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Abstract—Renewable energy generation in the All-Island of5
Ireland (AII) is set to increase by 2020 due to binding renew-6
able energy targets. To achieve these targets, there will be periods7
of time when 75% of electricity will be generated mainly from8
onshore wind. Currently, the AII system can accommodate a 50%9
maximum permissible instantaneous level of wind generation. The10
system operators must make system-wide wind curtailment deci-11
sions to ensure that this level is not breached. Subsequently, the12
ability to limit wind curtailment using large-scale energy storage13
such as pumped hydroelectric energy storage and compressed air14
energy storage (CAES) is increasingly being scrutinized as a viable15
option. Thus, the aims of this paper are to estimate the level of16
wind curtailment on the 2020 AII system for various scenarios17
including with and without CAES, and assess and quantify the rev-18
enue loss due to wind curtailment using power systems simulation19
software PLEXOS.20

Index Terms—Compressed air energy storage (CAES), energy21
markets, PLEXOS, power system economics, power system model-22
ing, power system operation, revenue, total generation costs, wind23
curtailment, wind power.24

NOMENCLATURE24

AII All-Island of Ireland.25

CAES Compressed air energy storage.26

MSQ Market schedule quantities.27

RES Renewable energy sources.28

SMP System marginal prices.29

SNSP System nonsynchronous penetration.30

I. INTRODUCTION31

T HE TRANSITION to RES, namely wind and solar, has32

progressed rapidly as countries strive to meet binding33

renewable energy targets. In 2012, wind power provided 2.5%34

of global electricity demand and up to 30% in Denmark, 20%35
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in Portugal, and 14.5% in Ireland [1]. This higher provision in 36

European countries is driven by the European Commission’s 37

framework that put in place in 2009, built around 2020 tar- 38

gets for renewable energy (20%), greenhouse gas emission 39

reduction (20%), and energy efficiency (20%) [2]. 40

In particular, the governments of the Republic of Ireland 41

(ROI) and Northern Ireland (NI) have set an ambitious target 42

that requires 40% of electricity to come from RES, predomi- 43

nately wind, by 2020 [3]. The current and proposed 2020 level 44

of installed wind capacity across the AII1 is, and will continue 45

to be, one of the highest global levels relative to the size of the 46

system [4]. The transmission system operators (TSOs) Eirgrid 47

and SONI are seeking to operate between 5000 and 6000 MW 48

of wind capacity across the AII by 2020 [5]. This represents 49

circa 37%–41% of the total generation capacity in 2020. 50

The increasing amount of wind capacity due for connection 51

introduces a new challenge for the TSOs in maintaining the 52

stability of the system. Currently, the AII system can accom- 53

modate a 50% maximum permissible instantaneous level of 54

nonsynchronous generation such as wind. As a consequence, 55

the TSOs must make system-wide curtailment decisions, par- 56

ticularly in the case of wind generation to ensure that this level 57

is not breached. 58

Since 2003, curtailment has been highlighted by the Irish 59

wind energy sector as a potential limiting factor to the long- 60

term growth of wind farm development in Ireland. In the 61

meantime, policy makers have taken limited action to effec- 62

tively address this issue and enact mitigating measures. In 2011, 63

curtailment levels for all wind farms across the AII averaged 64

2% with some wind farms experiencing no curtailment while 65

others had levels of 7%–8% [6]. It should be noted, however, 66

that during this year, outages on the Moyle interconnector (MI) 67

between NI and Scotland and the only pumped storage plant 68

in the AII resulted in higher levels of curtailment than would 69

otherwise have been expected [7]. 70

More recently, the Single Electricity Market (SEM) 71

Committee for the AII has been considering matters associ- 72

ated with curtailment in tie-break situations. The committee 73

decided that operational wind farms (both firm and nonfirm) 74

will be turned down on an equal basis in a curtailment situation 75

from March 1, 2013. Furthermore, compensation payments for 76

curtailment will cease on the January 1, 2018, and the TSOs 77

and SEM operator will be responsible for implementing this 78

through the relevant grid code and market structure, respec- 79

tively [8]. 80

1The ROI and NI are two separate jurisdictions with a common synchronous
power system known as the All-Island of Ireland (AII).

1949-3029 © 2014 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.
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Subsequently, the decision to remove compensation for81

curtailment by 2018 will be of major concern to investors82

in the wind energy sector. It is, therefore, essential that83

ongoing work including: Eirgrid’s DS3 and Grid 25 pro-84

grams are delivered on time in order to minimize the occur-85

rences of curtailment. These programs involve developing86

financial incentives for enhanced plant performance, opera-87

tional policies, system tools, and additional grid infrastructure88

development.89

Large-scale energy storage such as pumped hydroelectric90

energy storage (PHES) and CAES also allows curtailed wind91

energy to be stored until it is required [9]. Currently, only one92

292 MW PHES plant exists in the AII and has been operational93

since 1974. However, despite PHES being considered a mature94

technology, further development in the AII has ceased mainly95

due to the lack of suitable sites, high initial capital costs, and96

environmental impact concerns.97

Apart from PHES, CAES is the only commercial large-scale98

storage technology to have been deployed at utility scale, and a99

number of research projects have analyzed CAES as a solution100

to improving wind integration and reducing wind curtailment101

[10]–[12]. An appraisal of the geological conditions and the102

potential of underground gas storage and CAES deployment103

were undertaken in Larne, NI [13]. Results indicated that Larne104

is the only place in NI and one of the few places in the AII,105

which has salt deposits potentially suitable for CAES [13], [14].106

Hence, the potential exists for a 268-MW CAES plant to be107

connected to the AII system [14].108

In summary, CAES can reduce wind curtailment and improve109

the long-term growth of wind farm development in the AII.110

Thus, the aims of the paper are 1) to estimate the level of111

wind curtailment on the 2020 AII system for various scenarios112

including with and without CAES and 2) to assess and quantify113

the revenue loss to wind generation due to the termination of114

wind curtailment compensation.115

II. COMPRESSED AIR ENERGY STORAGE116

A. Overview of Technology117

CAES is a hybrid form of storage and is a modification of118

the conventional gas turbine (GT) technology. A CAES plant119

consists of a power train motor used to drive a compressor120

to compress air into a reservoir, a high- and low-pressure tur-121

bine, and a generator. The reservoir is either an aboveground122

vessel/pipe or an underground geologic formation such as salt,123

rock, and saline aquifers.124

A CAES plant operates similarly to a conventional GT with125

the compression and expansion stages occurring independently126

or concurrently depending on the plant type. During the com-127

pression stage, excess electricity or off peak low cost electricity128

is used to run a chain of compressors which injects air into the129

reservoir.130

During the expansion stage, when electricity is required,131

pressurized air is released from the reservoir and used to132

run a turbine which produces electricity. In order to improve133

the power output of the turbine, natural gas is used in the134

combustion cycle. This allows electricity to be generated using 135

only 33% of the natural gas required to generate the same 136

amount of electricity as a conventional GT [15]. 137

CAES plant designs are categorized based on the method 138

of managing heat from compression and expansion of the air. 139

These categories are diabatic, adiabatic, and isothermal. In 140

diabatic CAES (often referred to as “conventional” or “first 141

generation” CAES), the heat of compression is removed and 142

dissipated during compression and the air is reheated during 143

expansion [16]. Second-generation CAES is similar to first gen- 144

eration except a modified design that leads to improved com- 145

pression and/or expansion stages using air injection techniques 146

to increase efficiency. 147

In adiabatic CAES (referred to as “third-generation” CAES), 148

the heat of compression is stored in a solid or fluid and returned 149

to the air during expansion [16]. Therefore, no natural gas is 150

required to heat the compressed air in the combustion cham- 151

ber. Similarly, in an advanced adiabatic (AA) CAES plant, 152

the waste heat is captured and rereleased into the compressed 153

air, so that no gas co-combustion to heat the compressed air 154

is required. The key benefits of adiabatic and AA CAES are 155

higher efficiencies and reduced carbon emissions as there is no 156

fuel consumption required during generation. 157

In Isothermal CAES, the compression and expansion stages 158

are conducted in a slow manner to ensure that the air is main- 159

tained at an approximate constant temperature through heat 160

exchanges with the environment [16]. The theoretical efficiency 161

of isothermal CAES approaches 100% for perfect heat transfer 162

to the environment. However, in practice, perfect thermody- 163

namic cycles are not obtainable as some heat loss occurs. In 164

conclusion, both AA and isothermal CAES are still at the 165

research and development stage and it could be sometime 166

before large-scale deployment occurs. 167

B. Review of Developments 168

CAES is more than 40 years old, dating from the 1970s when 169

it was first deployed as a means of providing energy during 170

peak demand and bridging supply shortfalls from slow ramping 171

base load plants [17]. At present, there are two first-generation 172

diabatic CAES plants in operation, one in Huntorf, Germany 173

where a 290-MW plant was constructed in 1978 and another in 174

Alabama, USA where a 110-MW plant was constructed in 1991 175

[10]. They were mainly built for their black start capabilities 176

and peak shaving services. 177

Some pilot CAES plants have been built in Japan and Italy 178

(25 MW) and are proposed for Israel and Russia. In the United 179

States (U.S.), construction of a diabatic 317-MW CAES plant 180

near Tennessee Colony, Texas is due to commence in Spring 181

2015 [18]. Moreover, it will be the first CAES plant to be built 182

in the U.S. since the plant in Alabama. 183

In Europe, the idea of developing CAES is obtaining momen- 184

tum due to the deployment of intermittent wind and solar power 185

plants. In particular, the TSOs in the ROI and NI are in dis- 186

cussion with an energy company about the connection of the 187

proposed 268 MW CAES plant in the Larne area, NI [19]. This 188

plant has been listed as a one of the projects of community 189
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interest within the European Union and is envisaged to be listed190

as critical infrastructure under the SEM [20].191

The European Commission has supported the first AA CAES192

plant due for construction in Germany by 2016, entitled the193

“ADELE” project [21]. The aim of this project is to further194

advance the necessary components for this technology and to195

develop the basic concept for the first AA CAES plant.196

The world’s first 1.5 MW Isothermal CAES plant is located197

at SustainX headquarters in Seabrook, New Hampshire, USA198

[22]. The process involves capturing the heat produced dur-199

ing compression, trapping it in water, and storing the warmed200

air–water mixture in pipes. When electricity is required by201

the grid, the isothermal expansion delivers electricity with no202

requirement for natural gas combustion.203

III. METHODOLOGY204

A. Modeling Software205

The main proprietary modeling software used in differ-206

ent countries for power systems modeling include EMCAS,207

PLEXOS, EnergyPLAN, WASP IV, and WILMAR [23]. The208

most common modeling software used for AII system modeling209

are WILMAR and PLEXOS. The WILMAR planning tool was210

first issued in 2006 and was originally used to study wind vari-211

ability in the Nord pool system. It was then modified to analyze212

the Irish system as part of the All-Island Grid Study [24].213

PLEXOS is an integrated energy software tool developed by214

Energy Exemplar and is used for power and gas market mod-215

eling worldwide [25]. Since 2007, PLEXOS has been used216

in Ireland by the TSOs, Commission for Energy Regulation217

(CER), and SEM participants to validate and forecast SEM out-218

comes [26], [27]. Moreover, it is considered by academia as a219

well-proved tool for policy analysis and development in the AII220

[11], [28]–[31]. Therefore, PLEXOS version 6.208 R04 was221

used to build and run the models for the analysis presented in222

this paper.223

B. Base Model Verification and Validation224

The CER provides publically accessible calibrated backcast225

and validated forecast PLEXOS models annually [27]. The226

CER uses these models to monitor gaming by simulating the227

SMP and market outcomes in the SEM.228

In this study, the CER 2010 backcast model is used to229

replicate the actual ex-post SMP and MSQ observed in the230

SEM. The PLEXOS modeling configuration, which provided231

the best replication of the ex-post data across the simulation232

horizon, was then used to inform any recommendations for the233

2011–2012 validated forecast model.234

The CER 2010 backcast model was run for 365 days at235

30 min intraday trading periods. The technical and commercial236

characteristics for each generator participating in the SEM were237

defined by submitted technical and commercial offer data [27].238

This consists mainly of no load costs, start costs and start cost239

times, actual availabilities, min up/down times, and minimum240

stable level (MSL). This represented the exact data submitted241

by the generators to the SEM operator, which was verified by242

the CER.243

A comparative validation analysis was conducted between 244

the backcast model outputs and the actual market outputs. The 245

mean absolute percentage errors (MAPE) were 6.1% and 7.7% 246

for average daily SMP and annual MSQ, respectively. The 247

backcast model produces a profile for the average daily SMP, 248

which is consistent with the actual market. It was noticeable 249

that there were regular price spikes and dips for the on-peak and 250

off-peak hours, respectively. Also, it generally produces higher 251

off-peak SMP than the actual market, whereas on-peak prices 252

are lower than observed in the actual market. 253

The discrepancies between the SMP and the MSQs can be 254

attributed to PLEXOS’s tendency to over-schedule generators, 255

which reduces the shadow price but increases the uplift by a 256

similar amount. The shadow price makes up most of the SMP 257

and relates to the incremental short run marginal cost bids 258

from generators comprising of fuel and carbon costs. The uplift 259

component covers the generator’s start-up and no-load costs. 260

Therefore, there are some instances where higher uplift was 261

caused by the cost recovery method in PLEXOS for generators 262

that only ever ran at MSL during the year. This effect was also 263

observed in previous validation studies, and it is recommended 264

that MSL and ramp rate uplift filters be kept on [27] and [32]. 265

C. 2020 Model Description 266

The CER-validated forecast model of 2011–2012 was used 267

as a starting point from which the 2020 model for this analysis 268

was developed. The 2020 model was populated with the indi- 269

vidual generator techno-economic parameters for new entrants 270

and retirements, which have signed agreements and confirmed 271

dates to connect to the AII system over the next 10 years [5]. 272

Similarly, the system demand and wind capacity for 2020 were 273

obtained from Eirgrid and SONI [5]. A simplified Great Britain 274

(GB) system and interconnections to the ROI and NI were 275

created in the model as per the validated forecast model [27]. 276

A main constraint restricting the amount of nonsynchronous 277

generation, mainly wind, on the AII system is enforced in the 278

model. This is known as the SNSP limit and is a measure of 279

the nonsynchronous generation on the AII system at an instant 280

in time as shown by (1) [33]. Based on extensive research by 281

the TSOs on high wind penetration levels, an SNSP limit was 282

identified as an all-encompassing indicator for the operational 283

ranges allowing secure operation of the AII system [33] 284

Wind generation + imports
System demand + exports

≤ SNSP (1)

where the SNSP limit ensures that the amount of wind gen- 285

eration, when added to interconnector imports, does not exceed 286

the sum of system demand and interconnector exports. The sys- 287

tem demand includes the pump storage and CAES consumption 288

when in pumping mode. 289

The PLEXOS simulation engine reads the input data such 290

as system demand and wind data as shown in Fig. 1. It simu- 291

lates 366 individual daily optimizations at half-hourly intervals 292

ensuring that the generation portfolio meets demand at least 293

cost while taking into account the generator’s techno-economic 294

parameters. Generator and system-wide constraints are also 295

enforced for each simulation period. Similar to the SEM, the 296
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Fig. 1. PLEXOS system modeling structure.F1:1

TABLE IT1:1
SCENARIO DEFINITIONST1:2

solver calculates SMP and MSQ for each period; therefore, pro-297

viding an accurate representation of the dispatch of generators298

in the AII system.299

D. Model Scenarios300

Table I shows the scenarios simulated in this analysis. Two301

main operational scenarios: 1) business as usual (BAU) and302

2) enhanced operational capability (EOC) have been considered303

with the remaining two scenarios containing a CAES plant as304

an additional generator.305

A description of each scenario is as follows.306306

1) BAU represents the current operational network con-307

straints with a 50% SNSP limit and an installed wind308

capacity of 3600 MW. The interconnector flows are set309

as a fixed input based on the outputs from a market310

unconstrained model run for this analysis. This approach311

replicates the current SEM rules, whereby interconnec-312

tor nominations are determined by the ex-ante market313

dispatch schedule. Operating reserve requirements are314

assigned to each generator based on current operational315

policy. Hence, this scenario is considered to represent a316

realistic real time operation of the system.317

2) EOC is the BAU scenario with a 75% SNSP limit instead318

of 50% and an installed wind capacity of 5211 MW319

was assumed to achieve the required 37% of electricity320

from wind by 2020. It represents the possible opera-321

tional network constraints if enhanced system services are322

implemented by 2020.323

3) BAU+ CAES is the BAU scenario with a CAES plant324

included in the AII generation portfolio. The CAES325

plant only contributes to energy requirements in this326

scenario.327

TABLE II T2:1
GENERATION CAPACITY PORTFOLIO T2:2

2BAU and BAU+CAES scenarios.
3EOC and EOC+CAES scenarios.

4) EOC+ CAES is the EOC scenario with a CAES plant 328

included in the AII generation portfolio. In this sce- 329

nario, the CAES plant contributes to energy and operat- 330

ing reserve requirements, which are explained in more 331

detailed in Sections III-E and III-F. 332

E. Main Model Assumptions 333

The AII system demand is expected to increase 12% between 334

2011 and 2020 based on the median demand forecast by Eirgrid 335

[5]. The median demand forecast is considered to reflect the lat- 336

est projections for the AII based on the future economic climate 337

and has been used for several AII case studies. The annual sys- 338

tem median demand is estimated to be 41.2 TWh with a peak 339

demand of 7.3 GW. Accordingly, the 2011 demand time series 340

profile is linearly scaled to reflect the 2020 median demand 341

forecast. 342

A breakdown of the generator types used for the scenarios 343

simulated in this analysis is shown in Table II. 344

Onshore wind capacity varies for each scenario and it is 345

assumed that no more offshore wind will be developed in 346

the AII prior to 2020. It is assumed that only 25 MW of 347

installed offshore wind capacity exists from a single wind farm 348

at Arklow Bank, Co., Wicklow, Ireland. 349

Wind generation is modeled under the assumption of perfect 350

foresight in aggregated form, split into 13 regions. The capacity 351

for each region is based on the proposed regional distribution of 352

renewable capacity by Eirgrid [34]. Each region has an associ- 353

ated half-hourly profile, which represents the wind availability 354

in that region in each half hour as a percentage of total installed 355

capacity in that region. These profiles were developed from 356

historical time series data from 2011. 357
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The general approach is to model wind generation with zero358

short run marginal costs (fuel, carbon, and start costs equal359

zero) based on the assumption that it will always run when360

available, due to its priority dispatch status. Similarly, pre-361

dictable price takers peat, wave, waste, and CHP generators are362

assigned zero short run marginal cost to ensure that they are363

dispatched fully when available.364

Modeling the GB system is required in order to determine365

the interconnector flows between SEM and GB. Gas generation366

has been the predominant marginal plant type on the GB sys-367

tem and a high correlation between the cost of gas generation368

and the GB electricity price has been determined [27]. A single369

gas generator of 2000 MW with multiband heat rates, variable370

operating and maintenance (VOM) costs, and 1100 MW of load371

was, therefore, used to represent the GB system.372

The CER also adopts this simplified GB representation to373

determine SEM outcomes. GB wind is not modeled and signifi-374

cant data collection is required to create a complete GB system.375

Moreover, including the complete GB system in each scenario376

would significantly increase the computational time and so the377

approach described is applied.378

The complete transmission network is not included in the379

model and localized network constraints are not modeled.380

Instead, the model consists of system-wide constraints and381

three separate nodes representing the ROI, NI, and GB sys-382

tems. It is assumed that adequate transmission capacity as383

per Eirgrid’s Grid 25 program has been built by 2020 to384

accommodate increased levels of wind capacity on the system.385

There is a restricted flow of 450 MW in the NI–ROI and386

400 MW ROI–NI directions at present due to system security387

issues. However, the full rating of the north–south transmission388

line between NI and ROI is assumed to be in place by 2020;389

therefore, flows of 1500 MW both ways are set within the390

model [35].391

The MI links NI to Scotland, and flows on the MI are largely392

driven by arbitrage of the relative prices in the two systems.393

The MI is limited to exporting 300 MW and importing 450 MW394

November–March and 410 MW April–October. However, there395

is uncertainty in relation to the actual maximum import and396

export capacity of the MI for the foreseeable future due to an397

undersea cable fault [19]. The east–west (EW) interconnector398

between the ROI and GB nodes, maximum flow was assumed399

500 MW both ways.400

The model applies historic transmission loss adjustment fac-401

tors to all generators to account for the possible losses within402

the AII system. Planned and unplanned maintenance for each403

generator during the year is considered. The former is assigned404

manually based on the 2011 schedule and the latter is modeled405

as a random event.406

The number of high inertia generators required online for407

system stability is applied as per the 2013 Transmission408

Constraint Groups (TCGs) requirements [36]. There are also409

constraints applied on certain groups of generators and maxi-410

mum export capacities within certain regions. Including these411

constraints within the model allows for a more realistic real412

time system operation.413

The reserve requirements for 2020 are set based on modified414

TCGs requirements to take account of the increased amount of415

TABLE III T3:1
OPERATING RESERVE REQUIREMENTS T3:2

wind generation on the AII system. Three categories of operat- 416

ing reserve were modeled: 1) primary operating reserve (POR), 417

2) secondary operating reserve (SOR), and 3) two classes of 418

tertiary operating reserve (TOR1 and TOR2). It is assumed that 419

the reserve categories will remain unchanged as a result of the 420

TSOs DS3 program to refine the system services products [26]. 421

For each reserve category, there is a total requirement and a 422

minimum dynamic requirement. The total requirement ranges 423

between 75% and 100% of the largest electricity in-feed 424

depending on the reserve category [36]. This was based on 425

an assumed largest in-feed of 500 MW, corresponding to the 426

largest generator on the AII system, which is the EW intercon- 427

nector. The minimum requirement for each reserve category is 428

fixed at 165 MW. The total requirement as a percentage of the 429

largest in-feed and minimum dynamic requirement is outlined 430

in Table III. 431

Certain generators are assigned reserve capacities for each 432

reserve category for the provision of dynamic reserve. Static 433

reserve provision of 35 MW of interruptible load is assumed 434

to be provided from the PHES plant during pumping mode for 435

static reserve [37], [38]. The MI and EW interconnectors are 436

assumed to hold 75 and 50 MW of static reserve, respectively. 437

In summary, this analysis employs a deterministic model 438

using a set of main assumptions based on published data. The 439

analysis assumes perfect foresight for wind generation and sys- 440

tem demand with no significant rules changes to the SEM or to 441

the broader market by 2020. The analysis, therefore, applies the 442

current SEM rules and assumes the current bidding principles 443

and methodology for calculating the various cost and revenue 444

streams remain unchanged. 445

F. Modeling of Storage 446

A simplified modeling approach for the PHES plant is 447

adopted for the market unconstrained model. PHES is modeled 448

as four separate units similar to hydro units, which are allowed 449

to run from a zero level up to maximum capacity. In the pump 450

mode, the units are also allowed to pump from a zero level up 451

to maximum pump capacity. During the simulations, PHES is 452

forced to refill to a predefined target by the end of each day. 453

This approach was used previously for PHES modeling in the 454

SEM [39]. 455

However, the real-time operation of the PHES plant is rather 456

different. For all scenarios, the PHES has three distinct modes: 457

1) spin, 2) min, and 3) pump. In spin mode, each unit can 458

provide 5 MW but no more than two units can be in spin mode 459
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TABLE IVT4:1
CAES PLANT TECHNICAL OPERATING DETAILS [41]T4:2

at any one time with the remaining two units providing a min-460

imum generation level of 35 MW. In min mode, each unit can461

provide between 40 and 73 MW, which contributes to both POR462

and SOR. The PHES units share a common penstock; therefore,463

a constraint to prevent concurrent generation and pumping is set464

within the model. In the final mode, pump mode, the PHES four465

fixed speed pump units can each draw a load of 71.5 MW from466

the AII grid and can provide full capacity for POR. Again, these467

three operational modes were adopted previously for real-time468

PHES modeling in the AII system [30].469

A CAES plant is represented within the model by a PHES470

plant coupled with a GT plant using constraints to replicate the471

operation of the CAES plant. In compression mode, the PHES472

plant draws power from the grid to compress air; whereas, in473

generation mode, both the PHES plant and GT generate power.474

A constraint limiting the combined output of the PHES plant475

and GT plant is set based on the maximum generation capacity476

of the CAES plant. This approximation of the CAES plant con-477

figuration was used previously for other case studies [11], [40].478

The details of the CAES plant used for this analysis are shown479

in Table IV and are assumed to represent the plant, which will480

be connected to the AII power system in 2020.481

At present, it is unclear which reserve categories the CAES482

plant will contribute toward for the AII system. Therefore, the483

CAES plant’s reserve capabilities are based around the con-484

tributions in which the existing open-cycle GTs and PHES485

provide for generation and pumping in the AII system, respec-486

tively. The contribution of the CAES plant to generation and487

pumping reserve capabilities is assumed as 30 and 100 MW488

for each reserve category (POR, SOR, TOR1, and TOR2),489

respectively.490

G. Cost Data491

Fuel prices are based on predictions for 2020 from two main492

sources [42], [43]. A carbon tax of C30/t CO2 based on the493

European Union emissions trading scheme was applied to fos-494

sil fuel burning generators. This was a realistic figure based495

on the carbon taxes used for previous AII case studies, which496

ranged between C15/t and C45/t CO2 [28], [42], [44]–[46].497

Generator VOM costs were obtained from several sources [45]–498

[47] and start costs were derived from historic start costs [27].499

Cost data for the CAES plant were based on Thorner et al. [41].500

All cost data were normalized to 2012 values using consumer501

price indices [48].502

Fig. 2. System wide wind curtailment levels. F2:1

IV. RESULTS AND DISCUSSION 503

A. System-Wide Wind Curtailment 504

The main result from this analysis is an estimate of the 505

system-wide wind curtailment levels in the 2020 AII system for 506

various scenarios including with and without CAES. The cur- 507

rent AII system can accommodate a maximum SNSP limit of 508

50%; however, if mitigation measures are introduced, an oper- 509

ational limit of 75% SNSP is possible. The impact that this 510

increase has on the system for different scenarios is shown in 511

Fig. 2. 512

The wind curtailment levels are reduced due to the addition 513

of the CAES plant in the BAU+ CAES and EOC+ CAES. 514

The difference between the EOC and the EOC+ CAES wind 515

curtailment levels are 1.2%. For instance, when a curtailment 516

event occurs in the EOC+ CAES scenario, for each 100 MW 517

of increased demand created by the CAES plant in compres- 518

sion mode, it allows 75 MW of wind to remain connected 519

and increases the synchronous generation by 25 MW to sat- 520

isfy the SNSP limit. Similarly, for the BAU+ CAES scenario, 521

CAES allows 50 MW of wind to remain connected to the AII 522

system. 523

B. Economic Assessment 524

A comparison of the wind generation revenue loss as a result 525

of wind curtailment is presented in Table V. The pool rev- 526

enue (product of price received in C/MWh and generation in 527

MWh) is the revenue collected by each generator in the SEM. 528

Therefore, the revenue loss is a product of average annual price 529

received and the amount of wind curtailed for each scenario. 530

The revenue loss decreases substantially as a result of 531

increasing the SNSP limit to 75%. The addition of the CAES 532

plant further decreases the revenue loss and in turn increases 533

the revenue for wind generation by C10 million for the EOC+ 534

CAES scenario. Wind curtailment levels above 5% have been 535

suggested to have significant economic risk for the long-term 536

growth of wind farm development in Ireland [35]. Moreover, 537

compensation payments for wind curtailment will cease on the 538

January 1, 2018. Therefore, the results suggest that increasing 539
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TABLE VT5:1
REVENUE LOSS COMPARISONT5:2

Fig. 3. Total generation costs for each scenario.F3:1

the SNSP limit to 75% and utilizing a CAES plant mitigates540

wind curtailment and reduces the economic risk.541

Furthermore, due to the addition of the CAES plant, the pool542

revenues for most of the other generator types increased. This543

is mainly due to an increase in the average annual SMP from544

C65/MWh to C68.5/MWh for the EOC and EOC+ CAES545

scenarios, respectively. This is beneficial for some of the gener-546

ators as they are paid a higher price from the pool but this has a547

knock-on effect to the electricity consumer.548

The overall economic benefit of moving from 50% to 75%549

SNSP limit and the inclusion of the CAES plant can be quanti-550

fied by comparing the total generation costs for the AII system.551

Fig. 3 presents the total generation costs (including VOM cost,552

fuel cost, start and shutdown costs, and emissions costs) for553

each scenario over the year 2020.554

The higher SNSP limit and the inclusion of the CAES plant555

leads to lower total annual generation costs. The CAES plant’s556

benefit to the system results in a reduction in costs of 3.3% com-557

pared to the EOC scenario. This equates to C50 million over the558

year 2020. This reduction cannot be attributed to a single event559

but occurs as minor cumulative changes over the year. From a560

technical perspective, this reduction is due to the CAES plant’s561

ability to provide additional flexibility to the AII system.562

Moreover, based on a capital cost of C0.6 million/MW for563

the CAES plant and annual savings of C50 million, the pay-564

back period is less than 4 years for the AII system. However,565

the payback period would differ for a private investor and a566

detailed cost-benefit analysis would determine whether it is a567

viable technology.568

V. CONCLUSION 569

The economic benefits of CAES to wind generation were 570

evaluated using the power systems and market modeling soft- 571

ware PLEXOS. Based on the modeling conducted, it was 572

determined that a 270-MW CAES plant in conjunction with a 573

75% SNSP limit can reduce wind curtailment levels to 2.6% in 574

2020. 575

It was also shown that the addition of CAES increases the 576

revenue for wind generation by C10 million for the EOC+ 577

CAES scenario. This is beneficial to the wind farm developers, 578

as it reduces their economic risk and encourages development. 579

Furthermore, CAES can contribute to the AII system other than 580

avoidance of wind curtailment. For instance, it can reduce total 581

annual generation costs by 3.3% relative to the proposed 2020 582

EOC scenario. These benefits are external to a private financial 583

assessment of a CAES project but should be considered in an 584

overall cost-benefit analysis. 585
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