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Abstract 

The development and acoustical characterisation of a range of novel agar-based tissue 

mimicking material (TMMs) for use in clinically relevant, quality assurance (QA) and 

anthropomorphic breast phantoms are presented.  The novel agar-based TMMs described in 

this study are based on a comprehensive, systematic variation of the ingredients in the 

International Electrotechnical Commission (IEC) TMM.  A novel, solid fat-mimicking 

material was also developed and acoustically characterised.  Acoustical characterisation was 

carried out using an in-house scanning acoustic macroscope at low (7.5 MHz) and high 

frequencies (20 MHz), using the pulse-echo insertion technique.  The speeds of sound range 

from 1490 to 1570 m. s-1, attenuation coefficients range from 0.1 to 0.9 dB. cm-1. MHz-1 and 

relative backscatter ranges from 0 to - 20 dB.  It was determined that tissues can be mimicked 

in terms of independently controllable speeds of sound and attenuation coefficients.  These 

properties make these novel TMMs suitable for use in clinically relevant QA and 

anthropomorphic phantoms, and would potentially be useful for other high frequency 

applications such as intra-vascular and small animal imaging.    

 

Keywords: Breast Phantom, Tissue Mimicking Materials, Speed of Sound, Attenuation, 

Backscatter, High Frequency 
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Introduction  

Advances in transducer technology and system electronics, coupled with real-time 

image processing techniques, have continued the rapid pace of improvement evident in 

diagnostic ultrasound image quality in recent years.  This improvement has resulted in the 

increased use of ultrasound in diagnostic imaging, to the level where currently accounts for 

25 % of all imaging procedures worldwide (Wells2006).  One particular area where 

ultrasound is being used more frequently is breast imaging, where it plays many important 

roles in both symptomatic breast imaging and breast screening, for example distinguishing 

benign lesions from malignant lesions and guidance of interventional procedures.  The 

detection and diagnosis of a lesion during a breast ultrasound examination is dependent on 

two factors.  The first factor is the instrumentation used: breast ultrasound examinations 

require high quality instrumentation that consistently produces high quality images, and 

hence routine quality assurance (QA) is necessary to ensure that scanners used for this 

purpose continue to produce images of the requisite high quality.  The second limiting factor 

is the training, experience and skills of the operator.  The detection and diagnosis of a lesion 

in a breast ultrasound examination is determined largely subjectively by the operator, and 

therefore there is an increasing need for the operator to be appropriately trained and skilled.  

However, both of these limiting factors may be overcome with the use of clinically relevant 

QA phantoms and anthropomorphic training phantoms.  The intention of this study was to 

develop and acoustically characterise agar-based tissue-mimicking materials (TMMs), with 

acoustic properties representing a range of tissue types found in the breast (for example, 

subcutaneous fat, glandular tissue and pectoral muscle), suitable for use in the construction of 

clinically relevant QA phantoms and anthropomorphic training phantoms. 

Ideally, QA and performance testing of diagnostic ultrasound scanners should allow 

one:  to ensure that equipment performs to an agreed standard and is fit for purpose; to assess 
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new imaging modalities and signal processing techniques; to inform decision making in the 

procurement and replacement of equipment; to assist in the design of ultrasound transducers 

(Pye et al.2004); to correlate the QA performance of the scanner with its perceived clinical 

performance (Shaw and Hekkenberg2007).  However, these ideals are not satisfactorily 

achievable with commercially available QA phantoms, as they have a number of significant 

limitations, in particular the TMMs used in their production and their simplistic design 

(Browne et al.2004). 

Commercially available phantoms are all similar in design, consisting in general of 

nylon filaments and tissue mimicking cylindrical objects (representing anechoic and contrast 

structures) embedded in a homogeneous tissue mimicking background material.  Previous 

studies have used such commercial phantoms to determine if clinically reported 

improvements in image quality, with new imaging technologies, could be demonstrated 

(Browne et al.2004;Browne et al.2005).  One objective study comparing tissue harmonic 

imaging (THI) with conventional B-mode imaging found that some of the clinically reported 

improvements in image quality were not observed experimentally using these commercial 

phantoms (Browne et al.2004).  The authors postulated that this may have been due to the 

simplistic homogeneous phantom design and absence of complex structures such as skin and 

fat layers.  Another study comparing THI to conventional B-mode imaging investigated the 

use of a subcutaneous pig fat layer with a commercial phantom to introduce the phase 

aberrations and beam distortions, which would be found clinically (Browne et al.2005).  

Improvements with THI compared to B-mode imaging in some image parameter tests, such 

as anechoic target detectability, were found and these findings correlated to those reported 

clinically.  However, this was not the case for all image parameters, in particular there was no 

improvement in contrast resolution, which the authors attributed to the insufficiently 

challenging nature of the contrast targets embedded in the phantom.  Nevertheless, this study 
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showed that the introduction of clinically relevant materials, to represent complex tissue 

structures, can enable one to correlate image quality to the perceived clinical performance.   

Ultrasound scanners are based on a number of assumptions, when these assumptions 

are not met artifacts are likely to be produced in the image, for example, reverberation, partial 

volume and refraction artifacts.  Some of the most deteriorating artifacts in ultrasound images 

are due to differences in the speed of sound of the propagating medium, as ultrasound images 

are formed assuming a constant speed of sound (1540 m. s-1).  In reality, there is a significant 

variation in the speed of sound in-vivo; for example, the speed of sound varies from 

1470 m. s-1 in fatty tissues to over 1600 m. s-1 in muscle and up to 3700 m. s-1 in bone.  This 

variation in speed of sound results in phase aberrations and beam distortions (Wells1975) and 

effectively leads to image artifacts and mis-registration of anatomical structures.  Breast 

ultrasound imaging is particularly susceptible to image artifacts due to the range of tissues 

with varying speed of sounds present in the breast.   

The most common TMMs used in commercial phantoms are gelatine, evaporated 

milk, agar, urethane rubber and Zerdine™, the manufacturers of these materials quote speeds 

of sound of approximately 1540 m. s-1 (with the exception of urethane-rubber which has a 

speed of sound of 1460 m. s-1) and  attenuation coefficients of either 0.5 or 

0.7 dB. cm-1. MHz-1.  An independent study assessing the acoustic properties of these TMMs 

characterised their speed of sound, attenuation coefficient and relative backscatter properties 

with increasing frequency (2 to 15 MHz) and increasing temperature (10 to 35 ºC) (Browne et 

al.2003).  The measured speeds of sound for all TMMs were found to be frequency 

independent while the attenuation coefficient of all the TMM increased with increasing 

frequency.  With the exception of the agar-based material, all of the TMMs exhibited a non-

linear response of attenuation with frequency, in particular, urethane rubber TMMs exhibited 

a highly non-linear response across this frequency range.  This property would lead to 
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deterioration in penetration depth performance and axial resolution at frequencies higher than 

7 MHz (Chen and Zagzebski2004;Goldstein2000), rendering it unsuitable for use in high 

frequency applications.  The agar-based TMM was the only material to exhibit a linear 

response of attenuation with frequency (approximately ƒ1.01).  The acoustic properties of all 

TMMs varied with temperature, with the minimum variation observed in the agar-based 

TMM.  To date the agar-based material is the only TMM which has been acoustically 

characterised at high frequencies (17 to 23 MHz).  At these high frequencies its speed of 

sound was found to be independent of frequency and the attenuation coefficient was found to 

have a linear response to frequency (Brewin et al.2008).  Another study on this agar-based 

TMM showed that a limited variation of the scattering ingredients during the manufacturing 

process resulted in TMMs with varying attenuation and backscattering properties (Inglis et 

al.2006).  This study showed that the acoustic properties of this TMM can be adjusted, an 

important feature which highlights the potential for varying the acoustic properties of this 

material by adjusting its ingredients.  However, a limitation of the study was that all 

ingredients were varied simultaneously, and hence the effect of individual ingredients on the 

resulting acoustic properties remains unknown.  

Unlike other imaging modalities, an ultrasound scanner should not be evaluated solely 

by its ability to resolve closely spaced point targets namely, spatial resolution.  Rather, it is 

more important to be able to detect small, negative contrast, anechoic regions surrounded by 

speckle, this feature is particularly important in breast imaging as it determines the system’s 

ability to detect low contrast cysts and lesions.  As previously stated, performance assessment 

should ideally allow one to correlate QA performance with its perceived clinical 

performance.  At present, commercially available phantoms are not fit for this purpose due to 

the acoustic properties of the TMMs used in their production.  The TMMs are homogeneous 

and have a uniform speed of sound of 1540 m. s-1, hence, the artifacts introduced in a clinical 

 6



situation would not be present and tests performed could not be realistically compared to 

clinically reported findings.  Therefore, whilst commercial phantoms may be useful for 

undertaking consistency checks such as axial and lateral resolutions, their acoustic properties 

and simplistic design do not allow us to correlate QA with perceived clinical performance.  

For clinical performance in-vitro testing of an ultrasound scanners performance the QA 

phantom TMMs must have the same range of speeds of sound, attenuation coefficients and 

backscatter, as the organ they aim to mimic, only then can the true clinical situation be 

simulated and the scanners performance in the presence of clinical  artifacts be evaluated.  

Furthermore, it is essential that these acoustic properties remain consistent for the 

range of frequencies used diagnostically.  Unlike applications such as abdominal or foetal 

imaging, which are low frequency applications (typically < 5 MHz); breast imaging is a high 

frequency application.  Low frequencies are utilised in order to seek a compromise between 

resolution and penetration depth, however, no such compromise is required for breast 

ultrasound.  When the breast is imaged in the supine position, the mammary zone typically 

lies at a depth of 1 to 4 cm from the face of the transducer.  Most pathology arises in the 

mammary zone of the breast, so high resolution is imperative in this region, therefore, high 

frequency transducers are utilised.  In recent years, with improvements in transducer 

technology, the frequency of transducers employed in breast imaging has seen an increase, 

for example, the Philips iU22 L17-5 (Philips Healthcare, Andover, MA, USA) linear array, 

which has a frequency bandwidth of 5 to 17 MHz, and the Siemens Acuson S2000™ 18L6 

HD (Siemens Healthcare, Erlangen, Germany) transducer, which has a frequency bandwidth 

of 5.5 to 18 MHz.   

This study describes the production and characterisation of a number of TMMs, 

which are based on a systematic variation of the ingredients in the agar-based IEC TMM in 

order to determine in detail their effects on the overall acoustic properties of the TMMs.  
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Furthermore, the manufacturing process for novel oil-in-agar based TMMs for mimicking 

subcutaneous fat is also described.  Finally, in this study an approach to predicting the 

optimum ingredients and their relative proportions to produce long-term stable TMMs, 

suitable for use in high frequency breast ultrasound phantoms, is suggested.  

 

Materials and Methods 

Tissue Mimicking Materials  

The components of the IEC TMM and their percentages by weight are given in Table 

1 (IEC1996;Teirlinck et al.1998).  To produce the TMM, the liquid components (water, 

glycerol and benzalkonium chloride) were mixed together in a stainless steel container.  The 

dry components (agar, SiC (17 µm), Al2O3 (3.0 µm) and Al2O3 (0.3 µm)) were then added to 

the liquid mixture.  A commercial hand blender (HR1363, Philips, Amsterdam, Netherlands) 

was then used to thoroughly mix the ingredients and ensure even particle dispersion.  The 

stainless steel container was then place in a heated water bath at 96 ºC and an electronic 

stirrer was inserted in the mixture to maintain even particle dispersion.  A Fluke multimeter 

with an integrated temperature probe (Fluke 16, Eindhoven, Netherlands) was used to 

monitor the temperature of the mixture, and when the temperature exceeded 90 ºC the time 

was recorded and the TMM mixture remained in the water bath for exactly 1 hour thereafter.  

The mixture was then removed from the water bath and allowed to cool at room temperature, 

while being stirred at 75 rpm.  When the temperature of the TMM had cooled to 46 ºC it was 

injected into a pre-cut cylindrical perspex mould (Fig. 1).  The side of the mould was sealed 

with a layer of saran wrap® attached using araldite adhesive (Araldite® 2012, Huntsman 

Advanced Materials, Switzerland).  Each mould had two ports, a TMM injection port and an 

air exhaust port to allow air to escape when injecting the TMM.  The use of the saran wrap 

layer prevented diffusion of glycerol during acoustical testing of the TMMs, and also 
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prevented the TMMs from desiccating when they were left to stand at room temperature 

during acoustic testing.  However, for long-term storage, the TMMs were kept in an air tight 

container with a mixture of water (87.67 %)/glycerol (11.84 %)/benzalkonium chloride 

(0.48 %) at room temperature.  This mixture restores the concentration of glycerol component 

to the TMM, keeps the TMM samples hydrated and prevents bacterial invasion (Brewin et 

al.2008).  

 

Table 1. Weight composition of the TMM (by %) 

Component Weight composition (%) 

Distilled, degassed, 

deionised water 

82.97 

Glycerol 11.21 

Benzalkonium chloride 0.46 

Agar 3.00 

Silicon carbide (17 µm) 0.53 

Aluminium oxide (3.0 µm) 0.95 

Aluminium oxide (0.3 µm) 0.88 

 

 

Fig. 1. Cylindrical mould for TMMs 

 An empirical study was carried out to quantify the change in acoustic properties with 

glycerol, Al2O3, and SiC as well as determining their respective interrelationships.  Four of 
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the TMMs’ key ingredients were investigated separately, namely:  “series 1” - glycerol; 

“series 2” SiC (17 µm), Al2O3 (0.3 µm) and Al2O3 (3 µm); “series 3” Al2O3 (0.3 µm) and 

Al2O3 (3 µm); and “series 4” SiC (17 µm).  Furthermore, a solid fat mimicking material was 

developed and acoustically characterised (“series 5”).  The component(s) varied and their 

percentage concentration in each series are summarised in Table 2.  In series 1 different 

percentage concentration of glycerol were used to adjust the speed of sound (from no 

glycerol, 0 %, to the concentration of glycerol in the original TMM, 100 %, to 50 % more 

glycerol than that in the original TMM, 150 %).  In series 2, the percentage concentration of 

the TMM particles, SiC, Al2O3 (0.3 µm) and Al2O3 (3 µm), were varied to adjust the 

attenuation coefficient and relative backscatter.  In series 3, the percentage concentration of 

Al2O3 (0.3 µm) and Al2O3 (3 µm) were varied to adjust the attenuation.  In series 4, the 

percentage concentration of SiC was varied to adjust the backscatter.  In series 5, an olive oil 

and surfactant mixture was added to the original TMM to produce a solid fat-mimicking 

TMM.  The fat-mimicking TMM was produced as follows.  Olive oil (90 %) and surfactant 

(10 %) were thoroughly mixed together using the hand blender.  The surfactant used was 

Synphronic N (Conservation Resources, Oxford, UK) which was diluted to 10 % in degassed, 

distilled, deionised water.  The olive oil/surfactant mixture was heated to 96 ºC and added to 

molten TMM (that is, IEC TMM which had been boiled at 96 ºC for 30 minutes).  The entire 

mixture remained in the heated water bath for a further 30 minutes.  It was necessary to heat 

the olive oil/surfactant mixture to 96 ºC as this prevented the molten agar from congealing 

following their addition to the mix.   
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Table 2. Variation of the IEC ingredient concentrations used in this study 

 Component (s) varied Concentrations (%) 

Series 1 Glycerol 0  and 50 – 150 in steps of 10 

Series 2 SiC, Al2O3 (0.3 µm) and Al2O3 

(3 µm) 

0 – 20 in steps of 5, 30 – 60 in steps 

of 10, 75 and 100 – 200 in steps of 

20 

Series 3 Al2O3 (0.3 µm) and Al2O3 (3 µm) 100 – 200 in steps of 10 and 250   

Series 4 SiC (17 µm) 50 -100 in steps of 10 

Series 5 Olive Oil and Surfactant 0 – 30 in steps of 5 

 

Acoustic Characterisation 

Scanning Acoustic Macroscope 

All acoustic tests were carried out using a Scanning Acoustic Macroscope (SAMa) 

system developed in-house (Fig. 2).  This was developed using a pulser receiver (Model 

5052PR, Panametrics, USA), a linear actuator, a data acquisition card (PCI – 5144, National 

Instruments, USA) and the programming environment LabView (National Instruments, 

USA).  Two broadband immersion transducers were available for use with this system.  

These broadband transducers had frequencies centered at 7.5 MHz (Panametrics V320-SU, 

Olympus NDT Inc, Waltham, MA, USA) and 20.0 MHz (Panametrics V317-SU, Olympus 

NDT Inc, Waltham, MA, USA).  The properties of these transducers are given in Table 3.  

 

 
Figure 2 Scanning acoustic macroscope configuration 

 

 11



Table 3. Properties of the transducers used in this study 

Transducer (MHz) Frequency Range (MHz) Focal Point (cm) Crystal Diameter 

(mm) 

7.5 5.15 – 9.44 9.54 12.7 

20 14.84 – 24.50 6.55 6.35 

 

The SAMa was operated in pulse-echo configuration for the acoustic testing.  In this 

configuration a single transducer acted as both a transmitter and a receiver.  This transducer 

was positioned in a tank of degassed water, with the focus on the surface of the bottom of the 

tank, where the glass bottom acted as a plane reflector.  The movement of the transducer was 

controlled by a linear actuator, programmed to advance the transducer laterally over a 1 cm 

area on the reflector.  At each 1 mm advance the transducer was pulsed, and the resulting 

pulse was transmitted through the degassed water and reflected from the glass plate.  The 

reflected pulse was subsequently detected by the transducer, digitised and stored as part of a 

data set for off-line analysis using custom software (MATLAB 2007b, The MathWorks Inc., 

USA).  For each acoustic measurement two data sets were required, a reference data set and a 

sample data set.  The reference data set was acquired from a scan of the plane reflector.  The 

sample data set was acquired from a scan of the reflector with the TMM sample positioned in 

the space between the transducer and the reflector.  All acoustic measurements were 

performed in degassed water at 20 ± 0.5 ºC.  

Speed of Sound 

To measure the speed of sound of the TMMs the custom software calculated the time 

difference of the peaks (the time shift, Δt) of the RF pulses from the reflector with and 

without the sample in place.  When the sample was not in place a perspex mould filled with 

degassed water was placed between the transducer and the reflector.  The perspex mould 

contained 2 saran wrap® layers, thereby ensuring that their effect on the acoustic 
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measurement of the TMM sample was accounted for in the measurement.  The speed of 

sound of the sample, cs, was then calculated using Equation 1 (AIUM1995):  

d
c

t

c
c

w

w
s

2
1 Δ+

=  Equation 1 

where d is the thickness of the sample, cw is the speed of sound in water and Δt is the 

measured time shift.  Two samples of each TMM were produced for acoustic testing.  Three 

data sets from each of the samples were acquired, from each data set 10 measurements of 

speed of sound were computed. 

Attenuation Coefficient  

The attenuation coefficient was calculated by performing a fast Fourier transform 

(FFT) on the RF signals from the plane reflector with and without the sample in the path.  

The attenuation coefficient, α, in dB. cm-1 was calculated from the log difference between the 

spectra, using Equation 2 (AIUM1995): 

( ) ( )
( )fA
fA

d
f

0
10log

2
20

−=α  Equation 2 

where d is the sample thickness, A(f) is the sample magnitude spectrum at frequency f and 

A0(f) is the reference magnitude spectrum at frequency f.  The effect of the saran wrap was 

accounted for by acquiring the reference signal with a cell containing degassed water bound 

by saran wrap® in the path.    

Relative Backscatter Power 

For the relative backscatter power measurement the acquisition of the sample RF 

signal required a different set-up to that used for speed of sound and attenuation coefficient 

measurements.  In this case, the signal of interest was the backscattered RF signal, captured 

between the front face of the sample and the plane reflector.  Therefore, the transducer was 

adjusted to position the focus of the ultrasound beam 1 mm below the surface of the sample 
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and the drive voltage of the transducer was increased to 240 V.  These adjustments minimised 

interference caused by the reflection from the front face of the sample and improved the 

signal to noise ratio of the backscattered RF signal. 

The backscattered RF sample signal was saved for offline analysis using custom 

software as follows:  the RF signal was windowed, this windowed section contained the RF 

signal from a section approximately 1mm below the surface of the sample.  This signal was 

segmented into eight sections of equal length, each with 50 % overlap.  Each segment was 

then windowed with a Hamming window that was the same length as the segment, to 

optimize frequency resolution, in advance of a spectral analysis of the power density using 

the Welch transform (Welch1967).  The Welch transform derives the distribution of power 

per unit frequency in the backscattered RF signal, normalized to the total received power, by 

averaging the spectra from all segments (Brewin et al.2008).  The power spectrum, Io, of the 

reference RF signal was computed and the relative backscatter, μ, of the sample was then 

computed using Equation 3: 

( ) ( )
( )fI
fIf

0
10log10−=μ  Equation 3 

Validation of Acoustic Measurements 

Measurements of speed of sound and attenuation coefficients were validated using a 

silicon oil reference cell supplied by the UK National Physical Laboratory (NPL, Teddington, 

UK).  The test cell was 1cm thick and had a known attenuation coefficient between 1 to 

10 MHz at a temperature of 21.5 ºC.  Results of attenuation as a function of frequency for the 

NPL test cell are shown in Fig. 3.  Measured values for attenuation were found to match 

those reported by the NPL.  The NPL stated the speed of sound for reference cell at 7 MHz 

was 1382 ± 14 m. s-1.  The SAMa system measured a speed of sound of 1385 m. s-1, at 

21.5 ºC, this was within 0.2 % of the NPL measurement.         
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Fig. 3. Attenuation coefficient of the NPL reference cell as a function of frequency 

Density and Impedance Measurements  

For determination of the IEC, series 1 and series 5 TMM densities, the mass of each 

TMM with a defined volume was measured.  Knowing the densities and acoustic velocities, 

acoustic impedances, z, were calculated according to: 

  Equation 4 

where ρ0 is the density of the TMM sample and cs is the speed of sound of the TMM sample.  
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Results 

Five series of TMMs were developed and the acoustical properties were measured.  

The speeds of sound and attenuation coefficients of each of the samples were measured with 

frequencies of 7.5 and 20 MHz at 20 ºC.  No particle sedimentation was evident in any of the 

TMMs produced and to date, the preservation measures used for the TMMs (that is, 

immersed in a mixture of glycerol, water and Rodalon™ in a high density polyethylene 

container with an airtight lid) have been found to be successful with the sample being 

preserved for over 6 months.  

In series 1, samples with different glycerol concentrations were produced to determine 

the effect of glycerol on the speed of sound of the TMM.  The variation of the speed of sound 

as a function of increasing glycerol concentration (at frequencies of 7.5 MHz and 20 MHz) is 

shown in Fig. 4, where it can be seen that the speed of sound increased across the range 1490 

to 1568 m. s-1 with increasing concentration of glycerol.  The attenuation coefficient 

remained constant with increasing glycerol concentration.  It was also found that the effect of 

transmit frequency on the speed of sound and attenuation coefficient was negligible.  The 

effect of the glycerol concentration on the density and impedance properties of these TMMs 

was also investigated, these results can be viewed in Fig. 5.  The results show that the 

concentration of glycerol had no significant effect on either property, as all data points were 

within experimental variation.  
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Fig. 4. Effect of glycerol concentration on the speed of sound (± 10 m. s-1) of the TMMs 

 

Fig. 5. Effect of glycerol concentration on the density and impedance of the TMMs 

 

In series 2, the effect of varying the concentration of the TMM particles SiC, Al2O3 

(0.3 µm) and Al2O3 (3 µm) on the attenuation coefficient and the relative backscatter are 
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presented in Fig. 6 and 7 respectively.  The attenuation coefficient was found to increase 

from 0.1 to 0.8 dB. cm-1. MHz-1 with increasing particulate concentration, with no 

appreciable difference measured for both frequencies tested, which indicates a linear 

dependence of attenuation coefficient with frequency.  The backscatter of the TMMs ranged 

from 0 to - 20 dB relative to the original TMM (that is, 100 % particulate concentration).  The 

particulate concentration of the TMMs exhibited no effect on their resulting speed of sound, 

the average speed of sound was 1551 ± 10 m. s-1. 

 

Fig. 6. Effect of SiC, Al2O3 (0.3 µm) and Al2O3 (3 µm) concentration on the attenuation 

coefficient (± 0.03 dB. cm-1. MHz-1) of the TMMs at 20 ºC 

Fig. 7. Effect of SiC, Al2O3 (0.3 µm) and Al2O3 (3 µm) concentrations on relative backscatter 

(± 3 dB) of the TMMs at 20 ºC 

 

In series 3, the Al2O3 (0.3 µm and 3 µm) particulate concentration was varied to 

determine its individual effect on the resulting attenuation coefficient and speed of sound of 

the material.  The attenuation coefficient is plotted as a function of increasing Al2O3 

concentration for both 7.5 and 20 MHz frequencies in Fig. 8.  The attenuation coefficient was 

found to increase from 0.5 to 0.9 dB. cm-1. MHz-1 with increasing particulate concentration, 

with no appreciable difference measured for both frequencies tested, which indicates a linear 

dependence of the attenuation coefficient with frequency.  The Al2O3 particulate 

concentration did not alter the speed of sound of the TMMs: the average speed of sound of 

the TMMs was 1548 ± 10 m. s-1. 

In series 4, samples with varying SiC concentrations were produced to determine the 

effect of SiC on the attenuation coefficient, relative backscatter and speed of sound of the 

TMMs.  A graph of attenuation coefficient as a function of SiC concentration is presented in 
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Fig. 9 for 7.5 and 20 MHz frequencies, where it is evident that this variation of SiC 

concentration has no effect on the measured attenuation coefficient at either frequency.  The 

average attenuation coefficient measured with a frequency of 7.5 MHz was 

0.44 dB. cm-1. MHz-1 and with 20 MHz was 0.55 dB. cm-1. MHz-1.  Therefore, an attenuation 

coefficient with non-linear frequency dependence is apparent for these TMMs.  The speed of 

sound and relative backscatter values remained the same for each concentration of SiC. 

In series 5, varying concentrations of an oil surfactant mixture were added to the 

original TMM mixture in order to investigate its potential as a fat TMM.  The measured 

speeds of sound of the TMMs as a function of oil surfactant concentration are presented in 

Fig. 10, where it is evident that increasing oil concentration reduces the speed of sound of the 

TMM.  The measurements of speed of sound range from 1482 to 1543 m. s-1, with a standard 

deviation of ± 10 m. s-1.  The attenuation coefficient of each sample was measured and 

plotted as a function of oil surfactant concentration in Fig. 11.  The oil concentration does not 

appear to directly affect the attenuation coefficient which was centered around 

0.5 dB. cm-1. MHz-1, with the exception of the TMM with 40 % oil concentration, which 

exhibited an attenuation coefficient of 0.6 dB. cm-1. MHz-1.  The density and impedance 

properties of this potential fat TMM were also investigated, each of these properties are 

plotted as a function of oil concentration in Fig. 12.  These results demonstrate that the 

concentration of oil in the samples no significant effect on either density or impedance of the 

resulting TMMs. 

 

Discussion 

Specific clinical performance testing of diagnostic medical ultrasound scanners 

requires complex QA phantoms.  At present, commercially available phantoms are not fit for 

this purpose due to their simplistic design and the properties of the TMMs used in their 
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production, although manufacturers, such as CIRS Inc. have been known to produce custom 

designs.  However, the specific design criteria and results pertaining from these custom built 

phantoms are not widely known nor have they been reported in the scientific literature.  The 

TMMs (background and targets) used in currently available commercial phantoms are 

homogeneous in terms of speed of sound and attenuation.  Their embedded targets differ 

from the surrounding background tissue in terms of backscatter; however, the level of 

difference in backscatter is insufficiently challenging to the scanner, with targets typically 

exhibiting backscattering ranging from - 12 dB to + 12 dB in, at best, 3 dB steps.  Therefore, 

whilst these phantoms may be useful for consistency checks such as spatial resolutions, more 

complex QA phantoms are required for testing the clinical performance of the scanner.  

These more complex phantoms must contain tissue mimicking materials which represent the 

range of speeds of sound, attenuation coefficients and relative backscatter values typically 

found in the clinical situation.  Suitable TMMs would be required to simulate anatomical 

structures and embedded targets, and also allow for the introduction of artifacts which are 

inherent in medical ultrasound, for example, artifacts related to refraction and reflection at fat 

to non-fat interfaces. 

In this study, a range of agar-based TMMs were developed and acoustically 

characterised to determine if they would be suitable for use in high frequency breast 

ultrasound phantoms.  The range of acoustic properties found in some of the tissues of the 

breast can be viewed in Table 4.  These novel TMMs are based on a systematic variation of 

the ingredients of the IEC TMM (IEC1996;Teirlinck et al.1998).  By performing this 

systematic variation of the ingredients, a wide range of materials with different attenuation 

coefficients, speeds of sound and relative backscatter values were manufactured.  The pure 

IEC agar-based TMM was selected for use in this study as it has been reported to maintain its 

acoustic properties over a two-year period, also its acoustic properties have been 
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characterised at high frequencies centered around 20 MHz (Brewin et al.2008).  Furthermore, 

a previous study showed that a limited variation in the particulate ingredients of this material 

produced materials with different attenuation coefficients and relative backscatter values 

(Inglis et al.2006).   

The transducers used in this study had central frequencies of 7.5 and 20 MHz and 

frequency bandwidths of 5.15 to 9.44 MHz and 14.84 to 24.50 MHz respectively.  These 

frequencies were chosen as they correspond to a range of implemented frequencies used in 

state-of-the-art breast ultrasound systems.  The inclusion of two further transducers with 

central frequencies of 10 MHz and 15 MHz would have been optimal as this would 

encompass the entire range of frequencies utilised in breast imaging.  Nevertheless, the 

transducers utilised were able to demonstrate the effect of low and high frequencies on the 

attenuation coefficients and the speed of sounds of the newly developed TMMs. Thus, these 

results are not only relevant for breast ultrasound applications but also in other high 

frequency applications such as intra-vascular studies and the new field of high frequency 

small animal imaging.  In addition, the use of these transducers allowed an intra-laboratory 

cross-check with the results for the standard IEC TMM published by (Browne et al.2003, 

Inglis et al.2006 and Brewin et al.2008).   

In this study, it was found that by altering the glycerol component of the TMM, the 

speed of sound could be altered independently of attenuation coefficient.  This result was 

expected as the speed of sound of pure glycerol is 1923 m. s-1 (Dymling et al.1991) and the 

speed of sound of pure water-based agar is 1482 m. s-1 (Del Grosso and Mader1972), 

therefore the increase in the concentration of glycerol would serve to increase the overall 

speed of sound of the TMM.  Nevertheless, these data are significant as they can act as a 

reference for selecting a preferred speed of sound.  The range of speeds of sounds measured 

was 1490 to 1567 m. s-1.  Materials in this range have the potential to mimic a number of 
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tissues within the breast in terms of speed of sound, namely glandular tissue, pectoral muscle 

and malignancies.  Furthermore, the addition of increasing concentration of glycerol may 

further increase the speed of sound to higher values necessary to mimic that of a 

fibroadenoma within the breast.  The concentration of glycerol exhibited no significant effect 

on the density and impedance of the TMMs.  The density and impedance values for IEC 

TMM (100 % glycerol concentration) demonstrated good interlaboratory agreement with 

those reported in previous studies (Brewin et al.2008;Zell et al.2007).  With the significant 

increase in speed of sound, cs, it was expected that there would be a corresponding increase in 

impedance, z, for the TMMs as .  This expectation was proved incorrect as the 

concentration of glycerol exhibited no significant effect on either the impedance or the 

density, , of the TMMs.  Therefore, it is assumed that increasing the glycerol must effect 

the adiabatic bulk compressibility, κ, of the resulting TMM as a significant change in speed 

of sound was demonstrated and  . The preferred method for measuring density is 

Archimedes principle (buoyancy method) (Rosin et al.2002).  Our method for measuring 

density was that reported by (Zell et al.2007) and our results are comparable.  Furthermore, 

our results for the IEC TMM compare favorably with those reported by (Brewin et al.2008), 

who utilised Archimedes principle.   

 A range of TMMs with varying attenuation coefficients and relative backscattering 

were produced using a systematic variation of the SiC, Al2O3 (0.3 µm) and Al2O3 (3 µm) 

particulates.  The minimum attenuation coefficient that can be achieved with no particles in 

the TMM is 0.1 dB. cm-1. MHz-1.  A systematic increase of the particulate concentration was 

found to result in a corresponding increase in attenuation coefficient.  An increase in 

attenuation coefficient was expected as Al2O3 has been reported to predominantly contribute 

to the value of attenuation coefficient (Inglis et al.2006).  Measured data in the 0 to 100 % 

particulate concentration compare favourably to those measure in a previous study by Inglis 
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et al. (2006).  These data are significant as they shows that any value of attenuation 

coefficient within the range in soft body tissues can be obtained by choosing the appropriate 

scatterer concentrations.  Another significant observation is that any value of attenuation 

coefficient within this range can be obtained without altering the speed of sound of the 

material, which was shown to be independent of scatterer concentration.  The range of 

attenuation coefficients measured in these materials has the potential to mimic glandular, fat, 

areola and malignant tissues in the breast.  Measurements of relative backscatter show that 

reducing the concentration SiC, Al2O3 (0.3 µm) and Al2O3 (3 µm) in the pure IEC TMM 

reduces the backscatter of the material from 0 dB to - 20 dB.  This was expected as SiC has 

been reported to contribute to the backscatter power.  The TMM with 0 % scatterers had a 

backscattered power that differed from the IEC TMM by 20 dB  such a material has potential 

as a mimic for anechoic structures such as a simple cyst.  Apart from two particulate 

concentrations (0 % and 75 %), these data are consistent to those found in the study by Inglis 

et al. (2006).  The discrepancy with 0 % and 75 % measurements may be attributed to a 

number of factors.  Firstly, in the study by Inglis et al. (2006) no measurement uncertainties 

were provided for the backscatter data presented.  Secondly, a major difficulty in the 

measurement of backscatter is the range of methods that are available for its measurement; 

there is no standard method and little correlation between different methods.  Finally, it has 

been reported that backscatter coefficient measurements are often underestimated and the 

authors postulated that the measurement of backscatter would benefit from the use of a 

common reference material (Wear et al.2005).   

Increasing the concentration of the Al2O3 particles to determine their individual effect 

on the attenuation coefficient showed comparable results to those obtained when both the 

Al2O3 and SiC concentrations were varied.  Again, these values of attenuation coefficient can 

be achieved without varying the speed of sound in the resulting TMM.  Furthermore, the 
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range of attenuation coefficients measured in these materials has the potential to mimic 

glandular, fat, areola and malignant tissues of the breast. 

The fact that varying the SiC particle concentration did not influence the speed of 

sound, attenuation coefficient or relative backscatter was not expected, since SiC has 

previously been reported to contribute significantly to the relative backscatter power, 

however, this lack on influence on backscatter may be attributed to the difficulties in 

measuring backscatter.  Furthermore, only a limited variation of SiC concentration was 

investigated in the current study, with 5 samples with varying SiC particles produced and 

characterised ranging from 50 to 100 %.   

In the breast there is a large speed of sound variation between the irregularly 

distributed fatty and glandular tissues.  This variation in speed of sound results in phase 

aberrations and beam distortions and effectively leads to multiple image artifacts.  Currently 

available commercial phantoms do not have materials which mimic the fat layer.  

Furthermore, there is no solid fat-mimicking material available for mimicking the 

subcutaneous fat layer.  Previous studies have utilised olive oil, lard and pig fat as fat mimics, 

however, olive oil is not a solid and would have to be replaced each time QA tests are 

performed, lard does not have suitable acoustic properties, and the use of pig fat is 

inconvenient for routine testing. 

The inclusion of the oil surfactant mix in the agar TMM reduced the speed of sound to 

a minimum of 1483 m. s-1 at 40 % oil surfactant concentration.  Inclusions of the oil 

surfactant mixture greater than 40 % prevented the molten TMM from congealing.  A 

reduction in speed of sound with increasing oil concentration was expected as the speed of 

sound of olive oil is 1490 m. s-1 (Browne et al.2005), so when the oil is mixed with the 

molten TMM it would reduce the overall speed of sound of the resulting TMM.  Oil 

surfactant inclusions with concentrations of 40 % and 35 % are within the reported value for 
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subcutaneous fat.  The concentration of oil did not appear to directly affect the attenuation 

coefficient of the TMMs.  However, it is possible that the inclusion of a higher scatterer 

concentration could increase the attenuation coefficient of this material to the value range 

reported for subcutaneous fat.  With the significant decrease in speed of sound, c, it was 

expected that there would be a corresponding decrease in impedance.  Yet, this was not the 

case, as the inclusion of oil surfactant concentration demonstrated no significant effect on 

either the impedance or the density of the TMMs.  Therefore, it is assumed that increasing the 

oil surfactant concentration must again affect the adiabatic bulk compressibility of the 

resulting TMM as a significant change in speed of sound was demonstrated. 

 Suitable TMMs for mimicking breast tissues are in suggested Table 4.  Tissues can be 

produced to mimic the range of acoustic properties found in the breast.  Presently, the 

artifacts due to changes in acoustic properties and tissues structures can only be observed in 

clinical B-mode images, however, the introduction of clinically relevant TMMs in QA 

phantoms will allow for experimental measurement of QA parameters such as contrast 

detectability and anechoic target detectability in the presence of clinically relevant artifacts.  

It is envisaged that ultrasound researchers will see the value of TMMs that can be produced 

to represent a range of tissue types.  Especially in the area of complex QA phantom 

development for in-vitro assessment of ultrasound scanners, where the goal is to correlate QA 

performance with perceived clinical performance and establish performance guidelines.  

 

Summary  

The agar-based TMMs investigated in this study are suitable for use in the production 

of complex QA and anthropomorphic phantoms.  Tissue types can be mimicked through 

independently controlled speeds of sound and attenuation coefficients by variation of the 

individual TMM components.  The actual choice of material depends on which tissue type 
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within the body is to be simulated.  The acoustic properties of the materials investigated in 

this work were independent of frequency in the wide diagnostic range investigated, 

demonstrating that they are suitable for use even in high frequency applications.  Indeed, the 

motivation of this work was to simulate the properties of the tissue types in the breast, 

primarily glandular tissue, subcutaneous fat, pectoral muscle, areola and malignant and 

benign lesions.  Materials for mimicking each of these tissues have been identified and are 

currently being used in the construction of complex QA and anthropomorphic phantoms.  A 

major advantage of this range of materials is their relative ease of manufacture and the ease 

of controlling their acoustic properties.  Furthermore, the material is robust and can be 

moulded into any form in the manufacturing phase using a suitable mould.    
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List of Tables 

Table 1. Weight composition of the TMM (by %) 

Component Weight composition (%) 

Distilled, degassed, 

deionised water 

82.97 

Glycerol 11.21 

Benzalkonium chloride 0.46 

Agar 3.00 

Silicon carbide (17 µm) 0.53 

Aluminium oxide (3.0 µm) 0.95 

Aluminium oxide (0.3 µm) 0.88 
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Table 2. Variation of the IEC ingredient concentrations used in this study 

 Component (s) varied Concentrations (%) 

Series 1 Glycerol 0  and 50 – 150 in steps of 10 

Series 2 SiC, Al2O3 (0.3 µm) and Al2O3 

(3 µm) 

0 – 20 in steps of 5, 30 – 60 in steps 

of 10, 75 and 100 – 200 in steps of 

20 

Series 3 Al2O3 (0.3 µm) and Al2O3 (3 µm) 100 – 200 in steps of 10 and 250   

Series 4 SiC (17 µm) 50 -100 in steps of 10 

Series 5 Olive Oil and Surfactant 0 – 30 in steps of 5 

 

 

Table 3. Properties of the transducers used in this study 

Transducer (MHz) Frequency Range (MHz) Focal Point (cm) Crystal Diameter 

(mm) 

7.5 5.15 – 9.44 9.54 12.7 

20 14.84 – 24.50 6.55 6.35 

 

 

 

Table 4. Ultrasonic properties of the breast tissues & suggested mimicking materials 

Tissue Speed of 

Sound  m. s-1 

Attenuation 

Coefficient 

dB. cm-1. MHz-1 

Mimicking Material 

Glandular 

tissue 

1553 ± 35 * 2.0 ± 0.7 @ 7 

MHz † 

Series 1 (120 %)  

& Series 3 (260 %) 

Subcutaneous 

fat 

1479 ± 32 * 0.6 ± 0.1 @ 7 

MHz † 

Series 5 (35 %) 

Pectoral 

muscle 

1545 ± 5 ‡ --- Series 1 (110 %) 

Areola --- 1.1 @ 5 MHz § Series 3 (260 %) 
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Malignant 

lesions 

1550 ± 35 * 1.0 ± 0.2 @ 7 

MHz † 

Series 1 (110 %)  

& Series 3 (260 %) 

Fibroadenoma 1584 ± 27 * --- Series 1 (140 %) 

* = (Scherzinger et al.1988)  
† = (D'Astous and Foster1986)  
‡ = (Goss et al.1978)  
§ = (Goss et al.1980) 
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Figure Legends 
 

Fig. 1. Cylindrical mould for TMMs 

Fig. 2. Scanning acoustic macroscope configuration 

Fig. 3. Attenuation coefficient of the NPL reference cell as a function of frequency 

Fig. 4. Effect of glycerol concentration on the speed of sound (± 10 m. s-1) of the TMMs 

Fig. 5. Effect of glycerol concentration on the density and impedance of the TMMs 

Fig. 6. Effect of SiC, Al2O3 (0.3 µm) and Al2O3 (3 µm) concentration on the attenuation 

coefficient (± 0.03 dB. cm-1. MHz-1) of the TMMs at 20 ºC 

Fig. 7. Effect of SiC, Al2O3 (0.3 µm) and Al2O3 (3 µm) concentrations on relative backscatter 

(± 3 dB) of the TMMs at 20 ºC 

Fig. 8. Effect of Al2O3 (0.3 µm and 3.0 µm) concentration on the attenuation coefficient (± 

0.03 dB. cm-1. MHz-1) of the TMMs at 20 ºC 

Fig. 9. Effect of SiC concentration on the attenuation coefficient  

(± 0.03 dB. cm-1. MHz-1) of the TMMs at 20 ºC 

Fig. 10. Effect of oil surfactant concentration on speed of sound (± 10 m. s-1) of the TMMs at 

20 ºC 

Fig. 11. Effect of oil surfactant concentration on attenuation coefficient 

 (± 0.03 dB. cm-1. MHz-1) of the TMMs at 20 ºC 

Fig. 12. Effect of oil surfactant concentration on the density and impedance of the TMMs 

 

Appendix A 
 

The attenuation measured for various tissues in the breast by D'Astous and Foster 1986 were 

fitted to curves of the form , where represents the corresponding coefficients 

at 1MHz and   represents the frequency dependence.   Their data was presented in 
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dB. mm-1. MHz-1 @ 1MHz.  For this study the data was rescaled to dB. cm-1. MHz-1 @ 

7MHz.  Rescaling was carried out as follows: 

Fat  
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