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Abstract 

The ability to identify and draw appropriate implications from non-verbal cues is a challenging task 

in facial expression recognition and has been investigated by various disciplines particularly social science, 

medical science, psychology and technological sciences beyond three decades. Non-verbal cues often last 

a few seconds and are obvious (macro) whereas others are very short and difficult to interpret (micro). This 

research is based on the area of micro expression recognition with the main focus laid on understanding 

and exploring the combined effect of various existing feature extraction techniques and one of the most 

renowned machine learning algorithms identified as Support Vector Machine (SVM). Experiments are 

conducted on spatiotemporal descriptors extracted from the CASME II dataset using LBP-TOP, LBP-SIP, 

LPQ-TOP, HOG-TOP, HIGO-TOP and STLBP-IP. We have considered two different cases for the 

CASME II dataset where the first case measures performance for five class i.e. happiness, disgust, surprise, 

repression and others and the second case considers three classes namely positive, negative and surprise. 

LPQ-TOP with SVM produced highest accuracy against rest of the approaches in this work.  

 

Keywords: Micro-expression, feature extraction, feature classification, SVM.  

1 Introduction  

The common non-verbal cues that have attracted attention from research scholars of diverse backgrounds include 

body language, facial expressions, facial emotion, hand gestures, eye movements and eye contact. These cues are 

critically important since they are sent from the emotional brain [Patti, 2012] and are hallmarks of the most honest 

expressions. As the common proverb says “face is the index of mind”- facial expressions can contribute in 

understanding one’s facial emotion as well as psychological status. Facial expressions are broadly classified into 

macro and micro expressions where extensive research with high end results has already been obtained for macro 

expressions and research still continues. However, it has been argued that macro expressions may not be the perfect 

measure to determine a person’s real emotion and psychological status since these are voluntary as well as conscious 

expressions. In other words, a person exhibiting these expressions is aware of what they are doing and can regulate 

their facial emotions, hence may attempt to portray an expression contrary to their actual emotion. In such a scenario 

macro expressions cannot be used as a true cue. Micro expressions appear on one’s face in a spontaneous manner 

and a person has exceptionally less control over them hence, they have minimal chance of being regulated. It is 

believed that these expressions are leaked on one’s face as a result of conscious or unconscious suppression of true 

emotion [P. Ekman, 1969] [Yuan Zong et al., 2018]. Due to these factors micro expressions are often seen as more 

natural and genuine than macro expressions; unveiling useful cues for true emotional status. These expressions 

mainly differ in terms of intensity, duration and number of facial parts contributing to their formation [Sze-Teng 

Liong et al., 2017]. However, it has been debated that duration is the sole ground on which expressions can be 

categorized as macro or micro, ruling out intensity as another factor for classification [Wu Q. et al., 2011]. 

Additionally, expressions that have duration which extends beyond micro expression (0.04 to 0.2secs [Sze-Teng 

Liong et al., 2017]) duration ultimately fall under the category of macro expressions [Wu Q. et al., 2011] [P. Ekman, 

1969] [P. Ekman, 2009]. Previous work [Xiaohong Li et al., 2016] has shown that micro expressions have 



comparably very low intensity than macro expressions making it tougher for recognition. It is said that more facial 

segments contribute in forming a macro expression whereas significantly fewer facial segments contribute to a 

micro expression. Micro expression recognition systems can be devised using both manual as well as automated 

approaches. The manual approach consists of observations made by highly trained individuals and have achieved a 

modest accuracy of 47% [M.G. Frank et al., 2009]. A psychological experiment [J. Endres et al., 2009] revealed an 

average recognition rate of 50% on the micro-expression training dataset METT [P. Ekman, 2003]. However 

recently, automated approaches have paced towards achieving an accuracy as high as 75.3% [Yandan Wang et al., 

2017]. Some of the eminent application areas that have been associated with micro expression recognition include 

autism, schizophrenia, mental diseases, criminal investigation, lie detection and business negotiations [P. Ekman, 

2009] [Yandan Wang et al.,2017].  In this paper we aim to assess classification accuracy of facial micro expressions 

by experimenting on CASME II [Yan W-J et al., 2014] database and compare it with the existing results of SMIC 

[Xiaobai Li et al., 2013] database. We have considered two different cases for CASME II database where in the first 

case we consider five class i.e. happiness, disgust, surprise, repression and others. In the second case we consider 

three classes namely positive, negative and surprise. The motive behind choosing three class expressions is because 

the key focus of this research lies in the application of micro expression recognition system on autistic faces. This 

type of faces tend to manifest very minimal expressions on their face therefore the concept of recognizing micro 

expression into three classes as positive, negative and surprise seemed more realizable. Also in five class category 

fear and sad expressions were not used for baseline evaluation however the author wanted to explore these two 

expressions for autistic faces along with other expressions. The remainder of the paper contains three sections where 

Section 2 discusses the methodology for micro expression recognition, Section 3 presents the results obtained 

followed by concluding remarks in Section 4. 

2 Methodology 

The bare bone structure of the methodology generally adopted for a micro expression recognition system (figure 1) 

consists of face detection, pre-processing, feature extraction followed by classification as its constituent components 

[M. Takalkar et al., 2018] [Kam Meng Goh et al., 2018].  

 

 

 

 

 

 

 

 

 

 

 

 

2.1 Face Detection and Pre Processing 

As the starting point, the face is detected from an image or video and selected as the object of interest for further 

examination. One of the popular techniques for face detection is the Viola-Jones method [Viola P et al., 2004]. We 

have chosen the CASME II database [Yan W-J et al., 2014] which contains cropped faces and hence no face 

detection method was required. The next stage is known as pre-processing and its objective is to enrich features of 

interest and subdue the features that are of less importance [M. Takalkar et al., 2018]. For five class emotion, the 

inputs to the proposed system are face frontal view from CASME II images with face size of approximately 280 x 

340 pixels. These images are pre-processed using Active Shape Modelling (ASM) [Cootes TF et al., 1995] and 

Input image/ 

video 

Figure 1 Bare bone structure for micro expression recognition system [M. Takalkar et al., 2018] 
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Light Weighted Mean (LWM) [Goshtasby A, 1988]. In three class emotion, the CASME II micro expression 

database requires to be normalized using a Temporal Interpolation Model (TIM) [Z. Zhou et al., 2011] to contain 

16 frames per video. By doing so it helps to meet appropriate parameter setting requirements and enable 

spatiotemporal descriptor extraction [Yuan Zong et al., 2018]. 

2.2 Facial Feature Extraction 

The pre-processing stage is followed by feature extraction which can be broadly classified into appearance based 

and geometry based. These extracted features form the foundation for recognition of facial expressions into their 

respective classes. Here Local Binary Pattern with Three Orthogonal Plane (LBP-TOP) [Zhao G et al., 2007] was 

chosen since this method is one of the most popular extraction techniques for micro expression and was used by 

[Yan W-J et al., 2014] as baseline evaluation, for five class emotion. For calculating LBP a set of frames is required 

representing a video sequence with T time length. The LBP code is constructed for three planes namely XY, XT 

and YT. Next, we construct histograms for these planes individually and eventually concatenate them into a block 

of 5 x 5.  These features along with class labels were fed as input to SVM for classification. Another method for 

extracting features for five class emotion is Spatiotemporal Local Binary Pattern with Integral Projection (STBLP-

IP) [Xiaohua Huang et al., 2015]. The main reason for choosing this extraction technique was due to its ability to 

retain the attribute information for the shape in images along with more discriminative capability for categorizing 

micro expressions into various class. Initially the integral projection in two directions, horizontal and vertical is 

calculated. Then, LBP is calculated for extracting appearance information from the difference images produced in 

the above step and finally the resulting binary vector element is multiplied by a weight. The 1D LBP obtained for 

each frame is represented in a histogram. In the final step, the histograms obtained from horizontal and vertical 

projections are represented into a single vector by concatenation and classified using SVM. For micro expression 

with three class the first feature extraction method considered was LBP-TOP which follows same procedure as 

described earlier. The second feature extraction method is known as Local Binary Pattern with Six Intersection Point 

(LBP-SIP) [Y. Wang et al., 2014].  For extracting features from the input images this method uses only six unique 

points emanated from the intersection of three orthogonal planes. The final feature vector resulting from 

concatenation of local binary patterns of three planes was used for classification in our experiment. Due to its ability 

to reduce redundancy, LBP-SIP provides a condensed representation of features and hence was selected in this 

research work. The third technique is Histogram of Gradient with Three Orthogonal Plane (HOG-TOP) [Xiaobai 

Li, et. al., 2018] which calculates local gradient direction and gradient magnitude denoted by symbols Ɵ and m. 

This method computes these values for every pixel on the XY plane. It also constructs a mapping between the 

directional and magnitude values calculated in previous step. This technique is drawn out from the existing HOG 

method which was originally developed for detecting human [N. Dalal et al., 2005]. Finally a histogram is 

constructed along with a weighted vote approach and the overall procedure is further extended for the XT and YT 

planes then concatenated into a vector. The feature vector obtained from HOG-TOP has been used in our work for 

classification. The fifth method is Histogram of Image Gradient with Three Orthogonal Plane (HIGO-TOP) and 

follows the similar procedure as HOG-TOP but uses simple vote approach [Xiaobai Li, et. al., 2018]. For colour 

videos both HOG and HIGO methods surpassed the performance in comparison to the LBP method [Xiaobai Li, et 

al., 2018] hence was chosen in this micro expression classification experiment.  

 

In addition to these feature extraction techniques that are commonly used for micro-expressions, we propose to use 

Local Phase Quantization with Three Orthogonal Plane (LPQ-TOP) [Päivärinta J. et al., 2011] [V. Ojansivu et al., 

2008] which has not previously been used for three class micro-expression classification with SVM on CASME II 

dataset.  In this method the phase information can be derived using two dimensional Discrete Fourier transform with 

four coefficients having values of type integer (range of 0 to 255). These integer values can be formed using the 

binary coding technique. The local phase quantized information collected for all the neighbour pixels for a given 

image is modelled into a histogram. The parameters used include a local window of [5, 5, 5] with a correlation 

model of [0, 0] [Yuan Zong et al., 2018]. This notion is further extended on three orthogonal planes and ultimately 



concatenated into feature vector. This feature vector has been used in our work for classifying them into three 

emotion types. The phase quantization method is not affected by the changes in the illumination that have uniform 

nature, hence this method has been considered for examination in this research.  

2.3 Feature Classification 

To classify features for both five class and three class emotion on CASME II micro expressions database, the SVM 

technique [Vapnik P. et al., 1995] using LIBSVM [Chih-Chung et al., 2011] was used with three kernel functions 

namely linear, polynomial and radial basis function (RBF). For five class emotion the CASME II database with 

emotions labelled as happy, disgust, surprise, repression and others was considered similar to [Yan W-J et al., 2014].  

Among the three kernels used in SVM for classification purpose the polynomial kernel reported the best 

performance for LBP-TOP. In case of STLBP-IP linear kernel was able to give best performance compared to RBF 

and polynomial kernel. In the second case only three classes of emotions represented as positive, negative and 

surprise were used. For three class emotion the micro expression images of CASME II database originally labelled 

as happy is considered as positive micro expression in our work. Similarly disgust, sad, and fear are considered as 

negative micro-expression and surprise sample is considered same as the original micro expression. The features 

extracted from CASME II dataset with relabelling for 130 samples has been adapted from [Yuan Zong et al., 2018].  

The RBF kernel was able to produce best performance when used with HOG-TOP, LBP-SIP and LPQ-TOP 

independently. For LBP-TOP polynomial kernel reported the best performance whereas for HIGO-TOP linear 

kernel performed the best.  

3 Results  

Table 1 presents the classification results obtained for five class micro-emotion on CASME II database. For LBP-

TOP the value of radius parameter on the x and y axes was set to 1, radius of T was set to 4, and number of 

neighbouring pixels P was set to 8.  For LBP-TOP the highest accuracy of 62.98% (Table 1) was achieved in 

combination with SVM implemented using polynomial kernel and cross validation with leave-one-subject-out. 

Using STLBP-IP and SVM classification with leave-one-subject-out cross validation the highest accuracy achieved 

was 54.11% with linear kernel compared to RBF and polynomial kernel. In this case for constructing 1D LBP the 

mask parameter was set to 9.   

Table 1: Classification accuracy comparison for five class emotion on CASME II. 

 

Table 2 depicts results obtained for CASME II representing three class i.e. 

positive, negative and surprise for micro expression. The LBP-TOP with 

radius R=3 and neighbour P=8 achieved average accuracy of 55.20% 

using polynomial kernel for three class emotion. This is however lesser 

than the accuracy obtained for five class emotion i.e. 62.98% but 

comparable with the state of the art accuracy reported for three class 

emotion on CASME II. LBP-SIP was able to secure average accuracy of 

56.08% using R=3 and a RBF kernel. Both HOG-TOP and HIGO-TOP 
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techniques with 8 neighbour has obtained average accuracy of 56.22% with RBF and 55.87% with linear kernel 

respectively. Among the five methods LPQ-TOP was able to produce a maximum accuracy of 69.23% and average 

accuracy of 61.16%.  This is by far the highest accuracy obtained in our experiment compared to all other methods 

for three class emotion for micro expression classification. Research work using SVM for classification of features 

extracted for micro expressions using LPQ-TOP could not be found as of now due to which appropriate comparison 

could not be made. Figure 2 demonstrates the lowest, highest and average accuracy obtained for three class emotion 

on CASME II dataset using the five different feature extraction methods with SVM. 

 

Table 2: Classification accuracy Assessment and comparison for three class emotion on CASME II. 

 

Table 3: Classification Accuracy comparison for three class emotion between CASME II and SMIC. 

4 Conclusions 

On the basis of micro expression classification accuracy obtained it is seen that LBP-TOP with SVM was successful 

in achieving the accuracy comparable to the baseline accuracy for five class emotion (refer table 1). However 

applying same technique on CASME II dataset for classifying it into three class emotion produced ~8% lesser 

accuracy (refer table 2). This may be due to fact that fear and sad expression are difficult to classify. However, as 

these are preliminary results, they are positive and there is scope for improving these in future by parameter tuning 

and additional pre-processing. In case of STLBP-IP method, the maximum accuracy achieved was ~4% below the 

standard value reported. Few similar works could be found for micro expression hence tuning the method was 

challenging and time consuming. Using LBP-SIP technique for three class emotion the recognition value achieved 

(refer table 3) was satisfactory; the value attained was ~8% below that of SMIC dataset. HOG-TOP achieved fair 

accuracy value in the range of mid fifty on CASME II but is comparatively lesser than the value reported for SMIC 

(refer table 3). Similarly a satisfactory accuracy value was achieved using HIGO-TOP but is far below that of SMIC 

(refer table 3). Most of the current research work on CASME II dataset have focused on classifying micro expression 

into more than three class emotion. Very less work have been reported on CASME II dataset for classifying micro 

expression into three class emotion hence comparison of our accuracy value for three class emotion has been 

established wherever applicable. We have also compared our accuracy value obtained for CASME II dataset with 
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existing accuracy values on SMIC dataset for micro expressions with three emotion class. The LPQ-TOP feature 

extraction method on CASME II micro expression database has been used by [Yuan Zong et al., 2018]. The work 

focuses on cross-database for micro expression recognition so suitable classification accuracy value with the 

combination of SVM and LPQ-TOP could not be found. Nevertheless in our experiment the features extracted using 

LPQ-TOP was classified using SVM and has produced highest classification accuracy compared to other extraction 

methods. Hence this technique seems to have some potential to be considered for further examination. Previous 

work on  SMIC database has achieved good success rate for three class emotion thus improvising the accuracy for 

CASME II dataset for three class emotion will be the focus in future in addition to five class emotion for micro 

expression. 
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