domain-range algorithm. As the required
quality is increased, the number of iterations also increases and the encoding
time can easily become very large. This is unlike the decoding time, which is
dependent on the number of transforms and the resulting image size requested.
As has been shown previously, the number of iterations required to reach an
acceptable version of the attractor image is very small within this controlled
environment. This means that the coding-decoding process is non-symmetrical,
which for most practical purposes is acceptable. Often, almost all images are
compressed once and decoded many times, so a fast decoder has to be devel-
oped.

The number of possible domain blocks is similar to the number of nodes in
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a Gaussian pyramid, as described in Chapter 16. To speed up the searching
process in the encoding stage, a helpful observation is that if the search is not
totally exhaustive then the resulting PIFS may not be optimal but could be
very close, with the result that only a minor loss of quality will occur. The
simplest technique is only to look in a specific region, for example:

• Look at only a certain number of levels above the current range block
and/or at a certain distance away.

• Consider only those domain blocks which partially overlap the range block
to some extent. This can be visualised by having an inverted Gaussian
pyramid with its peak at the range block.

Another idea is to categorise domain blocks depending on the edge types
defined within their structure and then matching a range block with the set of
possible domain blocks of similar type. The following four categories can be
used: smooth, midrange, simple edge, and complex edge.

19.4.9 Low Level Coding Strategy

The final stage of any compression system lies in the design of the low level
coding procedure. The following items need to be encoded:

Domain Block Di, location and size, which can be encoded relative to the
size of the range block in a few bits.

Affine Transform wi, which requires three bits as there are eight possible
transforms.

Contrast si and Brightness oi values, e.g. quantizing the values so that si
uses five bits and oi has seven bits.

The set of contrast, si, and brightness, oi, values are often correlated so it
is worth encoding these values as separate streams through a probability or
dictionary coder, as described in Section 19.2. It is also an easy process within
the encoding operation to pass all the other values through a general lossless
coder to gain an additional compression ratio advantage.

19.5 Properties and Features

To achieve a single value quality rating, for the degraded image, we need to
devise a function F , such that if fij is the original and f ij is the degraded
image, the quality rating Q is defined as

Q =
N−1∑
j=0

M−1∑
i=0

F (fij , f ij).

There are a number of possible functions F that can be used. A common set
of error-measures is one based on the �p-norm. �1 is absolute error and �2 is
root mean square error, i.e.
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�p =

⎛⎝ 1
MN

N−1∑
j=0

M−1∑
i=0

∣∣fij − f ij∣∣p
⎞⎠ 1

p

.

Other suggestions for this metric include the popular signal-to-noise ratio. This
is defined by normalising the signal power by the error power and taking a
scaled logarithm measured in decibels; one decibel (dB) is equal to one tenth
of a logarithmic unit. It is assumed that the signal power is the same as the
variance σ2

f of the signal samples, so

SNR = 10 log10

〈
f2
〉

1
MN

N−1∑
j=0

M−1∑
i=0

∣∣fij − f ij∣∣2
= 10 log10

σ2
f

σ2
f−f

.

A slight alternative is to consider the peak signal-to-noise ratio (PSNR),

PSNR = 10 log10

maxf2
ij

1
MN

N−1∑
j=0

M−1∑
i=0

∣∣fij − f ij∣∣2 .

19.5.1 Knee Points

An idea for automatically finding an acceptable level of quality without having
to resort to subjective experiments is to consider a numerical level of quality
versus the compression ratio achieved which is termed the rate distortion curve.
This should have a smooth almost linear curve with a knee point, before which
the compression ratio steeply rises and after which it shallowly reduces. This
is meant to represent the point at which all the redundant noise in the image
has been removed or replaced. The idea is that, at this point, the compression
method has reached its limit before the actual image signal is corrupted, and
thus the quality should never be lowered beyond this point.

19.5.2 Stability of the Attractor

The contraction theorem gives a guarantee that the attractor will be reached
irrespective of the starting point. This means that the initial image which is
fed in to the PIFS is in theory irrelevant. With small scaling factors, < 1/2,
the fixed point attractor is reached with only a few iterations.

A fast convergence strategy implies a fast decoding speed that allows fractal
compressors to be used even with video sources. Also, the progressive nature
of fractal compression means that a partial image can be viewed while the
rest of the decoding takes place. This can be very useful for quickly browsing
large numbers of images within a database, or viewing a high quality resolution
image as soon as possible in a progressive form.
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19.5.3 Resolution Independence and Enhancement

Due to self-similarity, images described within an IFS or a PIFS are not de-
scribed at a fixed resolution or scale. This means the decoded image can be
any arbitrary size. It is to be noted that this is purely a type of interpolation
and, even if the created detail is appropriate, it is simply generated. Hence,
zooming in on an image of a wheat field for example will not show the struc-
ture of individual grains or stalks of wheat. This is an important point and
can lead to a slightly misleading claims with regard to high performance image
compression.

Consider taking a grey scale image with resolution of 256× 256, with one
byte per pixel. This gives us an original image size of 65,536 bytes, before
converting to a PIFS. If, after converting the image, the size of the PIFS is
6,554 bytes, the resulting compression ratio is 10:1. Now, if when decoding the
PIFS, we magnify by a factor of 4 in both the horizontal and vertical direction,
it will look like we started with a 1024 × 1024 image. This gives us a total
compression ratio of 10 × 16 = 160. Unfortunately, this extra information
has been synthetically generated and, as mentioned above, even if it is often
appropriate there is no guarantee that it is correct.

The property of resolution independence gives us a process called resolution
enhancement. It consists of converting the image to a very high quality PIFS,
decoding the image to a higher resolution and then throwing away the PIFS.
This is an advanced form of interpolation which is very useful when requiring
higher resolutions, for example within the printing industry. The principle
involves calculating a very complex PIFS which retains as high a quality as
possible.

Alternative interpolation schemes do exist and a popular technique is to use
either a quadratic or cubic interpolant which will give a smoother continuous
image rather than the discrete nearest-neighbour method.

19.6 Improved Fractal Compression

There are two principal conditions for the inverse problem, fractal compression,
to be feasible:

Nature is fractal with many scenes possessing this self-similar feature, and

A PIFS can be found that arbitrarily represents the image to any specified
quality level.

Neither of these two conditions can be proved to be always true. Unlike a
fern for example, a true fern does not branch indefinitely, and the background
is very unlikely to be similar to the foreground. A further problem is that given
an IFS for the foreground and one for the background there is no easy way of
calculating the IFS for the composite image. There is considerbale scepticism
regarding the general use of fractal compression since we can argue that a PIFS
system is simply using a fractal transform; it is not a true fractal compression
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but rather a form of self-vector quantization (VQ) that uses the image as the
codebook.

In favour of PIFS, it offers a relatively simple method to approximate an
image with respectable performance. The resulting decoded image also has
pleasing properties that make it complementary to other compression tech-
niques and the compression performance has frequently been shown to work as
well as alternative methods.

Fractal compressors are useful tools but when considered for a specific pur-
pose, for example, Internet image viewing or archiving photographic images of
water-colour paintings, care must be taken.

There is a feature within the JPEG standard that allows the encoder to
change the quantization table uniquely for each image. Although virtually
all applications use the default quantization tables, significant improvement in
quality can be gained by adjusting these tables on a per image basis without
affecting the compression ratio. Likewise, there are many parameters which
can be modified in the PIFS system and the development of a standard must
take these into account. Fractal compression methods are often quoted as
being within a factor of 2 better or worse than JPEG in terms of compression
ratio with respect to quality for different images. Due to the fact that fractal
coding is non-symmetrical, with encoding times often far larger than decoding
times, it has gained popularity with the mass distribution of images and video
sequences.

19.6.1 Colour Considerations

Since Isaac Newton’s experiments with light and colour it has been well known
that a wide range of colours can be generated from a choice of three primary
colours. Modern displays generate their images by mixing light from three
primaries: red, green and blue. In 1931 the CIE (Commission Internationale
de L’Eclairage) developed the colour chart used in early television specifications
based on defining the viewable colours for a display device in terms of a triangle
with each of the primary colours at the endpoints. The colour space inside the
triangle represents the possible colours available to the display and is called
the gamut.

The CIE chart was partially used by the NTSC (National Television System
Committee) to define a transmission format in terms of luminance and chromi-
nance which was called Y IQ, representing luminance, in-phase chrominance
and quadrature chrominance coordinates. Later in Europe the PAL (Phase
Alternation Line) format, for the UK, and the SECAM (Séquentiel Couleur à
Mémoire) format, for France, were developed. These used a colour space called
Y UV or Y CrCb, the difference between Y IQ and Y UV being a 33 degree
rotation in UV space.

This system proved suitable for analogue transmission, but slight modifi-
cations were made to accommodate digital storage and transmission. Most
digital systems store the three channels as 8-bit quantities allowing 256 values
or quantisation levels. 10-bit, 12-bit or 16-bit quantities are also used in situ-
ations where higher resolution is required. Digital conversions between RGB
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and Y IQ or Y CrCb commonly use the following matrices:⎛⎝ Y
I
Q

⎞⎠ =

⎛⎝ 0.299 0.587 0.114
0.60 −0.28 −0.32
0.21 −0.52 0.31

⎞⎠⎛⎝ R
G
B

⎞⎠ ,

⎛⎝ Y
Cr
Cb

⎞⎠ =

⎛⎝ 0.299 0.587 0.114
−0.1687 −0.3313 0.5

0.5 −0.4187 −0.0813

⎞⎠⎛⎝ R
G
B

⎞⎠ .

Due to the ease of calculation of the conversion in the digital world the
Y CrCb format is favoured over Y IQ. It is worth noting that, while the Y
values range from 0 to 255, the Cr and Cb values range from 0 to ±128, which
are often stored by adding 128 and forcing the range to 0-255. This defines
a few values which do not map one-to-one and thus there is a very slight loss
of information4. The Y CrCb format is designed to concentrate as much of the
image information into the luminance and less in the chrominance. This means
that the three streams are less correlated and thus can be coded separately.

From physiological testing it is observed that the chrominance channels do
not need to be specified as frequently as the luminance channel. Thus only every
other Cr and Cb value is required to be stored. This means a 3:2 conversion
takes place from RGB to Y CrCb. In fractal terms this can relate to using
varying threshold values for each of the three channels and/or using resolution
enhancement to regain the full size image.

Colour in Printing

It is worth noting that other colour models exist, and the most popular alter-
native is that used by the printing industry. This uses the subtractive primary
colours; cyan, magenta, yellow and black (CMYK). Black is used as a separate
colour to achieve the best visual quality rather than combining equal quantities
of C, M and Y . This makes the conversion from RGB to CMYK a one-to-
many mapping, and very device dependent. An image processed and printed
in exactly the same way in Europe and the USA, for example, gives different
results as printing inks and paper are different. Also the simple calibration sys-
tem described above for visual displays fails for printing devices as mapping a
specific colour is a highly non-linear process, and it is not sufficient to measure
a set of points and interpolate. These problems are due to the lack of a model
describing the printing process in sufficient detail. Colour management tools
calibrate a set of devices together5. The defined set is normally small and often
restricted to one manufacturer - normally the same as the one producing the
colour management tool.

4This loss of information affects only a few values and at most changes the value of the
least significant bit.

5Two examples are the Scanmatch colour calibration software which uses the TekColor
Colour Management System, and is designed for matching and correcting a set of Pantone
colours for scanners, and the Advanced Digital Control System which includes a ColorControl
feature used in NEC MultiSync 5FG/6FG monitors to adjust monitor colours to printer
colours.
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Colour Compression

True-colour images are commonly represented as 24-bit RGB values, often cap-
tured images, containing a degree of noise. This means that they result in very
low lossless compression ratios, but are ideal candidates for the lossy contour
merging process. As 24-bit values are bulky to handle it is sensible to convert
the values to Y CrCb as recommended, and reduce the resolution of the Cr and
Cb components by half in both vertical and horizontal dimensions. The reduc-
tion in resolution can be carried out using a cubic re-sampler which provided
good reconstruction properties. This gives an automatic 2:1 conversion in im-
age size. For lossy compression, each stream is sent through the fractal coding
process, with varying threshold values. Quality of ‘excellence’, as previously
defined, gives fairly high levels of compression ratio, up to 10:1.

19.6.2 Video Considerations

Image sequences can be fractal compressed with two techniques. The most
common method is to consider each frame as a separate two dimensional image
and encode it as such. Prediction from previous frames can help speed up the
coder or alternatively provide a whole second set of domain blocks to transform
from. Alternatively, it is possible to extend the domain and range blocks to
three dimensional cubes.

Movie sequences can be very long with about 216000 35mm frames in a 2.5
hour film. If a fractal coder were to contain all the images in the sequence,
then its size would become excessive, with approximately 432 billion pixels for
a 2.5 hour high definition TV movie.6 Fortunately, the pixels in the first frame
are very unlikely to be correlated to the pixels in the last frame, and the coding
efficiency involved is thus likely to be very small. This implies that splitting
the movie into small sections is a sensible option. Attention has to be paid so
that the join between any two sections does not cause serious arteficts in itself.

The digital broadcast media use versions of the MPEG (Motion Picture
Experts Group) family of video compression standards (based upon the original
JPEG). This is the basis for current technologies including white standard CD-
ROMS and DVDs (Digital Versatile Discs). As the medium is digital, modifying
the system to incorporate new coding techniques is not as fundamental a change
as replacing the old analogue systems.

19.7 Compression Conscious Operations

The philosophy of compression conscious image operations is to define an image
operation not just in terms of the final visual image, but also in terms of
the compression performance achieved for this image. Two main advantages
present themselves:

• operations continually have an idea of the final compression ratio achiev-
able;

6High definition TV resolution of 1920 × 1152 (European standard) approaches that of
standard 35mm quality film resolution which is quoted as being approximately 3000 × 2000.
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• they can be carried out as the fractal compressed file is generated and
are not proportional to the number of pixels in the full raster image.

This can then enable images which are extremely large to be manipulated.
There is the potential for increased speed as the compressed size is smaller than
the original.

To enable this, a semi-compressed fractal description that acts as an interme-
diate file format can be constructed. This format keeps a high level description
of the elements within the fractal description, including a hierarchical structure
of the partitioning strategy. If a low level encoded fractal image file is required
then the low level coding operations need to be applied. Image operations are
applied to this semi-compressed file format and at a reasonable compression
ratio the size of this intermediate format will still be considerably smaller than
the original. An operation that is ideally suitable for this technique to be
applied is discussed in the following Section.

19.8 Fractal Texture Maps

We have seen how fractals can be used for a definition of texture (see Chapter
18). Let us now consider how the definition can be applied back on itself.
Intuitively, a non-Euclidean, more texture oriented image is likely to fractal
compress to a high level of compression retaining a high degree of quality.
Also, the resolution enhancement technique is likely to prove quite accurate.
We represent the process of texture mapping which, in its simplest form, applies
a two dimensional image to the surface of a three dimensional shape. When
viewed, the resolution of parts of the three dimensional surface often varies,
being inversely proportional to the distance from the viewer. When the object is
very close, a high resolution texture map is required and when further away the
required resolution can be reduced. Most three dimensional rendering packages
that create these images use a data structure called a MipMap. This consists of
a two dimensional texture image which has been repeatedly scaled by a factor
of 2 to form a hierarchy or pyramid of texture maps. The texture map of the
required resolution is chosen as it is needed.

Consider using a fractal description of a single two dimensional texture as
a replacement for the standard texture MipMap. As objects can be oriented in
any direction the domain range blocks will need to accommodate all forms of
rotation and scaling. A triangular description that replaces the square blocking
strategy needs to be considered. During the decoding stage the range and
domain blocks are calculated from the three dimensional transformations of
the object to which they are to be applied. Then it is a simple matter of
iterating the decoding algorithm to pixels within triangles. This also may suit
the encoding stage as the number of extra choices to look at increases, which
potentially allows for higher quality representations to be constructed by the
range-domain algorithm.

A fractal texture map is inherently resolution independent so only one rep-
resentation is needed and the image creation process is proportional to the
number of pixels required, as well of course to the number of transforms. A
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dynamic version of the fractal decoding algorithm would allow the three dimen-
sional surface to be viewed over a very large range of distances, with minimal
overheads. The progressive build up of the image also means that for interac-
tive use, a crude image can be displayed while there is rapid movement and
a detailed view created when the user stops moving and looks at the surface
for a while. Over a period of time, the quality can be built up making effi-
cient use of the processing engine. The rate of convergence to the attractor is
less well defined and in certain cases may be slower, but this can be a minor
problem given the increase in usability of the texture map. This technique
has an ideal application within 3D visualisation and virtual reality type arcade
games. When there is rapid movement, the quality of the texture mapping is
less important but when the user wishes to spend time looking at an object in
detail the quality of the texture mapping will improve.

19.9 Summary of Important Results

Algorithm for LZ77 substitution compressor

loop until lookahead buffer empty
get a pointer (position, match) to the longest match
if length > MINIMUM MATCH LENGTH

output a (position, length) pair
shift the window length character along

else
output the first character in the lookahead buffer
shift the window 1 character along

end if
end loop

Algorithm for LZ78 dictionary compressor

S = NULL
loop until end of stream

E = INPUT SYMBOL
if S*E exists in the dictionary

S = S*E
else

output dictionary code for phrase S
store S*E in dictionary
S = E

end if
end loop
output dictionary code for phrase S
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Discrete cosine pair for JPEG compression

akl =
1
4
KkKl

7∑
i=0

7∑
j=0

fij cos
(2i+ 1)kπ

16
cos

(2j + 1)lπ
16

, 0 ≤ k, l ≤ 7

fij =
1
4

7∑
k=0

7∑
l=0

KkKlakl cos
(2i+ 1)kπ

16
cos

(2j + 1)lπ
16

, 0 ≤ k, l ≤ 7

where

Kn =
{ 1√

2
n = 0

1 1 ≤ n ≤ 7

Algorithm for JPEG compression

split the image up into 8× 8 blocks
for each block

transform using the Forward Discrete Cosine Transform and
quantise the 64 coefficients according to a quality parameter
output the DC term, as the difference from the previous DC
for each of the other 63 coefficients

if the coefficient is non-zero
output the number of proceeding zeros
output the coefficient value

end if
end for

end for

Range Domain Algorithm

divide the image into a set of non-overlapping ranges Ri
mark all ranges as uncovered
while there exists an uncovered Ri

choose domain Di and map wi such that
distance = min(Ri − wi(Di))

if (distance < T (Threshold) or size Ri < minimum)
mark Ri as covered
output transformation wi and location Di

else
partition Ri into smaller regions
remove Ri from the list

end if
end while
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Problems: Part IV

In the questions that follow, n is the size of the input/output array.

IV.1 Write a function to threshold a digital image at a fixed level.

void FLT(float **s, int n, float t)

where s is the input/output and t is the threshold (0 < t < 1).

IV.2 Write a function to semi-threshold a digital image at a fixed level.

void SLT(float **s, int n)

where s is the input/output and t is the threshold (0 < t < 1).

IV.3 Write a function to edge detect an image using the Roberts gradient and
study its performance using some test images.

void ROBERTS(float **s, int n)

where s is the input/output.

IV.4. Write a function to edge detect an image using the Sobel gradient and
study its performance using some test images.

void SOBEL(float **s, int n)

where s is the I/O.

IV.5. Write a function to edge detect an image using the Prewit gradient and
study its performance using some example images.

void PREWIT(float **s, int n)

628
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where s is the I/O.

IV.6. Write a function to edge detect an image using the Marr-Hildreth method
and study its performance using some example images.

void MH(float **x, int n, float s, float **y)}

where x is the input image, y is the output image, and s is the standard
deviation of the Gaussian function.

IV.7 Write a function to automatically threshold a bimodal image.

void AUTOTHRESHOLD( float **s, int n )

IV.8 The Γ-distribution can be considered to be an approximate model for the
distribution of grey levels R associated with a coherent image given by

P (R) =
1
βα

1
Γ(α)

Rα−1 exp(−R/β), R ≥ 0

By considering a discrete form of this distribution (i.e. an N -bin histogram),
derive least squares estimates for the scaling factor

1
βα

1
Γ(α)

and the parameters α and β.

(i) Explain how this parameter estimation technique can be used to segment a
coherent digital image using a moving window. What is the principal condition
required for this technique to yield statistically significant results?

(ii) Derive expressions for the mode of the distribution in terms of α and β and
the number of pixels that occur at the position of the mode?



Summary

The ‘physics’ associated with image formation and the engineering that has
been, and continues to be, applied to develop various imaging systems is fun-
damental to the design of image processing and image analysis software. The
goal of this book has been to introduce the reader to the mathematical tech-
niques used for modelling imaging systems and show how such models can be
used as a guide to the interpretation of the data captured by different imag-
ing systems from which suitable image processing algorithms can be designed.
There is an intimate relationship between the development of image processing
systems and the ‘physics’ of waves and vibrations. Central to this relationship
is the role of scattering theory and, in particular, the Green function solution
(which is essentially a convolution) to an appropriate linear inhomogeneous
wave equation that can be taken to describe (usually to a limited extent) the
‘physics’ associated with a particular type of wavefield. The model used for
developing the basic imaging equation and its relationship to the properties of
a detected scattered wavefield is almost exclusively based on application of the
weak scattering or Born approximation which, in the far field, yields a Fourier
transform relationship between the scattering function and the scattered field.
All imaging systems can then be viewed in terms of some appropriate instru-
ment that, by default, is only able to record the scattered field to a limited
extent. Thus, the relationship between the object plane and the image plane is
determined by the ‘instrument function’ which in turn, either directly or indi-
rectly (i.e. after appropriate data processing has been applied), determines the
characteristics of the image via the point spread function. This fundamental
model is based on a weak scattering approximation (the Born approximation)
which works best when the wavelength of the wavefield from which the image
is obtained is large compared to the object function. This condition is at odds
with the fact that most imaging systems are specifically designed to obtain
information on the object function over scales that are of the same order as the
wavelength. However, in most cases, the physical effects of strong scattering
together with other incompatibilities and errors associated with the represen-
tation of a recorded image in terms of the fundamental imaging equation are
combined to form a noise term, giving us the basic model

s(x, y) = p(x, y)⊗⊗f(x, y) + n(x, y)

where f is the object function, p is the point spread function, n is the noise and s
is the image. Here, the point spread function is taken to be invariant of different

630



SUMMARY 631

positions in the image plane and the process is stationary. This allows the
convolution theorem to be applied providing us with a route to the analysis and
processing of an image in Fourier space using the Fourier transform. However,
if the point spread function varies in the image plane, the convolution process is
non-stationary and the convolution theorem cannot be applied in the same way.
This has important consequences for developing methods involved in solving
the fundamental inverse problem: given s, p and a statistical model for n, find
f . For the stationary case, Fourier based methods can be used to design a
range of filters but, for non-stationary problems, deconvolution must be solved
algebraically. This involves solving large systems of linear equations of size
n2 ×m2 for digital images of size n×m.

Ideally, by accurately modelling an imaging system, it is possible to derive a
description of the relationship between the object and image plane, identify the
nature of the inverse problem and, thus, develop an appropriate reconstruction
method as required. However, the accuracy of the model has to be balanced
with the simplicity of the results that can be derived from it in terms of pro-
viding a model that is of practical and ‘engineering’ value. Achieving the right
balance is central to imaging systems modelling and image understanding.

Once an image has been acquired, there is a large number of processing
methods that can be applied which depend on the type of image, its fidelity
and application. Image processing algorithms can be used with a view to simply
enhancing the display and/or extracting features within the data that are of
value in terms of attempting to recognize meaningful patterns in an image and,
ultimately, using such patterns to classify an image in some decision making
process. The latter case is the basis for pattern recognition and computer
vision which is, to some extent, model dependent but, in a broader sense, relies
on a range of phenomenological paradigms, procedures and algorithms. This is
because, to date, there is no known approach for developing a compound model
of the human visual system and the interpretation of the image data that it
uses. In other words, although we can develop an accurate physical model for
the way in which the eye functions, the same cannot yet be said with regard
to the functioning of the brain. Thus, whereas the methods for modelling an
imaging system presented in this book can be applied generally (as discussed
in Part II), the techniques associated with pattern recognition (as discussed
in Part IV) are but a small selection of what is, as yet, an insoluble problem
in general. Hence, there has evolved a multiplicity of solutions to pattern
recognition problems that are highly idealized and applications specific. This
is reflected in the material presented in Part IV of this work togther with the
small chapter (i.e. Chapter 19) on image coding and compression that has been
provided for completeness.

This book has attempted to help the reader to appreciate the underlying
mathematical and numerical techniques required for designing imaging systems
and for processing the data which they produce. Moreover, it has attempted
to couple the role of imaging systems modelling with the principal methods
for reconstructing an image, some of the routine image processing techniques
that can be applied and how these techniques are converted into appropriate
software. There is often a large ‘gap’ between the theoretical aspects of a
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subject and ‘engineering’ practical solutions. Filling this ‘gap’ is often the
most difficult part of the ‘learning curve’ and requires the engineer to come to
terms with a diverse range of subjects. Imaging and image processing requires
a unique blend of physics, mathematics, statistics, computing and electronics
and a book of this type can only ever provide a brief glimpse of the role that
these subjects play in imaging science. However, it is hoped that the reader
will be able to approach new aspects of this subject and develop new and
original ideas with a greater degree of understanding and confidence as a result
of studying this book. If so, then its composition and publication, together
with its companion volume Digital Signal Processing, has been worthwhile.



Appendix A

Solutions to Problems

Solutions to Problems: Part I

I.1

∇(x3 + y3 + z3) =
(
x̂
∂

∂x
+ ŷ

∂

∂y
+ ẑ

∂

∂z

)
(x3 + y3 + z3)

= x̂
∂

∂x
x3 + ŷ

∂

∂y
y3 + ẑ

∂

∂z
z3 = 3x̂x2 + 3ŷy2 + 3ẑz2 = 3(x̂x2 + ŷy2 + ẑz2).

∇rn =
(
x̂
∂

∂x
+ ŷ

∂

∂y
+ ẑ

∂

∂z

)
(x2 + y2 + z2)

n
2

= x̂
∂

∂x
(x2 + y2 + z2)

n
2 + ... = x̂

n

2
(x2 + y2 + z2)

n
2 −12x+ ...

= n(x2 + y2 + z2)
n−2

2 (x̂x+ ŷy + ẑz) = nrn−2r.

∇(a · r) = ∇(axx+ ayy + azz) = x̂ax + ŷay + ẑaz = a.

∇[r · ∇(x+ y + z)] =
(
x̂
∂

∂x
+ ŷ

∂

∂y
+ ẑ

∂

∂z

)
(x+ y + z) = x̂ + ŷ + ẑ.

I.2

∇·F =
(
x̂
∂

∂x
+ ŷ

∂

∂y
+ ẑ

∂

∂z

)
·(x̂Fx+ ŷFy+ ẑFz) =

∂

∂x
Fx+

∂

∂y
Fy+

∂

∂z
Fz = 0

if F is a constant vector.

∇ · r =
∂

∂x
x+

∂

∂y
y +

∂

∂z
z = 1 + 1 + 1 = 3.

∇ · [xyz(x̂ + ŷ + ẑ)] =
∂

∂x
(xyz) +

∂

∂y
(xyz) +

∂

∂z
(xyz) = yz + xz + xy.
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r× [x̂f(x) + ŷg(y) + ẑh(z)] =

∣∣∣∣∣∣
x̂ ŷ ẑ
x y z

f(x) g(y) h(z)

∣∣∣∣∣∣
= x̂[yh(z)− zg(y)]− ŷ[xh(x) − zf(x)] + ẑ[xg(y)− yf(x)]

.˙. ∇ · (r× [x̂f(x) + ŷg(y) + ẑh(z)])

=
∂

∂x
[yh(x)− zg(y)]− ∂

∂y
[xh(x)− zf(x)] +

∂

∂z
[xg(y)− yf(x)] = 0.

I.3

∇2rn =
∂2

∂x2
(x2 + y2 + z2)

n
2 + ... =

∂

∂x

[n
2
(x2 + y2 + z2)

n
2 −12x

]
+ ...

n(x2 + y2 + z2)
n
2 −1 + x

(n
2
− 1

)
n2x(x2 + y2 + z2)

n
2 −2 + ...

= nrn−2 + 2n
(n− 2)

2
x2rn−2 1

x2
+ ... = 3nrn−2 + n(n− 2)r2rn−2 1

r2

= 3nrn−2 + n(n− 2)rn−2 = n(n+ 1)rn−2.

I.4 Let A = x̂Ax + ŷAy + ẑAz and B = x̂Bx + ŷBy + ẑBz. Then,

∇· (A+B) =
(
x̂
∂

∂x
+ ŷ

∂

∂y
+ ẑ

∂

∂z

)
· [x̂(Ax+Bx)+ ŷ(Ay +By)+ ẑ(Az +Bz)]

=
∂

∂x
(Ax +Bx) +

∂

∂y
(Ay +By) +

∂

∂z
(Az +Bz)

=
∂

∂x
Ax +

∂

∂y
Ay +

∂

∂z
Az +

∂

∂x
Bx +

∂

∂y
By +

∂

∂z
Bz

= ∇ ·A +∇ ·B.

∇ · (uA) =
(
x̂
∂

∂x
+ ŷ

∂

∂y
+ ẑ

∂

∂z

)
· (ux̂Ax + uŷAy + uẑAz)

=
∂

∂x
(uAx) +

∂

∂y
(uAy) +

∂

∂z
(uAz)

= Ax
∂

∂x
u+Ay

∂

∂y
u+Az

∂

∂z
u+ u

∂

∂x
Ax + u

∂

∂y
Ay + u

∂

∂z
Az

=
(
x̂
∂

∂x
+ ŷ

∂

∂y
+ ẑ

∂

∂z

)
u · (x̂Ax + ŷAy + ẑAz)

+u
(
x̂
∂

∂x
+ ŷ

∂

∂y
+ ẑ

∂

∂z

)
· (x̂Ax + ŷAy + ẑAz) = ∇u ·A + u∇ ·A.
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I.5

∇× x̂x =

∣∣∣∣∣∣
x̂ ŷ ẑ
∂
∂x

∂
∂y

∂
∂z

x 0 0

∣∣∣∣∣∣ = 0.

∇× x̂y =

∣∣∣∣∣∣
x̂ ŷ ẑ
∂
∂x

∂
∂y

∂
∂z

y 0 0

∣∣∣∣∣∣ = −ẑ
∂

∂y
y = −ẑ.

∇× (x̂x cos z + ŷy log x− ẑz2) =

∣∣∣∣∣∣
x̂ ŷ ẑ
∂
∂x

∂
∂y

∂
∂z

x cos z y log x z2

∣∣∣∣∣∣
= −ŷ

∂

∂z
(x cos z) + ẑ

∂

∂x
(y log x) = ẑ

y

x
− ŷx sin z.

∇× rf(r) =

∣∣∣∣∣∣
x̂ ŷ ẑ
∂
∂x

∂
∂y

∂
∂z

xf(r) yf(r) zf(r)

∣∣∣∣∣∣
= x̂

(
z
∂

∂y
f − y ∂

∂z
f

)
− ŷ

(
z
∂

∂x
f − x ∂

∂z
f

)
+ ẑ

(
y
∂

∂x
f − x ∂

∂y
f

)
.

I.6

∇× (A + B) =

∣∣∣∣∣∣
x̂ ŷ ẑ
∂
∂x

∂
∂y

∂
∂z

Ax +Bx Ay +By Az +Bz
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]
−ŷ
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∂x
(Az +Bz)− ∂
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]
+ẑ

[
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]
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(
∂

∂y
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)
+ ŷ

(
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∂x
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)
+ ẑ

(
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Ax

)
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∂
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)
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)
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∂
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∂
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∂
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Ax Ay Az

∣∣∣∣∣∣+
∣∣∣∣∣∣
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∂
∂x

∂
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∂
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Bx By Bz

∣∣∣∣∣∣ = ∇×A +∇×B.

∇× (uF) =

∣∣∣∣∣∣
x̂ ŷ ẑ
∂
∂x

∂
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∂
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uFx uFy uFz
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= x̂
(
∂

∂y
uFz − ∂

∂z
uFy

)
− y

(
∂

∂x
uFz − ∂

∂z
uFx

)
+ ẑ
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∂
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uFy − ∂
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= x̂

(
u
∂
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= u
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x̂ ŷ ẑ
∂
∂x

∂
∂y

∂
∂z

Fx Fy Fz

∣∣∣∣∣∣+
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x̂ ŷ ẑ
∂
∂xu

∂
∂yu

∂
∂zu

Fx Fy Fz

∣∣∣∣∣∣ = u∇× F +∇u × F.

I.7

∇× (∇u) =

∣∣∣∣∣∣
x̂ ŷ ẑ
∂
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∂
∂y

∂
∂z

∂
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)
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∇× F =

∣∣∣∣∣∣
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∂
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∂
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Fx Fy Fz
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.˙. ∇ · (∇× F)

=
∂
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∂

∂y
Fz − ∂
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)
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∂

∂y
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∂
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I.8 Using the notation

∂x ≡ ∂

∂x
, ∂xy ≡ ∂

∂x∂y
, ∂y ≡ ∂

∂y
, etc.

we have

∇×∇× F = ∇×
∣∣∣∣∣∣

x̂ ŷ ẑ
∂x ∂y ∂z
Fx Fy Fz

∣∣∣∣∣∣
= ∇× [(∂yFz − ∂zFy) + ŷ(∂zFx − ∂xFz) + ẑ(∂xFy − ∂yFx)]

=
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x̂ ŷ ẑ
∂x ∂y ∂z

∂yFz − ∂zFy ∂zFx − ∂xFz ∂xFy − ∂yFx

∣∣∣∣∣∣
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= x̂[∂y(∂xFy − ∂yFx)− ∂z(∂zFx − ∂xFz)]
+ŷ[∂z(∂yFz − ∂zFy)− ∂x(∂zFx − ∂xFz)]
+ẑ[∂x(∂zFx − ∂xFz)− ∂y(∂yFz − ∂zFy)]
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zxFz)x̂

+(∂2
xyFx + ∂2

yFy + ∂2
zyFz)ŷ + (∂2

xzFx + ∂2
yz + ∂2

zFz)ẑ

= −(∂2
x + ∂2

y + ∂2
z )(x̂Fx + ŷFy + ẑFz)

+x̂∂x(∂xFx+∂yFy+∂zFz)+ŷ∂y(∂xFx+∂yFy+∂zFz)+ẑ∂z(∂xFx+∂yFy+∂zFz)

= −∇2F +∇(∂xFx + ∂yFy + ∂zFz) = −∇2F +∇(∇ ·F).

I.9 Noting that
∇ · (u∇u) = ∇u · ∇u+ u∇2u,

since F = ∇u, we can write

∇ · (uF) = ∇u · ∇u+ u∇ · (∇u)

= ∇u · ∇u+ u∇ · F = ∇u · ∇u, with ∇ ·F = 0.

.˙.
∫
V

F 2dV =
∫
V

(∇u · ∇u)dV =
∫
V

∇ · (uF)dV =
∮
S

uF · n̂dS

from the divergence theorem.

1.10 Green’s first identity is∫
V

(u∇2v +∇u · ∇v)dV =
∮
S

u∇v · n̂dS.

Proof:
∇ · (u∇v) = u∇2v +∇u · ∇v

.˙.
∫
V

(u∇2v +∇u · ∇v)dV =
∫
V

∇ · (u∇v)dV =
∮
S

u∇v · n̂dS

by the divergence theorem. To prove Green’s second identity, we note that∫
V

(u∇2v +∇u · ∇v)dV =
∮
S

u∇v · n̂dS

and ∫
V

(v∇2u+∇v · ∇u)dV =
∮
S

v∇u · n̂dS.
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Subtracting the two equations above, we get∫
V

(u∇2v − v∇2u)dV =
∮
S

(u∇v − v∇u) · n̂dS.

I.11

∇f(r) = ∇ 1
2π

∞∫
−∞

F (k) exp(ik · r)d2k

=
(
x̂
∂

∂x
+ ŷ

∂

∂y

)
1
2π

∞∫
−∞

∞∫
−∞

F (kx, ky) exp(ikxx) exp(ikyy)dkxdky

=
1
2π

∞∫
−∞

∞∫
−∞

F (kx, ky)(x̂ikx + ŷiky) exp(ikxx) exp(ikyy)dkxdky

=
1
2π

∞∫
−∞

F (k)ik exp(ik · r)d2k.

(
∂2

∂x2
+

∂2

∂y2

)
1
2π

∞∫
−∞

∞∫
−∞

F (kx, ky) exp(ikxx) exp(ikyy)dkxdky

=
1
2π

∞∫
−∞

∞∫
−∞

F (kx, ky)(−k2
x − k2

y) exp(ikxx) exp(ikyy)dkxdky

=
1
2π

∞∫
−∞

F (k)(−k2) exp(ik · r)d2k.

I.12
∞∫

−∞
f(r) exp(−ik · r)d2r =

a/2∫
−a/2

exp(−ikxx)
b/2∫

−b/2

exp(−ikyy)

= (ab)sinc(akx/2)sinc(bky/2)

where sinc(x) ≡ sin(x)/x.

I.13 ∞∫
−∞

exp(−ar2) exp(−ik · r)d2r
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=

∞∫
−∞

exp(−ax2) exp(−ikxx)dx
∞∫

−∞
exp(−ay2) exp(ikyy)dy.

Hence, we need to evaluate the integral

F (k) =

∞∫
−∞

exp(−ax2) exp(−ikx)dx

for both x and y. Noting that(√
at+

ik

2
√
a

)2

= ax2 + ikx− k2

4a

we can write

F (k) = exp(−k2/4a)

∞∫
−∞

exp

[
−
(√

ax+
ik

2
√
a

)2
]
dx.

If we now let

y =
(√

ax+
ik

2
√
a

)
,

then dy =
√
adx and

F (k) =
1√
a

exp(−k2/4a)

∞∫
−∞

exp(−y2)dy =
√
π

a
exp(−k2/4a).

Combining the integrals over x and y, we get

exp(−ar2)⇐⇒ π

a
exp(−k2/4a)

where k =
√
k2
x + k2

y.

I.14
∞∫

−∞
[f(r)+g(r)] exp(−ik·r)d2r =

∞∫
−∞

f(r) exp(−ik·r)d2r

∞∫
−∞

g(r) exp(−ik·r)d2r

= f(k) + g(k).

∞∫
−∞

f(ar) exp(−ik · r)d2r =
1
a

∞∫
−∞

f(ar) exp
(
i
k
a
· ar

)
d2(ar)

=
1
a
F

(
k
a

)
.
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∞∫
−∞

f(r−a) exp(−ik ·r)d2r =

∞∫
−∞

f(r−a) exp[−ik ·(r−a)] exp(−ik ·a)d2(r−a)

= exp(−ik · a)F (k).

I.15
∞∫

−∞
f(r)g∗(r)d2r =

∞∫
−∞

g∗(r)

⎛⎝ 1
2π

∞∫
−∞

F (k) exp(ik · r)d2k

⎞⎠ d2r.

=
1
2π

∞∫
−∞

F (k)

⎛⎝ ∞∫
−∞

g∗(r) exp(ik · r)d2r

⎞⎠ d2k

=
1
2π

∞∫
−∞

F (k)

⎛⎝ ∞∫
−∞

g(r) exp(−ik · r)d2r

⎞⎠∗

d2k =
1
2π

∞∫
−∞

F (k)G∗(k)d2k.

Now, if g = f , then it follows that
∞∫

−∞
| f(r) |2 d2r =

1
2π

∞∫
−∞

| F (k) |2 d2k.

I.16 With

f(r) =
1

(2π)2

∞∫
−∞

F (k) exp(ik · r)d2k,

g(r) =
1

(2π)2

∞∫
−∞

G(k) exp(ik · r)d2k

we have

f ⊗⊗g =
1

(2π)4

∞∫
−∞

d2r

∞∫
−∞

F (k) exp(ik · r)d2k

∞∫
−∞

G(k′) exp[ik′ · (r′ − r)]d2k′

=
1

(2π)2

∞∫
−∞

d2kF (k)

∞∫
−∞

d2k′G(k′) exp(ik′ · r′) 1
(2π)2

∞∫
−∞

exp[ir · (k− k′)]d2r

=
1

(2π)2

∞∫
−∞

d2kF (k)

∞∫
−∞

d2k′G(k′) exp(ik′ · r′)δ2(k− k′)

=
1

(2π)2

∞∫
−∞

F (k)G(k) exp(ik · r′)d2k
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or
f(r)⊗⊗g(r)⇐⇒ F (k)G(k).

I.17 Let

F (k) =

∞∫
−∞

f(r) exp(−ik · r)d2r

and

G(k) =

∞∫
−∞

g(r) exp(−ik · r)d2r.

Then

F ⊗⊗G =

∞∫
−∞

dk

∞∫
−∞

f(r) exp(−ik · r)d2r

∞∫
−∞

g(r′) exp[−ir′ · (k′ − k)]d2r′

=

∞∫
−∞

d2rf(r)

∞∫
−∞

d2r′g(r′) exp(−ik′ · r′)
∞∫

−∞
exp[−ik · (r− r′)]d2k

=

∞∫
−∞

d2rf(r)

∞∫
−∞

d2r′g(r′) exp(−ik′ · r′)(2π)2δ2(r− r′)

= (2π)2
∞∫

−∞
d2rf(r)g(r) exp(−ik′ · r)

or
1

(2π)2
F (k)⊗⊗G(k) ⇐⇒ f(r)g(r).

I.18

f ��g =
1

(2π)4

∞∫
−∞

d2r

∞∫
−∞

F (k) exp(ik · r)d2k

∞∫
−∞

G(k′) exp[ik′ · (r− r′)]d2k′

=
1

(2π)2

∞∫
−∞

d2kF (k)

∞∫
−∞

d2k′G(k′) exp(−ik′ · r′) 1
(2π)2

∞∫
−∞

exp[ir · (k + k′)]d2r

=
1

(2π)2

∞∫
−∞

d2kF (k)

∞∫
−∞

d2k′G(k′) exp(−ik′ · r′)δ2(k + k′)

=
1

(2π)2

∞∫
−∞

F (k)G(−k) exp(ik · r′)d2k
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or
f(r)��g(r) ⇐⇒ F (k)G(−k).

Now, for g(r) real,

G(−k) =

∞∫
−∞

g(r) exp(ik · r)d2r =

⎛⎝ ∞∫
−∞

g(r) exp(−ik · r)d2r

⎞⎠∗

= G∗(k).

I.19 Using the convolution theorem:

F (k)G(k) = G(k)F (k), .˙ . f(r)⊗⊗g(r) = g(r)⊗⊗f(r).

F (k)[G(k)H(k)] = [F (k)G(k)]H(k)

.˙. f(r)⊗⊗[g(r)⊗⊗h(r)] = [f(r)⊗⊗g(r)]⊗⊗h(r).

F (k)[G(k) +H(k)] = F (k)G(k) + F (k)H(k)

.˙. f(r)⊗⊗[g(r) + h(r)] = f(r)⊗⊗g(r) + f(r)⊗⊗h(r).

I.20

∇[f(r)⊗⊗g(r)] ⇐⇒ ikF (k)G(k)

and
ikF (k)G(k) = [ikF (k)]G(k) = F (k)[ikG(k)]

.˙. ∇[f(r)⊗⊗g(r)] = f(r)⊗⊗∇g(r) = g(r)⊗⊗∇f(r).

∇2[f(r)⊗⊗g(r)]⇐⇒ −k2F (k)G(k)

and
−k2F (k)G(k) = [−k2F (k)]G(k) = F (k)[−k2G(k)]

.˙. ∇2[f(r)⊗⊗g(r)] = f(r)⊗⊗∇2g(r) = g(r)⊗⊗∇2f(r).

I.21

void FIRCON(float **f, float **p, float **s, int n, int w)
{
int li, co, i, j, ii, jj, lm, cm, m=n+w-1, xx=w/2;
float *temp[512], con;

/* Initialize the workspace */

for (li=0; li<m; li++)
temp[li]=(float *)malloc(m*sizeof(float));
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for (li=0; li<m; li++)
for (co=0; co<m; co++)
temp[li][co]=0.;

/* Invert the kernel */

for (li=0; li<w; li++)
for (co=0; co<w; co++)
{

i = xx - li;
j = xx - co;
temp[li][co] = p[xx+i][xx+j]; }

for (li=0; li<w; li++)
for (co=0; co<w; co++)
p[li][co] = temp[li][co];

/* Input image into the workspace */

for (li=0; li<m; li++)
for (co=0; co<m; co++)
temp[li][co]=0.;

for (li=xx; li<n+xx; li++)
for (co=xx; co<n+xx; co++)
temp[li][co]=f[li-xx][co-xx];

/* Convolution */

for (li=xx; li<m-xx; li++)
for (co=xx; co<m-xx; co++)
{

con = 0.;

for (ii=li-xx, lm=0; ii<=li+xx, lm<w; ii++, lm++)
for (jj=co-xx, cm=0; jj<=co+xx, cm<w; jj++, cm++)

con += temp[ii][jj]*p[lm][cm];

s[li-xx][co-xx] = con;

}

for (li=0; li<m; li++)
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free(temp[li]);

}

I.22

void FIRCOR(float **f, float **p, float **s, int n, int w)
{
int li, co, i, j, ii, jj, lm, cm, m=n+w-1, xx=w/2;
float *temp[512], cor;

/* Initialize the workspace */

for (li=0; li<m; li++)
temp[li]=(float *)malloc(m*sizeof(float));

for (li=0; li<m; li++)
for (co=0; co<m; co++)
temp[li][co]=0.;

/* Input image into the workspace */

for (li=xx; li<n+xx; li++)
for (co=xx; co<n+xx; co++)
temp[li][co]=f[li-xx][co-xx];

/* Correlation */

for (li=xx; li<m-xx; li++)
for (co=xx; co<m-xx; co++)
{

cor = 0.;

for (ii=li-xx, lm=0; ii<=li+xx, lm<w; ii++, lm++)
for (jj=co-xx, cm=0; jj<=co+xx, cm<w; jj++, cm++)
cor += temp[ii][jj]*p[lm][cm];

s[li-xx][co-xx] = cor;

}

for (li=0; li<m; li++)
free(temp[li]);

}
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I.23

/* FIR test program */

/* Performs an FIR convolution of an image with a kernel */

#include <stdio.h>

main()
{
float *f[512], *p[512], *s[512];
int n, w, i, j, iw1=1, iw2=2, ch;

xopen(); /* open X-windows imaging tool */

printf("\n\t Enter size of image: ");
scanf("%d",&n);

printf("\n\t Enter size of kernel: ");
scanf("%d",&w);

for(i=0; i<n;i++)
{ f[i] = (float *) malloc(n*sizeof(float));
s[i] = (float *) malloc(n*sizeof(float)); }

for(i=0; i<w;i++)
p[i] = (float *) malloc(w*sizeof(float));

printf("\n\t Object Function ");
rimage(f,n);
ximage(f, n, iw1); /* Display image */

printf("\n\t Input Elements of the kernel: ");

for(i=0; i<w; i++)
for(j=0; j<w; j++)
{
printf("\n\t Input Element %d %d : ",i, j);
scanf("%f",&p[i][j]); }

printf("\n\t Kernel ");

for(i=0; i<w; i++)
for(j=0; j<w; j++)
printf("\n\t Element %d %d : %f",i, j, p[i][j]);
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printf("\n\t 1. Correlation; 2. Convolution \n");
scanf("%d", &ch);

switch(ch)
{
case 1:

printf("\n\t Computing the FIR Corelation...");
FIRCOR(f, p, s, n, w);
ximage(s,n,iw2); /* Display image */
printf("OK");
break;

case 2:
printf("\n\t Computing the FIR Convolution...");
FIRCON(f, p, s, n, w);
ximage(s,n,iw2);
printf("OK");
break;

default:
exit(1);

}

printf("\n\t Press Enter to exit");
getchar();
getchar();

xclose(); /* Close X-windows imaging tool */

for(i=0; i<n;i++)
{ free(s[i]);
free(f[i]); }

for(i=0; i<w;i++)
free(p[i]);

}

An example of the application of these FIR filters is given in the accompany-
ing figure below. Filter 1 is a 3×3 moving average filter and smooths the image;
filter 2 is a horizontal gradient detector based on the process fi(j+1) − fi(j−1),
filter 2 is a vertical gradient detector based on the process f(i+1)j − f(i−1)j ,
filter 4 is a gradient detector based on centre differencing the Laplacian oper-
ator ∇2, i.e. f(i+1)j + f(i−1)j + fi(j+1) + fi(j−1) − 4fij. Filter 5 is based on
centre differencing the operator 1 −∇2 and is a high emphasis filter that can
be derived by assuming that an image has been blurred by diffusion. It is a
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processes that is good at restoring the edges of a blurred image as illustrated
here.

Figure A.1: Original 128×128 test image (top left) and the result of applying
filters 1 (top middle), 2 (top right), 3 (bottom left), 4 (bottom middle) and
filter 5 (bottom right).

I.24

#include <math.h>

void ELLIPSE(float **s, int nx, int ny, int maj, int min, float l, int n)
{
int i, j;
float a=(float)min/2., b= (float)maj/2., test;

for(i=0; i<n; i++)
for(j=0; j<n; j++)
{
test= pow(((float)i-(float)ny)/a,2.) + pow(((float)j-(float)nx)/b,2.);
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if(test <= 1.0)
s[i][j]=l; }

}

I.25

void RECT(float **s, int nx, int ny, int lx, int ly, float l, int n)

{
int i, j;

for(i=nx-lx/2; i<nx+lx/2; i++)
for(j=ny-ly/2; j<ny+ly/2; j++)

s[i][j]=l;

}

I.26

#include <math.h>

void GPSF(float **s, int n, int w)

{
int i, j;
float mid = (float)n / 2.;

for(i=0; i<n; i++)
for(j=0; j<n; j++)
s[i][j]=exp( -(pow((float)i-mid,2.)+pow((float)j-mid,2.))

/ pow((float)w,2.) ) ;

}

I.27

#include <math.h>

void AMPSPEC(float **s, float **a, int n)

{
int i, j;
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float *sr[512], *si[512];

/* Allocate Memory */

for(i=0; i<n;i++)
{
sr[i] = (float *) malloc(n*sizeof(float));
si[i] = (float *) malloc(n*sizeof(float)); }

/* Initialize real and imaginary parts */

for(i=0; i<n; i++)
for(j=0; j<n; j++)
{ sr[i][j] = s[i][j];

si[i][j] = 0.0;
a[i][j] = 0.0; }

/* Compute FFT2D */

FFT2D(sr, si, n, -1);

/* Compute the amplitude spectrum */

for(i=0; i<n; i++)
for(j=0; j<n; j++)
a[i][j] = sqrt(sr[i][j]*sr[i][j] + si[i][j]*si[i][j]) ;

/* Free the memory allocated */

for(i=0; i<n;i++)
{
free(sr[i]);
free(si[i]); }

}

I.28

#include <math.h>

void POWSPEC(float **s, float **p, int n, int opt)
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{
int i, j;
float *sr[128], *si[128];

/* Allocate memory */

for(i=0; i<n;i++)
{
sr[i] = (float *) malloc(n*sizeof(float));
si[i] = (float *) malloc(n*sizeof(float)); }

/* Initialize real and imaginary parts */

for(i=0; i<n; i++)
for(j=0; j<n; j++)
{ sr[i][j] = s[i][j];

si[i][j] = 0.0;
p[i][j] = 0.0; }

/* Compute the FFT2D */

FFT2D(sr, si, n, -1);

/* Compute the power spectrum */

for(i=0; i<n; i++)
for(j=0; j<n; j++)
p[i][j] = sr[i][j]*sr[i][j] + si[i][j]*si[i][j];

/* Option for logarithmic scale */

if(opt == 1)
for(i=0; i<n; i++)
for(j=0; j<n; j++)
p[i][j] = log(1. + p[i][j]);;

/* Deallocate memory */

for(i=0; i<n;i++)
{
free(sr[i]);
free(si[i]); }

}
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I.29

#include <stdio.h>

main()
{
float *s[128], *f[128], *a[128], *p[128], *fi[128], max=0., l;
int n, i, j, iw1=1, iw2=2;
int w,nx,ny,lx,ly,ch=0,maj,min;
char cc;

printf("\n\t Enter n (<=128) : ");
scanf("%d",&n);

for(i=0; i<n;i++)
{ s[i] = (float *) malloc(n*sizeof(float));
f[i] = (float *) malloc(n*sizeof(float));
fi[i] = (float *) malloc(n*sizeof(float));
a[i] = (float *) malloc(n*sizeof(float));
p[i] = (float *) malloc(n*sizeof(float)); }

for(i=0; i<n; i++)
for(j=0;j<n;j++)
s[i][j]=0.;

while(ch != 4)
{

printf("\n\t Enter 1 (Square), 2 (Ellipse),
3 (Gaussian) 4 (Display) \n");

scanf("%d",&ch);

switch(ch)
{
case 1: printf("\n\t Enter centre (x,y): ");
scanf("%d",&nx);
scanf("%d",&ny);

printf("\n\t Enter length (lx,ly): ");
scanf("%d%d",&lx,&ly);

printf("\n\t Enter amplitude: ");
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scanf("%f",&l);

printf("\n\t Computing square ...");

RECT(s,nx,ny,lx,ly,l,n);

printf(" OK");
break;

case 2: printf("\n\t Enter centre (x,y): ");
scanf("%d%d",&nx,&ny);

printf("\n\t Enter axes (maj,min): ");
scanf("%d%d",&maj,&min);

printf("\n\t Enter amplitude: ");
scanf("%f",&l);

printf("\n\t Computing ellipse ...");

ellipse_(s,nx,ny,maj,min,l,n);

printf(" OK");
break;

case 3: printf("\n\t Enter width: ");
scanf( "%d",&w);

printf("\n\t Computing Gaussian...");

GPSF(s,n,w);

printf(" OK");
break;

default:
break;

} /* end of switch */

} /* end of while */

/* Display Images */
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xopen();

ximage(s, n, iw1);

printf("\n\t Press Enter to continue... ");
getchar();
getchar();

printf("\n\t Save it ? ");
if( (cc=getchar()) == ’y’)
wimage(s,n);

/* Fourier Menu */

for(i=0;i<n;i++)
for(j=0;j<n;j++)
{ f[i][j] = s[i][j];

fi[i][j] = 0.; }

printf("\n\t Computing Fourier Transform...");
FFT2D(f, fi, n, -1);

ximage(f, n, iw2);
printf("OK");
printf("\n\t Press Enter to continue...");
getchar();

printf("\n\t Computing Amplitude Spectrum...");
AMPSPEC(s,a,n);
ximage(a, n, iw2);
printf("OK");
printf("\n\t Press Enter to continue...");
getchar();

printf("\n\t Computing Power Spectrum...");
POWSPEC(s, p, n, 1);
ximage(p, n, iw2);
printf("OK");
printf("\n\t Press Enter to continue...");
getchar();
getchar();

for(i=0; i<n;i++)
{ free(s[i]);
free(f[i]);
free(fi[i]);
free(a[i]);
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free(p[i]); }

printf("\n\t END \n");
xclose;

I.30

#include <math.h>

void SINCINT(float **x, int n, float **y, int m)

{
int i, j, li, co, w=(m-n)/2;
float *xr[512], *xi[512], *yi[512];

/* Allocate Memory */

for(i=0; i<n; i++)
{
xr[i] = (float *) malloc(n*sizeof(float));
xi[i] = (float *) malloc(n*sizeof(float)); }

for(i=0; i<m; i++)
yi[i] = (float *) malloc(m*sizeof(float));

/* Initialize real and imaginary parts */

for(i=0; i<n; i++)
for(j=0; j<n; j++)
{ xr[i][j] = x[i][j];

xi[i][j] = 0.0; }

/* Compute FFT2D */

FFT2D(xr, xi, n, -1);

/* Initialize the large image */

for(i=0; i<m; i++)
for(j=0; j<m; j++)
{ y[i][j] = 0.0;

yi[i][j] = 0.0; }

/* Interpolate */
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li=0;

for(i=w; i<n+w; i++)
{
co=0;

for(j=w; j<n+w; j++)
{ y[i][j] = x[li][co];

yi[i][j] = xi[li][co];
co++; }

li++;
}

/* Compute Inverse FFT2D */

FFT2D(y, yi, m, 1);

/* Free Memory */

for(i=0; i<n;i++)
{
free(xr[i]);
free(xi[i]); }

for(i=0; i<m;i++)
free(yi[i]);

}

Test unit.

/* Interpolates an image using sinc interpolation
with function SINCINT. */

#include <stdio.h>

main()
{
float *x[512], *y[512];
int n, m, i, iw1=1, iw2=2;
char ch;

printf("\n\t Enter n (<=64) : ");
scanf("%d",&n);

for(i=0; i<n;i++)



656 APPENDIX A. SOLUTIONS TO PROBLEMS

x[i] = (float *) malloc(n*sizeof(float));

rimage(x,n);

xopen();

ximage(x, n, iw1);

printf("\n\t Enter final size of image (<=512): ");
scanf("%d",&m);

for(i=0; i<m;i++)
y[i] = (float *) malloc(m*sizeof(float));

SINCINT(x,n,y,m);

ximage(y,m,iw2);

printf("\n\t Print Enter to continue...");
getchar();
getchar();

printf("\n\t Do you want to save it ? ");

if((ch=getchar()) == ’y’)
wimage(y,m);

xclose();

for(i=0; i<n;i++)
free(x[i]);

for(i=0; i<m;i++)
free(y[i]);

}

I.31 The Green function for the infinite space domain is, by definition, given
by the solution of(

∂2

∂x2
+ k2

)
g(x | x0, k) = −δ(x− x0), −∞ < x <∞

where for a positive half space solution we require 0 ≤ x <∞. Take the Laplace
transform to obtain

p2ḡ(p | x0, k)− pg(0 | x0)− g′(0 | x0, k) + k2ḡ(p | x0, k) = e−px0
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where

g′(0 | x0, k) =
[
∂

∂x
g(x | x0, k)

]
x=0

.

Then,

ḡ(p | x0, k) =
p

p2 + k2
g(0 | x0, k) +

1
p2 + k2

g′(0 | x0, k) +
e−px0

p2 + k2
.

Inverting,

g(x | x0, k) = g(0 | x0, k) cos(kx)+
1
k
g′(0 | x0, k) sin(kx)+

1
k

sin[k(x−x0)]H(x−x0)

where H(x) is the Heaviside step function. The solution is then given by

u(x0, k) =

∞∫
0

g(x | x0, k)f(x)dx

=

∞∫
0

g(0 | x, k) cos(kx0)dx+
1
k

∞∫
0

g′(0 | x, k)f(x) sin(kx0)dx

+
1
k

∞∫
0

sin[k(x0 − x)]H(x − x0)f(x)dx

= A(k) cos(kx0) +B(k) sin(kx0) +
1
k

∞∫
0

sin[k(x0 − x)]H(x − x0)f(x)dx

where

A(k) =

∞∫
0

g(0 | x, k)dx, B(k) =
1
k

∞∫
0

g′(0 | x, k)f(x)dx.

I.32 The Green function is

g(x | x0, k) = −1
k

sin k | x− x0 |

being the solution of(
∂2

∂x2
+ k2

)
g(x | x0, k) = −δ(x− x0)

for both left and right-travelling waves. The homogeneous equation has solu-
tions sin(kx) and sin k(�− x) which vanish at x = 0 and x = L. Consider the
linear combination

u(x, k) = −1
k

sin k | x− x0 | +A sin kx+B sink(�− x).
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Then, using the boundary condition quoted,

−1
k

sin kx0 +B sin kL = 0

and
−1
k

sin k(L− x0) +A sin kL = 0.

Hence,

u(x | x0) = −1
k

[
sin k | x− x0 | − sin(kx0) sin k(L− x)

sinkL
− sin(kx) sin k(L− x0)

sin kL

]
.

I.33 From I.32, g(x | x0, k) gives g(0 | x0, k) = 0, g′(0 | x0, k) = g(1 | x0, k)
and

g(1 | x0, k) =
1
k
g(1 | x0, k) sin k +

1
k

sin[k(1− x0)]H(1 − x0).

Solving for g gives

g(1 | x0, k) =
sin[k(1 − x0)]H(1 − x0)

k − sin k

and hence

g(x | x0, k) =
sin(kx) sin[k(1− x0)]

k(k − sink)
+

1
k

sin[k(x− x0)]H(x− x0)

for 0 ≤ x ≤ 1 and 0 ≤ x0 ≤ 1.

I.34 Writing R = r− r0, with

g(R) =
1

(2π)3

∞∫
−∞

G(k)eik·Rd3k

the equation for the Green function reduces to

G(k) =
1

k2 + λ

where k ≡| k |. Thus, using spherical polar coordinates gives

G(R) =
1

(2π)3

∞∫
−∞

eik·R

k2 + λ
d3k

=
1

(2π)3

∞∫
0

dkk2

1∫
−1

d(cos θ)

2π∫
0

dφ
eikR cos θ

k2 + λ
=

1
4π2R2

∞∫
−∞

k sin(kR)
k2 + λ

dk.
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Now, the contour integral ∮
C

zeizR

z2 + λ
dz

has two simple poles at ±i√λ. Choosing the contour C in the upper half plane
gives the residue

lim
z→i

√
λ

[
(z − i√λ)zeizR

z2 + λ

]
=

1
2
e−

√
λR

and hence, the solution

g(R) =
e−

√
λR

4πR
.

I.35 Consider(
∇2 − σ ∂

∂t

)
G(r | r0, t | t0) = −δ3(r− r0)δ(t− t0)

together with the time reversed equation(
∇2 + σ

∂

∂t

)
G(r | r1,−t | −t1) = −δ3(r− r1)δ(t − t1).

Pre-multiply the first equation by G(r | r1,−t | −t1) and the second equation
by G(r | r0, t | t0) and subtract the results, integrating over the volume of
interest and over t from −∞ to t0. Then, using Green’s theorem, we get

t0∫
−∞

dt

∮
S

[G(r | r1,−t | t1)∇G(r | r0, t | t0)

−G(r | r0, t | t0)∇G(r | r1,−t | −t1)] · d2r

−σ
∫
V

d3r

t0∫
−∞

[
G(r | r1,−t | −t1) ∂

∂t
G(r | r0, t | t0)

+G(r | r0, t | t0) ∂
∂t
G(r | r1,−t | −t1)dt

= G(r1 | r0, t1 | t0)−G(r0 | r1,−t0 | −t1).
The first integral vanishes under the assumption that G satisfies the homoge-
neous boundary conditions. The second integral is∫

V

d3r
[
G(r | r1,−t | −t1)G(r | r0, t | t0)]t0t=−∞

and since

G(r | r0, t | t0) = 0, t < t0, G(r | r0, t | t0 |t=−∞= 0
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and
G(r | r1,−t | −t1) |t=t0= 0

for t in the range of integration. Hence,

G(r1 | r0, t1 | t0) = G(r | r1,−t0 | −t1).

Solutions to Part II

II.1 Rewrite the equation as

(∇2 + k2)u(r, k) = −γ(r)u(r, k).

Then
(∇2 + k2)g(r | r0, k) = −δ3(r− r0)

and
∞∫

−∞
(g∇2u− u∇2g)d3r = −

∞∫
−∞

gγud3r +

∞∫
−∞

u(r, k)δ3(r− r0)d3r

= −
∞∫

−∞
gγud3r + u(r, k).

Hence,

u(r0, k) = f(r0, k) +

∞∫
−∞

g(r | r0, k)u(r, k)V (r)d3r

where

f(r0) =

∞∫
−∞

[g(r | r0, k)∇2u(r, k)− u(r, k)∇2g(r | r0, k)]d3r

which is a solution to
(∇2 + k2)u(r, k) = 0.

II.2 Let U(r, t) = u(r, ω) exp(iωt), then

∇2u+ k2u = −4πρ; k =
ω

c
=

2π
λ

where λ is the wavelength. The Green function solution to this equation (at
r0) is

u(r0, k) =

∞∫
−∞

4πρ(r)g(r | r0, k)d3r
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where g (the outgoing Green function) is

g(r | r0, k) =
exp(ik | r− r0 |)

4π | r− r0 |
whose asymptotic form is

exp(ikr0)
4πr0

exp(−ikn̂ · r); n̂ =
r0

r0
, r0 >> r

which can be used in this problem because the antenna is ‘thin’. Hence, in the
far field

u(r0, k) =
exp(ikr0)

r0

∞∫
−∞

ρ(r) exp(−ikn̂ · r)d3r.

In spherical polar coordinates, for ρ = 1/(4πr2),

u(r0, k) =
exp(ikr0)

4πr0

2π∫
0

−1∫
−1

∞∫
0

exp(−ikr cos θ)
r2

r2drd(cos θ)dφ

=
exp(ikr0)

r0

∞∫
0

sin(kr)
kr

dr =
π

2kr0
exp(ikr0).

Hence, | u |= λ/4r0 and with λ = 10m and r0 = 1000m has a value of 0.0025.

II.3

(i) (
∇2 − 1

c20

∂2

∂t2
− τ0 ∂

∂t

)
u(r, t) =

[
−(k + iα)2 +

ω2

c20
+ iωτ0

]
u(r, t) = 0

=⇒ k2 + 2iαk − α2 − ω2

c20
− iωτ0 = 0

Equating real and imaginary parts, we have

2αk − ωτ0 = 0, =⇒ k =
ωτ0
2α

and

k2 − α2 − ω2

c20
= 0

giving
ω2τ2

0

4α2
− α2 − ω2

c20
= 0

or

α4 +
ω2

c20
α2 − ω2τ2

0

4
= 0
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whose solution (for α to be real and positive) is

α =
ω

c0
√

2

[(
1 +

c40τ
2
0

ω2

) 1
2

− 1

] 1
2

.

The phase velocity is given by

cp =
2α
τ0

Note that for large values of ω when c40τ
2
0 /ω

2 << 1,

α ∼ ω

c0
√

2

(
c40τ

2
0

2ω2

) 1
2

=
c0τ0
2

and the phase velocity is c0.

(ii) (
∇2 − 1

c20

∂2

∂t2
− τ0 ∂

∂t
∇2

)
u(r, t)

=
[
−(k + iα)2 +

ω2

c20
− iωτ0(k + iα)2

]
u(r, t) = 0

=⇒ k2 + 2iαk − α2 =
ω2

c20

1− iωτ0
1 + ω2τ2

0

Equating real and imaginary parts, we have

2αk =
ω2

c20

ωτ0
1 + ω2τ2

0

, =⇒ k =
ω2

2αc20

ωτ0
1 + ω2τ2

0

and

k2 − α2 =
ω2

c20

1
1 +2 τ2

0

or

α4 +
ω2

c20(1 + ω2τ2
0 )
α2 − ω6

4c20

τ2
0

(1 + ω2τ2
0 )2

= 0

whose solution (for α to be real and positive) is

α =
ω

c0
√

2
[(1 + ω2τ2

0 )
1
2 − 1]

1
2

(1 + ω2τ2
0 )

1
2

.

The phase velocity is then given by

cp =
ω

k
= ω

2αc20
ω2

(1 + ω2τ2
0 )

ωτ0
= c
√

2(1 + ω2τ2
0 )

1
2
[(1 + ω2τ2

0 )
1
2 − 1]

1
2

ωτ0
.

Noting that
[(1 + ω2τ2

0 )
1
2 − 1]

1
2 [(1 + ω2τ2

0 )
1
2 + 1]

1
2 = ωτ0
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we have

cp = c0
√

2

[
1 + ω2τ2

0

(1 + ω2τ2
0 )

1
2 + 1

] 1
2

and for ωτ0 << 1,

α(ω) � ω2τ0
2c0

so that the absorption of acoustic radiation in a viscous medium is proportional
to the square of the frequency. Low frequency acoustic radiation will therefore
propagate much further through such a medium.

(iii) For
u(r, t) = exp[i(K · r− ωt)]

where K = n̂(k + iα), the Leeman operator gives

K2 − ω2

c20
− iωτ0 − iωτ1K = 0

where K =|K |. Solving for K, we get

K =
iωτ1

2
±1

2

[
−ω2τ2

1 + 4
(
iωτ0 +

ω2

c20

)] 1
2

=
iωτ1

2
± ω

c0

[(
1− τ2

1 c
2
0

4

)
+
iτ0c

2
0

ω

] 1
2

=
iωτ1

2
± ωτ

(
1 +

iτ1
ωτ0

) 1
2

where

τ =
(

1
c20
− τ2

1

4

) 1
2

.

For an ultrasonic field where the frequency is in the MHz range, we have (for
ωτ >> τ0)

K � iωτ1
2
± ωτ

(
1 +

1
2
iτ0
ωτ

)
= ±ωτ + i

ωτ1
2
± i τ0

2
.

The absorption function is given by

α(ω) = Im[K] =
ωτ1
2

+
τ0
2

and the phase velocity is given by

cp =
ω

k
=

ω

ωτ
=
(

1
c20
− τ2

0

4

)− 1
2

.

In this case, the absorption of the wavefield varies linearly with the frequency.

II.4 (i) We require the Green function to the following equation:(
∇2 − 1

c2
∂2

∂t2
− τ2

0

)
G(r | r0, t | t0) = −δ3(r− r0)δ(t− t0).
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Let

G(R, τ) =
1
2π

∞∫
−∞

g(R,ω) exp(iωτ)dω

and

δ(τ) =
1
2π

∞∫
−∞

exp(iωτ)dω

where R =| r − r0 | and τ = t − t0 so that the equation above becomes (in
ω-space) (

∇2 +
ω2

c2
− τ2

0

)
g(R,ω) = −δ3(r− r0).

Further, let

g(R,ω) =
1

(2π)3

∞∫
−∞

g̃(k, ω) exp(ik ·R)d3k

and

δ3(R) =
1

(2π)3

∞∫
−∞

exp(ik ·R)d3k.

The equation then transforms to(
−k2 +

ω2

c2
− τ2

0

)
g̃ = −1

or

g̃(k, ω) =
1

k2 − (ω2/c2) + τ2
0

.

Fourier inverting, we obtain

G(R, τ) =
1

(2π)4

∞∫
−∞

∞∫
−∞

exp(ik ·R) exp(iωτ)
k2 − (ω2/c2) + τ2

0

d3kdω.

Integrating over the angular components of k (using spherical polar coordi-
nates) we have

G(R, τ) =
1
2π

1
4π2R

∞∫
−∞

∞∫
−∞

k sin(kR) exp(iωτ)
k2 − (ω2/c2) + τ2

0

dkdω.

The contour integral ∮
C

z exp(iRz)
z2 − (ω2/c2) + τ2

0

dz
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has simple poles at z = ±√(ω2/c2)− τ2
0 . If we consider the contour to enclose

the positive pole only, then contour integration (using the residue theorem)
gives the outgoing Green function

G(R, τ) =
1
2π

1
4πR

∞∫
−∞

exp
(
iR
√

(ω2/c2)− τ2
0

)
exp(iωτ)dω.

The last part of the calculation is therefore to compute the integral above.
Noting that

√
(ω2/c2)− τ2

0 = i
√
τ2
0 − (ω2/c2) and letting iω = p, we can write

G(R, τ) =
1

4πR
1

2πi

i∞∫
−i∞

exp
(
−R

√
τ2
0 c

2 + p2/c

)
exp(pτ)dp

which expresses the problem in terms of the Bromwich integral. We are thus
required to evaluate the inverse Laplace transform of exp(−R

√
τ2
0 c

2 + p2/c).
Noting that

exp
(
−R

√
τ2
0 c

2 + p2/c

)
= −c ∂

∂R

⎛⎝exp
(
−R√τ2

0 c
2 + p2/c

)
√
τ2
0 c

2 + p2

⎞⎠
we can write

G(R, τ) = − c

4πR
∂

∂R

[
J0τ

2
0 c
√
τ2 − (R2/c2)

]
, τ >

R

c
.

(ii) Using the same approach as that used in part (i) above, we can write the
outgoing Green function as

G(R, τ) =
1
2π

1
4πR

∞∫
−∞

exp
(
iR
√

(ω2/c2)− iωτ0
)

exp(iωτ)dω

the term iωτ0 in the first integral being a direct result of the term τ0∂/∂t
present in this operator. Noting that

√
(ω2/c2)− iωτ0 = i

√(
iω

c
+
τ0c

2

)2

− τ2
0 c

2

4

and letting p = (iω/2) + (τ0c/2), we obtain

G(R, τ) =
c

4πR
exp(−τ0c2τ/2)

1
2πi

i∞∫
−i∞

exp(−R
√
p2 − τ2

0 c
2/4 exp(pcτ)dp

= − c

4πR
exp(−τ0c2τ/2)

∂

∂R

[
I0

(τ0c
2

√
c2τ2 −R2

)]
, cτ > R.
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(iii) Using the Fourier technique, the Green function is given by

G(R, τ) =
1

(4π)2

∞∫
−∞

exp(ik ·R) exp(iωτ)
(ω2/c2)− k2(1− iωτ) .

Integrating over k, the outgoing Green function is then

G(R, τ) =
1

4πR
1
2π

∞∫
−∞

exp(iωτ) exp
(

iωR

c(1− iωτ) 1
2

)
dω.

We can write this result as

G(R, τ) =
exp(−bτ)

4πR
L̂−1 [exp(−aR√p) exp(abR/

√
p)]H(τ −R/c)

where a = 1/
√
τc2, b = 1/τ and p = b + iω; L̂−1 denotes the inverse Laplace

transform and H denotes the step function. Using the results provided in the
question, we have

G(R, τ) =
exp(−bτ)

4πR
exp(−a2(1 − b)2R/8τ)√

2πτ

×
∞∑

n=−∞

[
(−1/

√
2τ)nJn(2abR)Dn+1(a(1 − b)R/

√
2τ)]H(τ −R/c).

(iv) Using the Fourier method,

G(R, τ) =
1

(4π)4

∞∫
−∞

exp(ik ·R) exp(iωτ)
(k2 − ω2/c2) + ω(i+ τ1k)

d3kdω

With γ = iα− βκ where α = τ0c
2/2, β = τ1c/2 and κ = kc, this equation can

be written as

G(R, τ) = − c2

(2π)4

∞∫
−∞

d3k exp(ik ·R)

∞∫
−∞

dω
exp(iωτ)

[(ω − γ)2 − (γ2 + κ2)]
.

Integrating over ω and the angular components of k, we obtain

G(R, τ) =
exp(−ατ)

2π2R

∞∫
0

dκκ sin(κR/c)
sin(

√
γ2 + κ2τ)√
γ2 + κ2

exp(iβτκ).

Now, noting that

γ2 + κ2 = (1 + β2)
(
κ− iαβ

1 + β2

)2

− α2

1 + β2
,
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using the Gegenbauer integral given in the question, we get

G(R, τ)
c

4π2R

exp(−ατ)√
1 + β2

∂

∂R

∞∫
0

dκ cos(Rκ/c) exp[−i(βτ − s)κ]

×

√
1+β2τ∫

−
√

1+β2τ

dsJ0

(
α

1 + β2

√
s2 − (1 + β)2τ2

)
exp

(
− αβs

1 + β2

)
.

On noting that

∞∫
−∞

dκ cos(Rκ/c) exp[−i(βτ − s)κ] = π

[
δ

(
R

c
− βτ − s

)
+ δ

(
R

c
+ βτ + s

)]

we can write the Green function as

G(R, τ) =
c

4π
exp(−ατ)√

1 + β2

1
R

∂

∂R

[
J0

(
α

1 + β2

√(
R

c
− βτ)2 − (1 + β2)τ2

)]

× exp
[
− αβ

1 + β2

(
R

c
− βτ

)]
H

(
τ − R

c+

)

+
c

4π
exp(−ατ)√

1 + β2

1
R

∂

∂R

[
J0

(
α

1 + β2

√(
R

c
+ βτ)2 − (1 + β2)τ2

)]

× exp
[

αβ

1 + β2

(
R

c
+ βτ

)]
H

(
τ − R

c−

)
where c± = c(

√
1 + β2 ± β).

II.5 With R = r− r0 and τ = t− t0, solve(
∇2 + σ

∂

∂τ

)
G(R, τ) = −δ3(R)δ(τ), τ > 0.

Take Laplace transforms to get

∇2Ḡ(R, p) + σ[p−G(R, 0)]Ḡ(R, p) = −δ3(R)

or
∇2Ḡ(R, p) + σpḠ(R, p) = −δ3(R), G(R, 0) = 0

whose solution is
Ḡ(R, p) =

1
4πR

exp(−√σpR).

Hence,

G(R, τ) =
1

4πR
L̂−1 [exp(−√σpR)] .
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Using the result provides in the question (i.e. the Laplace transform of the
function t−3/2 exp(−a/t) we note that

L̂−1[exp(−2
√
ap)] =

√
a

π
τ−3/2 exp(−a/τ)

and thus, with 2
√
a = R

√
σ so that a = R2σ/4 we have

G(R, τ) =
1

4πR

√
R2σ

4π
τ−3/2 exp

(
−R

2σ

4τ

)

=
1
σ

( σ

4πτ

) 3
2

exp
(
−σR

2

4τ

)
, τ > 0.

II.6 (i) Since c = c0 + v,

1
c2

=
1

(c0 + v)
=

1
c2

(
1 +

v

c0

)−2

=
1
c0

(
1− 2v

c0
+ ...

)
1
c20
− 2v
c30
,

v

c0
<< 1.

The equation then becomes(
∂2

∂x2
+ k2 − 2k2 v

c0

)
u(x, ω) = 0.

With u = w + exp(−ikx) we have(
∂2

∂x2
+ k2

)
exp(−ikx) +

(
∂2

∂x2
+ k2

)
w

−2k2 v

c0
exp(−ikx)− 2k2 v

c0
w = 0

which reduces to (
∂2

∂x2
+ k2

)
w(x, k) = 2k2 v

c
exp(−ikx)

because (
∂2

∂x2
+ k2

)
exp(−ikx) = 0

and since v/c0 << 1 and | w |<< 1, the term 2k2vw/c0 can be neglected.

(ii) The outgoing Green function solution is

w(x0, k) =
2k2

c0

i

2k

∞∫
−∞

exp(ik | x− x0 |)v(x) exp(−ikx)dx
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=
ik

c0
exp(ikx0)

∞∫
−∞

v(x) exp(−2ikx)dx, x0 →∞.

Now,

ik

∞∫
−∞

v(x) exp(−2ikx)dx = −1
2

∞∫
−∞

(
d

dx
exp(−2ikx)

)
v(x)dx

−1
2

∞∫
−∞

dv

dx
exp(−2ikx)dx

assuming v(x) |±∞= 0. Thus,

w(x0, k) = − exp(ikx0)
1

2c0

∞∫
−∞

dv

dx
exp(−2ikx)dx.

Since x = ct and k = ω/c, we can write this result in the form

w(τ0, ω) = − exp(iωt0/2)

∞∫
−∞

1
2c0

dv

dτ
exp(−iωτ)dτ

where τ = 2t. Taking the inverse Fourier transform and using the convolution
theorem we obtain

w(τ) = − 1
2c0

dv

dτ
⊗ δ(τ + t0/2)

The condition v/c0 << implies that v is a small perturbation of c0. The
condition | w |<< 1 implies weak or Born scattering. This expression for the
impulse response function is obtained under the Born approximation.

(iii) With u(x, k) = exp[iks(x)],

∂u

∂x
= ik exp(iks)

ds

dx

and
∂2u

∂x2
= (ik)2 exp(iks)

(
ds

dx

)2

+ ik exp(iks)
d2s

dx2

� (ik)2 exp(iks)
(
ds

dx

)2

, ω →∞

and the original equation transforms to

ω2

c20

(
ds

dx

)2

=
ω2

c2
, or

ds

dx
=
c0
c
.
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Hence, if c = αc0/x, then

ds

dx
=
x

α
s = β +

x2

2α

where β is a constant of integration. The condition ω → ∞ implies that the
wavelength is much smaller than the characteristic variations in s.

II.7 With u = ges, the equation becomes

∇2g + k2g + 2∇s · ∇g + g∇s · ∇s+ g∇2s = −k2γg − δ3.
Under the Rytov approximation (i.e. neglecting the nonlinear term g∇s · ∇s),
we have

g∇2s+ 2∇s · ∇g = −k2γg

which, after the substitution of s = w/g, reduces to

∇2w + k2w = −k2γg − w

g
δ3.

The Green function solution to this equation as a point rs say (with homoge-
neous boundary conditions) is

w(rs | r0, k) = k2

∫
γ(r)g(r | r0, k)g(r | rs, k)d3r

+
∫

w(r, k)
g(r | r0, k)

g(r | rs, k)δ3(r− r0)d3r = k2

∫
γ(r)g(r | r0, k)g(r | rs, k)d3r

since 1/g(r0 | r0, k) = 0. Hence the solution is

u(rs | r0, k) = g(rs | r0, k) exp
[

k2

g(rs | r0, k)

∫
γ(r)g(r | r0, k)g(r | rs, k)d3r

]

= g(rs | r0, k) + k2

∫
γ(r)g(r | r0, k)g(r | rs, k)d3r + ...

The back-scattered field is given by

u(r0, k) = lim
rs→r0

[u(rs | r0, k)− g(rs | r0, k)] = k2

∫
γ(r)g2(r | r0, k)d3r.

II.8 (i) Taking the Laplace transform, the equation transforms (using the con-
volution theorem for Laplace transforms) to

U(p) =
1
p2
− 1
p2
U(p).

Thus,

U(p) =
1

1 + p2
and u(x) = sinhx.
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(ii) The Neumann series for this equation is

un(x) = x−
x∫

0

(t− x)un−1(t)dt, n = 1, 2, 3, ...

Thus
u0(x) = x;

u1(x) = x−
x∫

0

(t− x)tdt = x−
[
t3

3
− xt

2

2

]x
0

= x− x3

3
+
x3

2
= x+

x3

6
;

u2(x) = x−
x∫

0

(t−x)
(
t+

t3

6

)
dt = x−

[
t3

3
+
t5

50
− xt

2

2
− x t

4

24

]x
0

= x+
x3

6
+
x5

120

and by induction

x+
x3

6
+

x5

120
+ ... = sinhx.

II.9 The Green function solution to this equation at a point rs is given by

u(rs | r0, k) =
∮
S

[g(r | rs, k)∇u(r | r0, k)− u(r | r0, k)∇g(r | rs, k)].n̂d2r

+k2

∫
V

g(r | rs, k)γ(r)u(r | r0, k)d3r + g(r0 | rs, k)

where g(r0 | rs, k) is the incident field (i.e. the field when r /∈ V ) and g(r | rs, k)
is the solution of

(∇2 + k2)g(r | rs, k) = −δ3(r− rs)

and given by

g(r | rs, k) =
1

4π | r− rs | exp(ik | r− rs |).

If
u(r | r0, k) = g(r | r0, k)

on the surface of V , then using Green’s theorem the surface integral becomes∫
V

[g(r | rs, k)∇2g(r | r0, k)− g(r | r0, k)∇2g(r | rs, k)]d3r

=
∫
V

g(r | rs, k)[−k2g(r | r0, k)− δ3(r− r0)]d3r

−
∫
V

g(r | r0)[−k2g(r | rs, k)− δ3(r− rs)]d3r
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= −g(r0 | rs, k) + g(rs | r0, k) = 0

through the reciprocity theorem. Hence, the solution of the equation becomes

u(rs | r0, k) = g(rs | r0, k) + k2

∫
V

g(r | rs, k)γ(r)u(r | r0, k)d3r.

The Born series solution is now

u(rs | r0, k) = g(rs | r0, k) + k2

∫
V

g(r | rs, k)γ(r)g(r | r0, k)d3r +O(kn)

where n = 4, 6, 8, ... Hence, if we consider the limit

U(rs | r0) = lim
k→0

(
u(rs | r0, k)− g(rs | r0, k)

k2

)
then we can write

U(rs | r0) =
1

16π2

∫
V

γ(r)
| r− r0 |

d3r
| r− rs | .

In the far field, when rs ≡| rs |>>| r | say,

U(rs | r0) =
1

16π2rs

∫
V

γ(r)
| r− r0 |d

3r.

In the far fields when rs ≡| rs |>>| r | and r0 ≡| r0 |>>| r |,

U(rs | r0) =
1

16π2rsr0

∫
V

γ(r)d3r

which is the DC (zero frequency component) of the scatterer scaled by
1/(16π2rsr0). In this sense, using very low frequency radiation in the far fields
provides an exact measure of the average value of the scatterer which is not
the same as imaging it!

Remark: By considering a scalar Helmholtz scattering theory in the limit as
the wavenumber approaches zero, we can derive some known characteristics of
a gravitational field, namely, that gravity is a weak force, it obeys an inverse
square law (Newton’s law of gravity), it bends light (a consequence of Einstein’s
correction to Newton’s law of gravity) and is an attractive only force.

Consider the Helmholtz equation

(∇2 + k2)u(r, k) = −k2γ(r)u(r, k)

to be the result of transforming the inhomogeneous wave equation(
∇2 − 1

c2
∂2

∂t2

)
U(r, t) = 0
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using

U(r, t) = u(r, ω) exp(iωt),
1
c2

=
1
c20

[1 + γ(r)], k =
ω

c0

where ω is the angular frequency, c0 is a constant and no physical significance is
placed on the nature of the scalar wavefield u or the (dimensionless) scattering
function γ other than it is taken to be of compact support r ∈ V .

The general solution to this equation at a point r0 is given by the Lippmann-
Schwinger equation

u(r0, k) = ui(r0, k) + k2

∫
V

g(r | r0, k)γ(r)u(r, k)d3r

where ui is the incident field and g is the Green function

g(r | r0, k) =
1

4π | r− r0 | exp(ik | r− r0 |)

which is the solution of

(∇2 + k2)g(r | r0, k) = −δ3(r− r0).

Since the solution for u is of the form

u = ui + Îu

where Î is the operator

Î = k2

∫
V

d3rg(r | r0, k)γ(r)

we can iterate to produce a solution of the form

u = ui + Îui + Î(Îui) + ...

or
u(r0, k) = ui(r0, k) + us(r0, k)

where us is the scattered field given by

us(r0, k) = k2

∫
V

g(r | r0, k)γ(r)ui(r, k)d3r

+k4

∫
V

∫
V

g(r | r0, k)γ(r)g(r | r′, k)γ(r′)ui(r′, k)d3rd3r′ + ...

Each term in this ‘Born series’ describes different order scattering events; the
first term models single scattering events, the second term models double scat-
tering, the third term triple scattering and so on. Note that each term in the
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Born series scales in k as k2n where n = 1, 2, 3... If we ignore higher order scat-
tering events and model the scattered field in terms of single scattering alone
then

us(r0, k) = k2

∫
V

g(r | r0, k)γ(r)ui(r, k)d3r

This is the weak scattering solution to the problem (the Born approximation)
which is valid if

‖us‖
‖ui‖ << 1

or for a spherical scatterer of radius R, if

γ̄ <<
1

k2R2

where

γ̄ =

√∫ | γ |2 d3r∫
d3r

.

If a Helmholtz wavefield oscillates at very low frequencies, then we can
consider an asymptotic solution of the form

us(r0, k) =
k2

4π

∫
V

γ(r)
| r− r0 |ui(r, k)d

3r, k → 0.

This is a consequence of the fact that the higher order terms in the Born series
can be ignored leaving just the first term as k → 0 and because

exp(ik | r− r0 |)
4π | r− r0 | =

1
4π | r− r0 | , k→ 0

giving an exact solution to the problem, i.e. the Born approximation provides
us with an exact solution for a Helmholtz scattered field when k → 0. Now, if
the incident field is a unit plane wave,

ui(r, k) = exp(ikn̂i · r)

where n̂i is the normal unit vector that defines the direction of the plane wave
relative to the scattering function, then

u(r0, k) = 1 + us(r0, k)

where

us(r0, k) =
k2

4π

∫
V

γ(r)
| r− r0 |d

3r, k → 0.

Here, the wavelength of the incident plane wavefield is assumed to be much
much larger than the spatial extent V of the scatterer. For a given scattering
function γ(r) the scattered field will be a ‘weak field’ because of the low values
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of k required to produce this result. But this particular result is the general
solution to Poisson’s equation

∇2us(r, k) = −k2γ(r)

which can be written as

∇ ·U(r, k) = k2γ(r), U(r, k) = −∇us(r, k).
Integrating over the volume of the scatterer V , we get∫

V

∇ ·U(r, k)d3r = k2

∫
V

γ(r)d3r

and using the divergence theorem we can write∮
S

U(r, k) · n̂d2r = k2Γ

where
Γ =

∫
V

γ(r)d3r

and S is taken to be the surface enclosing V . For a radially symmetric field
U = n̂U , the surface integral becomes 4πr2U and we get

U =
k2Γ
4πr2

, k → 0.

Hence, if the scalar wavefield us is taken to be the potential of the vector field U
then U ∝ 1/r2. Very low frequency Helmholtz scattering thus provides an exact
solution for the scattered field whose gradient (for the radially symmetric case)
is characterized by a 1/r2 scaling law. Very low frequency scattering therefore
generates a weak field between the volume integral of the scattering function
γ(r) and a (gradient) detector at a distance r from the scatterer that obeys an
inverse square law.

We have shown that the solution to the Helmholtz equation

(∇2 + k2)u(r, k) = −k2γ(r)u(r, k)

where γ(r) is of compact support r ∈ V is

u(r, k) = ui(r, k) + us(r, k)

where, for k → 0, us(r, k), which we shall write as u0
s(r, k), is the solution to

∇2u0
s(r, k0) = −k2

0γ(r), k0 → 0.

Consider a weakly scattered Helmholtz wavefield us(r, k) for k >> 1 given by

us(r0, k) = k2

∫
V

g(r | r0, k)γ(r)ui(r, k)d3r
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where
γ̄ <<

1
k2R2

.

and since k >> 1 we consider the case where R→ 0 so that no condition needs
to be placed upon the value of γ̄. We can then write

us(r0, k) = −k
2

k2
0

∫
V

g(r | r0, k)[∇2u0
s(r, k0)]ui(r, k)d3r

= −k
2

k2
0

∫
V

g(r | r0, k)[∇ ·U(r, k)]ui(r, k)d3r =
exp(ikr0)

4πr0
A(n̂0, n̂i),

r

r0
<< 1

where, with ui(r, k) = exp(ikn̂i · r), n̂0 = r0/ | r0 | and

U = n̂U = n̂
k2
0Γ

4πr2
,

A(n̂0, n̂i) = −k
2Γ
4π

∫
V

exp[−ik(n̂0 − n̂i) · r]∇ ·
(

n̂
r2

)
d3r.

Thus, given the Helmholtz equation

(∇2 + k2)u(r, k) = −k2γ(r)u(r, k)

where
u(r, k) = ui(r, k) + us(r, k)

then the scattered field us(r, k) for k >> 1 from a scatterer that is simultane-
ously generating a scattered field us(r, k) for k → 0 is, in the far field (under
the Born approximation) determined by the Fourier transform of the scattering
function (assuming radial symmetry)

∇ · n̂
r2
.

In other words, a weak Helmholtz field generated by very low frequency scatter-
ing will diffract a high frequency Helmholtz field, the diffraction pattern being
determined by the function above.

Can such a low frequency scattered field satisfying the equation

∇2us(r, k) = −k2γ(r), k → 0

be detected ? Gravity wave scattering perhaps, in which an apple for example,
detects the weak force generated by the gradient of a field whose divergence
bends light! If so, suppose the weak force F generated by the field U on a mass
m′ say is proportional to Um′ so that

F = v2Um′

where v2 is a constant of proportionality. Then

F = v2k2 Γm′

4πr2
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where v has the dimensions of velocity (i.e. length.second−1).
The scattering function γ(r) must describe some appropriate property of

matter. But matter is composed of matter waves which conform to the wave
equation (Schrödinger’s equation - see Chapter 6)(

∇2 +
2m[E − Ep(r)]

E2

∂2

∂t2

)
U(r, t) = 0

where E is the energy of the matter wave that characterizes a particle of mass
m and Ep is the potential energy. Now, suppose we generalize this equation
and consider the case where the wavefield U(r, t) can oscillate at any frequency
ω less than or significantly less than the frequency ω′ associated with a matter
wave of energy E = �ω′ where � is Planck’s constant so that Schrödinger’s
equation proper is only obtained when ω → ω′.1 Then, given that

1
c2

=
1
c20

(1 + γ) =
2m[E − Ep(r)]

E2

and with U(r, t) = u(r, ω) exp(iωt), Schrödinger’s equation can be written in
terms of the Helmholtz equation

(∇2 + k2)u(r, k) = −k2γ(r)u(r, k)

where

γ(r) =
2mc20
E2

[E − Ep(r)]− 1.

Hence,
Γ = Mm

where

M =
2c20
E2

∫
V

[E − Ep(r)]d3r− V

m
, V =

∫
V

d3r.

The force field F , then becomes

F = G
mm′

r2

where

G =
Mv2k2

0

4π
which is Newton’s law of gravity with gravitational constant G.

From the results above, we can derive an expression for the wavelength of
the wavefield us(r, k) k → 0 in terms of the gravitational constant for a free
matter wave when Ep = 0. In this case,

M =
V

m

(
2mc20
E

− 1
)

1An entirely phenomenological argument (like Schrödinger’s equation itself) but essential
with regard to the consequences that follow.
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and
λ =

2π
k

=
c0
ν

where ν is the frequency of the wave given by

ν = r
c0
v

√
Gm

πV
, r =

√
E

2mc20 − E
.

Note that for the frequency (and wavelength) of the wave to be a real positive
quantity, we require that

2mc20 > E.

Finally, given the Helmholtz scattering function for a matter wave, i.e.

γ(r) =
2mc20
E2

[E − Ep(r)]− 1,

for an attractive force γ > 0 and for a repulsive force γ < 0. If we consider a
free matter wave with Ep = 0, then γ > 0 if an only if

2mc20
E

− 1 > 0.

But 2mc20 > E for λ0 to be a real positive quantity and thus, γ must always
be greater than zero and a gravitational force must therefore be attractive and
only attractive.

The results of this wave-theoretic model allow us to contemplate a gravity
as follows:

Two bodies are attracted to each other because each detects the gravity waves
scattered by the other.

This is a consequence of taking an asymptotic solution in which k → 0 and
provides four important and observable characteristics of a gravitational field:

(i) gravitation is a weak force;

(ii) a gravitational field bends (i.e. diffracts) light;

(iii) a gravitational field is characterized by an inverse square law;

(iv) gravity is an attractive only force.

However, with regard to point (iv), we note that if a material (i.e. a matter
wavefield) exists such that E < Ep ∀r ∈ V then the scattering function will
be negative and the force will become repulsive.

The approach considered here leads to a phenomenological idea in which
the Helmholtz equation is used in an attempt to develop a unified (scalar)
wavefield theory of ‘physics’ where the wavefield u exists over a broad range of
frequencies. At very high frequencies, u describes matter waves, at intermediate
frequencies, u describes (scalar) electromagnetic waves and at low frequencies,
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u describes (scalar) gravity waves. The structure of matter, the characteris-
tics of light and other electromagnetic radiation and the properties of gravity
become phenomenologically related via Helmholtz scattering over different fre-
quency bands. Low frequency waves (i.e. gravity waves) are scattered from
high frequency waves (matter waves) to produce a gravitational field; interme-
diate frequency waves (electromagnetic waves) are scattered by high frequency
waves (e.g. a lens) but can also be scattered by a gravitational field to produce
gravitational lensing and so on. ‘Physics’ becomes the study of waves inter-
acting with waves at vastly different frequencies, the breadth of the spectrum
being a consequence of the instantaneous nature of the birth of the Universe
(i.e. the ‘big-bang’) since it requires (noting that the Fourier transform of a
delta function is a constant over all frequency space) a short impulse to generate
a broad frequency spectrum.

II.10 The scalar wave equation is given by

(∇2 + k2)u(r, k) = −k2γ(r)u(r, k), r ∈ V
where k is the wavenumber (= 2π/λ), γ(r) = εr(r)−1 with relative permittivity
εr and u is the wavefield. A Green function solution gives

u(r0, k) = ui(r0, k) + us(r0, k)

where
us(r0, k) = k2

∫
V

g(r | r0, k)γ(r)u(r, k)d3r

which under the Born approximation becomes

us(r0, k) = k2

∫
V

g(r | r0, k)γ(r)ui(r, k)d3r

where ui is the incident wavefield. In the far field,

us(r0, k) = k2 exp(ikr0)
4πr0

∫
V

exp(−ikn̂0 · r)γ(r)ui(r, k)d3r

where n̂0 = r0/r0 and

r0 = (x2
0 + y2

0 + z2
0)

1
2 = z0

(
1 +

x2
0

z2
0

+
y2
0

z2
0

) 1
2

� z0,
x0

z0
<< 1,

y0
z0

<< 1.

For a unit plane wave at normal incidence to the aperture we have

ui(r, k) = exp(ikz)

and noting that

n̂0 · r =
1
r0

(xx0 + yy0 + zz0) � 1
z0

(xx0 + yy0 + zz0)
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the forward scattered field is given by

us(x0, y0, z0, k) = k2 exp(ikz0)
4πz0

∫ ∫ ∫
exp(−ikxx0/z0) exp(−ikyy0/z0)dxdydz.

For a dielectric screen of infinite extent with an aperture of size XY and thick-
ness Z, we have

us(x0, y0, z0, k)

= k2 exp(ikz0)
4πz0

∞∫
−∞

∞∫
−∞

Z/2∫
−Z/2

exp(−ikxx0/z0) exp(−ikyy0/z0)dxdydz

−k2 exp(ikz0)
4πz0

X/2∫
−X/2

Y/2∫
−Y/2

Z/2∫
−Z/2

exp(−ikxx0/z0) exp(−ikyy0/z0)dxdydz

= Zk2 exp(ikz0)
4πz0

[
4π2δ(kx0/z0)δ(ky0/z0)−XY sinc

(
kx0X

2z0

)
sinc

(
ky0Y

2z0

)]
.

Hence, the observed intensity of the wavefield u is given by

I =| u(x0, y0, z0, k) |2=| exp(ikz0) +A exp(ikz0) |2= 1 + 2A+A2

where

A =
Zπk2

4πz0

[
4π2δ(kx0/z0)δ(ky0/z0)−XY sinc

(
kx0X

2z0

)
sinc

(
ky0Y

2z0

)]
.

The diffraction pattern in the back image plane will be formed from the back-
scattering generated by the aperture. In this case, the wavefield u will be the
back-scattered field (obtained by replacing n̂0 with −n̂0) given by

us(x0, y0, z0, k)

= k2 exp(ikz0)
4πz0

∞∫
−∞

∞∫
−∞

Z/2∫
−Z/2

exp(ikxx0/z0) exp(ikyy0/z0) exp(2ikz)dxdydz

−k2 exp(ikz0)
4πz0

X/2∫
−X/2

Y/2∫
−Y/2

Z/2∫
−Z/2

exp(ikxx0/z0) exp(ikyy0/z0) exp(2ikz)dxdydz

= k2 exp(ikz0)
4πz0

sinc(kZ)

×
[
4π2δ(kx0/z0)δ(ky0/z0)−XYZsinc

(
kx0X

2z0

)
sinc

(
ky0Y

2z0

)]
.

Note that when Z = nλ/2 where n is an integer, us = 0.
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II.11 The solution for u can be written as

(u− ui) = k2g ⊗ fu
and thus

q ⊗ (u− ui) = k2q ⊗ g ⊗ fu
and

∇2[q⊗(u−ui)] = k2∇2(q⊗g⊗fu) = k2∇2(q⊗g)⊗fu = −k2δ3⊗fu = −k2fu

provided
∇2(q ⊗ g) = −δ3.

But

∇2(q ⊗ g) = q ⊗∇2g = q ⊗ (−k2g − δ3) = −k2q ⊗ g − q = −δ3

and hence
q = δ3 − k2q ⊗ g

so that

∇2[q ⊗ (u − ui)] = ∇2[δ3 ⊗ (u− ui)− k2q ⊗ g ⊗ (u− ui)]
= ∇2[(u − ui)− k2q ⊗ g ⊗ (u − ui)] = −k2fu.

Thus,

f =
1
u

[
q ⊗ g ⊗ (u− ui)− 1

k2
(u − ui)

]
where q is given by the solution to

∇2(q ⊗ g) = −δ3

or
q ⊗ g =

1
4π | r |

giving

f =
1
u

[
1

4πr
⊗ (u− ui)− 1

k2
(u − ui)

]
.

II.12 Decomposing the Green functions into plane waves, we can write

us(rs | r0, k) =
k2

(2π)6

∫
V

γ(r)

∞∫
−∞

d3u
exp[iu · (r0 − r)]

u2 − k2

∞∫
−∞

d3v
exp[iv · (rs − r)]

v2 − k2
.

Multiplying both sides of his equation by exp(−ip · r0) exp(−iq · rs) and inte-
grating over r0 and rs we have

∞∫
−∞

∞∫
−∞

us(rs | r0, k) exp(−ip · r0) exp(−iq · rs)d3r0d
3rs
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=
k2

(2π)6

∫
V

d3rγ(r)

∞∫
−∞

∞∫
−∞

d3ud3v
exp(−iu · r)
u2 − k2

exp(−iv · r)
v2 − k2

×
∞∫

−∞
exp[ir0 · (u− p)]d3r0

∞∫
−∞

exp[irs · (v − q)]d3rs

= k2

∫
V

d3rγ(r)

∞∫
−∞

∞∫
−∞

d3ud3v
exp(−iu · r)
u2 − k2

exp(−iv · r)
v2 − k2

δ3(u− p)δ3(v − q)

= k2

∫
V

d3rγ(r)
exp(−ip · r)
p2 − k2

exp(−iq · r)
q2 − k2

where we have used the result

δ3(u) =
1

(2π)3

∞∫
−∞

exp(iu · r)d3r.

Re-arranging and then inverse Fourier transforming, we have

γ(r) =
1

(2π)3

∞∫
−∞

d3w exp(iw · r)
(
p2

k2
− 1

)(
q2

k2
− 1

)

×
∞∫

−∞

∞∫
−∞

us(rs | r0, k) exp(−ip · r0) exp(−iq · rs)d3r0d
3rs.

For an incident plane wave, the Born scattered field is given by

us(r0, k) = k2

∫
V

g(r | r0, k)γ(r) exp(ikn̂i · r)d3r.

Decomposing the Green function into plane waves, we have

∞∫
−∞

exp(−ip · r)us(r0, k)d3r0 = k2

∫
V

d3rγ(r) exp(ikn̂i · r)exp(−ip · r)
p2 − k2

or ∫
V

γ(r) exp[−i(p− kn̂i) · r]d3r =
(
p2

k2
− 1

) ∞∫
−∞

us(r0, k) exp(−ip · r)d3r0.

For n̂i fixed,

γ(r) =
exp(−ikn̂i · r)

(2π)3

∞∫
−∞

d3p exp(ip·r)
(
p2

k2
− 1

) ∞∫
−∞

us(r0, k) exp(−ip·r)d3r0.
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Taking a square aperture to be the (x0, y0) plane, we record the scattered field
on this plane for different values of z0 (i.e. positions of the plane along the z0
axis) to generate the 3D function us(x0, y0, z0, k). The result is then Fourier
filtered using the filter (

p2
x + p2

y + pz

k2
− 1

)
where px, py and pz are the spatial frequencies in the x0, y0 and z0 directions
respectively. Given that the field is Nyquist sampled over x0, y0 and z0, the
resolution of the image obtained will depend on the size of the aperture used
and the extent in z0 over which measurements are made.

II.13 The equation can be written as

4π
k2
us(r0, k) =

∫
V

exp(2ik | r− r0 |)
4π | r− r0 |2 γ(r)d3r.

Differentiating with respect to k and then replacing k by k/2, we have

w(r0, k) =
∫
V

exp(ik | r− r0 |)
4π | r− r0 | γ(r)d3r

where

w(r0, k) = −16πi
d

dk

[
uBS(r0, k/2)

k2

]
.

With the recording surface (i.e. the plane aperture) at a fixed position z0

w(x0, y0, z0, k) =
∫
V

dxdydzγ(x, y, z)

× 1
(2π)3

∞∫
−∞

∞∫
−∞

∞∫
−∞

duxduyduz
ei[ux(x0−x)+uy(y0−y)+uz(z0−z)]

u2
x + u2

y + u2
z − k2

Multiplying both sides by

1
(2π)2

e−i(Uxx0+Uyy0)

integrating over x0 and y0 and using the result

1
(2π)2

∞∫
−∞

∞∫
−∞

ei[(ux−Ux)x0+(uy−Uy)y0]dx0dy0 = δ(ux − Ux)δ(uy − Uy)

we have

W (Ux, Uy, z0, k) =
1

(2π)3

∫
dzΓ(Ux, Uy, z)

∞∫
−∞

duz
eiuz(z0−z)

U2
x + U2

y + u2
z − k2
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where

W (Ux, Uy, z0, k) =
1

(2π)2

∞∫
−∞

∞∫
−∞

w(x0, y0, z0, k)e−i(Uxx0+Uyy0)dx0dy0

and

Γ(Ux, Uy, z) =
∫ ∫

γ(x, y, z)e−i(Uxx+Uyy)dxdy.

Integrating over uz, with ρ2 = U2
x + U2

y , we have

∞∫
−∞

duz
eiuz(z−z0)

u2
z + ρ2 − k2

= iπsgn(k)
ei(z−z0)sgn(k)(k2−ρ2)

1
2

(k2 − ρ2)
1
2

; | k |> ρ, z > 0

where

sgn(k) =

{
+1, k ≥ 0;
−1, k < 0.

and hence, we are required to invert the integral (writing Ux and Uy as ux and
uy respectively)

W̃ (ux, uy, z0, k) =
∫
dzΓ(ux, uy, z)

eizsgn(k)(k2−ρ2)
1
2

(k2 − ρ2)
1
2

where

W̃ (ux, uy, z0, k) = −6π2isgn(k)W (ux, uy, z0, k)eiz0sgn(k)(k2−ρ2)
1
2 .

Multiplying both side of this equation by

ke−iZsgn(k)(k2−ρ2)
1
2

and integrating with respect to k between −∞ and ∞ excluding those values
of k for which | k |< ρ (i.e. integrating k from −∞ to −ρ and from ρ to ∞) we
have

∞∫
−∞

dkkW̃ (ux, uy, z0, k)H(ρ/2k)e−iZ(k2−ρ2)
1
2

=

∞∫
0

dzΓ(ux, uy, z)

⎛⎝ ∞∫
ρ

dkk
ei(z−Z)(k2−ρ2) 1

2

(k2 − ρ2)
1
2

−
−ρ∫

−∞
dkk

e−i(z−Z)(k2−ρ2)
1
2

(k2 − ρ2)
1
2

⎞⎠
where H is the step function defined by

H(ρ/2k) =

{
1, | ρ/2k |< 1

2 ;
0, otherwise.
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Changing variables, we now let q = (k2− ρ2)
1
2 and q = −(k2− ρ2)

1
2 in the first

and second integrals over k respectively so that

∞∫
ρ

dkk
ei(z−Z)(k2−ρ2)

1
2

(k2 − ρ2)
1
2

−
−ρ∫

−∞
dkk

e−i(z−Z)(k2−ρ2)
1
2

(k2 − ρ2)
1
2

=

∞∫
0

dqei(z−Z)q +

0∫
−∞

dqei(z−Z)q =

∞∫
−∞

dqei(z−Z)q = 2πδ(z − Z).

Hence, we have

Γ(ux, uy, Z) =
1
2π

∞∫
−∞

dkkW̃ (ux, uy, z0, k)H(ρ/2k)e−iz(k
2−ρ2)

1
2

the scattering function being given by the inverse Fourier transform of Γ, i.e.
replacing Z with z,

γ(x, y, z) =
1

(2π)2

∞∫
−∞

∞∫
−∞

Γ(ux, uy, z) exp(iuxx) exp(iuyy)duxduy.

Substituting the expression for Γ and W̃ into the above integral and inter-
changing the order of integration, we can write

γ(x, y, z) = − 6iπ2

(2π)7

∫
dx0

∫
dy0

∞∫
−∞

dkkw(x0, y0, z0, k)

×
∞∫

−∞

∞∫
−∞

duxduyH(ρ/2k)e−i(z−z0)sgn(k)(k2−ρ2)
1
2 eiux(x−x0)eiuy(y−y0).

If we now change to polar coordinates and let ux = ρ cos θ, uy = ρ sin θ, x−
x0 = R cosφ, y − y0 = R cosφ where R = [(x − x0)2 + (y − y2

0 ]
1
2 , then the

integrals over ux and uy become

|k|∫
0

dρρe−i(z−z0)sgn(k)(k2−ρ2)
1
2

2π∫
0

dθeiρR cos(θ−φ)

= 2π

|k|∫
0

dρρe−i(z−z0)sgn(k)(k2−ρ2)
1
2 J0(ρR)

where J0 is the zero-order Bessel function. Hence, we can write the inverse
solution as

γ(x, y, z) =

∞∫
−∞

dx0

∞∫
−∞

dy0

∞∫
−∞

dkw(x0, y0, z0, k)K(x− x0, y − y0, z − z0, k)
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where
K(x− x0, y − y0, z − z0, k)

= −12iπ3

(2π)7

|k|∫
0

dρρe−i(z−z0)sgn(k)(k2−ρ2) 1
2 J0(ρ[(x− x0)2 + (y − y2

0 ]
1
2 ).

For a fixed position of the aperture at z0, a pulse is emitted from each
point (x0, y0) on the plane and the back-scattered spectrum (i.e. the Fourier
transform of the signal received) at the same point recorded. The data
w(x0, y0, z0, k) is then computed and γ reconstructed using the result above.
The factors affecting the resolution of the reconstruction in practice are the
size of the aperture that is practicable (which determines the range of the inte-
grals over x0 and y0) and the band-width of the pulse that is emitted/received
(which determines the range of the integral over k).

II.14

#include <math.h>

void ROTATE( float *s[], float *r[], int n, float theta )
{
int i, j, nn, x1, y1, x2, y2;
float pi, cos_t, sin_t, cos_i_t, sin_i_t, yd, xd;

/* FUNCTION: Compute a rotated digital image (anti-clockwise)
through a specified angle (given in degrees).

PARAMETERS:
Input: s - digital image

n - size of image (<=512)
theta - angle of rotation (in degrees)

Output: r - rotated image

INTERNAL VARIABLES:
nn - center position of matrix, offset right if necessary
i,j - matrix index variables
pi - constant value of pi
cos_t,sin_t - cosine and sine of angle
cos_i_t,sin_i_t - cosine and sine of angle for i
yd,xd - rotated point coordinate
x1,y1 - nearest neighbour (below)
x1,y1 - nearest neighbour (above)

USED FUNCTIONS: INITMAT (Initialize a matrix)
CHECKXY (Check boundaries of X and Y) */

/* Determine mid point of matrix and convert theta into radians. */
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nn = n * 0.5;
pi = 4.0 * atan( 1.0 );
theta = theta * pi / 180.0;

/* Initialize the rotation matrix. */

INITMAT( r, n, 0.0 );

/* Compute the cosine and sine terms of the angle. */

cos_t = cos( theta );
sin_t = sin( theta );

/* Start process of rotating non-zero values. */

for ( i=0; i<n; i++ )
{
sin_i_t = nn + (i-nn)*sin_t;
cos_i_t = nn + (i-nn)*cos_t;

for ( j=0; j<n; j++ )
{
if (s[i][j] != 0)
{

/* Rotate point through angle theta. */

xd = sin_i_t + (j-nn)*cos_t;
yd = cos_i_t - (j-nn)*sin_t;

/* Compute the coordinates of the nearest neighbour. */

x1 = floor( xd );
y1 = floor( yd );
x2 = ceil( xd );
y2 = ceil( yd );

/* Assign to each of the neighbours the value of s. */

if (CHECKXY( y1, x1, n ) != 0)
r[y1][x1] = s[i][j];

if (CHECKXY( y2, x2, n ) != 0)
r[y2][x2] = s[i][j];

if (CHECKXY( y2, x1, n ) != 0)
r[y2][x1] = s[i][j];

if (CHECKXY( y1, x2, n ) != 0)
r[y1][x2] = s[i][j];
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}
}

}
}

void INITMAT( float *s[], int n, float value )

{
int i, j;

for ( i=0; i<n; i++ )
{
for ( j=0; j<n; j++ )
{
s[i][j] = value;
}

}
}

int CHECKXY( int x, int y, int max )
{
if ((x>=0) && (x<max))

{
if ((y>=0) && (y<max))
{
return( 1 );
}

}

return( 0 );
}

II.15

static float *sw[NMAX], *r[NMAX];

void RADON( float *s[], int n )
{
int i, j, k;
float temp, theta, sum;

/* FUNCTION: Compute the Radon transform of an image.

PARAMETERS:
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Input: s - digital image
n - size of image (<=512)

Output: s - radon transform

INTERNAL VARIABLES:
i,j,k - matrix index variables
theta - angle of rotation
temp - temporary variable to reduce divisions
sum - sum of the projection row
sw - work matrix for image
r - work matrix for rotated image

USED FUNCTIONS: ROTATE (Rotate an image)
XFERMAT (Matrix transfer)
alloc_matrix (allocate memory)
free_matrix (free memory) */

/* Allocation Space for work matrix. */

alloc_matrix( sw, n );
alloc_matrix( r, n );

/* Determine the scaling factor. */

temp = 180.0 / n;

/* Rotate the image n times. */

for ( k=0; k<n; k++ )
{
theta = k * temp;

/* Rotate the image. */

ROTATE( s, r, n, theta );

/* Compute the projection of the rotated image. */

for ( i=0; i<n; i++ )
{
sum = 0.0;
for ( j=0; j<n; j++ )
{
sum += r[i][j];
}

sw[i][k] = sum;
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}
}

/* Return work matrix. */

XFERMAT( n, sw, 0, n, s, 0, n );

/* Free space from work matrix. */

free_matrix( r, n );
free_matrix( sw, n );

}

void alloc_matrix( float *s[], int n )

/* FUNCTION: To allocate space for image matrix.

PARAMETERS:
Input: s - digital image matrix

n - size of image (<=512)
Output: s - digital image matrix */

{
int i;

for ( i=0; i<n; i++ )
{
s[i] = (float *) farcalloc( n, sizeof( float ) );
}

}

void free_matrix( float *s[], int n )

/* FUNCTION: To free space allocated for image matrix.

PARAMETERS:
Input: s - digital image matrix

n - size of image (<=512)
Output: s - digital image matrix */

{
int i;
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for ( i=0; i<n; i++ )
{
farfree ( s[i] );
s[i] = NULL;
}

}

void XFERMAT( int num, float *s1[], int nn1, int n1,
float *s2[], int nn2, int n2 )

/* FUNCTION: To transfer digital image from one matrix to another.

PARAMETERS:

Input: s1 - digital image
num - number of values to transfer

n1, n2 - size of image (<=512)
nn1, nn2 - midpoints of images

Output: s2 - digital image */
{
int i, j;

for ( i=-nn1; i<num-nn1; i++ )
{
for ( j=-nn1; j<num-nn1; j++ )
{
s2[nn2+i][nn2+j] = s1[nn1+i][nn1+j];
}

}
}

II.16

#include <math.h>

void DIR_FILTER( float *s[], int n );
void DIF_FILTER( float *s[], int n );
void BP_DECONVOLUTION( float *s[], int n );

static float *r[NMAX], *x[NMAX], *sw[NMAX];

void IRADON( float *s[], int n, int opt )
{
int i, j, k;
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float temp, theta, sum;

/* FUNCTION: Compute the Inverse Radon transform from projections.

PARAMETERS
Input: s - radon transform

n - size of image (<=512)
opt - options indicator

Output: s - reconstructed image

INTERNAL VARIABLES: None
i,j,k - matrix index variables
theta - angle of rotation
temp - temporary variable to reduce divisions
sw - work matrix for image
r - work matrix for rotated image
x - work matrix for rotated image

USED EXTERNAL FUNCTIONS: ROTATE (Rotate an image)
FFT2D (2D Fast Fourier Transform)
INITMAT (Initialize a matrix)
XFERMAT (Move one matrix to another)
alloc_matrix (Allocation of a matrix)
free_matrix (Free matrix space)
FFT1D (1D Fast Fourier Transform)
HILBERT (Hilbert transform)

USED INTERNAL FUNCTIONS: DIR_FILTER (Direct filtering)
DIF_FILTER (Diffentiation

and Hilbert transform)
BP_DECONVOLUTION (Back-projection

and deconvolution) */

/* Allocation Space for work matrix. */

alloc_matrix( sw, n );
alloc_matrix( r, n );
alloc_matrix( x, n );

/* Apply direct filtering. */

if (opt == 2)
{
DIR_FILTER( s, n );
}
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/* Apply Differentiation & Hilbert transform */

if (opt == 3)
{
DIF_FILTER( s, n );
}

/* Initialize workspace. */

INITMAT( sw, n, 0.0 );

/* Determine the scaling factor. */

temp = -180.0 / n;

/* Back-project the image for n rotations. */

for ( k=0; k<n; k++ )
{
theta = k * temp;

/* Save the image in the work matrix. */

for ( i=0; i<n; i++ )
{
for ( j=0; j<n; j++ )
{
x[i][j] = s[j][k];
}

}

/* Rotate the image. */

ROTATE( x, r, n, theta );

/* Backproject the image. */

for ( i=0; i<n; i++ )
{
for ( j=0; j<n; j++ )
{
sw[i][j] += r[i][j];
}

}
}

/* Return work matrix. */
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XFERMAT( n, sw, 0, n, s, 0, n );

/* Deconvolve back-projected data. */

if (iopt == 1)
{
BP_DECONVOLUTION( s, n );
}

/* Free space from work matrix. */

free_matrix( x, n );
free_matrix( r, n );
free_matrix( sw, n );

}

void DIR_FILTER( float *s[], int n )
{
int i, j, nn;
float *sr, *si;

/* FUNCTION: Filters image using direct filtering.

PARAMETERS
Input: s - radon transform

n - size of image (<=512)
Output: s - filtered radon transform

INTERNAL VARIABLES:
nn - center position of matrix, offset right if necessary
i,j - matrix index variables
sr - work array for real slice of image
si - work array for imaginary slice of image */

/* Determine mid point of matrix. */

nn = n * 0.5;

/* Allocation Space for work array. */

sr = (float *) calloc( 1+n, sizeof( float ) );
si = (float *) calloc( 1+n, sizeof( float ) );

/* Filter the image for n rotations. */
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for ( i=0; i<n; i++ )
{

/* Extract a projection. */

for ( j=0; j<n; j++ )
{
sr[j+1] = s[j][i];
si[j+1] = 0.0;
}

/* Compute the Discrete Fourier Transform of image s. */

FFT1D( sr, si, n, -1);

/* Filter the projection. */

for ( j=0; j<n; j++ )
{
sr[j+1] *= abs( j-nn );
si[j+1] *= abs( j-nn );
}

/* Compute the Inverse Discrete Fourier Transform of image s. */

FFT1D( sr, si, n, 1 );

/* Write output. */

for ( j=0; j<n; j++ )
{
s[j][i] = sr[j+1];
}

}

/* Free space from work array. */

free( sr );
free( si );

}

void DIF_FILTER( float *s[], int n )
{
int i, j;
float *x;
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/* FUNCTION: Filter each projection by differentiating
and taking the the Hilbert transform.

PARAMETERS
Input: s - radon transform

n - size of image (<=512)
Output: s - filtered radon transform

INTERNAL VARIABLES:
i,j - matrix index variables
x - work array for projection and forward differencing */

/* Allocation Space for work array. */

x = (float *) calloc( 1+n, sizeof( float ) );

/* Filter the image for n rotations. */

for ( i=0; i<n; i++ )
{

/* Extract a projection. */

for ( j=0; j<n; j++ )
{
x[j+1] = s[j][i];
}

/* Differentiate projection using forward differencing. */

for ( j=1; j<n; j++ )
{
x[j] = x[j+1]-x[j];
}

/* Set ends of array to zero. */

x[1] = 0.0;
x[n] = 0.0;

/* Compute Hilbert transform of projection. */

HILBERT( x, n );

/* Write output. */

for ( j=0; j<n; j++ )
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{
s[j][i] = x[j+1];
}

}

/* Free space from work array. */

free( x );
}

void BP_DECONVOLUTION( float *s[], int n )
{
int i, j, nn;
float temp;

/* FUNCTION: Compute the deconvolution of a reconstruction.

PARAMETERS
Input: s - back-projected image

n - size of image (<=512)
Output: s - deconvolved image

INTERNAL VARIABLES:
nn - center position of matrix, offset right if necessary

i,j - matrix index variables
temp - temporary variable to reduce calculations */

/* Determine mid point of matrix. */

nn = n * 0.5;

/* Initialize array sw. */

INITMAT( sw, n, 0.0 );

/* Compute the Discrete Fourier Transform of image s. */

FFT2D( s, sw, n, -1 );

/* Apply Inverse Filter. */

for ( i=0; i<n; i++ )
{
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for ( j=0; j<n; j++ )
{
temp = sqrt( pow( i-nn, 2 ) + pow( j-nn, 2 ) );

s[i][j] *= temp;
sw[i][j] *= temp;
}

}

/* Compute the Inverse Discrete Fourier Transform of image s. */

FFT2D( s, sw, n, 1 );
}

void HILBERT(float s[], int n)
{
int i;
float *si;

/* FUNCTION: Returns the Hilbert transform of a signal s
by computing the analytic signal. */

/* Allocate work space */

si=(float *) malloc((n+1) * sizeof (float));

/* Initialize si */

for(i=1; i<=n; i++) si[i]=0.0;

/* Compute Analysic signal */

ANASIG(s,si,n);

/* Overwrite s with its Hilbert transform si. */

for(i=1; i<=n; i++)s[i]=si[i];

/* Free memory */

free(si);
}

void ANASIG(float f[],float q[], int n)
{
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int i,nn;

/* FUNCTION: Computes the analytic signal
(see ’Digital Signal Processing’,
J M Blackledge, Horwood publishing, 2003). */

/* Determine mid point of array */

nn=1+(n/2);

/* Initialise q */

for(i=1; i<=n; i++)q[i]=0.0;

/* Take FFT */

FFT1D(f,q,n,-1);

/* Set the negative components of spectrum to zero */

for(i=1; i<=nn-1; i++)
{
f[i]=0.0;
q[i]=0.0;
}

/* Multiply DC and positive frequencies by 2 */

for(i=nn; i<=n; i++)
{
f[i]=2.0*f[i];
q[i]=2.0*q[i];
}
/* Compute the inverse FFT */

FFT1D(f,q,n,1);

}

Solutions to Problems: Part III

III.1

#include <math.h>

void CONVOLVE(float **f, float **p, float **s, int n)
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{
int i, j;
float *sr[512], *si[512], *pr[512], *pi[512], *fi[512];

/* Allocate memory */

for(i=0; i<n;i++)
{
sr[i] = (float *) malloc(n*sizeof(float));
si[i] = (float *) malloc(n*sizeof(float));
pr[i] = (float *) malloc(n*sizeof(float));
pi[i] = (float *) malloc(n*sizeof(float));
fi[i] = (float *) malloc(n*sizeof(float)); }

/* Initialize real and imaginary parts */

for(i=0; i<n; i++)
for(j=0; j<n; j++)
{ sr[i][j] = s[i][j];

si[i][j] = 0.0;
pr[i][j] = p[i][j];
pi[i][j] = 0.0;
fi[i][j] = 0.0; }

/* Compute FFT2D */

FFT2D(sr, si, n, -1);
FFT2D(pr, pi, n, -1);

/* Convolve */

for(i=0; i<n; i++)
for(j=0; j<n; j++)
{ f[i][j] = pr[i][j]*sr[i][j] - pi[i][j]*si[i][j] ;

fi[i][j] = pr[i][j]*si[i][j] + pi[i][j]*sr[i][j] ; }

/* Compute Inverse FFT2D */

FFT2D(f, fi, n, 1);

/* Free memory */
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for(i=0; i<n;i++)
{
free(sr[i]);
free(si[i]);
free(pr[i]);
free(pi[i]);
free(fi[i]);
}

}

III.2

#include <math.h>

void AUTOCOR(float **f,float **s, int n)

{
int i, j;
float *si[512], *fr[512], *fi[512];

/* Allocate Memory */

for(i=0; i<n;i++)
{
si[i] = (float *) malloc(n*sizeof(float));
fi[i] = (float *) malloc(n*sizeof(float));
fr[i] = (float *) malloc(n*sizeof(float)); }

/* Initialize real and iamginary Parts */

for(i=0; i<n; i++)
for(j=0; j<n; j++)
{ si[i][j] = 0.0;

fr[i][j] = f[i][j];
fi[i][j] = 0.0; }

/* Compute FFT2D */

FFT2D(fr, fi, n, -1);

/* Autocorrelation */

for(i=0; i<n; i++)
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for(j=0; j<n; j++)
{ s[i][j] = fr[i][j]*fr[i][j] + fi[i][j]*fi[i][j] ;

si[i][j] = 0.0; }

/* Compute Inverse FFT2D */

FFT2D(s, si, n, 1);

/* Free Memory */

for(i=0; i<n;i++)
{
free(si[i]);
free(fr[i]);
free(fi[i]); }

}

III.3

#include <math.h>

void CROSCOR(float **f, float **p, float **s, int n)

{
int i, j;
float *si[512], *pr[512], *pi[512], *fr[512], *fi[512];

/* Allocate Memory */

for(i=0; i<n;i++)
{
si[i] = (float *) malloc(n*sizeof(float));
pr[i] = (float *) malloc(n*sizeof(float));
pi[i] = (float *) malloc(n*sizeof(float));
fi[i] = (float *) malloc(n*sizeof(float));
fr[i] = (float *) malloc(n*sizeof(float)); }

/* Initialize real and imaginary parts */

for(i=0; i<n; i++)
for(j=0; j<n; j++)
{ si[i][j] = 0.0;

pr[i][j] = p[i][j];
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pi[i][j] = 0.0;
fr[i][j] = f[i][j];
fi[i][j] = 0.0; }

/* Compute FFT2D */

FFT2D(fr, fi, n, -1);
FFT2D(pr, pi, n, -1);

/* Cross correlation */

for(i=0; i<n; i++)
for(j=0; j<n; j++)
{ s[i][j] = pr[i][j]*fr[i][j] + pi[i][j]*fi[i][j] ;

si[i][j] = pr[i][j]*fi[i][j] - pi[i][j]*fr[i][j] ; }

/* Compute Inverse FFT2D */

FFT2D(s, si, n, 1);

/* Free Memory */

for(i=0; i<n;i++)
{
free(si[i]);
free(pr[i]);
free(pi[i]);
free(fr[i]);
free(fi[i]); }

}

III.4

#include <math.h>

void WIENER(float **s, float **p, float **f, int n, float snr)

{
int i, j;
float *sr[512], *si[512], *pr[512], *pi[512], *fi[512], denom;

/* Allocate Memory */

for(i=0; i<n;i++)
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{
sr[i] = (float *) malloc(n*sizeof(float));
si[i] = (float *) malloc(n*sizeof(float));
pr[i] = (float *) malloc(n*sizeof(float));
pi[i] = (float *) malloc(n*sizeof(float));
fi[i] = (float *) malloc(n*sizeof(float)); }

/* Initialize real and imaginary parts */

for(i=0; i<n; i++)
for(j=0; j<n; j++)
{ sr[i][j] = s[i][j];

si[i][j] = 0.0;
pr[i][j] = p[i][j];
pi[i][j] = 0.0;
fi[i][j] = 0.0; }

/* Compute FFT2D */

FFT2D(sr, si, n, -1);
FFT2D(pr, pi, n, -1);

/* Wiener Filter */

for(i=0; i<n; i++)
for(j=0; j<n; j++)
{

denom = pr[i][j]*pr[i][j] + pr[i][j]*pi[i][j] + 1./(snr*snr);

f[i][j] = (pr[i][j]*sr[i][j]+pi[i][j]*si[i][j])/denom;

fi[i][j] = (pr[i][j]*si[i][j]-pi[i][j]*sr[i][j])/denom; }

/* Compute Inverse FFT2D */

FFT2D(f, fi, n, -1);

/* Deallocate memory */

for(i=0; i<n;i++)
{
free(sr[i]);
free(si[i]);
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free(pr[i]);
free(pi[i]);
free(fi[i]); }

}

III.5 The restoration improves as the snr is decreased in the noise free case.
When noise is present in the image, a larger value of the snr is required to
obtain a noise free restoration.

III.6

#include <math.h>

void PSE(float **s, float **p, float **f, int n, float snr)

{
int i, j;
float *sr[512], *si[512], *pr[512], *pi[512], *fi[512], denom;

/* Allocate Memory */

for(i=0; i<n;i++)
{
sr[i] = (float *) malloc(n*sizeof(float));
si[i] = (float *) malloc(n*sizeof(float));
pr[i] = (float *) malloc(n*sizeof(float));
pi[i] = (float *) malloc(n*sizeof(float));
fi[i] = (float *) malloc(n*sizeof(float)); }

/* Initialize real and imaginary parts */

for(i=0; i<n; i++)
for(j=0; j<n; j++)
{ sr[i][j] = s[i][j];

si[i][j] = 0.0;
pr[i][j] = p[i][j];
pi[i][j] = 0.0;
fi[i][j] = 0.0; }

/* Compute FFT2D */

FFT2D(sr, si, n, -1);
FFT2D(pr, pi, n, -1);
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/* Power Spectrum Equalization Filter */

for(i=0; i<n; i++)
for(j=0; j<n; j++)
{

denom = sqrt( pr[i][j]*pr[i][j] + pr[i][j]*pi[i][j] + 1./(snr*snr) );

f[i][j] = (pr[i][j]*sr[i][j]+pi[i][j]*si[i][j])/denom;

fi[i][j] = (pr[i][j]*si[i][j]-pi[i][j]*sr[i][j])/denom; }

/* Compute Inverse FFT2D */

FFT2D(f, fi, n, -1);

/* Deallocate memory */

for(i=0; i<n;i++)
{
free(sr[i]);
free(si[i]);
free(pr[i]);
free(pi[i]);
free(fi[i]); }

}

III.7

#include <math.h>

void ILF_RECT(float **f, float **s, int nx, int ny, int n )

{
int i, j;
float *fr[512], *fi[512], *si[512], *filter[512];

/* Allocate Memory */

for(i=0; i<n;i++)
{
fr[i] = (float *) malloc(n*sizeof(float));
fi[i] = (float *) malloc(n*sizeof(float));
si[i] = (float *) malloc(n*sizeof(float));
filter[i] = (float *) malloc(n*sizeof(float)); }
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/* Initialize real and imaginary parts */

for(i=0; i<n; i++)
for(j=0; j<n; j++)
{ fr[i][j] = f[i][j];

fi[i][j] = 0.0;
si[i][j] = 0.0;
filter[i][j] = 0.0; }

/* Compute FFT2D */

FFT2D(fr, fi, n, -1);

/* Construct the Filter */

for(i=n-nx; i<=n+nx; i++)
for(j=n-ny; j<=n+ny; j++)
filter[i][j]=1.;

/* Filter the Image */

for(i=0; i<n; i++)
for(j=0; j<n; j++)
{
s[i][j] = fr[i][j]*filter[i][j];
si[i][j] = fi[i][j]*filter[i][j]; }

/* Compute Inverse FFT2D */

FFT2D(s, si, n, -1);

/* Deallocate memory */

for(i=0; i<n;i++)
{
free(fr[i]);
free(fi[i]);
free(si[i]);
free(filter[i]); }

}

/***********************************************************/
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#include <math.h>

void ILF_ELLIPSE(float **f, float **s, int nx, int ny, int n )

{
int i, j;
float *fr[512], *fi[512], *si[512], *filter[512], test;

/* Allocate Memory */

for(i=0; i<n;i++)
{
fr[i] = (float *) malloc(n*sizeof(float));
fi[i] = (float *) malloc(n*sizeof(float));
si[i] = (float *) malloc(n*sizeof(float));
filter[i] = (float *) malloc(n*sizeof(float)); }

/* Initialize real and imaginary parts */

for(i=0; i<n; i++)
for(j=0; j<n; j++)
{ fr[i][j] = f[i][j];

fi[i][j] = 0.0;
si[i][j] = 0.0; }

/* Compute FFT2D */

FFT2D(fr, fi, n, -1);

/* Construct the Filter */

for(i=n-nx; i<n+nx; i++)
for(j=n-ny; j<n+ny; j++)
{

test = pow((float)(i-n/2)/(float)nx,2.)
+ pow((float)(j-n/2)/(float)ny,2.);

if(test <= 1.)
filter[i][j]=1.;

else
filter[i][j]=0.; }

/* Filter the Image */

for(i=0; i<n; i++)
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for(j=0; j<n; j++)
{
s[i][j] = fr[i][j]*filter[i][j];
si[i][j] = fi[i][j]*filter[i][j]; }

/* Compute Inverse FFT2D */

FFT2D(s, si, n, -1);

/* Deallocate memory */

for(i=0; i<n;i++)
{
free(fr[i]);
free(fi[i]);
free(si[i]);
free(filter[i]); }

}

III.8

#include <math.h>

void LOGTRAN( float **s, int n, float a )
{
int i, j;

for(i=0; i<n; i++)
for(j=0; j<n; j++)
s[i][j] = (1./a) * log( 1.+s[i][j]*(-1.+exp(a)) );

}

III.9

#include <math.h>

void EXPTRAN( float **s, int n, float a )
{
int i, j;

for(i=0; i<n; i++)
for(j=0; j<n; j++)
s[i][j] = (1./a) * (pow(1.+a , s[i][j]) - 1.);

}
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III.10

#include <math.h>

void HISTEQ( float **s, float **f, int n, int l )
{
int i, j, k;
float *h, *c, sum, max=0.;

/* Allocate memory for the histograms */

h=(float *)malloc(l*sizeof(float));
c=(float *)malloc(l*sizeof(float));

/* Compute the histogram of s */

HIST(s,n,h,l);

/* Compute the cumulative histogram */

sum=0.;

for(i=0; i<l; i++)
{ sum+=h[i];

c[i]=sum; }

/* Scale the cumulative histogram and
quantize it into l grey levels */

for(i=0; i<l; i++)
c[i] *= ((float)(l-1)/((float)n*(float)n));

/* Scale the image and quantize it into l grey levels */

for(i=0; i<n; i++)
for(j=0; j<n; j++)
if(s[i][j]>max)
max=s[i][j];

for(i=0; i<n; i++)
for(j=0; j<n; j++)
s[i][j] *= ((float)(l-1)/max);

/* Histogram Equalization */

for(i=0; i<n; i++)
for(j=0; j<n; j++)
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{ k = (int)s[i][j];
f[i][j] = c[k]; }

/* Free memory */

free(h);
free(c);

}

#include <math.h>

void HIST( float **s, int n, float *h, int lev )
{
float *f[512], max=0.;
int i, j, k;

/* Allocate memory */

for(i=0; i<n; i++)
f[i]=(float *)malloc(n*sizeof(float));

/* Initialize work space */

for(i=0; i<n; i++)
for(j=0; j<n; j++)
f[i][j] = s[i][j];

/* Scale the image and quantize it into lev grey levels */

for(i=0; i<n; i++)
for(j=0; j<n; j++)
if(f[i][j] > max)
max=f[i][j];

for(i=0; i<n; i++)
for(j=0; j<n; j++)
f[i][j] *= ((float)(lev-1)/max);

/* Initialize the histogram */

for(i=0; i<lev; i++)
h[i]=0.;

/* Compute the histogram */

for(i=0; i<n;i++)
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for(j=0; j<n; j++)
{ k=(int)f[i][j];

h[k]++; }

/* Deallocate memory space */

for(i=0; i<n; i++)
free(f[i]);

}

III.11

#include <math.h>

void BHF(float **s, int n, float cut, float ord)

{
int i, j;
float *si[512], but;

/* Allocate memory */

for(i=0; i<n;i++)
si[i] = (float *) malloc(n*sizeof(float));

/* Initialize imaginary part */

for(i=0; i<n; i++)
for(j=0; j<n; j++)
si[i][j] = 0.0;

/* Compute FFT2D */

FFT2D(s, si, n, -1);

/* Filter the image */

for(i=0; i<n; i++)
for(j=0; j<n; j++)
{

but = 1. / (1. + pow(cut/sqrt((float)(i*i)
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+ (float)(j*j)) , 2.*ord));
s[i][j] *= but;
si[i][j] *= but; }

/* Compute Inverse FFT2D */

FFT2D(s, si, n, 1);

/* Free memory */

for(i=0; i<n;i++)
free(si[i]);

}

III.12

#include <math.h>

void HOMOFIL(float **s, int n, float cut, float ord)

{
int li, co, i;
float *si[512];

/* Allocate memory for imaginary part */

for(i=0; i<n;i++)
si[i] = (float *) malloc(n*sizeof(float));

/* Initialize imaginary part */

for(li=0; li<n; li++)
for(co=0; co<n; co++)
si[li][co] = 0.0;

/* Compute the FFT */

FFT2D(s, si, n, -1);

/* Butterworth highpass filter */

BHF(s, n, cut, ord);
BHF(si, n, cut, ord);
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/* Compute the Inverse FFT */

FFT2D(s, si, n, 1);

/* Homomorphic Filter */

for(li=0; li<n; li++)
for(co=0; co<n; co++)
s[li][co] = exp(s[li][co]);

/* Free memory */

for(i=0; i<n;i++)
free(si[i]);

}

III.13

#include <math.h>

void HEFIL( float **s, int n)
{
int i, j;
float *temp[512], inter;

/* Allocate memory for work space */

for(i=0; i<n+2; i++)
temp[i]=(float *)malloc((n+2)*sizeof(float));

/* Initialize the work space (zero pad) */

for(i=0; i<n+2; i++)
for(j=0; j<n+2; j++)
temp[i][j] = 0.;

/* Input the image into the work space */

for(i=1; i<n+1; i++)
for(j=1; j<n+1; j++)
temp[i][j] = s[i-1][j-1];

/* High Emphasis Filter */

for(i=1; i<n+1; i++)
for(j=1; j<n+1; j++)
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{ inter= 5.*temp[i][j]-temp[i+1][j]-temp[i-1][j]
-temp[i][j+1]-temp[i][j-1];

s[i-1][j-1] = inter ; }

for(i=0; i<n+2; i++)
free(temp[i]);

}

III.14 Center differencing, the Laplacean of a discrete function Iij is

∇2Iij = I(i+1)j + I(i−1)j + Ii(j+1) + Ii(j−1) − 4Iij = Jij

Hence,

∇4Iij = ∇2Jij = J(i+1)j + J(i−1)j + Ji(j+1) + Ji(j−1) − 4Jij

= I(i+2)j + Iij + I(i+1)(j+1) + I(i+1)(j−1) − 4I(i+1)j + Iij + I(i−2)j + I(i−1)(j+1)

+I(i−1)(j−1)−4I(i−1)j+I(i+1)(j+1)+I(i−1)(j+1)+Ii(j+2)+Iij−4Ii(j+1)+I(i+1)(j−1)

+I(i−1)(j−1) + Iij + Ii(j−2) − 4Ii(j−1) − 4I(i+1)j − 4I(i−1)j − 4Ii(j+1) + 4Ii(j−1)

+16Iij = 20Iij+I(i+2)j+2I(i+1)(j+1)+2I(i+1)(j−1)−8I(i+1)j+I(i−2)j+2I(i−1)(j+1)

+2I(i−1)(j−1) − 8I(i−1)j + Ii(j+2) − 8Ii(j+1) + Ii(j−2) − 8Ii(j−1).

In terms of a convolution kernel, the result above can be written as⎛⎜⎜⎜⎜⎝
0 0 1 0 0
0 2 −8 2 0
1 −8 20 −8 1
0 2 −8 2 0
0 0 1 0 0

⎞⎟⎟⎟⎟⎠ .

Hence, given that the convolution kernel associated with the first order solution
I −∇2I is given by ⎛⎝ 0 −1 0

−1 5 −1
0 −1 0

⎞⎠
the convolution kernel associated with the second order solution I−∇2I+ 1

2∇4I
is given by⎛⎜⎜⎜⎜⎝

0 0 0 0 0
0 0 −1 0 0
0 −1 5 −1 0
0 0 −1 0 0
0 0 0 0 0

⎞⎟⎟⎟⎟⎠+

⎛⎜⎜⎜⎜⎝
0 0 1

2 0 0
0 1 −4 1 0
1
2 −4 10 −4 1

2
0 1 −4 1 0
0 0 1

2 0 0

⎞⎟⎟⎟⎟⎠

=

⎛⎜⎜⎜⎜⎝
0 0 1

2 0 0
0 1 −5 1 0
1
2 −5 15 −5 1

2
0 1 −5 1 0
0 0 1

2 0 0

⎞⎟⎟⎟⎟⎠ =
1
2

⎛⎜⎜⎜⎜⎝
0 0 1 0 0
0 2 −10 2 0
1 −10 30 −10 1
0 2 −10 2 0
0 0 1 0 0

⎞⎟⎟⎟⎟⎠
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To compute the convolution kernel associated with the third order solution
I −∇2I + 1

2∇4I − 1
6∇6I, we use the same method as above to evaluate ∇6Iij

giving

1
6

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 −1 0 0 0
0 0 −3 15 −3 0 0
0 −3 24 −87 24 −3 0
−1 15 −87 202 −87 15 −1
0 −3 24 −87 24 −3 0
0 0 −3 15 −3 0 0
0 0 0 −1 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
The following MATLAB code ‘diffuses’ a grey level image (with file name ’im-
age.bmp’) using a Gaussian lowpass filter and applies the first and second order
high emphasis filters using FIR filters fir1 and fir2 respectively.

function diffusion(sigma)

%Input: sigma - standard deviation of Gaussian PSF
%
%Output: None

%Read image (assumed to be .bmp file of size n x n)
f=imread(’image’,’bmp’);
n=size(f,1); %Set size of array
nn=1+n/2; %Set mid point of array

%Convert to floating point array
f=im2double(f);

%Normalize
f=f./max(max(f));

%Show image
figure(1)
subplot(2,2,1), imshow(f);

%Compute the PSF - a unit Gaussian distribution
for i=1:n

x=i-nn;
for j=1:n
y=j-nn;
p(i,j)=exp(-((x.*x)+(y.*y))/(sigma*sigma));

end
end

%Convolve f with p using the convolution theorem
%and normalize to unity.
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f=fftshift(fft2(f)); p=fftshift(fft2(p));
f=p.*f;
f=fftshift(ifft2(f)); f=abs(f);

f=f./max(max(f)); %N.B. No check on case when f=0.

%Show filtered image
subplot(2,2,2), imshow(f);

%Compute first order FIR filter - fir1
fir1(1,1)=0; fir1(1,2)=-1; fir1(1,3)=0;
fir1(2,1)=-1; fir1(2,2)=5; fir1(2,3)=-1;
fir1(3,1)=0; fir1(3,2)=-1; fir1(3,3)=0;

%Compute second order FIR filter - fir2
fir2(1,1)=0; fir2(1,2)=0; fir2(1,3)=1; fir2(1,4)=0;
fir2(1,5)=0;

fir2(2,1)=0; fir2(2,2)=2; fir2(2,3)=-10; fir2(2,4)=2;
fir2(2,5)=0;

fir2(3,1)=1; fir2(3,2)=-10; fir2(3,3)=30; fir2(3,4)=-10;
fir2(3,5)=1;

fir2(4,1)=0; fir2(4,2)=2; fir2(4,3)=-10; fir2(4,4)=2;
fir2(4,5)=0;

fir2(5,1)=0; fir2(5,2)=0; fir2(5,3)=1; fir2(5,4)=0;
fir2(5,5)=0;

fir2=fir2/2;

%Convolve image with first order FIR filter
%returning only those parts of the convolution
%that are computed without the zero-padded edges
s1=conv2(f,fir1,’valid’);
s1=abs(s1); %Compute absolute value
s1=s1./max(max(s1)); %Normalize

%Show image
subplot(2,2,3), imshow(s1);

%Convolve image with second order FIR filter
%returning only those parts of the convolution
%that are computed without the zero-padded edges
s2=conv2(f,fir2,’valid’);
s2=abs(s2); %Compute absolute value
s2=s2./max(max(s2)); %Normalize
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%Show image
subplot(2,2,4), imshow(s2);

An example of the output generated by the MATLAB code above is given
below for the function diffusion(1).

Figure A.2: Original 256×256 test image (top-left); result after applying a
Gaussian lowpass filter (top-right); output after application of the first order
high emphasis filter (bottom-left); output after application of the second order
high emphasis filter (bottom-right).
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III.15

#include <math.h>

void BLF(float **s, int n, float cut, float ord)

{
int i, j;
float *si[512], but;

/* Allocate memory */

for(i=0; i<n;i++)
si[i] = (float *) malloc(n*sizeof(float));

/* Initialize imaginary part */

for(i=0; i<n; i++)
for(j=0; j<n; j++)
si[i][j] = 0.0;

/* Compute FFT2D */

FFT2D(s, si, n, -1);

/* Lowpass filter the image */

for(i=0; i<n; i++)
for(j=0; j<n; j++)
{

but = 1./( 1.+ pow(sqrt((float)i*(float)i
+(float)j*(float)j)/cut,2.*ord ));

s[i][j] *= but;
si[i][j] *= but; }

/* Compute inverse FFT2D */

FFT2D(s, si, n, 1);

/* Free memory */

for(i=0; i<n;i++)
free(si[i]);
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}

III.16

#include <math.h>

void MOVAV( float **s, int n, int w)
{
int li, co, i, j, ii, jj, m=n+w-1;
float *temp[512], sum;

/* Allocate memory for work space */

for(i=0; i<m; i++)
temp[i]=(float *)malloc(m*sizeof(float));

/* Initialize the work space (zero pad) */

for(li=0; li<m; li++)
for(co=0; co<m; co++)
temp[li][co] = 0.;

/* Input the image into the work space */

for(li=w/2; li<n+w/2; li++)
for(co=w/2; co<n+w/2; co++)
temp[li][co] = s[li-w/2][co-w/2];

/* Moving Average Filter */

i=0;

for(li=w/2; li<n+w/2; li++)
{
j=0;

for(co=w/2; co<n+w/2; co++)
{
sum=0.;

for(ii=li-w/2; ii<=li+w/2; ii++)
for(jj=co-w/2; jj<=co+w/2; jj++)

sum+=temp[ii][jj];

s[i][j]=sum;
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j++;
}

i++;

}

/* Free memory */

for(i=0; i<m; i++)
free(temp[i]);

}

III.17

#include <math.h>

void MEDIAN( float **s, int n, int w)
{
int li, co, i, ii, jj, m=n+w-1;
float *temp[512], *x;

/* Allocate memory for work space */

for(i=0; i<m; i++)
temp[i]=(float *)malloc(m*sizeof(float));

x=(float *)malloc(w*sizeof(float));

/* Initialize the work space (zero pad) */

for(li=0; li<m; li++)
for(co=0; co<m; co++)
temp[li][co] = 0.;

/* Input the image into the work space */

for(li=w/2; li<n+w/2; li++)
for(co=w/2; co<n+w/2; co++)
temp[li][co] = s[li-w/2][co-w/2];

/* Median Filter */

for(li=w/2; li<n+w/2; li++)
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for(co=w/2; co<n+w/2; co++)
{
i=0;

for(ii=li-w/2; ii<=li+w/2; ii++)
for(jj=co-w/2; jj<=co+w/2; jj++)
{ x[i]=temp[ii][jj];

i++; }

SORT(x,w);

s[li-w/2][co-w/2]=x[1+w/2];
}

/* Free allocated memory */

for(i=0; i<m; i++)
free(temp[i]);

free(x);

}

void SORT( float *x, int n)
{
int i, j;
float hold;

for(i=0; i<n-1; i++)
for(j=0; j<n-i; j++)
if(x[j]>x[j+1])
{ hold=x[j];

x[j]=x[j+1];
x[j+1]=hold; }

}

Solutions to Problems: Part IV

IV.1

void FLT( float **s, int n, float t )
{
int i, j;
float max = 0.;



723

/* Scale the image in the range 0 to 1 */

for(i=0; i<n; i++)
for(j=0; j<n; j++)

if(s[i][j] > max)
max=s[i][j];

for(i=0; i<n; i++)
for(j=0; j<n; j++)
s[i][j] /= max;

/* Threshold the image */

for(i=0; i<n; i++)
for(j=0; j<n; j++)
{

if(s[i][j] > t)
s[i][j] = 1.;
else

s[i][j] = 0.; }

}

IV.2

void SLT( float **s, int n, float t )
{
int i, j;
float max = 0.;

/* Scale the image in the range 0 to 1 */

for(i=0; i<n; i++)
for(j=0; j<n; j++)

if(s[i][j] > max)
max=s[i][j];

for(i=0; i<n; i++)
for(j=0; j<n; j++)
s[i][j] /= max;

/* Semi-Threshold the image */

for(i=0; i<n; i++)
for(j=0; j<n; j++)
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if(s[i][j] <= t)
s[i][j] = 0.;

}

IV.3

void ROBERTS( float **s, int n)
{
int i, j;
float *temp[512], sx, sy;

/* Allocate memory for work space */

for(i=0; i<n+1; i++)
temp[i]=(float *)malloc((n+1)*sizeof(float));

/* Initialize the work space (zero pad) */

for(i=0; i<n+1; i++)
for(j=0; j<n+1; j++)
temp[i][j] = 0.;

/* Input the image into the work space */

for(i=0; i<n; i++)
for(j=0; j<n; j++)
temp[i][j] = s[i][j];

/* Robert’s Gradient */

for(i=0; i<n; i++)
for(j=0; j<n; j++)
{ sx = temp[i+1][j+1]-temp[i][j];

sy = temp[i][j+1]-temp[i+1][j];
s[i][j] = sqrt(sx*sx + sy*sy) ; }

/* Deallocate memory */

for(i=0; i<n+1; i++)
free(temp[i]);

}

IV.4
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void SOBEL( float **s, int n)
{
int i, j;
float *temp[512], sx, sy;

/* Allocate memory for work space */

for(i=0; i<n+2; i++)
temp[i]=(float *)malloc((n+2)*sizeof(float));

/* Initialize the work space (zero pad) */

for(i=0; i<n+2; i++)
for(j=0; j<n+2; j++)
temp[i][j] = 0.;

/* Input the image into the work space */

for(i=1; i<n+1; i++)
for(j=1; j<n+1; j++)
temp[i][j] = s[i-1][j-1];

/* Compute the Sobel gradient */

for(i=1; i<n+1; i++)
for(j=1; j<n+1; j++)
{

sx = temp[i-1][j+1]+2.*temp[i][j+1]+temp[i+1][j+1];
sx -= (temp[i-1][j-1]+2.*temp[i][j-1]+temp[i+1][j-1]);

sy = temp[i+1][j+1]+2.*temp[i+1][j]+temp[i+1][j-1];
sy -= (temp[i-1][j+1]+2.*temp[i-1][j]+temp[i-1][j-1]);

s[i-1][j-1] = sqrt(sx*sx + sy*sy) ; }

/* Deallocate memory */

for(i=0; i<n+2; i++)
free(temp[i]);

}

IV.5

void PREWIT( float **s, int n)
{
int i, j;
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float *temp[512], sx, sy;

/* Allocate memory for work space */

for(i=0; i<n+2; i++)
temp[i]=(float *)malloc((n+2)*sizeof(float));

/* Initialize the work space (zero pad) */

for(i=0; i<n+2; i++)
for(j=0; j<n+2; j++)
temp[i][j] = 0.;

/* Input the image into the work space */

for(i=1; i<n+1; i++)
for(j=1; j<n+1; j++)
temp[i][j] = s[i-1][j-1];

/* Prewit’s Gradient */

for(i=1; i<n+1; i++)
for(j=1; j<n+1; j++)
{

sx = temp[i-1][j+1] + temp[i][j+1] + temp[i+1][j+1];
sx -= (temp[i-1][j-1]+temp[i][j-1]+temp[i+1][j-1]);

sy = temp[i+1][j+1]+temp[i+1][j]+temp[i+1][j-1];
sy -= (temp[i-1][j+1]+temp[i-1][j]+temp[i-1][j-1]);

s[i-1][j-1] = sqrt(sx*sx + sy*sy) ; }

/* Deallocate memory */

for(i=0; i<n+2; i++)
free(temp[i]);

}

IV.6

#include <math.h>

void MH(float **x, int n, float s, float **y)

{
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int i, j;
float *xr[512], *xi[512], *yr[512], *yi[512], filter, test;

/* Allocate memory */

for(i=0; i<n;i++)
{
xr[i] = (float *) malloc(n*sizeof(float));
xi[i] = (float *) malloc(n*sizeof(float));
yr[i] = (float *) malloc(n*sizeof(float));
yi[i] = (float *) malloc(n*sizeof(float)); }

/* Initialize real and imaginary parts */

for(i=0; i<n; i++)
for(j=0; j<n; j++)
{ xr[i][j] = x[i][j];

xi[i][j] = 0.0; }

/* Compute FFT2D */

FFT2D(xr, xi, n, -1);

/* Construct the Marr-Hildreth Filter */

for(i=0; i<n; i++)
for(j=0; j<n; j++)
{
filter = (float)i*(float)i + (float)j*(float)j;
filter *= exp(-(pow((float)i,2.) + pow((float)j,2.)) /(2.*s*s));
yr[i][j]=xr[i][j] * filter;
yi[i][j]=xi[i][j] * filter; }

/* Compute Inverse FFT2D */

FFT2D(yr, yi, n, 1);

/* Construct the Image, detecting the zero crossings */

for(i=0; i<n; i++)
for(j=0; j<n-1; j++)
{
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test = yr[i][j] * yr[i][j+1];

if(test > 0.)
y[i][j]=0.;

else
y[i][j]=1.;
}

for(i=0; i<n; i++)
y[i][n-1] = y[i][n-2];

/* Free memory */

for(i=0; i<n;i++)
{
free(xr[i]);
free(xi[i]);
free(yr[i]);
free(yi[i]); }

}

IV.7

void AUTOTHRESHOLD( float **s, int n )
{
int i, j, *h, lev=256, mid=n/2, maxd, maxl, min, test;
float thr;

/* FUNCTION: Automates the binarization of an image setting the
* threshold at the minimum that occurs between the
* two peaks in the histogram of the image.
*
* The function works properly only with bimodal
* histograms.
*
* Input: s - Data (digital image).
* n - Size of image.
*
* Output: s - Binary image
*
*
* External Functions: HIST - Computes the histogram of an image */

/* Allocate memory for histogram */
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h = (int *)malloc(lev*sizeof(int));

/* Compute the histogram */

HIST(s,n,h,lev);

/* Search for the maximum in the dark field */

test = 0;

for(i=0; i<mid; i++)
if(h[i] > test)
{ test = h[i];
maxd = i; }

/* Search for the maximum in the light field */

test = 0;

for(i=mid; i<lev; i++)
if(h[i] > test)
{ test = h[i];
maxl = i; }

/* Search for the minimum between the two peaks in the histogram */

test = h[maxd];

for(i=maxd+1; i<maxl; i++)
if(h[i] < test)
{ test = h[i];
min = i; }

/* Select the threshold and binarize the image */

thr = min;

for (i=0; i<n; i++)
for (j=0; j<n; j++)
{

if(s[i][j]>thr)
s[i][j]=1.;
else
s[i][j]=0.; }
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/* Free the memory */

free(h);
}

#include <math.h>

void HIST( float **s, int n, float *h, int lev )
{
float *f[512], max=0.;
int i, j, k;

/* Allocate memory */

for(i=0; i<n; i++)
f[i]=(float *)malloc(n*sizeof(float));

/* Initialize work space */

for(i=0; i<n; i++)
for(j=0; j<n; j++)
f[i][j] = s[i][j];

/* Scale the image and quantize it into lev grey levels */

for(i=0; i<n; i++)
for(j=0; j<n; j++)
if(f[i][j] > max)
max=f[i][j];

for(i=0; i<n; i++)
for(j=0; j<n; j++)
f[i][j] *= ((float)(lev-1)/max);

/* Initialize the histogram */

for(i=0; i<lev; i++)
h[i]=0.;

/* Compute the histogram */

for(i=0; i<n;i++)
for(j=0; j<n; j++)
{ k=(int)f[i][j];

h[k]++; }
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/* Deallocate memory space */

for(i=0; i<n; i++)
free(f[i]);

}

IV.8 In practice, if we have a coherent digital image Iij we can compute its
histogram denoted by Hk = P (Iij) which will normally have as many bins N
as there are grey levels in the image, i.e. 256 bins for an 8-bit image. We then
need to consider a discrete version of the PDF to which we require a best fit
to the data. In such a case, the scaling factor

1
βα

1
Γ(α)

can be replaced by a constant C which will be a measure of the size of the
digital image provided and we can consider developing a least squares fit to the
data Hk based on a distribution (i.e. theoretical histogram) given by

Ĥk = Rx2
k exp(x1 −Rkx3)

where x1 = lnC, x2 = α − 1 and x3 = 1/β. Linearizing, we can find x1, x2

and x3 such that the error function

e(x1, x2, x3) = ‖ lnHk − ln Ĥk‖22

=
N∑
k=1

(lnHk − x1 − x2 lnRk + x3Rk)2

is minimum, i.e. when

∂e

∂x1
= 0,

∂e

∂x2
= 0 and

∂e

∂x3
= 0.

The vector x ≡ (x1, x2, x3) is then obtained by solving the following system of
linear equations ⎛⎝ a11 a12 a13

a21 a22 a23

a31 a32 a33

⎞⎠⎛⎝ x1

x2

x3

⎞⎠ =

⎛⎝ b1
b2
b3

⎞⎠
where

a11 = N, a12 =
N∑
k=1

lnRk, a13 = −
N∑
k=1

Rk,

a21 lnRk, a22 =
N∑
k=1

(lnRk)2, a23 = −
N∑
k=1

Rk lnRk,

a31 =
N∑
k=1

Rk, a32 =
N∑
k=1

Rk lnRk, a33 = −
N∑
k=1

R2
k,
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b1 =
N∑
k=1

lnHk, b2

N∑
k=1

(lnHk)(lnRk), b3 =
N∑
k=1

Rk lnHk.

Using Cramers rule, the solutions are

x1 =

∣∣∣∣∣∣
b1 a12 a13

b2 a22 a23

b3 a32 a33

∣∣∣∣∣∣∣∣∣∣∣∣
a11 a12 a13

a21 a22 a23

a31 a32 a33

∣∣∣∣∣∣
, x2 =

∣∣∣∣∣∣
a11 b1 a13

a21 b2 a23

a31 b3 a33

∣∣∣∣∣∣∣∣∣∣∣∣
a11 a12 a13

a21 a22 a23

a31 a32 a33

∣∣∣∣∣∣
, x3 =

∣∣∣∣∣∣
a11 a12 b1
a21 a22 b2
a31 a32 b3

∣∣∣∣∣∣∣∣∣∣∣∣
a11 a12 a13

a21 a22 a23

a31 a32 a33

∣∣∣∣∣∣
.

This approach allows a Γ-distributed coherent image to be classified in terms
of three statistical parameters C,α and β.

(i) By calculating these parameters over a moving square window W of size
M ×M say, centered in the image at a position (i, j), we can generate three
statistically segmented images, namely αij , βij and Cij , of size (N −M) ×
(N −M) where N is taken to be the size of the (square) image. The size of
the window must be large enough for the windowed data to give a statistically
significant result.

(ii) The mode of the Γ-distribution is that value (i.e. bin) at which the distri-
bution

Ĥk = CRαk exp(−βRk)
is a maximum. This occurs when

∂

∂Rk
Hk = exp(−βRk)αRα−1

k − βRαk exp(−βRk)

=
(
α

Rk
− β

)
Rαk exp(−βRk) = 0

or when (
α

Rk
− β

)
= 0

giving a mode value of
Rk =

α

β
.

The number of pixels Hmax occurring at this mode is then given by

Hmax = C

(
α

β

)α
exp

[
−β

(
α

β

)]
.
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Supplementary Problems

The supplementary problems presented here are designed to test the read-
ers general knowledge and programming skills associated with the subject area.
Each question has been taken from the examination papers set by the author
for students undertaking the MSc programme in Digital Signal Processing. So-
lutions to these questions are not provided.

1. (a) Use the 2D convolution theorem to obtain a solution to the equation

u(x, y) = sinc(αx) sinc(αy)−
∞∫

−∞

∞∫
−∞

sinc[β(x−x′)] sinc[β(y−y′)]u(x′, y′)dx′dy′

for u when β > α and where sinc(x) ≡ sin(x)/x.

(b) Consider a linear, position-invariant imaging system with a Gaussian Point
Spread Function of the form

p(x, y) = exp[−α(x2 + y2)]

in a noise free environment.

(i) Find an expression for the output s(x, y) of this system when it is used to
record an image of a line of infinitesimal width located at x = a in the object
plane.

(ii) By computing the 2D Fourier transform of the point spread function given
above write down an expression for the inverse filter of this system. Hence, or
otherwize show that if an image is obtained described by the equation

s(x, y) = exp[−β(x2 + y2)]

then the object function f(x, y) is given by

f(x, y) =
α2

π(β − α)
exp[αβ(x2 + y2)/(β − α)], β > α

733
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given that
∞∫

−∞
exp(−z2)dz =

√
π.

2. (i) Explain the differences between continuous wave and pulsed wave imaging
systems providing some examples of both types and discussing some of their
applications.

(ii) The Green function for a three dimensional wavefield detected at r origi-
nating from a continuous wave source located at r0 is given by

g(r | r0;ω) =
1

4π | r− r0 | exp
(
i
ω

c
| r− r0 |

)
where ω and c are the angular frequency and propagation velocity of the wave-
field respectively.

By applying an appropriate expansion, derive an expression for g in the far
field (Fraunhofer zone) and the intermediate field (Fresnel zone) explaining the
physical basis for your results. Use your result to show that the time dependent
Green’s function for a pulsed source in the far field at a time t is given by

G(r | r0; t) =
1

4πr0
δ

(
t+

r0
c
− n̂0 · r

c

)
where n̂0 = r0/r0.

3. (i) Discuss how ‘time-of-flight’ experiments can be used to construct images
of the acoustic velocity in a material using ultrasonic computed tomography.
State the principle physical conditions which must be met for such an imaging
system to be successful.

(ii) Consider the binary image given below (black=0, white=1) which consists
of a small disc and a straight line.
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Sketch the parallel beam projections that would be obtained at angles of 0, 45
and 90 degrees to the horizontal.

(iii) By computing the Radon transform of the Gaussian function e−α(x2+y2)

show that the projection obtained at an angle of 0 degrees to the horizontal is
given by

√
π/αe−αz

2
where z is the projection coordinate and

∞∫
−∞

e−αx
2
dx =

√
π

α
.

(iv) The back-projection function b of an object f can be written in the form

b(x, y) =
1√

x2 + y2
⊗⊗f(x, y)

where ⊗⊗ is the 2D convolution operation. It is known that the spectrum of b
is given by

B(kx, ky) =
√
k2
x + k2

yG(kx, ky)

where kx and ky are the spatial frequencies in cycles per metre. Show that

f(x, y) = ∇2g(x, y)

where g is the inverse Fourier transform of G given that

1√
x2 + y2

1√
k2
x + k2

y

4. A common method of estimating the point spread function of a Synthetic
Aperture Radar (SAR) image is to image a single ‘point scatterer’ with a
large radar cross section. The raw (complex) data s obtained from such an
experiment after demodulation and quadrature detection can be approximated
by

s(x, y) = exp(iαx2) exp(i2πy2/λR); | x |≤ X/2, | y |≤ Y/2

where α is the quadratic chirp rate/(speed of light)2, R is the range at which
the radar operates and λ is the wavelength of microwaves. The width of the
beam (i.e. the width of the central lobe) can be taken to be equal to Y and
the length of the pulse is X .

Consider a system which uses 3 cm microwaves operating at a range of 100km,
has a 100μs pulse with α = 7× 10−4m−2 and a beam divergence of 10.

(i) What is the resolution in range and azimuth that can be obtained using the
raw data?

(ii) By matched filtering s(x, y) first in range and then in azimuth show that
the SAR image (i.e. a display of the amplitude modulations) is given by

XY | sinc(αXx) sinc(2πY y/λR) | .
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(iii) Taking the resolution of the image to be given by the distance between
the zeros of the central lobe, calculate the resolution in range and azimuth of
the SAR image. By what factor has the resolution of the image (in range and
azimuth) been increased as a result of applying the matched filtering process?

(Note: The speed of light can be taken to be equal to 3× 108ms−1)

5. (a) Briefly discuss the meaning of the following terms as applied to Fourier
optics:

• Diffraction limited

• Intensity Point Spread Function

• Modulation Transfer Function

(b) Explain the principles of optical filtering giving some examples of its appli-
cation and state the physical conditions which must exist for these principles
to hold.

(c) A transparency with amplitude transmittance given by

δ(x − x1, y − y1) + δ(x− x2, y − y2) + δ(x− x3, y)

is placed in the object plane of a diffraction limited lens with focal length f .
A square aperture of width 2a is placed in the image plane of the lens beyond
which is a second identical lens at a distance 2f from the first. Use the theory
of Fourier optics to derive an analytical expression for the image obtained in
the image plane of the second lens when the transparency is illuminated with
(i) coherent light and (ii) incoherent light.

6. (a) The Radon transform of a real function f(x, y) is given by

g(z, θ) =

∞∫
−∞

∞∫
−∞

f(x, y)δ(z − x cos θ − y sin θ)dxdy.

Show that in the case when f has circular symmetry, the Radon transform
reduces to the Abel transform given by

g(z) = 2

∞∫
z

f(r)rdr√
r2 − z2

.

By letting ξ = r2, ρ = z2, G(z2) = g(z) and F (r2) = f(r), write this transform
in terms of a convolution integral. Hence, given that

∞∫
−∞

1√
x

exp(−ikx)dx =
√
π

ik
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use the convolution theorem to show that the inverse Abel transform is

f(r) = − 1
π

∞∫
r

1√
z2 − r2

(
dg(z)
dz

)
dz.

(b) Briefly discuss the basis of the following numerical techniques for recon-
structing f given g:

• Back-projection and deconvolution

• Filtered back-projection

• Application of the central slice theorem

(c) Show that the Radon transform of a single point (described by a 2D delta
function) located in the image plane at (x0, y0) yields a curve given by the
equation

z = x0 cos θ + y0 sin θ.

Sketch the curves when: (x0, y0) = (0, 0); (x0, y0) = (a, a) and (x0, y0) =
(2a, 2a) for values of θ between −π

2 and π
2 radians. What are the coordinates

in Radon space at which all three curves intersect.

7. Maxwell’s (microscopic) equations (for Gaussian cgs units and with the
speed of light c � 3× 108ms−1) are:

∇ · e = 4πρ, ∇ · b = 0,

∇× e = −1
c

∂b
∂t
, ∇× b =

1
c

∂e
∂t

+
4π
c

j

where e is the electric field, b is the magnetic field and ρ and j are the charge
and current densities respectively.

(i) Discuss the physical significance of each of the equations above and show
that

∂ρ

∂t
+∇ · j = 0.

(ii) By writing

b = ∇×A, e = −∇φ− 1
c

∂A
∂t

and using an appropriate gauge transformation, show that Maxwell’s equations
can be written in the decoupled form

∇2φ− 1
c2
∂2φ

∂t2
= −4πρ, ∇2A− 1

c2
∂2A
∂t2

= −4π
c

j.
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Explain how this result can be used to calculate the electromagnetic field gen-
erated by a given source.

(iii) The electric field potential φ at a point r0 produced by a moving charge
located at a point r oscillating at a fixed angular frequency ω is given by

φ(n̂0, ω) =
eikr0

r0

∫
ρ(r)e−ikn̂0·rd3r

where n̂0 = r0/r0 and k = 2π/λ = ω/c, λ being the wavelength. Use this
result to calculate the amplitude of the electric field potential produced by a
3cm wavelength microwave at a distance of 3m from the location of the emission
when ρ(r) = 1/r2.

Note that ∞∫
0

sinx
x

dx =
π

2
.

8. (i) Discuss the use of a scalar wave theory to describe optical diffraction
phenomena and the conditions under which it can be used.

(ii) The diffracted wavefield U produced by a plane wave travelling in the z-
direction with wavelength λ is, in the Fraunhofer zone, given by

U(x, y) =
i

λ

eikz

z
exp

(
ik

(x2 + y2)
2z

) ∞∫
−∞

∞∫
−∞

u(ξ, η) exp
(
−2πi
λz

(xξ + yη)
)
dξdη

where u is the aperture amplitude and k = 2π/λ.

(a) Using this result, compute the diffraction pattern (field intensity) produced
by a square aperture of width 2a and sketch the result.

(b) Compute the area of the central lobe of this diffraction pattern when
a=0.1mm at a distance of 1 cm from the aperture using an optical wavefield
with a wavelength of 500nm.

9. Consider a stationary optical imaging system described by the convolution
relationship

s(x, y) =

∞∫
−∞

∞∫
−∞

p(x− x′, y − y′)f(x′, y′)dx′dy′

where f is the object function (input), p is the point spread function of the
system and s is the optical image (output).

(i) In the context of this system, explain the meaning of the following terms:

• Isoplanicity
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• Optical Transfer Function

• Phase Transfer Function

(ii) The Optical Transfer Function of this system is given by

P (kx, ky) = Hx(kx)Hy(ky)

where

Hx(kx) =

{
1, | kx |≤ K;
0, | kx |> K.

Hy(ky) =

{
1, | ky |≤ K;
0, | ky |> K.

and kx, ky are the spatial frequencies. Compute the point spread function of
the system.

(iii) Derive an expression for the optical image produced when the system is
used to image an infinitesimal narrow line parallel to the x-axis and passing
through the origin of the object plane. Sketch the result.

Note that ∞∫
−∞

sinx
x

dx = π.

10. (a) Give brief explanations of the following terms (as applied to digital
image processing):

• Point Spread Function

• Transfer Function

• Phase Spectrum

• Edge detection

• Aliasing

(b) The following row vector is to be correlated with the kernel (1 2 1):

(0 1 1 0 1 2 1 0)

(i) Compute the output.

(ii) Show that the process can be written as a matrix equation, defining the
matrix and stating its bandwidth.
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(iii) If the output obtained by correlating a row vector x consisting of 8 integer
elements with the kernel (0 2 1) using zero padding is given by(

0
2
3

1
3

1
3

0
1
3

1
3

0
)

use the matrix formulation of the problem to compute x.

(c) The digital images given below show the original image together with three
other images which are the result of applying certain FIR filters whose kernels
are:

(i)
1
92

⎛⎜⎝ 1 . . . 1
...

. . .
...

1 . . . 1

⎞⎟⎠ (ii)

⎛⎝ 0 −1 0
−1 4 −1
0 −1 0

⎞⎠ (iii)

⎛⎝ 1 1 1
1 −8 1
1 1 1

⎞⎠

(iv)

⎛⎝ 1 2 1
0 0 0
−1 −2 −1

⎞⎠ (v)

⎛⎝ 0 −1 0
−1 5 −1
0 −1 0

⎞⎠ (vi)

⎛⎝ 0 −2 0
1 2 1
0 −2 0

⎞⎠

State which kernel in the list above has been used to obtain the images given
providing reasons for your choice.

11. (a) The Fourier transform of an n × n image is an n × n complex valued
array, or 2n2 values. For reasons of symmetry, only n× n values are indepen-
dent. Nevertheless, storing the Fourier transform of an image takes much more
computer memory. Why is this?

(b) Consider the following binary image⎛⎜⎜⎜⎜⎜⎜⎝
0 0 1 1 0 0
0 0 1 1 0 0
1 1 1 1 1 1
1 1 1 1 1 1
0 0 1 1 0 0
0 0 1 1 0 0

⎞⎟⎟⎟⎟⎟⎟⎠
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(i) If this digital image was converted to analogue image described by a function
f(x, y) ahow that the 2D Fourier transform of this pattern is proportional to

4 sinc(u) sinc(v)+2 sinc(v)[6 sinc(3u)−2 sinc(u)]+2 sinc(u)[6 sinc(3v)−2 sinc(v)]

where u and v are the spatial frequencies. (Hint: Decompose the pattern in to
five blocks of equal size)

(ii) Compute the response of the digital Laplacian filter to the digital image
above and show that the transfer function for this process is given by

2 cos(πn/3) + 2 cos(πm/3)− 4

where n and m are all integers with range 0 to 5.

12. The following 8× 8 matrix is a binary image representation of the letter L.⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 1 1 1 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
A pattern recognition algorithm is required to locate the position of this letter
in the image.

(a)

(i) Write down the 3×3 kernel that should be used to solve this problem using
a spatial correlation filter and compute the output.

(ii) Given that this letter is always of the same size and orientation in the
image plane, explain how this filter can be used to determine the image plane
coordinates of the letter.

(iii) Explain how the same problem can be solved using a least error approach.
Compute the error function for the image above and compare the number of
additions and multiplications required for this computation with those involved
in computing the correlation filter.

(b) Write a C Void function to implement either of the two methods for the
above image to output the coordinates of the position of the letter in the image
plane.

13. The blurring of an image as a function of time t is known to be caused by
a diffusion process governed by the 2D diffusion equation

∂u

∂t
= D∇2u
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where u(x, y, t) is the time dependent image field and D is the Diffusivity.

(a)

(i) If g(x, y) is the image at t = 0 and f(x, y) is the blurred image obtained at
some time t later, show that provided t << 1 and with D = 1/t, then g can be
recovered from f using the result

g(x, y) = f(x, y)−∇2f(x, y).

(ii) Using a centre differencing scheme with unit step length, show that the
equivalent digital output gij can be obtained by correlating the blurred digital
image fij with the kernel ⎛⎝ 0 −1 0

−1 5 −1
0 −1 0

⎞⎠ .

(iii) Assuming the image to be square, consisting of N ×N pixels, show that
this spatial filtering process can be computed using a digital Fourier filter of
the form

5− 2 cos(2πk/N)− 2 cos(2π�/N)

where k and � are the spatial frequency components of the image.

(b) Assume that you have a 2D FFT (void) function written in C

FFT2D(a, b, N, sign)

which inputs/outputs real (a) and imaginary (b) arrays of size N and can
be used to compute either the forward (sign=-1) or inverse (sign=1) DFT in
‘optical form’.

Write a C void function to implement the Fourier filter given above for com-
puting gij given fij .

14. (a)

(i) Define the mean, the median and the mode of a digital image.

(ii) Compute the probability function of the 3-bit image given below. Sketch
the result and use it to determine the mean, the median and the mode of this
image. ⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 3 7 1 3 1 3 5
4 4 4 3 3 1 5 3
2 2 0 5 1 2 2 5
4 3 5 5 3 5 0 6
6 4 2 0 7 2 6 6
6 2 2 1 7 1 4 4
1 6 1 2 3 1 3 3
4 1 4 7 7 2 2 2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
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(b) The histogram of a coherent image can be modelled by the distribution

P (xi) = xαi exp(−βxi); i = 1, 2, ..., N

where xi are the pixel values and α and β are positive constants.

(i) Using a least squares method, show that the values of α and β which provide
a best fit to a recorded distribution Qi ≡ Q(xi) are given by

β =

(
N∑
i=1

xi lnQi

)(
N∑
i=1

(lnxi)2
)
−
(
N∑
i=1

lnQi lnxi

)(
N∑
i=1

xi lnxi

)
(
N∑
i=1

(ln xi)2
)(

N∑
i=1

xi lnxi

)
−
(
N∑
i=1

(lnxi)2
)(

N∑
i=1

x2
i

)
and

α =

N∑
i=1

lnQi lnxi + β
N∑
i=1

xi lnxi

N∑
i=1

(lnxi)2
.

(ii) Write a C void function to implement the formulae above for the case when
xi = i. The function should input the recorded distribution and its (array) size
and output the values of α and β.

15. (a) Give brief explanations of the following terms (as applied to digital
image processing):

• Pixel

• Spatial quantization

• Grey-level quantization

• Point Spread Function

• Signal-to-Noise ratio

(b) The illumination-reflection model for an image is compounded in the simple
equation

f(x, y) = i(x, y)r(x, y)

where f is the image and i and r are the illumination and reflection components
respectively.

(i) Suppose that a flat area with centre at (x0, y0) is illuminated by a light
source with intensity distribution

i(x, y) = Ke−[(x−x0)
2+(y−y0)2].
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If the reflectance characteristic of the area is

r(x, y) = 10(x− x0) + 10(y − y0) + 20,

what is the value of K that would yield an image intensity of 100 at (x0, y0)?

(ii) Assume that the area in (i) above now has a constant reflectance of 1,
and let K = 255. If the resulting image is digitized with n bits of intensity
resolution (grey level quantization), and the eye can detect an abrupt change
of eight shades of grey between adjacent pixels, what is the value of n that will
cause visible false contouring?

(iii) Explain the principle of Homomorphic filtering and how it can be applied
to recovering the reflection component in an image and the conditions upon
which this technique is based.

16. (i) The Discrete Fourier Transform (DFT) of an array f0, f1, f2...fN−1 is
given by

Fm =
1
N

N−1∑
n=0

fn exp(−2πinm/N)

Writing WN = exp(−2πi/N), decompose this result into two parts - a DFT of
the odd values and a DFT of the even values of the array fn. Explain how a
decomposition of this type can be used to design a Fast Fourier Transform.

(ii) Calculate the DFT of the array (0,1,1,0) using the decomposition obtained
in part (i) above. Hence, compute the discrete power spectrum and principal
phase spectrum of this array.

(iii) Write down the form of the 2D DFT using a Cartesian coordinate system
and explain how a 1D FFT can be used to compute a 2D FFT.

(iv) Explain the difference between the ‘standard’ and ‘optical’ forms of the 2D
DFT and discuss some of the display techniques that can be used to assess the
spectral information in a digital image.

17. (a)

(i) Explain the principle of the median filter for reducing ‘salt and pepper’ noise
in a digital image.

(ii) By applying a frame of zero’s, 1 pixel wide, write down the result of applying
a median filter to the 4-bit image given below using a 3×3 window.⎛⎜⎜⎝

2 1 3 5
1 2 15 7
3 2 5 6
8 7 3 0

⎞⎟⎟⎠
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(b) Consider the 8×8, 4-bit digital image given below⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 5 6 5 6 1 0
2 5 1 3 1 2 5 4
1 3 11 15 14 14 6 5
2 1 14 10 9 12 1 2
0 1 8 14 11 11 5 1
2 4 8 9 11 15 4 1
4 6 5 1 5 2 6 3
0 1 5 0 5 2 2 4

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(i) Write down the pixel values of the binary image produced by applying a
threshold of 8 to the image above.

(ii) Taking the origin to be at the top left-hand corner, write down the pixel
values produced by applying the Roberts gradient operator to detect the edges
of this binary image.

18. (a) Give brief explanations of the following terms (as applied to digital
image processing):

• Binarization

• Segmentation

• Spatial filtering

• Deconvolution

• Data Compression

(b) Explain how to compute a Finite Impulse Response filter and discuss some
of the techniques available for implementing the filter at the extreme edges of
an image.

(c) Consider the following 5× 5 4-bit digital image⎛⎜⎜⎜⎜⎝
0 1 2 1 1
1 3 2 2 3
3 2 3 15 2
1 2 2 3 4
2 0 2 2 0

⎞⎟⎟⎟⎟⎠
Use ‘zero padding’ to filter this image with the kernel⎛⎝ −1 −1 −1

−1 8 −1
−1 −1 −1

⎞⎠
What is the effect of applying this kernel on the image and in what circum-
stances do you think it would be of value?
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(d) Write a C void function to compute this filter directly for a square digital
image of size n×n.

19. (a) The digital imaging equation for a stationary process is given by

sij = pij ⊗⊗fij + nij

where sij is the digital image, pij is the point spread function, fij is the object
function, nij is the noise and ⊗⊗ is the discrete convolution operation. The
functions pij , fij and nij all have discrete Fourier transforms denoted by Pij , Fij
and Nij respectively.

An estimate gij of the object function is to be derived given by

gij = qij ⊗⊗sij
where qij is the restoring filter with Discrete Fourier Transform denoted by
Qij .

Using the discrete convolution theorem, show that if a solution to this problem
is attempted based on the premise of forcing the power spectrum of the restored
image | Gij |2 to be equal to the power spectrum of the original image (i.e. the
power spectrum of the object function | Fij |2) then, under the conditions

FijN
∗
ij = 0 and NijF

∗
ij = 0

the restoring filter is given by

Qij =
1√

| Pij |2 + |Nij|2
|Fij |2

.

In practical cases, where information on | Nij |2 and | Fij |2 is not available, it
is common to approximate this filter by

Qij ∼ 1√| Pij |2 +Γ

where
Γ =

1
(SNR)2

SNR being some estimate of the signal-to-noise ratio of the image.

Why is this approximated form usually required for the practical implementa-
tion of this filter and what are some of the likely effects?

(b) Assume that you have the 2D FFT function called fft which inputs/outputs
real and imaginary arrays of size n and can be used to compute either the
forward or inverse Fourier transform in ‘optical form’.

Write a C void function to implement the approximated form of the restoration
filter given above with input s, point spread function p, restoration f and signal-
to-noise ratio snr.
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20. (a) Consider the 4-bit grey level image (left) and associated histogram
(right) given below.

By studying the histogram provided determine the optimum threshold level
that should be applied to binarize this image. Explain the reasons for you
choice?

Explain how the process of binarization of a digital image (i.e. choosing a
suitable threshold) could be automated assuming that its grey level histogram
is bimodel.

Assuming that the two peaks always occur in the two halves of the histogram,
write a C void function to implement this process (i.e. to compute an optimum
threshold value).

Note: You may assume that the image is composed of integer numbers between
0 and 127 inclusive.

(b) The edges of the following 8×8 4-bit binary image are to be detected using
the Roberts gradient operator⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0 0 0
0 15 15 15 15 15 15 0
0 0 15 15 15 15 15 0
0 0 0 15 15 15 15 0
0 0 0 0 15 15 15 0
0 0 0 0 0 15 15 0
0 0 15 0 0 0 15 0
0 0 0 0 0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
What type of filter should be applied to this image before computing the
Roberts gradient operator? Give reasons for your choice.
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Compute the Roberts gradient for the above image with and without the ap-
plication of this filter. Comment on the results.

21. (i) Give brief explanations of the following terms:

• Luminance quantization

• Coherence

• Image enhancement

• Image restoration

• Back-projection

(ii) Compute the response of the digital Laplacian filter ∇2 (in real space) to
the image patterns:⎛⎜⎜⎜⎜⎝

0 0 0 0 0
0 0 0 0 0
0 0 1 0 0
0 0 0 0 0
0 0 0 0 0

⎞⎟⎟⎟⎟⎠ and

⎛⎜⎜⎜⎜⎝
0 0 1 1 1
0 0 1 1 1
0 0 1 1 1
0 0 1 1 1
0 0 1 1 1

⎞⎟⎟⎟⎟⎠ .

Does it respond more strongly to isolated points or to edges?

(iii) The following algorithm is a selective highpass filter:

If ∇2v(i, j) <threshold
v(i, j) = v(i, j) + α∇2v(i, j)
Else
v(i, j) =< v(i, j) >
Endif

where α is a user-specified parameter and < v(i, j) > is the mean in some
neighbourhood of (i, j); v(i, j) being the pixel value at (i, j).

What will be the effect of implementing a filter of this type?

Write an C (void) function to implement this filter. The I/O should be as
follows:

Input: Image, image size (assume square images), α, neighbourhood of pixels.

Output: Processed image

22. An image sij can be described by the stationary process

sij = pij ⊗⊗fij + nij
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where pij is the point spread function, fij is the object function and nij is the
noise function (⊗⊗ denotes the 2D convolution operation) . An estimate for
the object function is required which maximizes its entropy E defined by

E = −
∑
i

∑
j

fij ln fij ; fij > 0

(i) Use the Lagrange multiplier method to show that the solution for fij is
given by the iteration

fk+1
ij = exp[−1 + 2λ(sij ��pij − pij ⊗⊗fkij ��pij)]; k = 1, 2, ...

where �� denotes the 2D correlation operation.

Explain how this algorithm could be implemented in practice.

(ii) By linearizing the result above, show that a filter of the type

P ∗
ij

| Pij |2 +1/2λ

can be constructed where Pij is the DFT of pij .

(iii) An algorithm is required to estimate the Signal-to-Noise Ratio (SNR) of
an image defined by

SNR =
∑
i

∑
j

| Fij |2 / | Nij |2

where Fij and Nij are the DFT’s of fij and nij respectively. Show that by
recording two images sij and s′ij , of the same object at different times and
assuming that the noise is signal independent, then

| Nij |2
| Fij |2 =

(
Cij
C′
ij

− 1

)
| Pij |2

where Cij and C′
ij are the DFT’s of the correlation functions sij � �sij and

sij ��s′ij respectively.

(iv) Write an ANSI C (Void) function to compute the SNR defined above with
the following I/O:

Input: Images sij and s′ij , size of (square) images

Output: SNR as defined above.

Assume that you have a 2D FFT void function called

FFT2D(a,b,N,sign)
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which inputs/outputs real (a) and imaginary (b) arrays of size N and can
be used to compute either the forward (sign=-1) or inverse (sign=1) DFT in
‘optical form’.

23. Consider the 4-bit image given below⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 1 1 2 2 4 1
2 2 3 1 2 2 1 1
3 4 5 2 5 6 7 6
3 10 15 9 11 14 14 13
2 14 10 11 14 12 12 12
2 3 7 13 13 14 15 14
2 3 4 5 6 2 1 0
0 1 2 14 12 13 9 8

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(a)

(i) Compute the probability density function of this image. Tabulate and sketch
the result using a bar chart.

(ii) Use the tabulation to compute the mean, the median and the mode of this
image.

(b) The image is to be classified by applying a 3 × 3 mode filter in which a
pixel is replaced by its most common neighbour or else the lowest value in the
neighbourhood. Compute the output.

(c)

(i) What threshold level should be used to binarize the original image; give
reasons for your choice and use this value to compute the binary image.

(ii) Locate the edges of this binary image using the masks

(
1 −1

)
and

(
1
−1

)
and compute the magnitude.

(iii) Locate the edges of this binary image using a Sobel operator.

(iv) Write a C (Void) function to implement the Sobel operator directly with
the following I/O:

Input: Digital Image, size of (square image)

Output: Processed image

24. (a) Give brief explanations on the following terms with respect to image
enhancement:
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• Logarithmic and exponential transforms

• Gamma correction

• Homomorphic filtering for dynamic range compression and contrast
stretching with clipping

• Global and local histogram equalization

• Histogram normalization and contrast stretching with clipping

(b) Derive the transfer function T for histogram equalization, i.e. for each
discrete value vin, we obtain a new value

vout = T [vin]

such that the same number of pixels in the display show each of the possible
intensity levels.

(c) Write a void function in C to histogram equalize a floating point image
where the image is taken to be of size n× n, i.e.

void HISTEQ(float **f, float **s, int n, int m)

where f is the input image, s is the output image, n defines the image size and
m is the number of grey levels required. Explain the advantages of adding or
reducing the required number of grey levels with respect to visualization and
loss of information.

(d) The process of combining histogram equalization with a high emphasis filter
is often used to achieve both enhancement and edge sharpening. Prove that it
matters which process is applied first and give reasons as to which operation
should be applied first.

(e) Describe any special problems that may occur if histogram equalization
is applied to a Gaussian pyramid structure of an image. Give a reason as to
whether the process should be applied to each level individually or to all the
levels at the same time.

25. (a) Using first order derivatives, show how a gradient operator can be
designed in terms of an FIR filter (i.e. the discrete convolution of an image
with a convolution kernel). Consider the problems if the operator is non-
symmetrical.

(b) With respect to the following filters, explain why each may be used as
opposed to the others and their overall effectiveness in image segmentation(

0 1
−1 0

)
,

1
15

⎛⎝ −3 5 5
−3 0 5
−3 −3 −3

⎞⎠
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1
8

⎛⎝ −2 1 −2
1 4 1
−2 1 −2

⎞⎠ ,
1
34

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 1 0 −1 −1 −1
1 2 2 0 −2 −2 −1
1 2 3 0 −3 −2 −1
1 2 3 0 −3 −2 −1
1 2 3 0 −3 −2 −1
1 2 2 0 −2 −2 −1
1 1 1 0 −1 −1 −1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

(c) Explain why noise may cause problems and instabilities within the digital
Laplacian filter. Specify the use and give reasons as to why the Gaussian distri-
bution is considered a suitable smoothing operator with regard to application
of the digital Laplacian filter.

(d) Using appropriate pseudo-code, design a function to compute the filter

Fij =

⎛⎝ 0 1 0
1 −4 1
0 1 0

⎞⎠⊗⊗Gij ⊗⊗Iij
where Iij is the input digital image, Gij is a Gaussian function with standard
deviation σ and ⊗⊗ denotes discrete convolution.

(i) Design another function that computes the zero crossings of Fij .

(ii) Justify your reason for using or otherwise an FFT for either the whole of
the operation or just part of the operation for computing Fij .

(iii) Consider any useful approximation when computing Fij when it can be
assumed that Iij are a set of discrete levels.

(iv) State what happens in the algorithm as σ is varied from a high value
to a low value and how the effect is related to a model for the human visual
recognition system.

(e) Consider the application of detecting bubble chamber tracks in which the
collisions and paths of high energy particles are recorded as pixel wide tracks.
Particles whose tracks are longer than 100 pixels are considered to be relatively
stable and need to be recorded. Tracks are allowed to have no more than five
gaps that can be no more than 10 pixels long. Define a image segmentation
process that detects all stable tracks that are at a user defined angle.

26. (a) Considering the reconstruction of tomographic images, write out the
Radon transform for a projected intensity P (r, θ) in polar coordinates and
define the terms used. From this result, define the Fourier slice theorem (the
projection theorem) and explain its meaning graphically.
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(b) The inverse Fourier transform for an object function f(x1, x2) is given by

f(x1, x2) =

2π∫
0

∞∫
0

rF (r, θ) exp[ir(x1 cos θ + x2 sin θ)]drdθ

where F (r, θ) is the Fourier transform in polar coordinates. Using the Fourier
slice theorem or otherwise, construct the continuous case method for Filtered
Back Projection. Show how this relates to the digital version in which

fx1x2 = B̂Ĥ∂Prθ

where B̂ is the back-projection operator, Ĥ is the Hilbert transform operator
and ∂ is the differentiation operator. Describe some of the limitations the
digital version has over the continuous method.

(c) Consider the process for the reconstruction of a simple object consisting
of three points equally spaced. Sketch the projected intensity P (r, θ) profiles
before and after filtering from at least two different directions. Sketch also the
pixel shapes for the reconstructed object points when only four projections are
used. Hence, discuss the problems of only having a finite number of projections.

(d) If an image is represented as a simple column vector, c, consisting of x× y
pixels, then k projections can be considered in terms of an array of weights W
that has a dimension k × n (where n = x× y). The projected intensity values
can then be stored in p of size k which are related to c via the linear equation

P = Wc.

Numerical methods for solving this equation for the unknown values c are well
known. State some of the advantages and disadvantages of this method and
give a brief outline of a practical solution.

27. The Green function for the three-dimensional inhomogeneous Helmholtz
equation

∇2u(r, k) + k2u(r, k) = f(r)

is

g(r | r0, k) =
exp(ik | r− r0 |)

4π | r− r0 |
where r = (x, y, z) is a three-dimensional position vector and k is the wavenum-
ber.

(a) An optical experiment is setup where the wavefield u is stimulated by a
coherent light source with amplitude function f(r). Write down the equation
for the wavefield u in terms of the Green function g and the driving field f .

(b) The experiment is arranged so that the source is in the plane z = 0 and
depends only on x and the wavefield is measured only in the plane z = z0
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by a photographic plate. Draw a diagram and hence write an equation for
the wavefield w(x0, k) = u(x0, y, z0, k) in terms of the source function s(x) =
f(x, y, 0).

(c) Under certain conditions, the integral obtained in part (b) above can be
approximated by a Fourier transform of the source function s. Derive this
approximation, stating clearly the conditions necessary for the approximation
to be valid.

28. The operator P̂ models a set of optical components that, given an image
described by the optical amplitude function f(x, y) as the input, outputs the
Fourier transform image

F (u, v) =
∫
dx

∫
dyf(x, y) exp[i(ux+ vy)]

Thus P̂ [f(x, y)] = F (x, y). The operator Q̂ models a different set of optical
components that, given an input image f(x, y), gives an output image

Q̂[f(x, y)] = f(x, y)q(x, y)

where q is the aperture function.

(a) Derive and state the effect of the composite system P̂ Q̂P̂ , i.e. the system
that takes the output of P̂ , sends it through Q̂ and then through P̂ .

(b) If q(x, y) describes a square hole of side 2a centered on the origin, calculate
the coherent and incoherent point spread functions of the system P̂ Q̂P̂ .

(c) If the input to the system is an incoherently illuminated picture of a newpa-
per’s front page for example, describe how the appearance of the output varies
with the value of a.

(d) Describe the effect on the output image of the fact that the hole has sharp
edges. How could these effect be reduced?



Appendix C

Fourier Transform of a
Fractal

Self-affine functions are characterised by an amplitude spectral density function
of the type k−q where k =| k | is the spatial frequency. This appendix provides
detail on calculating the n-dimensional (inverse) Fourier transform of such a
spectrum which is compounded in the following theorem:

Theorem If q �= 2m or −n− 2m where m = 0, 1, 2, ..., then

F̂n[rq] =

∞∫
−∞

rq exp(−ik · r)dnr =
(1
2q + 1

2n− 1)!
(− 1

2q − 1)!
2q+nπn/2k−q−n

where k and r are the n-dimensional vectors (k1, k2, ..., kn) and (r1, r2, ..., rn)
respectively, r ≡| r |= √

r21 + r22 + ...+ r2n and k ≡| k |= √
k2
1 + k2

2 + ...+ k2
n.

Note that

F̂n[f(r)] =

∞∫
−∞

f(r) exp(−ik · r)dnr

is taken to mean

∞∫
−∞

∞∫
−∞

...

∞∫
−∞

f(r1, r2, ..., rn) exp[−i(k1r1 + k2r2 + ...+ knrn)]dr1dr2..., drn.

Proof The proof of this result is based two results:

(i) If f is a function of r only, then

F (k) =
(

1− ∂2

∂k2
1

− ∂2

∂k2
2

− ...− ∂2

∂k2
n

)N
(2π)n/2

∞∫
0

f(r)rn−1

(1 + r2)N
Jn−2

2
(kr)

(kr)(n/2)−1
dr
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where N is a positive integer and J(n−2)/2 is the Bessel function (of order
(n− 2)/2).

(ii) For Bessel Functions,

(2π)n/2

k(n/2)−1

∞∫
0

rq+(n/2)

(1 + r2)N
Jn−2

2
(kr)dr

=
πn/2(1

2q + 1
2n− 1)!(N − 1

2q − 1
2n− 1)!

(N − 1)!(1
2n− 1)! 1F2(1

2q + 1
2n; 1

2q + 1
2n−N + 1, 1

2n; 1
4k

2)

+
πn/2k2N−q−n(1

2q + 1
2n−N − 1)!

(N − 1
2q − 1)!22N−q−n 1F2(N ;N − 1

2q,N + 1− 1
2q − 1

2n; 1
4k

2)

(C.1)
where

1F2(a; b, c;x) = 1 +
a

1!bc
x+

a(a+ 1)
2!b(b+ 1)c(c+ 1)

x2 + ...

The first of these results can be obtained by choosing a polar axis to lie along
the direction of k so that k · r = kr cos θ1 and

F (k) =

∞∫
−∞

f(r) exp(−ik · r)dr =

∞∫
0

f(r)rn−1

π∫
0

exp(−ikr cos θ1) sinn−2 θ1dθ1

×
π∫

0

...

2π∫
0

sinn−3 θ2... sin θn−2dθ2...dθn−1dr

=

∞∫
0

f(r)rn−1 2π(n−1)/2

(1
2n− 3

2 )!

π∫
0

exp(−ikr cos θ1) sinn−2 θ1dθ1dr

using
π∫

0

sinν dθ =
(1
2ν − 1

2 )!π1/2

(1
2ν)!

.

Now,

−
(
∂2

∂k2
1

+
∂2

∂k2
2

+ ...+
∂2

∂k2
n

)
=

∞∫
−∞

f(r)(r21 + r22 + ...+ r2n) exp(−ik · r)dnr

and therefore(
1− ∂2

∂k2
1

− ∂2

∂k2
2

− ...− ∂2

∂k2
n

)N
=

∞∫
−∞

f(r)(1 + r2)N exp(−ik · r)dnr.
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Hence, we can write

F (k) =
(

1− ∂2

∂k2
1

+
∂2

∂k2
2

− ...− ∂2

∂k2
n

)N
(2π)n/2

∞∫
0

f(r)rn−1

(1 + r2)N
Jn−2

2
(kr)

(kr)(n/2)−1
dr.

(C.2)
The ratio of two successive terms un+1/un in the infinite series for 1F2 is
(a+n)x/[(n+ 1)(b+ n)(c+ n)] which tends to zero as n→∞ for any finite x.
Thus, the series for 1F2 converges absolutely and uniformly with respect to x
and the same is true of its derivatives (provided that neither b or c is a negative
integer or zero when the series diverges). Therefore,(

∂2

∂k2
1

+
∂2

∂k2
2

+ ...+
∂2

∂k2
n

)
1F2(a; b, 1

2n; 1
4k

2)

=
(b − 1)!(1

2 − 1)!
(a− 1)!

(
∂2

∂k2
1

+
∂2

∂k2
2

+ ...+
∂2

∂k2
n

) ∞∑
s=0

(a+ s− 1)!(1
2k)

2s

(b+ s− 1)!(1
2n+ s− 1)!s!

=
(b − 1)!(1

2n− 1)!
(a− 1)!

∞∑
s=0

(a+ s− 1)!(1
2k)

2s−2

(b + s− 1)!(1
2n+ s− 2)!(s− 1)!

.

The term for s = 0 disappears so that, by replacing s by s+ 1 we obtain(
∂2

∂k2
1

+
∂2

∂k2
2

+ ...+
∂2

∂k2
n

− 1
)

1F2(a; b, 1
2n; 1

4k
2)

=
(b− 1)!(1

2n− 1)!
(a− 1)!

∞∑
s=0

(a+ s− 1)!(1
2k)

2s

(b+ s)!(1
2n+ s− 1)!s!

(a+ s− b− s)

=
a− b
b

1F2(a; b+ 1, 1
2n; 1

4k
2).

Hence, (
∂2

∂k2
1

+
∂2

∂k2
2

+ ...+
∂2

∂k2
n

− 1
)N

1F2(a; b, 1
2n; 1

4k
2)

=
(a− b)(a− b − 1)...(a− b−N + 1)

b(b+ 1)...(b+N − 1) 1F2(a; b+N, 1
2n; 1

4k
2). (C.3)

In the first term of equation (C.1) a = 1
2 (q + n), b = 1

2 (q + n)−N + 1 so that
a− b = N +1 with the result that the right hand side of the equation vanishes.
For the second term of equation (C.1), consider, with b > 0(

∂2

∂k2
1

+
∂2

∂k2
2

+ ...+
∂2

∂k2
n

)
k2b

1F2(a; b+ 1
2n, b+ 1; 1

4k
2)

=
(b + 1

2n− 1)!b!
(a− 1)!

∞∑
s=0

(a+ s− 1)!k2b+2s−2

4s−1(b+ 1
2n− 2 + s)!(b+ s− 1)!s!
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as above. Hence,(
∂2

∂k2
1

+
∂2

∂k2
2

+ ...+
∂2

∂k2
n

− 1
)
k2b

1F2(a; b+ 1
2n, b+ 1; 1

4k
2) =

(b+ 1
2n− 1)!b!

(a− 1)!

×
[

(a− 1)!4k2b−2

(b+ 1
2n− 2)!(b− 1)!

+
∞∑
s=0

(a+ s− 2)!(a− 1)k2b+2s−2

4s−1(b+ 1
2n− 2 + s)!(b+ s− 1)!s!

]
from which is evident that(
∂2

∂k2
1

+
∂2

∂k2
2

+ ...+
∂2

∂k2
n

− 1
)
k2b

1F2(1; b+ 1
2n, b+ 1; 1

4k
2) = (b+ 1

2n− 1)4bk2b−2

(C.4)
and (

∂2

∂k2
1

+
∂2

∂k2
2

+ ...+
∂2

∂k2
n

− 1
)
k2b

1F2(a; b+ 1
2n, b+ 1; 1

4k
2)

= 4b(b+ 1
2n− 1)k2b−2

1F2(a− 1; b+ 1
2n− 1, b; 1

4k
2), a �= 1.

Consequently, if a �= 1 or 2, then since(
∂2

∂k2
1

+
∂2

∂k2
2

+ ...+
∂2

∂k2
n

)
kq = q(q + n− 2)kq−2

for all q except those for which q + n = 2, 0,−2,−4, ...,(
∂2

∂k2
1

+
∂2

∂k2
2

+ ...+
∂2

∂k2
n

− 1
)
k2b

1F2(a; b+ 1
2n, b+ 1; 1

4k
2)

= 42b(b− 1)(b + 1
2n− 1)(b + 1

2n− 2)k2b−4
1F2(a− 2; b+ 1

2n− 2, b− 1; 1
4k

2)

where, in deriving this result, since it cannot be assumed that b − 1 > 0, with
b = N − 1

2q − 1
2n we impose the condition q = 2m (m = 0, 1, 2, ...). Thus,

using equation (C.4) we can write(
∂2

∂k2
1

+
∂2

∂k2
2

+ ...+
∂2

∂k2
n

− 1
)N

k2N−q−n
1F2(N ;N − 1

2q,N + 1− 1
2q − 1

2n; 1
4k

2)

=
(
∂2

∂k2
1

+
∂2

∂k2
2

+ ...+
∂2

∂k2
n

− 1
)

4N−1 (N − 1
2q − 1

2n)!(N − 1
2q − 1)!k−q−n+2

(− 1
2q − 1

2n+ 1)!(− 1
2q)!

1F2(1;− 1
2q + 1,− 1

2q − 1
2n+ 2; 1

4k
2) =

(N − 1
2q − 1

2n)!(N − 1
2q − 1)!4Nk−q−n

(− 1
2q − 1

2n)!(− 1
2q − 1)!

.

(C.5)
Using equations (C.5) and (C.3) in equations (C.1) and (C.2) we find that

F (k) =
(N − 1

2q − 1
2n)!(1

2q + 1
2n−N − 1)!

(− 1
2q − 1

2n)!(− 1
2q − 1)!

2q+n(−1)Nπn/2k−q−n.

Finally, using the formula
z!(−z)! =

πz

sinπz
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we have

(N − 1
2q − 1

2n)!(1
2q + 1

2n−N − 1)! =
π

sinπ(1
2q + 1

2n−N)

=
(−1)Nπ

sin 1
2π(q + n)

= (1
2q + 1

2n− 1)!(− 1
2q − 1

2n)!(−1)N

so that

F (k) =
(1
2q + 1

2n− 1)!
(− 1

2q − 1)!
2q+nπn/2k−q−n.

We can write this result using the Gamma function notation where

m! = Γ(m+ 1) =

∞∫
0

tm exp(−pt)dt

which generalizes to values of m which are non-integer. Then,

F (k) =
Γ
(
q+n

2

)
Γ
(− q

2

) 2q+nπn/2k−q−n.

Hence, in the case when n = 1,

F (k) = F̂1[rq] =
Γ
(

1+q
2

)
Γ
(− q

2

) 21+q√πk−q−1

or

F̂1

[
1

r1−q

]
= 2q

√
π

Γ
(
q
2

)
Γ
(

1−q
2

) 1
kq

and thus,

F̂−1
1

[
1

(ik)q

]
=
α1(q)
r1−q

where

α1(q) =
1

(2i)q
√
π

Γ
(

1−q
2

)
Γ
(
q
2

) .

For n = 2

F̂2 [rq ] =
Γ
(
q+2
2

)
Γ
(− q

2

) 2q+2πk−q−2

or

F̂2

[
1

r2−q

]
= 2qπ

Γ
(
q
2

)
Γ
(
1− q

2

) 1
kq

and hence,

F̂−1
2

[
1

(ik)q

]
=
α2(q)
r2−q

where

α2(q) =
1

(2i)qπ
Γ
(
1− q

2

)
Γ
(
q
2

) .
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Thus, in general, ignoring scaling by α1(q), α2(q), α3(q), ...,

F̂−1
n

[
1

(ik)q

]
∼ 1
rn−q

, n = 1, 2, 3, ...



Appendix D

I/O and Graphics Utilities

Reading and Writing Images to and From a Named Data File

Many different standard and some non-standard formats have been developed
for writing and reading images to and from a file, respectively. A detailed
analysis of these formats lies beyond the scope of this work. However, for
completeness, code is provide for reading an image from a named file and
writing an image to a named file. In both cases, the format is ‘free’. These
facilities are compounded in the void functions rimage and wimage as follows:

#include <stdio.h>
#include <string.h>

void rimage( float **s, int n )
{
char filename[80];
int x, items;
FILE *fp;

/* FUNCTION: Reads (free format) an image from a named data file.

PARAMETERS

Input: n - Size of image.

Output: s - Data (digital image). */

/* Prompt user to input name of data file. */

puts("INPUT FILE:");
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scanf("%s", filename);

/* Open file. */

if ((fp = fopen( filename, "r+b" )) == NULL)
{
puts( "OPEN ERROR" );
fclose( fp );
return;
}

/* Send message to user ’reading data...’ */

printf("\n\t READING DATA...");

/* Read in array size and array s from data file. */

for ( x=0; x<n; x++ )
{
if ((items = fread( s[x], sizeof( float ), n, fp )) != n)
{
puts( "READ ERROR" );
fclose( fp );
return;
}

}

printf("OK");

/* Close the file. */

fclose( fp );
}

#include <stdio.h>
#include <string.h>

void wimage( float **s, int n )
{
char filename[80];
int x;
FILE *fp;

/* FUNCTION: Writes (free format) an image to a named data file.
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PARAMETERS

Input: n - Size of image.

Output: s - Data (digital image). */

/* Prompt user to input name of data file. */

puts( "OUTPUT FILE:" );
scanf("%s", filename );

/* Open file. */

if ((fp = fopen( filename, "w+b" )) == NULL)
{
puts( "OPEN ERROR" );
fclose( fp );
return;
}

/* Send message to user */

printf("\n\t WRITING DATA..." );

/* Write out array to data file. */

for ( x=0; x<n; x++ )
{
fwrite( s[x], sizeof( float ), n, fp );
}

printf("OK" );

/* Close the file. */

fclose( fp );
}

Displaying a Digital Image

There are a wide range of facilities available for displaying images that are
system dependent or otherwise. These facilities can form part of an integrated
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windows based package such as MATLAB which can of course be used for
this purpose. A detailed discussion of the many graphics facilities currently
available is beyond the scope of this book and it is left to the reader to apply
the facilities best suited to his/her application and available software systems.
However, for completeness, this appendix provides C code developed to dis-
play images using X-windows running under unix or linux. This was originally
introduced for students undertaking an MSc programme in ‘Digital Signal Pro-
cessing’ established by the author in the early 1990s and it may still be of value
to those with limited access to a more advanced graphics system. This low level
graphics facility follows the design of that given in Digital Signal Processing, J
M Blackledge, Horwood, 2003 for plotting signals using Borland Turbo C++
and is based on the function ximage which is typically utilized as follows:

xopen();

...

option=1
ximage(s,n,option);

...

xclose();

Here, s in an image of size n×n which is taken to be a 2D array of floating point
numbers. Two images can be displayed together: option=1 for the first image
and option=2 for the second image. The image is automatically windowed and
scaled but the size of the images that can be displayed is limited to 512×512
pixels. The function can be used in multiples to plot the progress of a process
and for diagnostic purposes. Further, standard I/O can be used while the
displays are ‘open’, the output being an overlay in standard format.

The code provides a number of other functions for:

(i) displaying a single 1024×1024 image;

(ii) displaying images with pre-defined colour maps;

(iii) displaying the histogram of an image.

The code has been designed to provide the reader with a ‘platform’ from which
further graphics utilities can be developed as required operating in a unix or
linux environment.

void xopen(void)
{

ipf_open_windows_();
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ipf_install_lin_grey_cmap_();

}

void ximage(float **s, int n, int iw)
{

int i, j;
float max=0.;

for(i=0; i<n; i++)
for(j=0; j<n; j++)
if(s[i][j] > max)
max=s[i][j];

for(i=0; i<n; i++)
for(j=0; j<n; j++)
s[i][j]*=(239./max);

ipf_display_image_(&iw, s, &n);

}

void xclose(void)
{

ipf_close_windows_();

}

#include <stdlib.h>
#include <stdio.h>
#include <string.h>

#include <X11/Xlib.h>
#include <X11/Xutil.h>

#define uchar unsigned char

#define WINDOW_1_PSN_X 0
#define WINDOW_2_PSN_X 512
#define WINDOWS_PSN_Y 100
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#define BIG_WINDOW_PSN_X 0
#define BIG_WINDOW_PSN_Y 0

#define CHART_PSN_X 16
#define CHART_PSN_Y 450
#define CHART_MAX 400

#define BIG_CHART_PSN_X 32
#define BIG_CHART_PSN_Y 900
#define BIG_CHART_MAX 800

#define DEF_SCREEN DefaultScreen(display)
#define DEF_VISUAL DefaultVisual(display,DEF_SCREEN)
#define DEF_GC DefaultGC(display,DEF_SCREEN)
#define DEF_COLORMAP DefaultColormap(display, DEF_SCREEN)
#define ROOT_WINDOW RootWindow(display, DEF_SCREEN)
#define BLACK_PIX BlackPixel(display, DEF_SCREEN)
#define WHITE_PIX WhitePixel(display, DEF_SCREEN)

void ipf_open_windows_ ();
void ipf_open_big_window_ ();
void ipf_close_windows_ ();
void ipf_install_lin_grey_cmap_ ();
void ipf_install_user_def_cmap_ (int [], int [], int []);
void ipf_write_cmap_ (int [], int [], int[]);
void ipf_read_and_install_cmap_ ();
void ipf_display_image_ (int *, float **, int *);
void ipf_display_image_big_ (float [][512], int *);
void ipf_display_histogram_ (int *, float [], int *, int *);
void ipf_display_histogram_big_ (float [], int *, int *);

static void display_512_image (int, uchar *);
static void display_1024_image (uchar *);
static void
install_cmap (unsigned short int [], unsigned short int [],

unsigned short int []);
static void make_filename (char *, char *, char *, char *);
static void list_files (char *);

static Display *display;
static Window window[3];

/**************************************************************
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IPF_OPEN_WINDOWS

Action: Opens a pair of (512*512) "ip" windows on the display.

Note that only one set of windows (either a pair of 512*512
windows, or a single 1024*1024 window) may be open at any one
time.

***************************************************************/

void ipf_open_windows_ ()

{

XSizeHints size_hints;

display = XOpenDisplay (0);

window[1] = XCreateSimpleWindow (display, ROOT_WINDOW,
WINDOW_1_PSN_X, WINDOWS_PSN_Y, 512, 512, 0,
BLACK_PIX, BLACK_PIX);

window[2] = XCreateSimpleWindow (display, ROOT_WINDOW,
WINDOW_2_PSN_X, WINDOWS_PSN_Y, 512, 512, 0,
BLACK_PIX, BLACK_PIX);

size_hints.flags = PPosition | PSize | PMinSize | PMaxSize;
size_hints.x = WINDOW_1_PSN_X;
size_hints.y = WINDOWS_PSN_Y;
size_hints.width = 512;
size_hints.height = 512;
size_hints.min_width = size_hints.max_width = 512;
size_hints.min_height = size_hints.max_height = 512;

XSetStandardProperties (display, window[1],
" ip1 DIP",

"ip1", None, 0, 0, &size_hints);
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size_hints.x = WINDOW_2_PSN_X;

XSetStandardProperties (display, window[2],
" ip2 DIP",
"ip2", None, 0, 0, &size_hints);

XMapWindow (display, window[1]);

XMapWindow (display, window[2]);

XFlush (display);

}

/***************************************************************

IPF_OPEN_BIG_WINDOW

Action: Opens a single (1024*1024) "ip" window on the display.

Note that only one set of windows (either a pair of 512*512
windows, or a single 1024*1024 window) may be open at any one
time.

*****************************************************************/

void ipf_open_big_window_ ()

{

XSizeHints size_hints;

display = XOpenDisplay (0);

window[1] = XCreateSimpleWindow (display, ROOT_WINDOW,
BIG_WINDOW_PSN_X, BIG_WINDOW_PSN_Y,
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1024, 1024, 0,
BLACK_PIX, BLACK_PIX);

size_hints.flags = PPosition | PSize | PMinSize | PMaxSize;
size_hints.x = BIG_WINDOW_PSN_X;
size_hints.y = BIG_WINDOW_PSN_Y;
size_hints.width = 1024;
size_hints.height = 1024;
size_hints.min_width = size_hints.max_width = 1024;
size_hints.min_height = size_hints.max_height = 1024;

XSetStandardProperties (display, window[1],
" ip DIP",

"ip", None, 0, 0, &size_hints);

XMapWindow (display, window[1]);

XFlush (display);

}

/*************************************************************

IPF_CLOSE_WINDOWS

Action: Closes "ip" windows on the display.

This can be used to close either a pair of 512*512 windows,
or a single 1024*1024 window.

**************************************************************/

void ipf_close_windows_ ()

{

XCloseDisplay (display);

}
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/*****************************************************************

IPF_INSTALL_LIN_GREY_CMAP

Action: Generates a linear grey-scale colour map, which is immediately
installed as the current colour map for the display.

*******************************************************************/

void ipf_install_lin_grey_cmap_ ()

{

unsigned short int red[240], green[240], blue[240];
int v;

for (v = 0; v < 240; ++ v)
red[v] = green[v] = blue[v] = v * 274;

install_cmap (red, green, blue);

}

/***************************************************************

IPF_INSTALL_USER_DEF_CMAP

Action Installs a user-defined colour map.

Parameters: in: "red", "green", "blue"

- arrays of 240 integers, defining the colour
intensities to be used for each of the 240 pixel
values.

Each value must be in the range 0 - 65535, where 0
represents zero intensity for that colour, and 65535
represents maximum intensity.
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For array indexing starting with 1, since pixel
values start at 0, array element n will refer to pixel
value n-1 (e.g. red(15) defines the red intensity for
pixel value 14).

***************************************************************/

void ipf_install_user_def_cmap_ (red, green, blue)

int red[], green[], blue[];

{

unsigned short int red_out[240], green_out[240], blue_out[240];
int n;

for (n = 0; n < 240; ++ n)
{
red_out[n] = (unsigned short int) red[n];
green_out[n] = (unsigned short int) green[n];
blue_out[n] = (unsigned short int) blue[n];
}

install_cmap (red_out, green_out, blue_out);

}

/*****************************************************************

IPF_WRITE_CMAP

Action: Writes a colour map to a file, in a format that can be
read by the "ipf_read_and_install_cmap" function.

The user is prompted for the name of the colour map, which
should be given without any extension. The extension ".cmp"
will be automatically added.

Colour maps are placed in a directory determined by the
environment variable IP_CMAPS_PATH, unless this has not been
set, in which case they are placed in the current working
directory.
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Parameters: in: "red", "green", "blue"

- arrays of 240 integers, defining the colour map.
See "ipf_install_user_def_cmap" for details.

*****************************************************************/

void ipf_write_cmap_ (red, green, blue)

int red[], green[], blue[];

{

int n;
unsigned short int red_out[240], green_out[240], blue_out[240];
char map_name[40];
char filename[80];
FILE *fp;

for (n = 0; n < 240; ++ n)
{
red_out[n] = (unsigned short int) red[n];
green_out[n] = (unsigned short int) green[n];
blue_out[n] = (unsigned short int) blue[n];
}

printf ("(write colour map) give colour map name: ");
scanf ("%s", map_name);

make_filename (filename, "IP_CMAPS_PATH", map_name, ".cmp");

fp = fopen (filename, "wb");

fwrite (red_out, sizeof (unsigned short int), 240, fp);
fwrite (green_out, sizeof (unsigned short int), 240, fp);
fwrite (blue_out, sizeof (unsigned short int), 240, fp);

fclose (fp);

}
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/*****************************************************************

IPF_READ_AND_INSTALL_CMAP

Action: Reads a colour map from a file, and installs it as the
current colour map for the display.

Colour maps must be in the format produced by the function
"ipf_write_cmap".

Colour maps are expected to be in a directory determined by
the environment variable IP_CMAPS_PATH, unless this has not been
set, in which case they are expected to be in the current
working directory. The contents of this directory are listed,
and the user is then prompted for the name of the colour map,
which should be given without the extension.

****************************************************************/

void ipf_read_and_install_cmap_ ()

{

char map_name[40];
char filename[80];
FILE *fp;
unsigned short int red[240], green[240], blue[240];

list_files ("IP_CMAPS_PATH");

printf ("(read colour map) give colour map name: ");
scanf ("%s", map_name);

make_filename (filename, "IP_CMAPS_PATH", map_name, ".cmp");

fp = fopen (filename, "rb");

fread (red, sizeof (unsigned short int), 240, fp);
fread (green, sizeof (unsigned short int), 240, fp);
fread (blue, sizeof (unsigned short int), 240, fp);

fclose (fp);

install_cmap (red, green, blue);
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}

/****************************************************************

IPF_DISPLAY_IMAGE

Action: Displays an image in a 512*512 window.

Pixel values must be in the range 0 - 239.999... . These are
truncated to integers before being displayed, but the original
array holding the image data is not affected. Pixel values in
the range 240 - 256 are reserved for the X-windows interface.

Images are automatically scaled to fill the window, but their
size must be an integer power of two (512, 256, 128 ....).

Input parameters:
"w" - an integer describing which window the image is to

be displayed in (1 or 2).

"in_image" - the image, an array of 512 * 512 reals

"size" - an integer giving the size of the image.

*****************************************************************/

void ipf_display_image_ (w, in_image, size)

int *w;
float **in_image;
int *size;

{

unsigned char disp_image[512][512];
int mag, x, y, q;

mag = 512 / *size;

for (y = 0; y < 512; ++ y)
{
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q = (*size - 1) - (y / mag);
for (x = 0; x < 512; ++ x)
disp_image[y][x] = (unsigned char) in_image[x/mag][q] + 16;
}

display_512_image (*w, (unsigned char *) disp_image);

}

/***************************************************************

IPF_DISPLAY_IMAGE_BIG

Action: Displays an image in a 1024*1024 window.

Pixel values must be in the range 0 - 239.999... . These are
truncated to integers before being displayed, but the original
array holding the image data is not affected.

Images are automatically scaled to fill the window, but their
size must be an integer power of two (512, 256, 128 ....).

Parameters: in:
"in_image" - the image, an array of 512 * 512 reals.

"size" - the size of the image.

**************************************************************/

void ipf_display_image_big_ (in_image, size)

float in_image[][512];
int *size;

{

unsigned char disp_image[1024][1024];
int mag, x, y, q;
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mag = 1024 / *size;

for (y = 0; y < 1024; ++ y)
{
q = (*size - 1) - (y / mag);
for (x = 0; x < 1024; ++ x)
disp_image[y][x] = (unsigned char) in_image[x/mag][q] + 16;
}

display_1024_image ((unsigned char *) disp_image);

}

/****************************************************************

IPF_DISPLAY_HISTOGRAM

Action: Displays a histogram, of up to 480 levels, in a
512*512 window.

If the scale factor argument is zero, a suitable vertical scale
factor will be calculated automatically on the basis of the
maximum value found in the range 1 - (levels-1), i.e. excluding
the very lowest and very highest bins.

If the scale factor argument is non-zero, the scale factor is
set to the value used in the most recent call to this function.
This is useful for comparing pairs of histograms.

Parameters: in:
"w" - an integer describing which window the histogram

is to be displayed in (1 or 2).

"histogram" - the histogram, an array of up to 480
reals.

"levels" - an integer giving the number of levels in
the histogram.

"scale " - an integer which determines whether the
vertical scale factor is calculated
automatically (zero) or the scale factor
from the previous call to this function
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is used (non-zero).

******************************************************************/

void ipf_display_histogram_ (w, histogram, levels, scale)

int *w;
float histogram[];
int *levels, *scale;

{

static double ysf;

int n, m, p, max, xsf;
XSegment chart[480];

xsf = 480 / *levels;

if ((*scale == 0) || (ysf == 0))
{
max = 0;

for (n = 1; n < (*levels - 1); ++ n)
if (histogram[n] > max)
max = histogram[n];

ysf = CHART_MAX / (double) (max * 2);
}

for (n = 0; n < *levels; ++ n)
{
if ((histogram[n] * ysf) > CHART_MAX)

histogram[n] = CHART_MAX / ysf;

for (m = 0; m < xsf; ++ m)
{
p = (n * xsf) + m;

chart[p].x1 = chart[p].x2 = CHART_PSN_X + p;
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chart[p].y1 = CHART_PSN_Y;
chart[p].y2 = CHART_PSN_Y - (histogram[n] * ysf);

}

}

XClearWindow (display, window[*w]);

XSetForeground (display, DEF_GC, WHITE_PIX);

XDrawLine (display, window[*w], DEF_GC, CHART_PSN_X, CHART_PSN_Y,
CHART_PSN_X + (*levels * xsf), CHART_PSN_Y);

XDrawLine (display, window[*w], DEF_GC,
CHART_PSN_X - 8, CHART_PSN_Y - CHART_MAX,
CHART_PSN_X - 4, CHART_PSN_Y - CHART_MAX);

XDrawSegments (display, window[*w], DEF_GC, chart, *levels * xsf);

XFlush (display);

}

/****************************************************************

IPF_DISPLAY_HISTOGRAM_BIG

Action: Displays a histogram, of up to 960 levels, in a
1024*1024 window.

If the scale factor argument is zero, a suitable vertical scale
factor will be calculated automatically on the basis of the
maximum value found in the range 1 - (levels-1), i.e. excluding
the very lowest and very highest bins.

If the scale factor argument is non-zero, the scale factor is
set to the value used in the most recent call to this function.
This is useful for comparing pairs of histograms.

Parameters: in:
"histogram" - the histogram, an array of up to 960

reals.
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"levels" - an integer giving the number of levels in
the histogram.

"scale " - an integer which determines whether the
vertical scale factor is calculated
automatically (zero) or the scale factor
from the previous call to this function
is used (non-zero).

************************************************************/

void ipf_display_histogram_big_ ( histogram, levels, scale)

float histogram[];
int *levels, *scale;

{

static double ysf;

int n, m, p, max, xsf;
XSegment chart[960];

xsf = 960 / *levels;

if ((*scale == 0) || (ysf == 0))
{
max = 0;

for (n = 1; n < (*levels - 1); ++ n)
if (histogram[n] > max)
max = histogram[n];

ysf = BIG_CHART_MAX / (double) (max * 2);
}

for (n = 0; n < *levels; ++ n)
{
if ((histogram[n] * ysf) > BIG_CHART_MAX)

histogram[n] = BIG_CHART_MAX / ysf;
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for (m = 0; m < xsf; ++ m)
{
p = (n * xsf) + m;

chart[p].x1 = chart[p].x2 = BIG_CHART_PSN_X + p;
chart[p].y1 = BIG_CHART_PSN_Y;
chart[p].y2 = BIG_CHART_PSN_Y - (histogram[n] * ysf);

}

}

XClearWindow (display, window[1]);

XSetForeground (display, DEF_GC, WHITE_PIX);

XDrawLine (display, window[1], DEF_GC,
BIG_CHART_PSN_X, BIG_CHART_PSN_Y,
BIG_CHART_PSN_X + (*levels * xsf), BIG_CHART_PSN_Y);

XDrawLine (display, window[1], DEF_GC,
BIG_CHART_PSN_X - 8, BIG_CHART_PSN_Y - BIG_CHART_MAX,
BIG_CHART_PSN_X - 4, BIG_CHART_PSN_Y - BIG_CHART_MAX);

XDrawSegments (display, window[1], DEF_GC, chart, *levels * xsf);

XFlush (display);

}

/*********** INTERNAL FUNCTION **************/

static void display_512_image (w, image)

int w;
uchar *image;

{

XImage *x_image;

x_image = XCreateImage (display, DEF_VISUAL, 8, ZPixmap,
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0, image, 512, 512, 8, 512);

XPutImage (display, window[w],
DEF_GC, x_image, 0, 0, 0, 0, 512, 512);

XFlush (display);

}

/*************** INTERNAL FUNCTION *************/

static void display_1024_image (image)

uchar *image;

{

XImage *x_image;

x_image = XCreateImage (display, DEF_VISUAL, 8, ZPixmap,
0, image, 1024, 1024, 8, 1024);

XPutImage (display, window[1],
DEF_GC, x_image, 0, 0, 0, 0, 1024, 1024);

XFlush (display);

}

/*************** INTERNAL FUNCTION ******************/

static void install_cmap (red, green, blue)

unsigned short int red[], green[], blue[];

{
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int v;
XColor map_defs[256];
Colormap x_colour_map;

for (v = 0; v < 256; ++ v)
map_defs[v].pixel = v;

XQueryColors (display, DEF_COLORMAP, map_defs, 16);

for (v = 16; v < 256; ++ v)
{
map_defs[v].red = red[v-16];
map_defs[v].green = green[v-16];
map_defs[v].blue = blue[v-16];
map_defs[v].flags = DoRed | DoGreen | DoBlue;
}

x_colour_map =

XCreateColormap (display, ROOT_WINDOW, DEF_VISUAL, AllocAll);

XStoreColors (display, x_colour_map, map_defs, 256);

XInstallColormap (display, x_colour_map);

XFlush (display);

}

/*************** INTERNAL FUNCTION *********************/

static void make_filename (filename, envar_path, file, def_ext)

char *filename, *envar_path, *file, *def_ext;

{

char *path;
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if ((path = getenv(envar_path)) != NULL)
{
strcpy (filename, path);
strcat (filename, "/");
strcat (filename, file);
}
else
strcpy (filename, file);

if (strchr(file, ’.’) == NULL)
strcat (filename, def_ext);

}

/*************** INTERNAL FUNCTION *************/

static void list_files (envar_path)

char *envar_path;

{

char command[80];
char *path;

strcpy (command, "ls ");

if ((path = getenv(envar_path)) != NULL)
strcat (command, path);

printf ("\n");
system (command);
printf ("\n");
}
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K-distribution, 529
α-particles, 173
γ-rays, 5
k-space, 40
n-dimensional Fourier transform, 578
a posteriori PDF, 453
a priori information, 427
1D FFT C function, 62
1D time-dependent Green function,
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2D FFT C function, 66
2D Fourier transform, 37
2D Fourier transform operator, 37
2D convolution integral, 44
2D delta function, 33
2D inverse Fourier transform, 37
2D time dependent Green function,

140
3D delta function, 33

Abel transform, 46, 357, 359
absolute error, 612, 616, 618
absorbing media, 96
acoustic diffraction, 286
acoustic dilatation, 107, 288
acoustic field, 87
acoustic field equations, 87, 103
acoustic imaging, 8, 211
acoustic impedance, 213, 302
acoustic impulse response function,

213
acoustic scatterer, 160
acoustic waves, 107
addition theorem, 43
affine transformation, 610, 612, 615,

616, 618
Airy pattern, 294
algebraic deconvolution, 432

algebraic restoration, 433
aliasing, 13
ambipolar diffusion, 234
ambipolar diffusion coefficient, 236
Ampere’s law, 88
amplitude, 6
amplitude envelope, 200
amplitude function, 471
amplitude only reconstruction, 424
amplitude spectrum, 39, 316, 425
analogue computer, 4
analogue image, 12, 52
analogue signals, 4
analogue-to-digital, 55
angular frequency, 93
angular spectrum, 369, 371, 375, 377
anisotropic conductivity, 224
anomalous diffusion equation, 522
aperture, 1, 10
aperture synthesis, 310
aperture system, 344
apodized pupil, 362
arc scan, 292
arithmetic coding, 604, 607, 608, 610
arithmetic reconstruction tomogra-

phy, 249
ART, 249
Artificial Neural Network, 6
asymptotic approximation, 125
asymptotic Born scattering, 171
asymptotic potential, 176
attenuation coefficient, 249
attenuation vector, 95
attractor, 612–615, 617, 619, 625
auto-covariance function, 490
autoconvolution integral, 45
autocorrelation, 538
autocorrelation function, 366, 411,
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489, 515
autocorrelation function models, 517
autocorrelation theorem, 45, 515
auxiliary functions, 34
average intensity, 136
averaging process, 476
axial resolution, 294, 295
axial resolution artifacts, 296
azimuth processing, 318
azimuth resolution, 322

B-mode, 293
B-mode display, 296
B-scan, 200, 290
B-scan image, 300
back projection, 258
back-projection, 259
back-projection and deconvolution,

267, 408
back-projection operator, 259
back-projection PSF, 261
back-scattered field, 5, 172, 206, 229,

290, 302
back-scattered spectrum, 172
band-limited function, 439
band-limited image, 406, 460
bandlimited, 52
bandlimited function, 55
bandwidth, 72, 405
Bartlane system, 601
base-band, 316, 330
base-band systems, 203
baseband pulse, 246
basis functions, 30
Bayes rule, 451, 453
Bayesian statistics, 451
beam divergence, 200
beam equation, 373
beam field, 377
beam forming, 369
beam width, 294
beam-beam experiments, 116
beam-dump experiments, 116
beamwidth, 298, 327
Bermann process, 585
Bessel function, 42, 177, 239, 526
Bessel’s equation, 239

bi-logarithmic graph, 563
bi-modal, 514
binarization, 13, 512, 514
binomial expansion, 128, 129
binomial filter, 509
birth-death-migration processes, 525
bit reversal, 61
black noise, 531
blind deconvolution, 412, 435
blurring, 44, 472
blurring function, 7
Boltzmann constant, 2
Born approximation, 170, 181, 188,

204, 206, 246, 273, 302, 335,
404, 423

Born approximation: validity, 169
Born scattered amplitude, 176
Born scatterer, 227
Born scattering, 171, 176, 199, 514
Born series, 181
Born series: convergence, 182
Born’s approximation, 167
boundary element methods, 149
boundary layer thickening, 239
box counting dimension, 570
box function, 41
box-counting dimension, 565
box-counting method, 565
Box-Muller algorithm, 534
bremsstrahlung radiation, 234
brightness, 615, 617, 618
broadband spectrum, 405
brown noise, 531
Brownian motion, 521
bulk viscocity, 212
bulk viscosity, 104, 287
Butterworth high pass filter, 469
Butterworth low pass filter, 475

Canny edge detection, 497
canonical, 603
Cantor sets, 550
carrier frequency, 218, 315
carrier wave number, 315
carrier wavenumber, 316
Cartesian coordinates, 23, 123, 303,

325, 344, 348
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cascade process, 235
Cauchy’s integral formula, 122
Cauchy’s residue theorem, 124, 126
cavity magnetron, 311
central slice theorem, 262, 267
centre differencing, 473
characteristic function, 525
charge density, 88, 97
Chi-squared, 535, 537
Chi-squared test, 535
chirp, 315
chrominance, 621, 622
circular aperture, 346, 367
circular disc function, 42
classification, 507
closed surface integral, 27
clustering, 502, 590
clustering algorithm, 558
coarseness, 559
coherence, 294
coherent image, 5, 10, 512
coherent image formation, 361
coherent imaging systems, 5
coherent optical transfer function, 362
coherent phase walk, 519
coherent scattering processes, 524
coherent source, 135
coherent system, 137
collage error, 614
collage theorem, 611, 612, 615
collision frequency, 224
colour, 621, 623
coloured noise, 475
comb function, 53
common depth point, 198
compass edge detection, 495
complex Fourier coefficients, 32
complex Fourier series, 30
complex random variable, 525
complex refractive index, 95
compound linear scan, 293
compressibility, 8, 87, 103, 160, 274,

285
compression, 601
compression conscious imaging, 623
compression space, 14
compression waves, 102

compressional velocity field, 211
compressional viscocity, 212
compressional viscosity, 106
computer tomography, 247
conditional PDF, 457
conditional probability, 452
conductive dielectric, 204
conductivity, 8, 86, 92, 97, 204, 229,

323
confusion, 383
conjugate gradient method, 433
constrained deconvolution, 421
constrained least squares filter, 421
constructive interference, 5
continuous wave sources, 137
continuous waves, 137
contour lines method, 567
contour node, 608, 609
contour tree, 608, 610
contractive mapping, 611, 619
contractive transformation, 611
contrast, 504, 559, 613, 615, 617, 618
convolution, 44, 120, 146, 389
convolution integral, 44, 184
convolution process, 72
convolution sum, 70
convolution theorem, 10, 44, 56, 207,

259, 352, 405, 556, 577
corner clipping, 265
Cornu spiral, 351
correlation, 489, 533
correlation dimension, 572
correlation integral, 45
correlation process, 75
correlation sum, 75
correlation theorem, 45, 321, 391, 410,

411
cosine transform, 47
COTF, 362
Coulomb potential, 173, 174
Coulomb’s law, 87
coupon test, 537
covert watermarking, 390
Cramers rule, 732
cross product, 25
cryptography, 383
cryptology, 383
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CT, 247
cumulative distribution function

(CDF), 504
cumulative histogram, 466
curl, 26
current density, 88, 92, 97, 224
cut-off frequency, 228, 469, 475
CW diffraction tomography, 289
CW field, 5
CW fields, 274, 287, 289
cylindrical coordinates, 238

DC component, 172, 569
De Broglie waves, 161
de-blurring, 405
decoding, 614, 617, 619, 620, 624
decoding error, 614
deconvolution, 8, 267, 404, 405
delta function, 33, 119, 131, 253, 256,

330, 355
demodulation, 218, 316
density, 8, 87, 101, 103, 160, 274, 285
deregistration, 387
derivative, 530
destructive interference, 5
determinant, 535
deterministic algorithm, 613
deterministic self-similarity, 541
DFT, 59, 411
dictionary coding, 602, 618
dielectric, 176
dielectric constant, 93
differential cross-section, 173
diffraction pattern, 322, 344
diffraction slice theorem, 281
diffraction tomography, 252, 273
diffraction-limited lens, 353
diffused image, 388
diffusion, 383
diffusion decay, 238
diffusion equation, 235, 471, 521
diffusion equation: Green function,

144
diffusion only watermarking, 388
diffusivity, 143, 521
digital gradients, 493
digital holography, 381

digital image, 12, 52
digital Laplacian, 473, 500
digital signal, 4
Digital Versatile Disc, 623
digital watermarking, 382
digital-to-analogue conversion, 56
digitization, 12
digonalization, 431
dilation, 505
dipole moment, 92
direct conductivity, 224
direct current, 39
directionality, 560
Dirichlet boundary condition, 133
discrete convolution, 70
discrete convolution theorem, 406
discrete correlation, 73
discrete correlation theorem, 409
discrete cosine transform, 607
discrete Fourier transform, 30, 59
dispersion relation, 228
displacement vector, 92, 101
distortion, 8
divergence, 26
divergence theorem, 27, 131, 471
domain block, 614, 615, 617, 618
doppler effect, 339
dot product, 25
Dragon curve, 555
dyadic fields, 101
dynamic fractal images, 584
dynamic spatial reconstruction, 250

e-beam, 235
edge detection, 492
edge spread function, 357
eikonal approximation, 178
eikonal transform, 178, 254
elastic dilatation, 103
elastic field, 87
elastic field equations, 101
elastic scattering, 161
elastic wavefield, 102
electric field, 88, 97, 99, 176, 224
electric polarization, 92
electric scalar potential, 90
electric susceptibility, 93
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electromagnetic field, 85
electromagnetic imaging, 8
electromagnetic impulse response

function, 213
electromagnetic scatterer, 160
electromagnetic spectrum, 1
electromagnetic wave theory, 175
electromagnetic waves, 86
electron density, 239
EM scatter generating parameters,

100
emission computed tomography, 252
encoding, 602–604, 606, 607, 614, 615,

617, 618, 621, 624
encryption, 383
endpoint extension, 77
energy conservation, 429
entropy, 383, 530, 604, 605, 609
equalization, 465
erosion, 505
error function, 731
error reduction algorithm, 426
Euclidean distance, 612
evanescent waves, 370
exponential transform, 465
exposure time, 6

F-number, 348
far field, 9, 171
far field analysis, 130
far field approximation, 130
far field output, 379
far-field conditions, 274
Faraday’s law of induction, 87
fast Fourier transform, 59, 80
feed-back process, 47
Feinup algorithm, 426
Feynman diagram, 184
Feynman diagrams, 114
FFT, 59, 321, 469
field equations, 85
field-dependent aberrations, 356
filter back-projection, 267
finite impulse response filter, 73, 80
first derivative, 492
first order differential operators, 25
fixed point, 611, 612

flight path, 314
flying functions, 228
forward problem, 108
forward Radon transform, 265
forward scattered field, 172
forward scattering problem, 116
Fourier coefficients, 33, 460
Fourier dimension, 557, 561, 582
Fourier integral, 130
Fourier modulus, 426
Fourier optics, 353
Fourier plane, 129
Fourier space, 40, 45, 432
Fourier transform, 10, 30, 39, 121, 204,

212, 285, 359, 380, 423, 432,
469, 607

Fourier-Bessel function, 42
fractal compression, 621
fractal curves, 550
fractal dimension, 550, 563
fractal dust, 550
fractal flow fields, 583
fractal geometry, 541
fractal images, 577
fractal signature, 572
fractal surface, 553
fractal volume, 553
fractional differential equation, 557
fractional differentiation, 557
fractional divergent fields, 583
fractional Poisson equation, 579
fractional rotational fields, 583
Fraunhofer analysis, 380
Fraunhofer approximation, 127, 129,

380
Fraunhofer approximation theory, 129
Fraunhofer condition, 351
Fraunhofer diffraction, 43, 193, 343,

355
Fraunhofer diffraction pattern, 345
Fraunhofer zone, 129, 171
Fredholm integral equation, 184
free space Green function, 117, 120
frequency, 497, 531
frequency modulation, 311, 315, 428
frequency sweeping, 315
Fresnel approximation, 127, 129
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Fresnel diffraction, 194, 348, 356, 376
Fresnel diffraction formula, 194, 352
Fresnel diffraction integral, 349
Fresnel holograms, 381
Fresnel integral, 130, 316
Fresnel kernel, 382
Fresnel transform, 46
Fresnel zone, 194, 318
Frobenius series, 528
fundamental frequency, 33
fundamental imaging equation, 404
fuzziness, 8, 222
fuzzy imaging, 221

gain-control effect artifacts, 299
gamma rays, 1
gamut, 621
gap analysis, 536
gauge function, 91
gauge transform, 142
Gauss’ theorem, 132
Gaussian autocorrelation function,

518
Gaussian beam optics, 377
Gaussian beams, 377
Gaussian distribution, 454, 534
Gaussian function, 41, 517
Gaussian low pass filter, 428
Gaussian PSF, 406, 412
Gaussian pyramid, 507, 508, 618
Gaussian statistics, 459
generalized dimensions, 575
generalized random scaling fractals,

585
geometric optics, 246
geophone, 202
George Airy, 43
George Green, 113, 178
Gerchberg-Saxton algorithm, 426
Gibbs’ effect, 33
good conductive plasma, 231
good conductors, 98
gradient angle, 494
gradient magnitude, 494
gradient operator, 24
graduate student algorithm, 614
grazing angle, 329

Green function, 9, 44, 170, 173, 179,
190, 205, 229, 274, 318, 325,
343, 383

Green function solution, 120
Green function: asymptotic forms,

127
Green functions, 113, 114, 116
Green’s first identity, 28
Green’s second identity, 28
Green’s theorem, 28, 132, 167, 189,

191, 285, 288, 343
grey level, 465
ground truth, 310
gyrofrequency, 224

half angle formula, 174, 516
half-space problems, 371
half-tone pattern, 601
Hall conductivity, 224
Hall current, 224
Hankel (Fourier-Bessel) transform, 46
Hankel function, 42, 124
Hankel transform, 41, 359
harmonics, 33
Hausdorff dimension, 589
Hausdorff distance, 612
Hausdorff metric, 612
Hausdorff space, 612
Heisenberg’s uncertainty principle,

164
Helmholtz equation, 149, 181, 369, 423
Helmholtz scattering, 185
Helmholtz scattering function, 515
HH polarization, 312, 333
high definition TV, 623
high emphasis filter, 469
high order fractals, 572
high pass filter, 468
Hilbert transform, 258, 304, 316, 427,

519
histogram, 466, 590
histogram contrast stretching, 504
histogram equalization, 465, 504
histogram gamma correction, 505
histogram normalization, 505
hit and miss transform, 506
Holder order, 589
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holographic imaging, 379
holography, 380
homogeneous boundary conditions,

148, 168, 180, 189, 229
homogeneous conditions, 133
homogeneous dielectric, 338
homogeneous differential operator,

116
homogeneous diffusion equation, 143
homogeneous Helmholtz equation,

190, 343
homogeneous medium, 94
homomorphic filter, 468
Hough transform, 252, 267, 503
Huffman coding, 603, 605, 607
human visual system, 505
Hurst dimension, 570
Hurst exponent, 522
Huygens’ principle, 118
HV polarization, 312, 333
hybrid methods, 567
hyper dimensions, 548

ideal high pass filter, 469
ideal low pass filter, 475
ideal low-pass filter, 444
ill-posed problems, 435
illumination component, 468
image analysis, 487
image artifacts, 295
image enhancement, 464
image information, 6
image restoration, 406
image understanding, 5, 15
image-space, 40
imaging equation, 7
imaging method, 149
Immanual Kant, 3
impedance, 206
impedance of free space, 255, 324
impediography, 214, 220
impulse, 7
impulse response function, 7, 71, 204,

209, 221, 355
incident pulse, 207
incoherent image, 5, 10, 512
incoherent image formation, 366

incoherent light, 360
incoherent optical transfer function,

366
incoherent phase walk, 520
incoherent PSF, 367
incoherent source, 135
incoherent system, 137
incoming waves, 122
infinitely thin aperture, 348
information dimension, 573
information function, 7
infrared radiation, 2
ingoing Green function, 126
inhomogeneous dielectric, 205
inhomogeneous differential operator,

100, 108, 116
inhomogeneous Helmholtz equation,

161, 168
inhomogeneous medium, 94
inhomogeneous wave equation, 9, 119,

160, 290
inhomogeneous wave equations, 87
initial condition, 472
instantaneous frequency, 417
instantaneous phase, 315
instrument function, 7, 404
integral representation of δ, 35
intensity, 175, 176
intensity PSF, 361
intermediate field analysis, 130
interpolation, 56, 388
inverse Abel transform, 47
inverse bremsstrahlung, 235
inverse filter, 280, 284, 407
inverse Fourier transform, 39, 141,

144, 188, 207
inverse Laplace transform, 146
inverse operator, 184, 383
inverse problem, 3, 108
inverse Radon transform, 252, 267
inverse Radon transform operator, 258
inverse scattering, 187
inverse scattering problem, 116, 171
inverse source problem, 134
inverse-q power law, 558
ionisation, 235
ionization growth, 238
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ionization rate, 235
ionosphere, 224
ionospheric transport, 224
IOTF, 366
IRF, 231, 355
isoplanacity, 356
isoplanatic imaging equation, 386
isoplanatic optical system, 360
isotropic media, 93
isotropic pressure, 160
Iterated Function System, 613
iterated function system, 610, 612

jinc function, 43
Joint Photographic Expert Group, 623
joint probability, 452
Jost-Kohn method, 188
JPEG, 610

kernel, 73
kinematic viscosity, 239
Kirchhoff boundary conditions, 190,

192, 343
Kirchhoff diffraction, 190
Kirchhoff diffraction integral, 193, 322
Kirchhoff integral, 192
knee points, 619
Kolmogorov-Smirnov, 535
Kolmogorov-Smirnov test, 536
kurtosis, 530, 560

L-band, 312
lacunarity, 575
Lagrange multiplier, 420
Lamé parameters, 101
Lambertian surface, 562
Landsat images, 602
Langevin equation, 85
Laplace equation, 147
Laplace pyramid, 508
Laplace transform, 47, 144
Laplace’s equation, 239
Laplacean, 26, 46
Laplacian, 469, 499
Laplacian pyramid, 507
lateral correlation, 200
lateral resolution, 294
lateral resolution artifacts, 297

layered acoustic continuum, 211
layered dielectric, 204, 223
layered media, 198
layered viscous continuum, 211
least squares approximation, 441, 563,

616
least squares filter, 410
least squares method, 440, 555
Lebesgue measure, 562
left travelling pulse, 213
left travelling wave, 206
left-travelling pulses, 138
left-travelling waves, 138
lens, 604, 610
light diffusion, 470, 473
light speed, 88
line spread function, 359
line-likeness, 560
line-to-point transformation, 253
linear, 505
linear array, 290
linear congruence, 532
linear congruential generator, 533
linear curve, 619
linear feedback shift register, 534
linear FM PSF, 417
linear FM pulse, 318
linear interpolation, 505
linear media, 93
linear scan, 291
linear system response, 355
linear systems, 355
linearity, 88
linearization, 564
Liouville transformation, 186
Lippmann-Schwinger equation, 173,

423
logarithmic characteristics, 505
logarithmic transform, 464
longitudinal displacement potential,

102
longitudinal velocity potential, 288
longitudinal wave speed, 102
look-down angle, 311
Lorentz gauge transformation, 91
lossless compression, 601
lossy compression, 601
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low pass filter, 475
low pass filtering, 33
lowpass filter, 265, 354
lowpass filtering, 408
luminance, 621, 622
luminance quantization, 12
Lyapunov dimension, 574

Mach factor, 609
macroscopic Maxwell’s equations, 87,

91
magnetic field, 88, 92, 97
magnetic monopoles, 87
magnetic permeability, 94
magnetic resonance, 253
magnetic susceptibility, 93
magnetic vector potential, 90, 143
magnetization vector, 92
Mandelbrot surface, 577
Marr-Hildreth method, 501
mask, 494
matched filter, 269, 415
matched filtering, 311, 418
material stress tensor, 101, 103
matter waves, 161
Max Planck, 1
maximum entropy, 419
maximum entropy method, 419
maximum likelihood filter, 458
maximum a posteriori method, 454
maximum a posteriori filter, 459
Maxwell’s equations, 86
mean free path, 521
measure image, 590
measure images, 558
mechanical radiation, 87
median, 477
median filter, 269, 477
Menger sponge, 551
Mersenne prime number, 385
metric space, 611–613
microscopic Maxwell’s equations, 87,

88
microwave imaging, 5
microwaves, 311
Mie theory, 176
Minkowski dimension, 565

MipMap, 624
modified ampere’s law, 87
modified Bessel function, 529
modulated pulse, 218
modulation transfer function, 359, 367
monochromatic radiation, 93
monopole scattering, 285
Motion Picture Experts Group, 623
moving average filter, 78
moving window, 73, 476
moving window filters, 78
MTF, 359, 367
multi-band fixed thresholding, 492
multi-fractal analysis, 588
multi-fractal measures, 576
multi-lens photocopier, 604, 610, 612
multiple scattering, 8, 175, 185, 187,

204, 404, 514
multiple scattering events, 9

narrow-band spectrum, 5
narrowband light, 360
near field analysis, 130
nearest neighbour approximation, 265
negative binomial distribution, 525
neighbourhood averaging filter, 476
Neumann boundary condition, 133
Neumann series, 181, 184
noise, 7, 8, 404, 495, 497, 502, 503,

505, 590
noise reduction, 475
non-absorbing media, 96
non-conductive dielectrics, 98
non-integer dimensions, 550
non-periodic functions, 37
non-stationary characteristics, 522
non-stationary convolution, 308, 429
non-stationary deconvolution, 428
non-stationary process, 522
non-stationary processes, 429
non-viscous media, 105
nonlinear optical effects, 93
normal moveout, 198
normalization condition, 163
normalized correlation function, 516
nowhere differentiable function, 543
Nyquist frequency, 13, 52, 56
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nyquist frequency, 381

object function, 7, 324, 330, 336, 404,
424

object identification, 488
object plane, 9, 405
one-dimensional Green function, 121
one-dimensional scattering, 200
opening and closing, 506
optical beams, 369
optical diffraction, 190
optical filtering, 354
optical transfer function, 356
Ornstein-Uhlenbeck process, 585
orthogonality, 31
OTF, 356
out-going Green function, 325
out-going waves, 122
outgoing Green function, 124, 126, 182

parameter estimation, 587
parametrization, 556
paraxial wave equation, 343, 369, 373,

375
parmittivity, 160
Parseval’s theorem, 43, 366, 569
partially coherent image, 5
partially coherent images, 367
partitioning, 616
Pascal triangle, 509
path length, 120
pattern recognition, 15, 487
PCTF, 365
PDF, 453
peak power limited systems, 315
peak signal-to-noise ratio, 619
Peano curve, 555
Pedersen conductivity, 224
pencil beams, 202
pencil-line beams, 200
perimeter-area relationship, 568
periodic replication, 55
periodicity, 31
permeability, 8, 86, 92, 97, 160, 204,

290
permittivity, 8, 86, 92, 97, 204, 290,

323, 327, 336
permutation test, 537

personal identity number, 385
phase, 6, 45, 422, 621
Phase Alternation Line, 621
phase contrast imaging, 364
phase contrast microscope, 366
phase contrast transfer function, 365
phase imaging, 422, 427
phase information, 294
phase only reconstruction, 424
phase portrait analysis, 522
phase reconstruction, 422
phase retrieval, 425
phase shift, 5, 277
phase spectrum, 39, 45, 425
phase transfer function, 359
phase unwrapping, 427
phase velocity, 86
photograph, 5
piezoelectric effect, 291
PIN, 385
pink noise, 531
pixel, 4
Planck’s constant, 2, 162
Planck’s radiation law, 2
plane wave, 344
plane wave solutions, 94
plane wavefield, 179
plane waves, 369
plasma decay, 238
plasma frequency, 228
plasma screening, 234
point scatterer, 323
point scattering, 307
point scattering model, 306
point spread function, 7, 137, 294, 338,

355, 404, 428
Poisson equation, 118, 147
poker test, 536
polar coordinates, 41, 124, 256, 263,

347, 515
polarization, 290
polarized electric field, 225
polarized electromagnetic field, 273
poor conductive plasma, 232
position vector, 34
Power Spectral Density Function, 517,

562
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power spectrum, 39, 417, 570
power spectrum equalization filter,

414
power spectrum method, 568
prefix code, 603
pressure field, 103, 276, 285
Prewitt edge detector, 495
print/scan PSF, 387
prism method, 567
private key, 388, 391
probability, 466
probability coding, 602, 618
Probability Density Function, 515
probability density function, 453, 504
probability waves, 173
product theorem, 45, 55
projection tomography, 47, 246, 247,

250, 253, 273
propagators, 120
proper functions, 34
PSE criterion, 415
PSE filter, 414
pseudo impedance, 220
PSF, 429
PTF, 359
public key, 391
pulse length, 294
pulse-echo imaging, 5, 201, 204
pulsed field, 5
pulsed sources, 138
pupil function, 365, 366
pyramid, 624

quadratic chirp rate, 315
quadratic phase factor, 129, 130
quality, 606, 607, 614–622, 624
quantitative diffraction tomography,

284
quantitative impediography, 222
quantitative SAR imaging, 337
quantization, 468

Rényi dimension, 573
radar, 310
radar cross section, 227
radar cross-section, 320
radar footprint, 323
radio imaging, 5

radio waves, 1, 311
radio-nucleide emission, 252
radiography, 247
Radon inversion, 287
Radon transform, 46, 247, 252, 255,

269, 280
Radon transform operator, 258
random algorithm, 613
random amplitude, 456, 519
random Gaussian noise, 307
random number generation, 367
random phase, 519
random phase walks, 519
random scaling fractals, 557
random scattering, 514
random scattering fractal, 517
range block, 614–616, 618, 623, 624
range compression, 317, 320
range processing, 316
range resolution, 315, 317, 318
range spectrum, 316
range-domain algorithm, 618, 624
rapping, 77
RAR, 318, 335
rate distortion curve, 619
rate equation, 236, 240
rate equation analysis, 237
rayfield, 255
Rayleigh criterion, 294, 295
Rayleigh scattering, 175
Rayleigh-Gan approximation, 176
real aperture, 294, 310
real aperture radar, 318, 335
real-space, 40
reciprocity theorem, 134
recombination radiation, 236
reconstruction, 8
rectangular aperture, 345
reflection coefficient, 206, 230, 246
reflection component, 468
refractive index, 95
regularity, 560
relative permeability, 323
relative permittivity, 176
relaxation length, 106, 288, 289
relaxation parameter, 432
relaxation time, 106, 205, 212, 222
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replicated spectra, 55
resolution, 1, 8
resolution independence, 620, 624
restoration and reconstruction, 15
retarded potentials, 143
Riccatian equation, 179
Ricker wavelet, 219
Riemann-Liouville integral, 595
Riesz operator, 579, 586, 592
right travelling pulse, 206, 213
right-travelling pulse, 207
right-travelling pulses, 138
right-travelling waves, 138
ringing, 33
Roberts gradient, 495
Robinson filter, 496
robust fractal estimator, 568
root mean square, 170
root mean square error, 618
rotational symmetry, 41
rotational wave speed, 102
roughness, 561, 562
run test, 537
running weighted average, 73
Rutherford scattering, 172
Rytov approximation, 177, 179
Rytov approximation: validity, 180

sampling function, 53
sampling property of δ, 36
sampling theorem, 12, 52
SAR, 311, 312, 322, 339
SAR point spread function, 322
SAS, 340
scalar diffraction, 343
scalar diffraction theory, 190
scalar fields, 23
scalar wave equation, 254
scalar wavefield, 160
scattered electric field, 176
scattered field, 5
scattered wavefield, 167
scattering amplitude, 173, 174, 515
scattering angle, 516
scattering function, 289, 404, 424
scattering potential, 173
scattering sites, 514

Schrödinger equation, 149, 161
Schrödinger’s equation, 164, 173
screened Coulomb potential, 174
sea spikes, 334
second derivative, 492, 501
second order differential operator, 26
sector scan, 292
segmentation, 487
seismic imaging, 5, 198
seismic waves, 198
self-affine curve, 556
self-affine surface, 579
self-affinity, 553
self-similarity, 541, 610, 620
semi-thresholding, 491
serial computing, 15
serial independence, 536
Shannon-Fano coding, 603
shear viscosity, 104, 287
shear wave, 211
shear waves, 102
shift theorem, 43
shot location, 198
side-band spectrum, 315
side-band systems, 203, 218
side-lobe energy artifacts, 298
sideband system, 254
Sierpinski carpet, 551
Sierpinski triangle, 551, 612
sigma independent noise, 410
signal-to-noise ratio, 233, 383, 411,

433, 619
signum operator, 501
similarity dimension, 550
similarity theorem, 43
sinc function, 34, 43, 56, 315, 318, 322,

441
sinc interpolation, 55, 56
sinc PSF, 436
single-band fixed threshold, 491
skeleton, 506
skewness, 530
skin depth, 229, 232
smearing, 44
smoothing function, 7
SNR, 233, 411
Sobel edge detector, 495
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Sommerfeld radiation condition, 192
sonar imaging, 5
source function, 131
sparse matrices, 432
spatial filtering, 354
spatial frequencies, 277, 468, 469
spatial frequency, 37
spatial quantization, 12
speckle, 10, 294, 447, 497
spectra, 571
spectral characteristics, 6
spectral exponent, 531
spectral extrapolation, 406
spectral power law, 554
spectrum, 38, 206
spherical polar coordinates, 125, 148
spherical wave, 349
square wave, 32
stacking, 6, 198
stationary, 531
stationary linear system, 356
statistical moments, 529
statistical self-similarity, 541
steady state conditions, 238
steganography, 383
stochastic differential equations, 542
stochastic fields, 187
strong scattering, 185
sub-bottom profiling, 339
substitution coding, 605
successive doubling method, 60
successive-under-relaxation method,

432
super resolution, 460
surface integral, 167, 471
surface scattering, 189
symmetric scalar field, 24
Synthetic Aperture Radar, 11
synthetic aperture radar, 310
synthetic aperture sonar, 339

tailored fractal surface, 581
Taylor series, 472, 500
Taylor’s theorem, 23
telegraph, 601
template, 489
texture, 557, 561, 606, 624

texture periodicity, 538
texture segmentation, 537
texture-map, 624, 625
TF, 356
the Sun, 1
thinning and thickening, 507
three-dimensional Green function, 125
thresholding, 491
time dependent Green function, 137
time dependent wave equation, 165
time history, 201
time resolved image, 6
time travel transform, 212
time-averaged intensity distribution, 5
time-dependent sources, 139
time-independent Green function, 140
time-independent wave equation, 120,

131
time-of-flight, 251
time-of-flight CT, 251
tomogram, 247, 251
tophat function, 56, 268, 304
topological dimension, 550, 562
trace, 198
transducer, 274, 291
transfer function, 356
transformation, 504, 610, 611
transmission coefficient, 582
transversality conditions, 95
transverse Laplacean, 373
tridiagonal matrix, 72
two-dimensional Born scattering, 172
two-dimensional Green function, 123,

124
two-way travel time, 207

ultrasonic artifacts, 296
ultrasonic imaging, 5, 200
ultrasonic propagation, 290
ultrasonic pulse, 293
unidirectionality, 372
uniform distribution, 383
uniform phase distribution, 526
uniform spectrum, 557
unit dyad, 101
unit vectors, 34
UNIX compress, 606



INDEX 797

variable, 606
variable length code, 602
variance, 530
vector fields, 23, 25
vector quantization, 610, 621
velocity field, 103
vertical slice averaging, 568
VH polarization, 312, 333
video, 619, 621, 623
virtual memory, 15
viscosity, 8, 87, 104
viscous media, 105
volume integral, 27, 167
volume scattering, 189
von Koch curve, 550
VV polarization, 312, 333

walking-divider method, 564
wave equation, 470
wave operators, 163
wavefield, 1
wavefronts, 130
wavelength, 1, 171
wavelet transform, 47, 610
wavenumber, 40, 119, 319
weak fields, 93
weak scatterer, 170
weak scattering, 7, 175, 404
weakly ionised plasma, 233
Weber’s rule, 608
weighting function, 439, 443
white Gaussian noise, 580
white noise, 417, 531
Wiener filter, 408, 410, 412
window, 73, 530
WKB approximation, 177–179, 253

X-band, 312
X-band radar, 334
X-ray absorption coefficient, 250
X-ray crystallography, 129, 423
X-ray images, 465
X-rays, 5, 247, 248, 423

zero frequency, 39, 172
zero padding, 77, 265, 425
zone plates, 130
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