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Abstract. Mental workload measurement is a complex multidisciplinary
research area that includes both the theoretical and practical develop-
ment of models. These models are aimed at aggregating those factors,
believed to shape mental workload, and their interaction, for the purpose
of human performance prediction. In the literature, models are mainly
theory-driven: their distinct development has been influenced by the be-
liefs and intuitions of individual scholars in the disciplines of Psychology
and Human Factors. This work presents a novel research that aims at
reversing this tendency. Specifically, it employs a selection of learning
techniques, borrowed from machine learning, to induce models of men-
tal workload from data, with no theoretical assumption or hypothesis.
These models are subsequently compared against two well-known subjec-
tive measures of mental workload, namely the NASA Task Load Index
and the Workload Profile. Findings show how these data-driven mod-
els are convergently valid and can explain overall perception of mental
workload with a lower error.

1 Introduction

Assessing human mental workload is fundamental in the disciplines of Human-
Computer Interaction and Ergonomics [13,53]. Through mental workload, human
performance can be predicted and used for designing interacting technologies and
systems aligned to the limitations of the human mental limited capabilities [26].
However, despite its theoretical utility, and after decades of research, it is still an
umbrella construct [21,12,30]. In the last 50 years, researchers and scholars have
devoted their effort to the design and development of models of mental workload
that can act as a proxy for assessing human performance [15,9,47,35]. Mental
Workload (MWL) is a complex psychological construct, believed to be multi-
dimensional and composed of several factors. Various approaches have been de-
veloped to measure and to aggregate these factors into an overall index of mental
workload [50,28,22]. The vast majority of these are theory-driven, which means



that they utilise theoretical hypothesises and beliefs for assessing MWL deduc-
tively. Also, even if theoretically sound, these models are rather ad-hoc and they
mainly adopt basic operators for aggregating factors together, with the implicit
assumption of their linearity and often additivity. However, it is argued that
MWL is far from being a linear phenomenon and the application of non-linear
computational approaches can advance its modelling. Additionally, instead of
using theoretical knowledge, it is argued that data-driven approaches are likely
to offer a significant improvement in the developmend of models of mental work-
load [56]. In particular, Machine Learning (ML) is one of these approaches that
has been recently considered in MWL modelling. For example, researchers have
started applying ML techniques using physiological or task performance mea-
sures [51,55]. Other studies employing ML have shown promising results as in
[40,49,38].

This research study aims at investigating the impact of supervise modelling
techniques, hardly borrowed from machine learning, in the creation of models
of MWL by employing subjective self-reporting features from humans. In detail,
this study compares traditional subjective models of MWL, namely the NASA
Task Load Index (NASA-TLX) [14] and the Workload Profile (WP) [50], against
data-driven models produced by a number of ML techniques. Concisely, this pa-
per attempts to answer the research question: Can machine learning techniques
help build data-driven models of mental workload that have a better face validity
than the Nasa Task Load Index and the Workload Profile?

The rest of this paper is organised as follows. Section 2 describes related work
in the field of MWL measurement, with an emphasis on subjective approaches.
It then discusses the gaps in the literature that motivate the need of non-linear
modelling methods for mental workload. Section 3 introduces the design of a
comparative study and it describes the research methodology adopted for build-
ing data-driven models of mental workload. Section 4 presents the findings and
critically evaluates them with a rigorous comparison against the selected MWL
baseline instruments, namely the NASA-TLX and the Workload Profile. This
comparison is performed by computing the convergent and face validity of the
induced MWL models from data. Finally, Section 5 concludes the paper by high-
lighting its contribution and suggesting future work.

2 Related Work

The importance of measuring MWL has arisen from the crucial need of predict-
ing human performance [23,25,26]. In turn, human performance plays a central
role in the design of interactive technologies, interfaces as well as educational
and instructional material [31,29,23,36,24,37,27]. Measuring mental workload is
not a trivial task [48]. Various measures exist, with different advantages and
disadvantages, and they can be clustered in three main classes:



– subjective measures - this class refers to the subjective perception of the
operator who is executing a specific task or interacting with an underlying
system. Subjective measures, also referred to as self-reporting measures, rely
on a direct estimation of individual differences such as emotional state, level
of stress, the effort devoted to the task and its demand. The perception of
users usually can be gathered by means of surveys or questionnaires in the
post-task phase [13]. This category includes measures such as the NASA Task
Load Index (NASA-TLX) [14], the Workload Profile (WP) [50] based on the
Multiple Resource Theory [52], and the Subjective Workload Assessment
Technique (SWAT) [42];

– task performance measures - this category includes primary and secondary
task measures. These measures focus on quantifying the objective perfor-
mance of humans in relation to a specific task under execution. Example
include the number of errors, the time needed and the resources used to
accomplish a task or the reaction time to a secondary task [34,?];

– physiological measures - this class relies on the analysis of the physiological
responses of a human executing a task. Examples include the heart rate,
EEG brain signals, eye movements and skin conductivity [4,35].

Self-reporting subjective measures are based upon the assumption that only
the human involved with a task can provide accurate and precise judgements
about the experienced mental workload. They are often employed post-task and
are easy to be administered. For these reasons, they are appealing to many
practitioners and are the focus of this paper. However, they contribute to an
overall description of the mental workload experienced on a task with no infor-
mation about its temporal variation. The category of task performance measures
is based upon the belief that the mental workload experienced by an individual
becomes relevant only if it impacts system performance. Primary task measures
are strongly connected to the concept of performance since they provide objective
and quantifiable measures of error or human success. Secondary task measures
can be gathered during task execution and are more sensitive to mental workload
variation. However, they might influence the execution of the primary task and
in turn influence mental workload. The class of physiological measures considers
responses of the body gathered from the individual interacting with an under-
lying task/system. The assumption is that they are highly correlated to mental
workload. Their utility lies in the interpretation and analysis of psychological
processes and their effect on the state of the body over time, without demand-
ing an explicit response by the human. However, they require specific equipment
and trained operators minimising their employability in real-world tasks.

2.1 Subjective Measurements Methods

Two out of the several subjective measures of mental workload developed in the
last decades are the NASA Task Load Index (NASA-TLX) [14] and the Workload
Profile (WP) [50]. Since these have been selected as baselines in this research



study, their detailed description follows. NASA-TLX is a mental workload assess-
ment tool developed by the the National Aeronautics and Space Administration
agency. It was originally conceived to assess the mental workload of pilots dur-
ing aviation tasks. Subsequently, it was adopted in other fields and used as a
benchmark in many research studies as for instance in [46,43,44,45,27]. The orig-
inal questionnaire behind this instrument can be found in [14]. The NASA-TLX
scale is built upon six dimensions and an additional pair-wise comparison among
these dimensions. This comparison is used to give weights to the six dimensions
as shown in equation 1.

NASA− TLXMWL =

(
6∑

i=1

di × wi

)
1

15
(1)

The Workload Profile (WP) is based on the Multiple Resource Theory (MRT)
that was introduced by prof. Wickens [52]. The WP index is derived from eight
dimensions: perceptual/central processing, response processing, spatial process-
ing, verbal processing, visual processing, auditory processing, manual responses,
and speech responses. In WP, the operator is asked to report the proportion of
attentional resources elicited during task execution. The final mental workload
score is a sum of the eight factors, as shown in equation 2.

WPMWL =

8∑
i=1

di (2)

For a detailed information about the scales used by the two mental workload
instruments described above, the reader is referred to [22].

2.2 Machine Learning and data-driven methods for mental
workload modeling

Machine learning (ML) is a subfield of Artificial Intelligence that focuses on
creating models from data. It can be seen as a method of data analysis for
automated analytical model building. It focuses on automatic procedures than
can learn from data and identify patterns with minimal human intervention.
ML can be supervised, unsupervised or semi-supervised. On one hand, super-
vised ML aims to build mathematical models from a set of data that contains
both the inputs and the desired output (supervisory data). On the other hand,
unsupervised ML takes only input data and it is aimed at finding structures, pat-
terns, and groups or clusters in it. Semi-supervised ML employs both the above
learning mechanisms and it occurs when not all the inputs have an associated
output. A number of research studies have employed ML for mental workload
modeling. For example, [41,16] analysed physiological brain signals, gathered
by functional Near-Infrared Spectroscopy (fNIRS), with unsupervised ML. [49]
and [40] employed supervised ML respectively using speech data and linguis-
tic/keyboard dynamics of the operators to predict her/his mental workload. [8]



and [32] adopted supervised ML for mental workload assessment using features
extracted from eye movements. Similarly, supervised ML was used to predict lev-
els of cognitive load in driving tasks employing physiological eye movements and
primary task measures such as braking, acceleration, and steering angles [55]. Re-
cently, the multi-model approach of combining multiple physiological measures
for mental workload assessmnt has emerged demonstrating an enhancement over
using individual techniques separately [1,20]. Supervised ML has also been em-
ployed with subjective self-reporting data [38] and compared against well-known
self-reporting measures.

3 Design And Methodology

In order to tackle the research question formalised in section 1, a comparative
research study was designed to evaluate the accuracy of data-driven models,
built with supervised machine learning versus two subjective baselines models of
mental workload, namely the NASA-TLX and the WP, as shown in figure 1. Two
criteria for evaluating MWL models have been selected, in line to other studies
in the literature [43,22]: convergent [5] and face validity [39]. The definitions of
these two forms of validity adopted here are shown in Table 1. Existing data has
been used and the CRISP-DM methodology (Cross-Industry Standard Process
for Data Mining) has been followed for constructing MWL models [7].

Fig. 1: The design of a comparative study aimed at comparing data-driven
models of mental workload, built with supervised machine learning, against

two subjective baseline models.



Table 1: Criteria for comparing mental workload models
Name Description Statistical Tools

Convergent
Validity

It aims to determine whether dif-
ferent MWL assessment measures
are theoretically related.

Correlation coefficient of the
MWL scores produced my base-
line models vs ML models.

Face
Validity

It aims to determine the extent
to which a measure can actually
grasp the construct of MWL.

Error of a MWL model in predict-
ing a self-reported perception of
MWL.

3.1 Dataset, context and participants

The dataset selected for this research study has been formed in an educational
context. More specifically, recruited participants were students who attended
classes of the Research Design and Proposal Writing module, in a master course
in the School of Computing, at Dublin Institute of Technology. Four different
topics have repeatedly been delivered in four consecutive semesters, from 2015
to 2017. (‘Science’, ‘The Scientific Method’, ‘Planning Research’, ‘Literature Re-
view’). These topics were delivered adopting three different instructional formats:

1. The first format focused on the transmission of information with a traditional
direct-instruction method – from lecturer to students – by projecting slides
on a whiteboard and describing them verbally.

2. The second format included the delivery of the same content, as developed
using the first format, as multimedia videos, pre-recorded by the same lec-
turer. Videos were built by employing the principles of the Cognitive Theory
of Multimedia Learning [33]. Further details can be found in [27];

3. The third format included a collaborative activity conducted after the deliv-
ery of the video, as developed in the second format. The goal of this activity
was to improve the social construction of the information through dialogue
among students divided in groups.

The number of classes, their length and the number of students are sum-
marised in Table 2. Students were of 16 nationalities (19-54 years; mean=31.7,
std=7.5). For each class, students were randomly split into two groups. They re-
spectively received the questionnaire associated to the NASA-TLX and the WP.
In addition to this, students were asked to answer an additional question on
overall perception of MWL, hereinafter referred to as the Overall Perception of
Mental Workload (OP-MWL), on a discrete scale from 0 to 20 (figure 2). Those
students who agreed to participate in the experiment received a consent form,
approved by the ethics committee of the Dublin Institute of Technology, and a
study information sheet. These forms describe the theoretical framework of the
study, the confidentiality of the data, and the anonymisation of their personal
information. Thus, two sub-datasets were formed, one containing the answers
of the NASA-TLX questionnaire, and one related to the answers related to the
WP questionnaire, respectively containing 145 and 139 samples.



Table 2: Number of classes for each format, number of students in each class
and their length in minutes

Lecture
Format 1 Format 2 Format 3

classes students mins classes students mins classes students mins

Science 2 14,17 62,60 1 26 18 1 16 60

Scientific Method 1 23 46 2 18,18 28,28 1 18 50

Research Planning 1 20 54 2 22,22 10,10 1 9 79

Literature Review 1 21 55 1 24 19 1 16 77

Fig. 2: Scale of the question for measuring the overall perception of mental
workload (OP-MWL).

3.2 Machine learning for training mental workload models

Supervised machine learning was employed to train models of mental workload
from collected data. The dependent feature is the overall perception of mental
workload provided by students (OP-MWL) while the independent features are
the questions of the NASA-TLX and the WP instruments.

Data Understanding - Three sets of independent features were formed, as
described in the summary table 3. This helped understand the nature of the data
and it allowed the investigation of its characteristics, such as the type of features,
their values and ranges. The table also shows the normality of the distributions
of each feature and its skewness. Figure 3 depicts the distribution of the target
variable (the overall perception of mental workload OP-MWL).

Fig. 3: Distribution of the target variable: the overall perception of mental
workload provided by students (OP-MWL).



Type n Mean SD Median Min Max Range Skew Kurtosis SE

Feature set 1: questions of the NASA-TLX
Mental R 145 10.04 3.42 10 1 20 19 -0.04 -0.34 0.28
Physical R 145 6.31 4.19 6 1 20 19 0.63 -0.22 0.35
Temporal R 145 9.22 3.41 10 1 20 19 -0.01 0.16 0.28
Performance R 145 8.72 3.73 9 2 17 15 0.17 -0.92 0.31
Frustration R 145 7.55 3.93 7 1 19 18 0.43 -0.57 0.33
Effort R 145 9.89 4.02 10 1 20 19 0.13 -0.18 0.33

Feature set 2: pairwise comparisons of the NASA-TLX
Temporal vs frustration C 145 1.19 0.4 1 1 2 1 1.54 0.37 0.03
Performance vs mental C 145 1.48 0.5 1 1 2 1 0.07 -2.01 0.04
Mental vs physical C 145 1.09 0.29 1 1 2 1 2.84 6.13 0.02
Frustration vs performance C 145 1.81 0.4 2 1 2 1 -1.54 0.37 0.03
Temporal vs effort C 145 1.62 0.49 2 1 2 1 -0.49 -1.77 0.04
Physical vs frustration C 145 1.45 0.5 1 1 2 1 0.21 -1.97 0.04
Performance vs temporal C 145 1.41 0.49 1 1 2 1 0.38 -1.87 0.04
Mental vs effort C 145 1.38 0.49 1 1 2 1 0.49 -1.77 0.04
Physical vs temporal C 145 1.8 0.4 2 1 2 1 -1.48 0.21 0.03
Frustration vs effort C 145 1.79 0.41 2 1 2 1 -1.43 0.05 0.03
Physical vs performance C 145 1.91 0.29 2 1 2 1 -2.84 6.13 0.02
Temporal vs mental C 145 1.7 0.46 2 1 2 1 -0.85 -1.29 0.04
Effort vs physical C 145 1.08 0.28 1 1 2 1 3 7.03 0.02
Frustration vs mental C 145 1.81 0.39 2 1 2 1 -1.6 0.55 0.03
Performance vs effort C 145 1.43 0.5 1 1 2 1 0.26 -1.94 0.04

Feature set 3: questions of the Workload Profile
Solving deciding R 139 11.17 3.93 11 2 20 18 -0.18 -0.51 0.33
Response selection R 139 9.92 4.34 10 1 20 19 -0.16 -0.72 0.37
Task space R 139 8.74 4.71 9 1 20 19 0.07 -0.96 0.4
Verbal material R 139 12.48 3.8 13 2 20 18 -0.57 -0.32 0.32
Visual resources R 139 12.24 3.79 13 3 20 17 -0.45 -0.42 0.32
Auditory resources R 139 12.78 3.69 13 4 20 16 -0.3 -0.57 0.31
Manual response R 139 9.46 5.05 10 1 20 19 -0.03 -0.92 0.43
Speech response R 139 8.82 5.03 9 1 20 19 0.14 -0.98 0.43

Dependent features
OP −MWL (NASA group) R 145 10.68 3.19 11 2 17 15 -0.41 -0.39 0.27
OP −MWL (WP group) R 139 10.47 3.37 10 1 18 17 -0.38 -0.19 0.29

Table 3: Summary Table (ST) of the dataset features and targets (R=Range,
C=Categorical)

Data Preparation - The final datasets to be used for training purposes were
subsequently constructed. Two datasets were formed:

– dataset NASA-TLX : this includes all the NASA-TLX features, in addition
to the binary preferences which emerged from the pairwise comparison of
the original instrument (Feature sets 1+2 of Table 3).

– dataset WP : this includes all the eight features of WP (Feature set 3 of Table
3).



The dataset NASA-TLX had 41 missing values spotted in 11 records (all in the
pair-wise comparison part) so, due to the limited amount of available data, impu-
tation was performed. The K-Nearest Neighbours (KNN) algorithm was applied
to estimate missing values based on the concept of similarity. This algorithm
has demonstrated good performance without affecting the quality of data [2,17].
K represents the number of nearest instances to be considered while calculating
the missing instance.

Data Modelling - This stage is aimed at inducing models of mental workload
by learning from available data rather than making ad-hoc theory-driven models.
An assumption made is that the aggregation of those factors believed to model
mental workload is non-linear. Tackling the complex problem of MWL modelling,
and in the spirit of the No-Free-Lunch theorem [54] – stating that there is
not one best approach that always outperforms the other – different supervised
machine learning algorithms for non-linear regression were chosen. Each learning
strategy encodes a distinct set of assumptions, that means different inductive
biases. Additionally, a linear method based on probability was also selected for
comparison purposes:

– Information-based: Random Forest by Randomization regression (Extra Trees:
Extremely Randomized Trees) [11];

– Similarity-based: K-Nearest Neighbours regression [18];

– Error-Based: Support Vector Regression (Radial basis function kernel) [3];

– Probability-based: Bayesian Generalised Linear Model regression [10].

The datasets were randomly split into 5 partitions of equal size, non overlap-
ping. Four of these were used for training purposed (80% of the data) and the
held-out set for testing purposes (20%) of the data. The process was repeated
5 times, and at each time, the held-out set was different. The parameters em-
ployed in each regression technique have been automatically tuned through a
random search approach (number of randomly selected predictors and number
of random cuts for extra trees, the number of neighbours for KNN and sigma
and regularisation term for SVM) Additionally, 5-fold cross validation has been
used in each training phase and the Root Mean Square Error as metric (RMSE)
for fitting the overall perception of mental workload (OPMWL). Therefore, one
is expected to have 5 surrogate models, for each training phase. The best one,
that means the one with less RSME, was kept as the final induced model. Since,
the process was repeated 5 times, as per figure 1, one is expected to be left with
5 induced models for each regression technique.

Model Evaluation - In order to evaluate the final induced models from data,
the following error metrics are evaluated [19,6]:

– Mean Squared Error (MSE) (eq. 3). It is the most common metric for the
evaluation of regression-based models. The higher the value the worse the



model. It is useful if observations contain unexpected value that are impor-
tant. In case of a single very bad prediction, the squaring will make the error
even worse, thus skewing the metric and overestimating the badness of the
regression model (range [0,∞)];

– Root Mean Squared Error (RSME) (eq. 4). It is the square root of the MSE
and it has the ability to present the variance on the same scale of the target
variable. (range [0,∞); here [0, 20]);

– Mean Absolute Error MAE (eq. 5). It is a linear score and all the individual
differences between expected and predicted outcome are weighted equally in
the average. Contrarily to MSE, it is not that sensitive to outliers. (range
[0,∞)];

MSE =
1

n

n∑
i=1

(yi − ŷi)2 (3)

RMSE =

√√√√ 1

n

n∑
i=1

(yi − ŷi)2 (4)

MAE =
1

n

n∑
i=1

| (yi − ŷi) | (5)

with yi is the actual expected value, ŷi is the model’s prediction

4 Results And Evaluation

4.1 Accuracy of the final induced models

Figure 4 depicts the box-plots containing the RMSE values for training. Accord-
ing to the previous design, each box plot contains 5 points, one for each final
induced model trained with 80% of the data. It can be observed that, in most of
the cases, the final induced models, trained with the NASA-TLX features (fea-
ture sets 1 + 2 of Table 3), have always lower RSME than those models built
upon the WP features (feature set 3 of table 3), even if this is not significant.
This denotes that the selected regression techniques can train a model similarly
and consistently. Also, since it is in the scale [0,20], it denotes the small error in
fitting the target feature (OP-MWL). In fact, errors on average, lies between 1
and 5, across the selected regression techniques, with mean around 3. It can be
also noted that the mean of the error of the Bayesian generalised linear models
is higher than the others, non-linear model, preliminary confirming the previ-
ous hypothesis of non-linearity of the independent features. This means that the
non-linear models can better learn the non-linear aggregation of the independent
features.



Fig. 4: The distributions of the RSME of the final induced models, grouped by
features sets (NASA Task Load Index, Workload Profile). Each bar contains 5

values, one for each model grouped by the regression technique.

4.2 Convergent validity of the induced models

The convergent validity of the induced models is assessed by calculating the
Spearman’s correlation between their inferred MWL scores, and the scores pro-
duced by the baseline models (NASA-TLX, WP) using the testing sets. Figure 5
shows these correlation coefficients in box-plots, each containing 5 values corre-
sponding to the 5 trained models tested with the 5 testing sets of 20% each. The
Spearman’s correlation statistic was used because the assumptions behind the
Pearson’s correlation statistics were not met. Generally, a moderate/high posi-
tive coefficients have been found (with p < 0.05) indicating that the inferences
of the induced models, built with machine learning, are valid since they correlate
with the baseline models. Also, these results are in line to the recommendation
of [5] whereby convergent validities above ρ = 0.70 are recommended, whereas
those below ρ = 0.50 should be avoided.

Fig. 5: Convergent validity of the final induced models.



4.3 Face Validity of Induced Models

Face Validity was computed to measure the extent to which the final induced
models can actually grasp the construct of Mental Workload. This was deter-
mined by computing the error of the final induced models, and the selected
baselines, in predicting the overall perception of mental workload (OP-MWL)
with the testing data, that means they are evaluated with unseen data. Figures
7, 8 and 9 show the scatterplots of this comparison while figure 6 depicts the
MSE, RMSE and MAE values. As in the previous case, each box-plot contains 5
values corresponding to the 5 error obtained with the testing sets of 20% each)

(a) Mean Square Errors

(b) Room Mean Square Errors

(c) Mean Absolute Errors

Fig. 6: The distributions of the errors of the final induced models and baseline
models, grouped by features set used (NASA-TLX or Workload Profile). Each
bar contains 5 points, one for each model grouped by the regression technique.



Firstly, the situation is consistent with the training error: slightly higher for the
induced models trained with the WP features. However, the error boundaries
for the testing sets are narrower than those achieved during training. In fact,
the RSME values, regardless of the regression techniques employed, have mean
around 3, with shorter box-plots, suggesting a good degree of generalisability of
the induced models. Also it can be seen that the mean of the errors produced by
the baseline models is always higher than those produced by the induced models.
In other words, the baseline models generate indexes of mental workload that
are always more distant to the overall perception of mental workload, reported
by subjects, when compared to the distance of the inferences produced by the
machine learning models.

4.4 Discussion

Findings are promising and show how subjective mental workload can be mod-
elled with a higher degree of accuracy using data-driven techniques, when com-
pared to traditional subjective techniques, namely the NASA Task Load Index
and the Workload Profile, used as baselines. In detail, an analysis of the con-
vergent validity of the data-driven models, learnt from data by employing su-
pervised machine learning regression techniques, against the selected baseline
models, show how these are theoretically related. In other words, if we believe
that the baseline models actually measure mental workload, so we can do the
same with the data-drive models. With this confidence, a subsequent analysis of
their face validity showed how data-driven models can approximate the percep-
tion of overall mental workload, as reported by subjects, with a higher degree of
precision (less error) when compared to the selected baselines. This means that
data-driven models covering the concept it purports to measure, that means
Mental Workload, with a higher precision. Findings are indeed restricted to the
dataset under consideration, but they motivate further research in this space.

5 Conclusion

This work presents an assessment of the ability of machine learning techniques
to model mental workload. The motivation behind this work was to shift from
state-of-the-art MWL modelling techniques – mainly theory-driven – to auto-
mated learning techniques able to induce MWL models from data. Specifically,
a number of learning regression techniques have been selected to induce models
of mental workload employing features gathered from users subjectively. These
features included the answers to the questionnaires of the NASA Task Load
Index and the Workload Profile, two baseline mental workload self-reporting
measures chosen for comparative purposes. The induced models were compared
against the two selected baselines through an assessment of their convergent and
face validity. Convergent validity was aimed at determining whether the induced
models were theoretically related to the selected baselines, known to model the
construct of mental workload. Face validity was aimed at determining whether



the induced models could actually cover the concept it purports to measure, that
means Mental Workload. The former validity was assessed through a correlation
analysis of the mental workload scores produced by the induced models and the
selected baselines. The latter validity was assessed by investigating the error of
the machine learning models and the baselines to predict an overall perception
of mental workload subjectively reported by subjects, after the completion of
experimental tasks in third level education.

The findings of this experiment confirm that supervised machine learning
algorithms are potential alternatives to traditional theory-driven techniques for
modeling mental workload. Machine learning poses itself as a seed for an effi-
cient mechanism that facilitates the understanding of the construct of mental
workload, the relationship of its factors and their impact to task performance. A
viable direction for future work would be to extend the current experiment with
an in depth evaluation of the importance of each feature for predicting the overall
perception of mental workload. Subsequently, simpler mental workload models
could be created containing the most important features. This can increase the
understanding of the complex but fascinating construct of mental workload and
contribute towards the ultimate goal of building a highly generalisable model
that can be employed across fields, disciplines and experimental contexts.

References

1. Aghajani, H., Garbey, M., Omurtag, A.: Measuring mental workload with eeg+
fnirs. Frontiers in human neuroscience 11, 359 (2017)

2. Batista, G.E., Monard, M.C.: A study of k-nearest neighbour as an imputation
method. HIS 87, 251–260,48 (2002)

3. Bennett, K.P., Campbell, C.: Support vector machines. ACM SIGKDD Explo-
rations Newsletter 2(2), 1–13 (2000),

4. Cain, B.: A review of the mental workload literature. Tech. rep., Defence Research
and Development Canada Toronto Human System Integration Section; 2007. Re-
port No. : RTO-TRHFM-121-Part-II. Contract No (2004)

5. Carlson, K.D., Herdman, A.O.: Understanding the impact of convergent validity
on research results. Organizational Research Methods 15(1), 17–32 (2012)

6. Chai, T., Draxler, R.R.: Root mean square error (rmse) or mean absolute error
(mae)?–arguments against avoiding rmse in the literature. Geoscientific model de-
velopment 7(3), 1247–1250 (2014)

7. Chapman, P., Clinton, J., Khabaza, T., Reinartz, T., Wirth, R.: The crisp-dm
process model. The CRIP–DM Consortium 310 (1999)

8. Cortes Torres, C.C., Sampei, K., Sato, M., Raskar, R., Miki, N.: Workload as-
sessment with eye movement monitoring aided by non-invasive and unobtrusive
micro-fabricated optical sensors. In: Adjunct Proceedings of the 28th Annual ACM
Symposium on User Interface Software & Technology. pp. 53–54. ACM (2015)

9. Fan, J., Smith, A.P.: The impact of workload and fatigue on performance. In:
International Symposium on Human Mental Workload: Models and Applications.
pp. 90–105. Springer (2017)



10. Gelman, A., Jakulin, A., Pittau, M.G., Su, Y.S.: A weakly informative default prior
distribution for logistic and other regression models. Annals of Applied Statistics
2(4), 1360–1383 (2008)

11. Geurts, P., Ernst, D., Wehenkel, L.: Extremely randomized trees. Machine Learning
63(1), 3–42 (2006)

12. Hancock, P.A.: Whither workload? mapping a path for its future development. In:
International Symposium on Human Mental Workload: Models and Applications.
pp. 3–17. Springer (2017)

13. Hancock, P.A., Meshkati, N.: Human mental workload. Elsevier (1988)
14. Hart, S.G., Staveland, L.E.: Development of NASA-TLX (Task Load Index): Re-

sults of Empirical and Theoretical Research. Advances in Psychology 52(C), 139–
183 (1988)

15. Hart, Sandra, G.: NASA-task load index (NASA-TLX); 20 years later. Human
Factors and Ergonomics Society Annual Meting pp. 904–908 (2006)

16. Hincks, S.W., Afergan, D., Jacob, R.J.: Using fnirs for real-time cognitive workload
assessment. In: International Conference on Augmented Cognition. pp. 198–208.
Springer (2016)

17. Jonsson, P., Wohlin, C.: An evaluation of k-nearest neighbour imputation using
likert data. In: 10th International Symposium on Software Metrics, 2004. Proceed-
ings. pp. 108–118 (Sept 2004)

18. Kotsiantis, S.B.: Supervised Machine Learning: A Review of Classification Tech-
niques. Informatica 31(2), 249–268 (2007),

19. Kv̊alseth, T.O.: Cautionary note about r 2. The American Statistician 39(4), 279–
285 (1985)

20. Liu, Y., Ayaz, H., Shewokis, P.A.: Multisubject “learning” for mental workload
classification using concurrent eeg, fnirs, and physiological measures. Frontiers in
human neuroscience 11, 389 (2017)

21. Longo, L.: Formalising Human Mental Workload as a Defeasible Computational
Concept. Ph.D. thesis, Trinity College Dublin (2014)

22. Longo, L.: A defeasible reasoning framework for human mental workload repre-
sentation and assessment. Behaviour and Information Technology 34(8), 758–786
(2015)

23. Longo, L.: Designing medical interactive systems via assessment of human mental
workload. In: Int. Symposium on Computer-Based Medical Systems. pp. 364–365
(2015)

24. Longo, L.: Mental workload in medicine: foundations, applications, open problems,
challenges and future perspectives. In: Computer-Based Medical Systems (CBMS),
2016 IEEE 29th International Symposium on. pp. 106–111. IEEE (2016)

25. Longo, L.: Subjective usability, mental workload assessments and their impact on
objective human performance. In: IFIP Conference on Human-Computer Interac-
tion. pp. 202–223. Springer (2017)

26. Longo, L.: Experienced mental workload, perception of usability, their interaction
and impact on task performance. PloS ONE 13(8), 1–36 (08 2018),

27. Longo, L.: On the reliability, validity and sensitivity of three mental workload
assessment techniques for the evaluation of instructional designs: A case study
in a third-level course. In: Proceedings of the 10th International Conference on
Computer Supported Education, CSEDU 2018, Funchal, Madeira, Portugal, March
15-17, 2018, Volume 2. pp. 166–178 (2018),

28. Longo, L., Barrett, S.: Cognitive effort for multi-agent systems. In: International
Conference on Brain Informatics. pp. 55–66. Springer (2010)



29. Longo, L., Dondio, P.: On the relationship between perception of usability and
subjective mental workload of web interfaces. In: Web Intelligence and Intelligent
Agent Technology (WI-IAT), 2015 IEEE/WIC/ACM International Conference on.
vol. 1, pp. 345–352. IEEE (2015)

30. Longo, L., Leva, M.C.: Human Mental Workload: Models and Applications: First
International Symposium, H-WORKLOAD 2017, Dublin, Ireland, June 28-30,
2017, Revised Selected Papers, vol. 726. Springer (2017)

31. Longo, L., Rusconi, F., Noce, L., Barrett, S.: The importance of human mental
workload in web-design. In: 8th International Conference on Web Information Sys-
tems and Technologies. pp. 403–409 (April 2012)

32. Mannaru, P., Balasingam, B., Pattipati, K., Sibley, C., Coyne, J.: Cognitive context
detection in uas operators using eye-gaze patterns on computer screens. In: Next-
Generation Analyst IV. vol. 9851, p. 98510F. International Society for Optics and
Photonics (2016)

33. Mayer, R.E.: Cognitive Theory of Multimedia Learning, p. 4371. Cambridge Hand-
books in Psychology, Cambridge University Press, 2 edn. (2014)

34. Meshkati, N., Loewenthal, A.: An Eclectic and Critical Review of Four Primary
Mental Workload Assessment Methods: A Guide for Developing a Comprehensive
Model. Advances in Psychology 52(1978), 251 – 267 (1988),
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Appendix

Fig. 7: Scatterplots of the overall perception of mental workload reported by
subjects (OP-MWL) (x-axis) and the prediction of the induced models (y-axis)

for the NASA-TLX (Left) and the Workload Profile (Right) grouped by fold



Fig. 8: Scatterplots of the overall perception of mental workload (x-axis), as
reported by subjects and the prediction of the induced models (y-axis) for the
5 models produced by the regression algorithms (Extra trees: col 1; KNN: col

2; SVR: col 3; NB: col 4) employing the features of the NASA Task Load Index



Fig. 9: Scatterplots of the overall perception of mental workload (x-axis), as
reported by subjects and the prediction of the induced models (y-axis) for the
5 models produced by the regression algorithms (Extra trees: col 1; KNN: col

2; SVR: col 3; NB: col 4) employing the features of the Workload Profile
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