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The Camassa-Holm Hierarchy and Soliton

Perturbations

Georgi G. Grahovski and Rossen I. Ivanov

January 28, 2010

Introduction. Integrable equations are widely used as model equations in various
problems. Such equations are in some sense exactly solvable, e.g. by the inverse
scattering method (ISM) and exhibit global regular solutions.
In hydrodynamic context, even though water waves are expected to be unstable in
general, they do exhibit certain stability properties in physical regimes where in-
tegrable model equations are accurate approximations for the evolution of the free
surface water wave. The model equation is not integrable, but is somehow close to an
integrable equation, i.e. can be considered as a perturbation of an integrable equation.
In such case it is still possible to obtain approximate analytical solutions.
There two main approaches treating the perturbations of integrable equations: a
“Direct Approach” and a “Spectral” Approach.
The direct approach is based on expanding the solutions of the perturbed equation
around the unperturbed one, then the corrections due to perturbations are to be
determined:

ũ(x, t) = u(x, t) + Δu(x, t).

Here ũ(x, t) (u(x, t)) is the solution of the perturbed (unperturbed) nonlinear equation
and Δu(x, t) is a (small) perturbation. The strength of the perturbation is measured
by a parameter ε: Δu(x, t) = O(ε). By small (weak) perturbation one means 0 < ε�
1. Such perturbations can be studied directly in the configuration (coordinate) space,
The effect of the perturbations on the scattering data can be studied in the spectral
space of the associated spectral problem.
Several authors had used various versions of the direct approach in the study of soliton
perturbations: D. J. Kaup [3] had used a similar approach for the perturbed sine-
Gordon equation. Keener and McLaughlin [4] had proposed a direct approach by
obtaining the appropriate Green functions for the nonlinear Schrodinger and sine-
Gordon equations. For a comprehensive review of the direct perturbation theory see
e.g. [2, 5] and the references therein.
In the spectral space, the study of the soliton perturbations is based on the pertur-
bations of the scattering data, associated to the spectral problem. It is based on the
use of the expansions of the “potential” u(x, t) of the associated spectral problem
over the complete set of “squared solutions” (the eigenfunctions of the corresponding
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recursion operator). Such methods are used by a number of authors, for studying
perturbations of various nonlinear evolutionary equations: the sin-Gordon equation –
[6]; the nonlinear Schrödinger equation – [7, 8, 9]; etc.
The completeness of the squared eigenfunctions helps to describe the ISM for the
corresponding hierarchy as a GFT. The role of the Fourier modes for the GFT is
played by the Scattering data of the associated Lax operator. The GFT provides
a natural setting for the analysis of small perturbations to an integrable equation:
The leading idea is that starting from a purely soliton solution of a certain integrable
equation one can ’modify’ the soliton parameters such as to incorporate the changes
caused by the perturbation. There is a contribution to the equations for the scattering
data that comes from the GFT-expansion of the perturbation.

2. The Camassa-Holm Hierarchy: An Overview. Closely related to the KdV
hierarchy is the hierarchy of the Camassa-Holm (CH) equation [10]. This equation
has the form

ut − uxxt + 2ωux + 3uux − 2uxuxx − uuxxx = 0, (1)

where ω is a real constant. It is integrable with a Lax pair [10]

Ψxx =
(1
4
+ λ(m+ ω)

)
Ψ, Ψt =

( 1
2λ
− u
)
Ψx +

ux

2
Ψ + γΨ, (2)

where m ≡ u− uxx and γ is an arbitrary constant.
Both CH and KdV equations appeared initially as models of the propagation of two-
dimensional shallow water waves over a flat bottom. The solitary waves of KdV are
smooth solitons, while the solitary waves of CH, which are also solitons, are smooth
if ω > 0 and peaked (called “peakons” and representing weak solutions), if ω = 0.
The problem of perturbation of the CH equation arises when one deals with model
equations that are in general non-integrable but close to the CH equation. A pertur-
bation could appear for example when one takes into account the viscosity effect.
Another possible scenario comes from the so-called “b-equation” that also is a model
of shallow water waves [11] :

mt + bωux + bmux +mxu = 0.

It generalizes the CH equation and is integrable only for: A) b = 2 – Camassa-Holm
equation; B) b = 3 – Degasperis-Procesi equation.
The solutions of the b-equation for values of b close to b = 2 can be analyzed in the
framework of the CH-perturbation theory. The “b-equation” can be casted into a
form of a CH perturbation

mt + 2ωux + 2mux +mxu = (2− b)(ωux +mux) ≡ P [u],

for a small parameter ε = b− 2.

3. Inverse Scattering Method and Generalised Fourier Transform for
the Camassa-Holm Hierarchy. For simplicity we consider the case where m
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is a Schwartz class function, m(x) ∈ S(R). For simplicity we use the notation
q = u − uxx + ω; q(x, t) > 0 for all t if q(x, 0) > 0. Let k2 = − 14 − λω, i.e.

λ(k) = − 1
ω

(
k2+ 14

)
. The continuous spectrum in terms of k corresponds to k – real.

The discrete spectrum consists of finitely many points kn = iκn, n = 1, . . . , N where
κn is real and 0 < κn < 1/2. The continuous spectrum vanishes for ω = 0, [12].
The Jost solutions of the spectral problem f±(x, k) are fixed by their asymptotic
when x→ ±∞ for all real k 6= 0:

lim
x→∞

e∓ikxf±(x, k) = 1,

and moreover at the points of the continuous spectrum

f−(x, k) = a(k)f+(x,−k) + b(k)f+(x, k), Im k = 0.

The scattering coefficient a(k) has an analytic continuation in the upper complex
plane. At the points iκn of the discrete spectrum, a(k) has simple zeroes, a(iκn) = 0.
Then f−(x, iκn) = bnf

+(x, iκn) for some coefficient bn.
The quantities R±(k) = b(±k)/a(k) are known as reflection coefficients. One can

define their analogues R±n =
b±1n
ian
at the points of the discrete spectrum k = ikn [13]

where ȧn = [
∂
∂k
a(k)]k=kn .

With the asymptotics of the Jost solutions and (2) one can show that

L±F
±(x, k) =

1

λ
F±(x, k) L±F

±
n (x) =

1

λn
F±n (x), (3)

where λn = λ(iκn); F
±(x, k) ≡ (f±(x, k))2, F±n (x) ≡ F (x, iκn) are the squares of the

Jost solutions and

L± = (∂
2 − 1)−1

[
4q(x)− 2

∫ x

±∞
dym′(y)

]
∙ (4)

is the recursion operator. The inverse of this operator is also well defined [13]. The
completeness relation for the eigenfunctions of the recursion operator is [13]

ω
√
q(x)q(y)

θ(x− y) = −
1

2πi

∫ ∞

−∞

F−(x, k)F+(y, k)

ka2(k)
dk

+

N∑

n=1

1

iκnȧ2n

[
Ḟ−n (x)F

+
n (y) + F

−
n (x)Ḟ

+
n (y)−

( 1
iκn
+
än

ȧn

)
F−n (x)F

+
n (y)

]
. (5)

where Ḟ±n (x) ≡ [
∂
∂k
F±(x, k)]k=kn , etc. Therefore F

±, F±n and Ḟ
±
n can be considered

as ’generalised’ exponents. It is possible to expand m(x) and its variation δm(x) over
the above mentioned basis, or rather the quantities depending on q(x) (which are
determined by m(x)) [13]:

ω
(√ ω

q(x)
− 1
)
= ±

1

2πi

∫ ∞

−∞

2kR±(k)
λ(k)

F±(x, k)dk +
N∑

n=1

2κn
λn
R±nF

±
n (x); (6)
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ω
√
q(x)

∫ x

±∞
δ
√
q(y) dy =

1

2πi

∫ ∞

−∞

i

λ(k)
δR±(k)F±(x, k)dk

±
N∑

n=1

[ 1
λn
(δR±n −R

±
n δλn)F

±
n (x) +

R±n
iλn
δκnḞ

±
n (x)

]
(7)

The expansion coefficients are given by the scattering data and their variations. This
makes evident the interpretation of the ISM as a generalized Fourier transform. Now
it is straightforward to describe the hierarchy of Camassa-Holm equations. To every
choice of the function Ω(z), known also as the dispersion law we can put into cor-
respondence the nonlinear evolution equation (NLEE) that belongs to the Camassa-
Holm hierarchy:

2
√
q

∫ x

±∞
(
√
q)tdy +Ω(L±)

(√ω
q
− 1
)
= 0. (8)

An equivalent form of the equation is

qt + 2qũx + qxũ = 0, ũ =
1

2
Ω(L±)

(√ω
q
− 1
)
. (9)

The choice Ω(z) = z leads to ũ = u and thus to the CH equation (1). Other choices of
the dispersion law and the corresponding equations of the Camassa-Holm hierarchy
are discussed in [13]. The CH equation is equivalent to the following linear evolution
equations for the scattering data:

R±t (k)∓ ikΩ(λ
−1)R±(k) = 0, (10)

R±n,t ± κnΩ(λ
−1
n )R

±
n = 0, (11)

κn,t = 0. (12)

The time-evolution of the scattering data for the CH equation (1) can be computed
from the above formulae for Ω(z) = z,

4. Perturbation Theory for for the Camassa-Holm Hierarchy. Let us start
with a perturbed equation of the CH hierarchy of the form

qt + 2qũx + qxũ = P [u], ũ =
1

2
Ω(L±)

(√ω
q
− 1
)
, (13)

where again, P [u] is a small perturbation, by assumption in the Schwartz-class. It is
useful to write (13) in the form

2
√
q

∫ x

±∞
(
√
q)tdy +Ω(L±)

(√ω
q
− 1
)
=
1
√
q

∫ x

±∞

P (y)
√
q(y)
dy. (14)

With the completeness relation (5) one can deduce the gereralised Fourier expansion
for expressions, like the one on the right-hand side of (13).
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Theorem: Assuming that f+ and f− are not linearly dependent at x = 0 and g(x) ∈
S(R), the following expansion formulas hold:

ω
√
q

∫ x

±∞

g(y)
√
q(y)
dy = ±

1

2πi

∫ ∞

−∞
g̃±(k)F±x (x, k)dk

∓
N∑

j=1

(
g±1,jḞ

±
j,x(x) + g

±
2,jF

±
j,x(x)

)
, (15)

and the Fourier coefficients are

g̃±(k) =
1

ka2(k)

(
g, F∓

)
,

g±1,j =
1

kj ȧ
2
j

(
g, F∓j

)
,

g±2,j =
1

kj ȧ
2
j

[(
g, Ḟ∓j

)
−

(
1

kj
+
äj

ȧj

)
(
g, F∓j

)
]

,

where (g, F ) ≡
∫∞
−∞ g(x)F (x)dx.

The substitution of the expansions (15) for P [u], (6) and (7) into the perturbed
equation (14) gives the following expressions for the modified scattering data:

R±t ∓ ikΩ(1/λ)R
± = ∓

iλ(P, F∓)

2ka2(k)
, (16)

kj,t =
λj(P, F

∓
j )

2kj ȧ2jR
±
j

(17)

R±j,t −R
±
j λj,t ± κjΩ(1/λj)R

±
j

= −
λj

2kj ȧ2j

[

(P, Ḟ∓j )−

(
1

kj
+
äj

ȧj

)
(
P, F∓j

)
]

, (18)

From (18) we obtain the following for the coefficient bj :

bj,t + κjΩ(1/λj)bj = −
λj

4κj ȧj

(
P, b2j Ḟ

+
j − Ḟ

−
j

)
.

The ’perturbed’ solution for the hierarchy in the adiabatic approximation can be
recovered from the following expansion for ũ(x) with the ’modified’ scattering data
keeping the unperturbed ’generalised’ exponents:

ũ(x) = ±
1

2πi

∫ ∞

−∞

kΩ(1/λ(k))

ωλ(k)
R±(k)F±(x, k)dk +

N∑

n=1

κnΩ(1/λn)

ωλn
R±nF

±
n (x).

This formula follows from the second part of (9) and (6). Note that for the CH
equation (1) ũ ≡ u.
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5. Conclusions. In our derivations we used completeness relations that are valid
only given the assumption that the Jost solutions f+ and f− are linearly independent
at x = 0. The case when this condition is not satisfied is quite exceptional, however
this is exactly the case when one has purely soliton solution. Then one has to take
into account a nontrivial contribution from the scattering data at k = 0 and some of
the presented results require modification. This means that no shelf is formed behind
the soliton.
The presence of shelf for KdV equation is observed e.g. under the perturbation
P [u] = εu [14]. The evaluation of the perturbation terms for the CH hierarchy could
be technically difficult due to the complicated form of the CH multisoliton solutions
[15]. However the limit ω → 0 leads to the relatively simple peakon solutions.
We end up with listing some open problems: 1) Using the presented general formu-
lae to study the perturbations of the peakon parameters; 2) To study the soliton
interactions of pure solitons and peakons for CH.
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