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Abstract 
 
Rapid Prototyping (RP) technology was conceived in the mid 1980s as a method of 
manufacturing models, particularly to support the design of new motor vehicles. However 
as early as 1995 the potential to take data from medical scanners and generate models of 
patient anatomy to assist clinicians plan complex surgical procedures had been recognised, 
albeit by researchers rather than the mainstream medical industry. Over the last 15 years 
the production of preoperative planning models has increased dramatically and moreover, 
the potential to produce customised implants recognised.  
 
Although RP technology is now established in the medical field work is still on going to 
develop new applications (the majority of cases still reside in craniomaxillofacial field), 
explore the use of different RP methods and overall improve the efficiency of the 
approach.  
 
In this project the latest medical data processing software tools will be used to generate 
models for preoperative planning and also medical training and the results reviewed. A 
comprehensive literature review in the field has been conducted and publications in the 
medical scanning, RP, preoperative planning, biomaterials, customised medical implants 
and jigs are presented and discussed.  Several case studies which are particularly pertinent 
to the trials undertaken by the author have been identified and incorporated into the report 
and explained in detail in order to illustrate the capability, potential and flexibility of this 
technology within the medical sector.  
 

  



3 
 

Acknowledgements 
 
My sincere thanks to the course academic administrator Professor David Wimpenny for his 

guidance over the past three years in helping me gain the knowledge required to complete 

this project and the use of the facilities in the Innovation Centre, De Montfort University.  

 

I also wish to express my thanks to Mr. Arthur Henry and Mr. Ger Reilly for their 

invaluable advice and recommendations in compiling this project.  My Head of School, 

Mr. John Lawlor and Head of Department, Mr. William Bergin for granting me the time 

and flexibility to attend the course modules.  Furthermore to the Dublin Institute of 

Technology for supporting my continuous professional development and providing the 

financial support required to make this possible.  

 

To my mother my sincere thanks for her continued support and encouragement over all the 

years of my education. 

 

Finally to my wife Karen and sons Cale, Logan and Roan for their understanding, patience 

and support over the past three years in helping me to complete my M.Sc. and allowing me 

the necessary time away from home to complete this course. 

 
  



4 
 

Declaration 

I hereby declare that the material contained within this thesis and the practical work 

associated with it is the work of its author and is submitted in partial fulfilment in attaining 

a M.Sc. in Rapid Product Development, DE Montfort, University, Leicester, U.K.  

 
 
 
Signed : ………………………………………………………………………. 
 
 
Date : …………………………………………………………………………. 
 
  



5 
 

Table of Contents                   Page 

Chapter 1.0 - Project Overview       10 
1.1 Introduction       10 

1.2 Project Aim        10 

1.3 Project Stages       11 

1.4 Structure of Thesis       11  

Chapter 2.0 – 3D Data Processing       12 

  2.1 Medical Scanning       12 

  2.2 CT Scanning       12 

   2.2.1 CT Process      12 

   2.2.2 Advantages and Disadvantages of CT Scanning  13 

  2.3 MRI Scanning       15 

   2.3.1 MRI Process      16 

   2.3.2 Advantages and Disadvantages of MRI   16 

  2.4 Ultrasound        17 

   2.4.1 Ultrasound Process     17 

   2.4.2 Advantages and Disadvantages of Ultrasound  18 

  2.5 Digital Imaging and Communications in Medicine  18  

   2.5.1 DICOM Process      18 

2.6 Summary        19 

 

Chapter 3.0 – Rapid Prototyping       20 

  3.1 Rapid Manufacturing      20 

  3.2 History of Rapid Manufacturing     20 

  3.3 Introduction to RP       20 

  3.4 Integration of Medical Modelling and RP   21 

   3.4.1 Phidias Project      21 

  3.5 Methods and Applications of Medical RP   21 

  3.6 Principles of RP       22 

   3.6.1 Input        22 

   3.6.2 Method       22 

   3.6.3 Applications      23 

   3.6.4 Materials      23 



6 
 

  3.7 Benefits of RP       25 

  3.8 RP Process        25 

   3.8.1 3D Modelling      25 

   3.8.2 Data Conversion and Transmission   25 

   3.8.3 File Processing      26 

   3.8.4 Building       26 

   3.8.5 Post Processing      26 

  3.9 RP Process Descriptions      26 

   3.9.1 SLA       26 

    3.9.1.1 Process Overview    26 

   3.9.2 SLS       27 

    3.9.2.1 Process Overview    28 

   3.9.3 FDM       30 

    3.9.3.1 Process Overview    30 

   3.9.4 3D Printing      31 

    3.9.4.1 Process Overview    31 

   3.9.5 SLM       34 

    3.9.5.1 Process Overview    34 

  3.10 Summary        36 

 

Chapter 4.0 – Preoperative Planning Models     37 

  4.1 Introduction       37 

  4.2 Physical Modelling      37 

  4.3 Benefits of Preoperative Planning Models   38 

  4.4 RP Processes and Preoperative Planning Models   39 

   4.4.1 Process Advantages      39 

  4.5 Preoperative Planning Model Examples    40 

  4.6 Summary        43 

 

Chapter 5.0 – Customised Medical Implants and Jigs    44 

  5.1 Introduction       44 

  5.2 Customised Implants      44 

   5.2.1 Scaffolding and Tissue Engineering   44 



7 
 

   5.2.2 Knee Implant      45 

   5.2.3 Dental Implant      46 

   5.2.4 Chin Implants      46 

   5.2.5 Mandibular Implant     47 

  5.3 Implant Design       47 

  5.4 Customised Medical Jigs      48 

  5.5 Existing and Previous Practice     48 

  5.6 Requirements of a Medical Guide    52 

 

Chapter 6.0 – Bio Compatible Materials      54 

  6.1 Introduction       54 

  6.2 Biocompatibility       55 

  6.3 Biomaterial Applications      55 

  6.4 Biomaterial Classification      56 

  6.5 Approved Biomaterials      57 

   6.5.1 Metals       57 

    6.5.1.1 316L Stainless Steel    57 

    6.5.1.2 C0-Cr Alloys     57 

    6.5.1.3 Titanium     57 

   6.5.2 Ceramics      57 

    6.5.2.1 Alumina (AL2O3)    58 

    6.5.2.2 Zirconia      58 

    6.5.2.3 Hydroxyapatite    58 

   6.5.3 Polymers      59 

    6.5.3.1 Ultra High Weight Polyethylene  59 

    6.5.3.2 Polymethylmethactylate   60 

  6.6 Performance of Polymer Implants    60  

  6.7 RP Biomedical Materials      61 

  6.8 Biocompatible Materials and Medical Applications  62 

  6.9 Ethical Issues in the Development of New Biomaterials  63 

   6.9.1Biocompatibility      63 

   6.9.2 Osseointegration     63 

   6.9.3 Clinical Trials      64 



8 
 

Chapter 7.0 – Growth of RP in Medical Sector     65  

  7.1 Medical Device Market      65 

  7.2 Current State of Play of RP Industry    66 

  7.3 Process Advancements      66 

  7.4 Current Applications of RP Technologies in Industry  67 

  7.5 Potential of RP       68 

  7.6 Medial Applications      68 

  7.7 RP Medical Developments     68 

   7.7.1 Background      68 

   7.7.2 New Procedure Process Steps    69 

   7.7.3 Process Advantages      70 

   

Chapter 8.0 – Case Study Methodology      71 

  8.1 Systematic Approach      71 

  8.2 Methodology       71 

  8.3 Case Study Selection      72 

   8.3.1 Case Study 1      72 

   8.3.2 Case Study 2      72 

   8.3.3 Case Study 3      72 

8.3.4 Case Study 4      72 

8.3.5 Case Study 5      72 

  8.4 Software Solutions      72 

8.5 Evaluation of Results      73 

 

Chapter 9.0 – Case Studies        74 

  9.1 Case Study 1       74 

   9.1.1 Process Steps      74 

    9.1.1.1 Mimics Process Steps    74 

    9.1.1.2 3-matic Automatic Method   75 

    9.1.1.3 3-matic Manual Method   76 

   9.1.2 Summary      80 

  9.2 Case Study 2       81 

   9.2.1 Process Steps      81 



9 
 

    9.2.1.1 Mimics Process Steps    81 

    9.2.1.2 3-matic Process Steps    86 

   9.2.2 Summary      92 

9.3 Case Study 3       93 

 9.3.1 Process Steps      93 

  9.3.1.1 3-matic Process Steps    90 

 9.3.2 Additional Work     97 

 9.3.3 Summary      99 

9.4 Case Study 4       100 

 9.4.1 Process Steps      100 

  9.4.1.1 Mimics Process Steps    100 

  9.4.1.2 3-matic Process Steps    104 

 9.4.2 Summary      111 

9.5 Case Study 5       112 

 9.5.1 Process Steps      112 

  9.5.1.1 Mimics Process Steps    112 

  9.5.1.2 3-matic Process Steps    117 

   9.5.1.2.1 Comparison Analysis  117 

   9.5.1.2.2 Aneurysm Design    118 

   9.5.1.2.3 Fitting Heart Valve   121 

 9.5.2 Summary      125 

 

Chapter 10.0 – Discussion, Conclusion, Further Work and Recommendations 126  

  10.1 Discussion       126 

  10.2 Conclusions       126 

  10.4 Further Work       127  

  10.3 Recommendations      128 

       

References          130 

Appendix List of terms        145 

 

  

 



10 
 

Chapter 1.0 - Project Overview 

 
1.1 Introduction 

This project investigates the suitability of using RP technology and associated medical 

software solutions to transfer 2D Digital Imaging and Communications in Medicine 

(DICOM) data into 3d Standard Triangle Language (STL) data.  This data is then utilised 

using medical software solutions to manufacture preoperative planning models and 

customised medical implants for the benefit of patients and surgical planning teams alike. 

The project also gives an overview of relevant subject matter such as medical scanning, 

RP, preoperative planning models, customised implants/jigs and biocompatible materials. 

Case studies are included as a method of illustrating how the different technologies 

integrate and function to produce tangible successful outcomes that make a significant 

difference in medical interventions. 

 

Prior to RP the production of medical models of individual patients was very rare due to 

the difficulty and cost of generating (usually by CNC machining) complex geometry 

associated with anatomy. Medical implants were manufactured using pressing, forging, 

machining and casting processes. Unfortunately, due to the limitations of the 

manufacturing processes this often resulted in bulky, poorly fitting and costly implants.  

With the introduction of RP technology, these types of problems were solved using the 

additive manufacturing (AM) or "layer by layer" process.  Building intricate geometrical 

parts suddenly became less problematic and cheaper this helped RP technology gain 

acceptance by the medical profession. 

 

 

1.2 Project Aim 
The aim of the project is to investigate the integration of RP manufacturing technologies in 

the production of medical models and in vivo medical implants using Materialise 

“Mimics” and “3-matic” software to generate medical models for several, quite diverse and 

demanding medical applications. 
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1.3 Project Stages  

i. Literature search 

ii. Identify areas for further investigation 

iii. Produce virtual 3D anatomical reconstructions 

iv. Produce virtual 3D implant geometry 

v. Produce RP physical preoperative planning models 

vi. Produce RP physical customised medical implant models 

vii. Review and analyse the results of each case study 

 

1.4 Structure of Thesis  

In the next Chapter 2, medical scanning methods, data modalities and processing methods 

will be reviewed. 

Chapter 3 presents RP manufacturing methods and its integration and application within        

the medical field. 

Chapter 4 introduces the concept of preoperative planning models their association with 

RP technologies and the benefits they offer the medical profession. 

Closely associated to preoperative planning models are customised medical implants and 

jigs.  Chapter 5 explains their importance in current day medical interventions and 

compares existing and previous practices. 

Chapter 6 introduces the area of bio-compatible materials and aspects such as applications, 

classification and ethical issues are explained. 

In chapter 7 the subject matter of previous research is addressed. Topics discussed include 

the medical device market the RP industry at present, process advancements and medical 

applications. 

Case study methodology, selection, systematic approach and evaluation of results are 

explained in chapter 8. 

Chapter 9 focuses on the 5 case studies selected and each case is explained in detail. 

Finally chapter 10 deals with discussion, conclusion, further work and recommendations. 
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Chapter 2 – 3D Data Processing 
 
2.1 Medical Scanning 

Medical Imaging generates a representation of a patient’s anatomy in order to facilitate 

medical diagnosis.  Techniques include Computerised Tomography (CT), Magnetic 

Resonance Imaging (MRI) and Ultrasound. These tools increase diagnostic accuracy hence 

reducing both risk and the recovery time of the patient. Specific technologies are outlined 

below. [1]  

 

2.2 CT Scanning  

A CT scan, also known as CAT (Computer Axial Tomography) is a non-invasive medical 

scanning technique.  It uses x-ray technology to obtain geometric data of a body from 

different positions.  A CT scan uses modified x-ray technology, selectively exposing 

sections of the patient to radiation.  The data is then processed to generate a cross-section 

of the human body’s tissues and organs [2].  In order to facilitate the tomography of certain 

organs, x-ray opaque material may be ingested or injected. Radiologists interpret 

tomographs, identifying trauma, diseases and determining the existence and impact of 

various pathologies. 

 

 
Figure 2.1 The workings of CT scanning. [3] 

 

2.2.1 The CT Process 

The X-ray tube emits a conic beam of electromagnetic radiation that selectively penetrates 

the part of the body being examined; the attenuated radiation is then encoded by a 2D 

detector and sent to the processing equipment as a digital radiograph image.  The body is 
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positioned and a precision rotational stage device rotates. An image is generated one step 

at a time at intervals between 0.250 and 10. This produces 360 to 1440 images and covers a 

scan of 3600 [4].  

3D CT is a method that employs conventional 2D CT data to recreate an image that can be 

viewed in all three planes. Viewing these images in three different orientations throughout 

the body provides greater flexibility than conventional planar X-rays more importantly a 

3D reconstruction can be generated which provides precise anatomical features. This is due 

to recent developments in 2D CT equipment and CAD software. The development of 3D 

CT data is primarily intended to simulate real life anatomical parts and is currently been 

used in areas such as trauma, tumours and craniofacial deformities.  3D rendering is also 

possible which lends to high quality 3D CT images. 

  

2.2.2 Advantages and Disadvantages of CT Scanning 

Advantages: 

1. The process is non-invasive and accurate 

2. CT scanning can produce high quality images of bone, blood vessels 

and soft tissue 

3. The examination and diagnosis of CT scans are fast and facilitate 

short response times 

4. More tolerant to patient movement than MRI 

5. Tolerant to in vivo medical devices 

6. Accurate imagery often obviates exploratory surgery 

Disadvantages: 

1. Radiation exposure  

2. Inadvisable on pregnant women 

3. Mothers breast feeding should wait 24 hours before resuming 

4. Potential allergic reaction to the iodine contrast material  

5. Potential imunocompromisation of children [5] 
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Figure 2.2 A C.A.T. scan machine. [6] 

 

 
Figure 2.3 A 2D CAT scan slice of a patient’s abdomen showing no abnormalities. [7] 
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Figure 2.4 A 3D CT scan of a mandible bone. [8] 

 

2.3 MRI Scanning 

In 1993 the first functional MRI machine was developed which displayed an image of the 

brain [9]. 

The MRI scanning technique generates pulsed radio frequency (RF) EMR via magnetic 

coils. The realignment time of displaced hydrogen atoms contained in the tissues is 

determined and processed to produce an image of the tissue. 

 

 

 

 
      

Figure 2.5 The working principle of an MRI Scanner. [10] 

 

 

 

Step1 Step2 

Step3 



16 
 

 
2.3.1 MRI Process 

i. A magnetic field aligns the hydrogen protons in the body 

ii. RF waves are absorbed by the protons and then emitted as a signal 

iii. A RF coil picks up the signal and transmits it to the computer 

iv. The computer processes the data and generates an image 

 

 
Figure 2.6 2D image of the knee taken by MRI machine. [11] 

 

 
Figure 2.7 Essential parts of a modern MRI machine. [12] 

 

2.3.2 Advantages and Disadvantages of MRI 

Advantages: 

1. MRI scans produce clear images of parts of the body that are encapsulated 

by bone tissue such as the brain and spinal chord 

2. Its accurate imaging and ability to differentiate tissues facilitates diagnoses  
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3. There is no exposure to electromagnetic radiation 

4. Facilitates visualisation of the structure of soft tissues such as cartilage 

5. MRI scans identify blood flow through blood vessels hence facilitating 

circulatory system study and diagnosis 

Disadvantages: 

1. Intolerant of body motion 

2. May induce claustrophobia 

3. Intolerant of in vivo medical devices 

2.4 Ultrasound 

This technique uses the analysis of sound waves reflected within the human body to 

generate an image. In 1962 Joseph Holmes designed the first contact B-mode scanner [13]. 

 

2.4.1 Ultrasound Process 

The ultrasound device emits ultrasonic sound waves when in contact with the body. These 

waves, partially reflected at anatomical interfaces, are received by a microphone in the 

device. The amplitude, frequency and interference profile of the reflected waves is a 

function of the anatomy under study. This profile is processed and displayed as an image. 

An interface gel may be used to enhance sound transmission. 

 

            
 

Figure 2.8, 2.9 The Ultrasound Scanning Process [14] and a modern Ultrasound 
Scanning Device. [15] 
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2.4.2 Advantages and Disadvantages of Ultrasound: 

Advantages: 

1. Is a non invasive procedure 

2. Easy to use 

3. No exposure to radiation 

4. Used extensively in gynaecology 

Disadvantages: 

1. Can not detect all abnormalities 

2. Some  scans can appear abnormal and cause confusion 

3. Many melanomas cannot be detected by ultrasound 

2.5 Digital Imaging and Communications in Medicine (DICOM) 

DICOM is a worldwide information technology standard established in 1993 [16]. The 

standard covers file format and transfer protocol, permitting exchange of data regardless of 

hardware origin. Devices that make up a DICOM system are:  

 

a) Hardware modules, such as CT and MRI scanners 

b) Picture Archiving and Communication Systems (PACS) 

c) Reporting and post processing workstations 

d) Printing services 

 

2.5.1 DICOM Process 

i. A CT scan is performed 

ii. The scanner console generates a set of images from the unprocessed data 

iii. The CT console forwards the study to a PACS 

iv. Data is reformatted; this creates images from the original study 

v. These images are returned to the archive and merged with the rest of the study 
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Figure 2.10 A standard DICOM Network. [17] 

 

 
2.6 Summary 

The above diagnostic techniques permit accurate analysis of patients' conditions and 

facilitate correct medical and surgical interventions. The technology is a critical link in the 

process of reducing patient morbidity and mortality rates.  
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Chapter 3.0 – Rapid Prototyping 
 
 

3.1 Rapid Manufacturing 

3.2 History of Rapid Prototyping 
Additive manufacturing (AM), of which rapid prototyping (RP) is a subset, augments 

traditional material forming, removal and assembly methods of manufacturing. This 

overcomes traditional restrictions in manufacturing technology, with significant 

commercial and technological implications. The huge potential of this technology led to 

the rapid development of RP, firstly by Magnus in 1965 and then by Swainson in 1971. 

Thereafter the first stereolithography apparatus (SLA) by 3D Systems appeared in 1987 

followed by selective laser sintering (SLS) by EOS in 1990. In 1991 three new 

technologies were released; Fused Deposition Modelling (FDM) by Stratsys, Solid Ground 

Curing (SGC) by Cubital and Laminated Object Manufacturing (LOM) by Helisys. In 

1996 the first 3D Print technology was released Stratasys. These technology breakthroughs 

set the stage for the commercial integration of AM within manufacturing industry.  [18] 

 

3.3 Introduction to RP 

The AM process generates physical models by depositing successive layers of material on 

top of each other. The profile of each layer is determined by processing CAD data, and the 

profiles of successive layers determine the overall geometry of the body. Materials include 

paper (LOM), photosensitive resins (SLA), polymers (SLS, 3D Printing) and powdered 

metals (SLS, SLM and EBM). Complex geometries can be formed, however part 

orientation, size and material are considerations. RP uses the above technologies to 

produce prototype models for analytical, marketing and investment decision purposes. 

One of the most significant breakthroughs in recent years has been the identification and 

potential use of RP technology within the medical field.  In this sector RP is used for 

generating preoperative models of the human anatomy for the cranial and maxillofacial 

regions.  This area has been further developed to design and build custom fit implants for 

both in vivo and in vitro applications.  The intention here is to increase the quality of 

patient’s lives who are burdened with a defect caused by trauma, genetic defect or disease.  

Although RP has many advantages it does not solve all design problems.  It does 
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conversely simplify problems in areas that are very difficult to overcome using existing 

conventional design and manufacturing techniques. 

3.4 Integration of Medical Modelling and RP 

3.4.1 Phidias Project 

The Phidias project was initiated in 1998 and concluded in 2002.  It was created to 

investigate the process and significance of constructing solid medical customised 

anatomical models.  This was done in the context of preoperative planning, simulation and 

optimisation of intricate surgical interventions.  The models developed were based on high 

resolution images taken from CT and MRI scans and developed into physical models built 

using RP processes.  One of the findings of this project identified that the accuracy of the 

models are influenced by the accuracy of the medical images and scanning equipment 

used. Subsequently project networks were established between 40 different partners across 

11 European countries which formed a research network.  The network was primarily 

involved with performing specific research and commercialisation in the areas of medical 

modelling.  This research became involved in all areas of medical modelling such as image 

generation and processing, clinical research and machine development. 

 

3.5 Methods and Applications of Medical RP 

The applications of RP within the medical field are increasing and certain niche areas have 

been focused on. These areas include medical device prototyping, bio modelling and 

anatomical modelling.  With the advancements in medical based modelling technologies 

and Reverse Engineering (RE) it is possible to construct three dimensional (3D) models of 

anatomical structures of the human body.  This is possible by collating scan data attained 

from CT, MRI and Ultrasound.  These 3D models of anatomical structures can be used for 

preoperative planning, diagnosis of diseases, surgical simulation and medical device 

prototyping. 

The application of RP in the medical sector is governed by the designs of custom made 

products.  Each product design will vary in terms of functionality, shape and fit depending 

on the recipient’s requirements.  Models can be used to plan reconstructive surgery for 

maxillofacial, orthopaedic, spine and plastic surgery.  The fact that RP is relatively cost 

effective and has manufacturing and performance advantages over conventional 

manufacturing techniques this consequently has become a very active area in terms of:  
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 In vivo devices 

 In vitro devices 

 Prosthesis 

 Surgical jigs and tools 

 Drug delivery devices 

Currently areas of particular focus are the hearing aid and dental restoration industry. [19] 

3.6 Principles of RP 

A prototype is a fundamental part of the product development process. Getting the focus 

right at an early stage establishes the design intent and will help reduce the time and effort 

spent preparing the prototype for market.  A prototype can be defined as “The first or the 

original example of something that has been or will be copied or developed”. [20] 

A prototype enables a design development team to analyse, plan, experiment and learn the 

process while designing the product.  Material properties may limit the RP process 

capability. The four key points in any RP process are: 

 Input 

 Methods 

 Applications 

 Materials 

 

3.6.1 Input 

The term Input refers to the computer generated data (solid model or a surface model) 

required to describe the physical object.  

 

3.6.2 Method 

Presently there are more than 20 manufacturers of RP systems.  The method applied by 

each manufacturer can be classified into the following categories: 

o Photo-Curing 

o Cutting and Gluing 

o Melting and Fusing 

o Joining and Binding 
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3.6.3 Applications 

Generically speaking applications can be grouped into the following areas: 

 Design 

 Engineering Analysis and Planning 

 Tooling and Manufacture [21] 

 

3.6.4 Materials 

Material used can come in either solid, liquid or powder form.  In the solid state it can exist 

as pellets, wire or laminates. The material type can come in the form of nylon, wax, resins, 

metals, and ceramics.  One of the more convenient ways of classifying these processes is 

with reference to the initial form of the material, these are; 

 Liquid Based 

 Solid Based 

 Powder Based   

 

These options are shown in Fig 3.1 as part of the overall RP process chain.  
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                                     Fig 3.1 Overview of RP process. [22] 
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3.7 Benefits of RP 

Benefits include: 

 Part Complexity 

 Product Reliability 

 Product Liability 

 Short product life cycle 

 Diverse range of products 

 Lead Time to market 

 Integration of CAD with manufacturing systems [23] 

 

Processes such as SLS, SLA, SLM and EBM are capable of producing small intricate 

components. Multiple models are possible as parts can be arranged to cover the entire build 

area and stacking parts is also an option [24]. Rapid tooling (RT) are tools made by the RP 

process and can be used to make part quantities ranging from one to several thousand [25]. 

   

3.8 RP Process  

3.8.1 3D Modelling 

Advanced 3D CAD modelling is a general prerequisite in the RP process and is usually the 

most time consuming part of the entire process chain.  It is important that these 3D 

geometric models can be viewed by the entire design team for reasons such as form and fit, 

stress analyses, Finite Element Method (FEM) analysis, detailed design, drafting, design 

for manufacture and assembly (DFMA). 

 

3.8.2 Data Conversion and Transmission 

The solid or surface model built is converted into an STL file format.  The STL file format 

approximates the surfaces of the model using triangulation.  The data transmission must 

take place under agreed data formats such as Standard Triangle Language (STL) or Initial 

Graphics Exchange Specification (IGES).  
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3.8.3 File Processing  

The STL file must be checked for flaws within the file.  This can be caused by errors 

within CAD models or the non robustness of the CAD-STL interface. Materialise Magics 

and 3-matic software can be used to produce a watertight solid model.   

 

3.8.4 Building  

It is good practice to build as many parts as possible at the same time, this utilises the build 

area of the platform. When complete the part should be handled carefully until post 

processing has taken place. [26] 

 

3.8.5 Post Processing 

This includes manual preparation and cleanup.  Depending on the process used it could 

involve removing resin, powder or some other support material.   

   

3.9 RP Process Description 

The processes discussed are commonly used in the RP sector for medical models and 

implants.  

 

3.9.1 SLA  

The SLA process uses photosensitive resin materials.  The resins are cured by a laser that 

traces the part's cross section layer by layer.  SLA produces accurate, intricate models, with 

a variety of materials.  

 

3.9.1.1 Process Overview 

The build platform reciprocates vertically and is located in a vat of liquid resin.  Before the 

build commences the build platform is placed slightly below the surface of the resin 

surface.  The recoating blade passes over the build area to help discard any excess resin 

and generates a homogenous layer of resin.  A laser beam passes over the layer and cures 

the resin. The laser will scan the part being built in addition to the support material. The 

support material maintains the position of the structure in its build orientation, including 

any overhanging features.  When the first cross section has been completed the platform 

will be lowered one layer thickness into the vat.  The recoating blade recoats the build 

area.  This process repeats itself until the component is complete. 
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When complete the build platform is raised out of the bath of resin and allowed to drain.  

The component is detached from the surface and the support material is removed.  The part 

is then washed with alcohol solvent (isopropyl alcohol (IPA)).  Finally it is washed in 

water, dried and allowed to cure to strengthen the finished part. [27] 

 

      Figure 3.2 The SLA process. [28] 

 

    

 

              

Figure 3.3 A component made by the SLA process suspended on support material 

which is attached to the build area. [29] 

The SLA process provides a good combination of speed, accuracy and surface finish. The 

main drawback is the limited selection of materials for use as functional models but new 

materials are now being used to create colour highlighted models. 

3.9.2 SLS 

The SLS process uses a CO2 laser to fuse or sinter a powder material.  The laser traces the 

parts cross sectional profile layer by layer. SLS creates accurate and durable parts but 

surface finish is relatively poor.  Factors such as z axis height, enclosed pockets or build 

orientation can greatly affect the surface finish and geometry, especially with circular 

parts. 

RP Component 

Support Material 
  Build Platform 
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3.9.2.1 Process Overview 

The SLS method uses fine powders that are exposed to a laser beam that fuses the powder 

granules together.  Slice file data is fed to the CO2 laser and the laser scans the image onto 

a preheated hyphenate bed. 

The feed piston is used to measure and feed powder that is spread over the build platform 

by a spreading apparatus, usually a roller.  Once a layer is spread onto the build chamber, a 

laser, controlled by a scanning device usually a galvanometer sinters the material together.  

After the first cross sectional area is complete the feed elevator raises one layer thickness 

and the build chamber lowers one thickness.  The roller spreads the next layer of powder 

over the first layer. The next cross section is sintered which bonds the current layer to the 

previous layer.  This process is continued until the part is completed. When the build is 

completed the part is left for post curing to take place.  When this time has expired any 

excess powder is carefully removed and the part is extracted from the build chamber.  The 

part is then coated with special epoxies that protects the surface and prevent overhanging 

features and delicate parts from breaking off. 

The advantages of this process are that the unfused powder acts as a support material to 

help stabilise the part during the build process.  Unused material can be partially recycled 

which helps to reduce material costs.  Material densities ranging from 75% to 98% are 

achievable. [30]  

 

Figure 3.4 The SLS process identifying the main components. [31] 
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One disadvantage of SLS is that the parts have a rather porous surface finish due to 

sintering.  This can be a drawback for some applications and may require infiltrating with 

other materials to fill any voids present. Materials available include: 

o Polyamide 

o Glass filled polyamide 

o Elastomers 

o Polystyrene 

o Foundry Sand 

o Stainless Steel  

 

 

Figure 3.5 A Stryker knee implant made from cobalt chrome using an EOS SLS 

process. [32] 

 

Figure 3.6 A Direct Metal Laser Sintering (DMLS) dental implant fitted to a SLS 

mandible model. [33] 
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3.9.3 FDM 

The FDM process involves heating a filament of thermoplastic polymer that is forced 

through a circular nozzle to form the RP layers.  The materials include polyester, 

acrylonytrile butadiene styrene (ABS), elastomers, and investment casting wax.  

 

3.9.3.1 Process Overview 

The modelling material is contained on spools and is fed into an extrusion head and heated 

to a semi liquid state.  The semi liquid material is extruded through the head, and is 

deposited in very fine layers from the extrusion head one layer at a time. Since the ambient 

air temperature is maintained at a point below the melting point of the materials, the 

material quickly solidifies.  As the X-Y plane moves, the head follows the tool path 

generated by the software, and the next layer is dispensed.   The width of the bead can vary 

between 0.250mm to 0.965mm depending on the model of FDM machine.  

Thermoplastics, such as ABS, can be used to produce structurally functional models. Two 

build materials can be used, and latticework interiors are an option. [34]   

 

 

Figure 3.7 FDM process. [35] 
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Figure 3.8 [36] and 3.9 [37] components manufactured by the FDM process. 

 

3.9.4 3D Printing 

The Z-Corp three dimensional printing Ink-jet based process prints the part’s cross 

sectional geometry on layers of powder spread over each other. This process enables 

models to be built quickly and affordably. Models may also be printed in colour.   Z-Corp 

3D printing is similar to the SLS method except instead of using a laser to sinter material a 

print head dispenses a solution to bind the powder together.  

 

3.9.4.1 Process Overview 

The feed piston measures and dispenses powder that is spread across the build area by 

means of a spreading apparatus.  Once the initial layer is spread, the lowest cross section of 

the part is printed by spraying a binder solution on the powder substrate by means of an 

inkjet print head located on the print head gantry. After the initial layer is printed, the feed 

piston raises one layer thickness and the build piston lowers one thickness and the spreader 

disperses a layer of powder over the first cross section. The print heads then print the next 

layer. This process continues until the part is completed.  Once complete and the binder 

has dried, the part can be removed and excess powder blown off.  No support structures are 

needed because the excess powder on the build platform acts as a support during the build.  

Once the part is de-powdered, the part can be finished using infiltrants. [38]  
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Figure 3.10 3D Printing process. [39] 

The 3D Printing technology allows parts to be built very quickly and inexpensively. This 

makes these types of models excellent for visual aids and concept models.  Some 

limitations of this technology is the surface finish, accuracy and strength are poor 

compared to other methods.  The material selection is limited to plaster or starch.  It is 

recommended that the plaster based system be used where possible as it is more durable 

and gives better resolution. The starch should be used only if one is making investment 

moulds. 

 

Figure 3.11 Objects Polyjet process uses UV lamps to cure the layers as they are been 

printed. [40] 
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The advancements made in the 3D printing process and the addition of UV curing allows a 

greater variety of materials to be used such as ABS. Materials used can be transparent, but 

coloured materials are also available. The properties of the materials used can range from 

hard and tough to flexible depending on the application. [41] 

 

 

Figures 3.12 3D printing mandible model. [42] 

 

 

Figure 3.13 Skull model used for placement and fit of implant. [43] 
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Figure 3.14 A medical preoperative planning model of a human spine. [44] 

 

3.9.5 SLM 

SLM is a relatively new RP process. This process has been specifically targeted at the 

medical sector and is currently been used to produce customised implants and jigs. 

 

3.9.5.1 Process Overview 

The workings of the process are very similar to the SLS or SLA process. In this process a 

high powered laser is used to melt powder metal particles and fuse them together. When 

the laser has fused one complete layer another fresh layer of powder is dispersed across the 

build chamber. The thickness of this layer can vary from a minimum of 20 to a maximum 

of 100 microns. The parts produced are dense metal parts and are available in materials 

such as tool steel, stainless steel, cobalt chrome and titanium. When reactive materials such 

as titanium or aluminium are being used the oxygen content within the sealed chamber 

must be reduced to prevent oxides forming with consequent material defects. This is 

achieved by charging it with a high purity argon gas. [45] 
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Figure 3.15 The SLM process. [46] 

 

      

         

Figure 3.16 A range of medical implants produced by the SLM process. [47] 
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3.10 Summary 

New process and material releases are taken place on a regular basis due to constant R&D 

within the AM sector. Contributions made by R&D now allow the building of more 

intricate parts such as custom designed implants for the medical industry.  This along with 

the consumer product and aerospace industry will help develop AM technology for the 

foreseeable future. The variation in material selection is also increasing the impact of this 

industry and is one of the main factors helping to sustain it. 
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Chapter 4.0 – Preoperative Planning Models 
 

 
4.1 Introduction  

Due to the complex nature of the human anatomy good preparation and accurate patient 

data are fundamental in achieving precise and repeatable results. Preoperative planning 

models have been used since the early 1980’s for maxillofacial, orthopaedic and oral 

applications. Anatomical models were traditionally manufactured using a five axis CNC 

machines but had limitations in terms of undercuts and thin cross sections. These short 

comings were eliminated by RP technology and were subsequently identified as a suitable 

manufacturing method for preoperative planning models.  The previously mentioned 

Phidias Project was initiated to develop and integrate RP technology into the medical 

sector. The project's recommendations led to developments in data acquisition 

technologies. This, combined with improved RP, has led to the availability of preoperative 

models that are fit for purpose. Preoperative planning models have become one of the 

preferred tools available to surgeons. [48] 

 

4.2 Physical Modelling 

In complex medical cases it can be difficult for surgeons to ascertain a patient’s medical 

condition.  However this can be overcome at least in part by having a physical model of 

the patient’s anatomy. This allows medical teams to intuitively understand complex 

anatomical details. Precise preoperative planning models also facilitate the accurate 

calculation of medical implant geometry and assist with proactive surgical planning and 

preoperative training. This helps to identify surgical risk and appropriate actions to reduce 

same. Overall surgical time and risk to the patient is therefore minimised. Review of 

medical research papers indicates that increasing use of preoperative planning models 

yields several advantages. 
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 4.3 Benefits of Preoperative Planning Models 

i. Improved patient confidence 

ii. Improved communication, leading to reduced ambiguity 

iii. Reduced operating times 

iv. Decreased level of risk to patient 

v. Faster recovery time 

vi. Improved incision accuracy 

vii. Reduced numbers of corrections 

viii. Physical models of dislocated elements facilitate predictable surgical outcomes 

ix. Used as a reference during preoperative planning meetings 

x. Benefits in terms of diagnosis, treatment planning, as a reference during surgery 

and in the fabrication of custom made implants and surgical jigs and fixtures [49] 

Alternatives to preoperative planning models are virtual or augmented 3D models.  Virtual 

and augmented 3D models have been used with the aid of head mounted displays and 

holograms which are a significant improvement over 2D images. One of the major benefits 

of using this technology is the ability to overlay images.  Limitations associated with this 

technology, include: 

 

i. Deformed anatomical geometry can be difficult to understand 

ii. 2D visual displays do not provide an intuitive interpretation of 3D geometry 

iii. Planning complex 3D interventions based on 2D data can be complicated and 

misleading [50] 

Surgeons vary in systems preference, but it is always beneficial to have a physical model 

during medical interventions. 

SLA models of the cranium have proven in many cases to be very useful for preoperative 

planning models and surgery simulation.  The material characteristics of SLA models 

allow various mechanical procedures to be performed such as removing burrs, drilling and 

the location and installation of fasteners. Another advantage of the process is its ability to 

produce enclosed voids. The fact that the model is transparent allows internal canals and 

structures to be visible. This permits the modelling of other medical conditions such as 

tumour expansion and reduction of arteries which lead to reduced blood flow.  
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In terms of legal defence surgeons are now seeing the benefit of having preoperative 

planning models at their disposal when performing complex interventions that have a high 

risk. In some cases surgical complications may lead to litigation. Medical staff may use 

models for legal defence. [51] 

 

4.4 RP Processes and Preoperative Planning Models 

The processes mainly used for the generation of preoperative planning models are: 

 SLA 

 FDM  

 3D Printing  

 SLM, although this process is mainly used for producing custom medical implants  

4.4.1 Process advantages   

 

SLA  i. High quality surface finish 

ii. Good resolution 

iii. Sterilisation tolerant 

iv. Multi-coloured models aid anatomy identification 

FDM  i. A variety of materials can be used 

ii. Robust models are produced  

iii. ABS plastic can be sterilised 

3D Printing  i. Coloured models can be produced 

ii. Process is cheap and fast 

iii. 3D models can be produced including hollow features 

iv. Additives increase model durability 

v. Models can be electroplated to resemble the appearance 

and texture of metals[52]  

 

Figure 4.1 RP process advantages for preoperative planning models. 
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4.5 Preoperative Planning Model Examples 

 

 
 

Figure 4.2 FDM 3D human skull model showing a severe cranial defect. [53] 
 
 

 

 
 

Figure 4.3 SLA model of a mandible bone fitted with a customised implant. [54] 
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Figure 4.4 FDM partial spine model. [55] 
 
 

 
  

Figure 4.5 A 3D Printing biomedical and translucent preoperative planning model. 

 

The above model was built on a Connex 350 machine, by Objet. Constructed of 

transparent FullCure 720 material and FullCure Vero material and allows the generation of 

3D translucent medical models. This model shows details such as nerves, arteries and 

tumours and displays the full versatility of preoperative planning models. [56] 
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Figure 4.6 A 3D SLA model of a pelvis and femur. [57] 

 

These models are very accurate, strong and relatively light.  Surface coating may also be 

applied to improve the aesthetics of the model.  

 

 

 
 

Figure 4.7 A right forearm FDM model with a broken radius bone. [58] 

 

The bone based on this model had to be reset 9 times due to the fact that the surgeons had 

poor radiological 2D data. Therefore bad alignment resulted in multiple surgeries. 

Normally the recovery time for this fracture would take 6 weeks but took 54 weeks and 

extensive physical therapy. Successful alignment was eventually achieved using a CT scan 

from which a 3D RP model was made.  
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4.5 Summary 

Although there have been considerable advancements in medical reconstructive surgery 

certain fundamentals have not changed. Surgeons use their hands to control operating tools 

and rely on their eyes to provide closed loop feedback in relation to the movement and 

adjustment of their hands. Therefore the more data they have at their disposal before an 

intervention takes place the higher the success rate, preoperative planning models being a 

critical part of this data. [59]  
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Chapter 5.0 - Customised Medical Implants and Jigs 
 
5.1 Introduction  
Applications for customised medical implants include maxillofacial, cranial, knee and hip 

implants. Implant profile determination is a limiting factor, leading to implant 

categorisation as "standard" and "custom". The use of iterative design differentiates custom 

from standard implants. [60] 

In certain circumstances anatomical complexity indicates the use of a custom implant. AM 

technology is ideal for the production of complex geometries, and hence is the method of 

choice for implant and orthotic device manufacture. These geometrically accurate implants 

have become a proven technology and are preferred by surgeons to traditionally 

manufactured devices. 

 

Surgeons fit customised implants for the following reasons: 

 Reduced operating time  

 Reliable and relatively low cost 

 Reduction in time between diagnosis and surgery 

 Reduced infection rates 

 Minimal excision of good tissue [61] 

5.2 Customised Implants 

Customised implants are made for many parts of the human anatomy specifically for each 

individual patient to increase functionality, aesthetic appearance and reduce discomfort. 

Some examples are provided in this section. 

 

5.2.1 Scaffolding and Tissue Engineering 

Tissue engineering requires inter alia the implantation of customised permeable implants 

(scaffolds) to support tissue regeneration. One of the main characteristics of a scaffold is 

that it must contain micro channels with a high degree of porosity. This property allows the 

generation and diffusion of tissue cells and nutrients which facilitates the speedy 

generation of new cell tissue.  In existence since the 1980s, original scaffold manufacturing 

processes yielded poor pore size and geometry repeatability. Contemporary AM 

technology obviates this problem. 
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(a)                                                                   (b) 

Figure 5.1 (a), (b) A post machined FDM hydroxyapatite manufactured scaffold used 

in the reconstruction of a mandibular implant. [62] 

 

5.2.2 Knee Implant 

Knee implant procedures are performed on a regular basis due to the breakdown of the 

joint induced by cyclical loading causing wear and degradation. 

 

Figure 5.2 (a) SLA pattern of a hemi-knee joint, (b) a master for the titanium joint, 

(c) implant for the femur bone. [63] 

 

 

 

 

 

 

 

   
                     (a)                                               (b)                                                 (c) 
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5.2.3 Dental Implant 

Dental implantations are a difficult procedure to perform accurately due to varying 

geometry.  The diagrams below show surgical guides used to accurately identify the 

drilling points for dental implants. The 3D CAD model can be used to optimise these 

positions before the guide is manufactured. 

 

                
(a)                                     (b)                                      (c) 

Figure 5.3 (a) SLA surgical guide, (b) 3D model, and (c) fabricated guide. [64] 

 

5.2.4 Chin Implant 

The RP chin implant below was used to generate the positive prototype from which a 

silicone rubber mould was made. The silicone mould was then used to manufacture a wax 

pattern, which used the lost wax process to fabricate the titanium implant.  

 

         
(a)                                     (b)                                         (c) 

Figure 5.4 (a) silicone mould, (b) titanium implant, (c) implant been placed in 

position. [65] 
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5.2.5 Mandibular Implant  

A common maxillofacial trauma is mandibular bone fracture. Accurate design and 

positioning of the implant facilitates aesthetic and functional recovery.  

 

 
                      (a)                                        (b) 

Figure 5.5 (a) SLA model of a patients skull, (b) a side elevation showing the cast titanium 

mandibular implant. [66] 

 

5.3 Implant Design 

Medical CAD software has streamlined the design and manufacture of complex bone 

replacement implants. 

Bone is a living connective tissue and is the main constituent of the human skeleton. It 

solidifies due to calcification, becoming hard and brittle, but with low density. Bone also 

changes over the course of a person’s life, continually being produced as the body grows. 

Factors that affect the formation of bone growth include metabolic causes, endocrine 

changes, mechanical stimuli and exposure to drugs. [67] 

Bone is considered to be a composite material; it has the capability of healing and 

remodelling itself. However, severe blunt force trauma, disease or congenital abnormalities 

prevents this. In these instances bone repair is achieved by grafting, using either a part of 

the patients own bone (autographs) or a donor’s bone (allographs). 

Synthetic substitutes exist, comprised of materials such as ceramics, metals, polymers and 

composites used to help bridge this shortcoming. Bio-ceramic materials are one of the 

main groups of materials used as they have a chemical composition similar to that of 

human bone. 
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When designing an implant points that must be considered are: 

a) Mechanical properties 

b) Biocompatibility 

c) Cost effectiveness of manufacture 

d) Geometric accuracy 

The implant must exhibit the mechanical properties of the bone being replaced so as to 

facilitate function and perform satisfactorily at the point of substitution. The material 

chosen for the implant must be biocompatible, i.e.  must not produce a toxic or chemical 

reaction which may lead to further medical complications. Accuracy of the part must be 

ensured, as this reduces the risk of infection, increases the functionality of the implant and 

minimises healthy tissue excision. [68] 

 

5.4 Customised Medical Jigs 

Customised jigs assist the surgeon with the accurate placement of medical implants. 

AM processes (e.g. SLA, SLS) produce accurate, robust parts that are sterilisation tolerant. 

In certain circumstances AM produced implants may require reinforcement to become fit 

for purpose, leading to the use of reinforcing elements. However, new processes such as 

SLM and Electron Beam Melting (EBM) produce non porous metal parts, overcoming the 

limitations of other AM technologies. With the introduction of these new metals, surgical 

guides can be made smaller with a reduced cross sectional area and still retain sufficient 

stiffness. This reduction in size allows the surgeon greater visibility, permitting the 

surgeon to make smaller and more accurate incisions. [69] 

 

5.5 Existing and previous practice 

The positioning of osseointegrated implants for the retention of prosthesis is important in 

terms of aesthetics, function and comfort. 

Previous methodological steps include: 

a) Patient brought to clinic for preoperative planning session 

b) Planning performed on patient and the ideal prosthesis location marked on patients 

skin 

c) The markings transferred to a transparent plastic template 
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d) The template is then used to transfer the location of the implant onto the patients 

bone using a hypodermic needle and sterile ink. 

e) The skin is then cut and folded back to show the ink marks for the implant 

locations. 

Although this procedure works, problems can occur with soft tissues movement when used 

as a reference surface leading to inaccurate positioning of the implant hence producing 

poor aesthetics. Since this procedure provides no diagnostic data on the quality or 

thickness of the bone at the point of implantation this could increase the operating time if 

the bone quality is not sufficient and the fixing points have to be altered. 

 

Existing methodological process steps for producing a SLM process surgical guide: 

 

a) A CT scan made of the patients relevant anatomy. Includes software formatting and 

manipulation to produce STL files 

b) Computer aided surgical planning and design. Includes using CAD software to 

perform functions such as mirroring and Boolean operations, assessing quality of 

bone at the location point. All soft tissue data is removed before the surgical guide 

is designed and then located onto the bone 

c) Surgical guide manufactured by the SLM process  

d) Finishing involves removing support material used in the construction of the guide 

to maintain dimensional accuracy and post surface finishing processes such as bead 

blasting which reduces the surface roughness (Ra value) caused by the layering 

process 

e) Evaluation, comprising fitting the guide onto a preoperative planning model of the 

patients anatomy to guarantee a good fit. The location of the osteotomies and 

drilling locations are checked by surgeons and confirmed before the surgery takes 

place [70] 
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(a)                                           (b)      (c) 

Figure 5.6 (a) Surgical guide showing support structures for rapid manufacture, (b) 

surgical guide being used in preoperative planning showing drilling locations, 

orientation and patient’s name,(omitted for privacy reasons) (c) Surgical guide in use. 

[71] 

           

Figure 5.7 A surgical guide containing embossed features with orientation details and 

drill size to aid with the implantation procedure. [72] 

 

                                         

(a)                                       (b)             (c) 

Figure 5.8 (a) A software surgical planning screen capture identifying the location of 

a distraction device, (b) a distraction guide design, (c) a SLM distraction guide. [73] 
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            (a)             (b) 

Figure 5.9 (a) 2 surgical guides used in the correction of a cleft lip and palate, (b) 

shows the guides in use. [74] 

 

                                             

(a)        (b) 

Figure 5.10 (a) the 3D surgical guide design, (b) the surgical guide design with 

support structure. [75] 

           

                   (a)                         (b) 

Figure 5.11 (a) A surgical guide fitted to an SLA preoperative planning model, (b) the 

guide being fitted to patient during surgery. [76] 

 



52 
 

5.6 Requirements of a Medical Guide 

 

Desired requirements when designing a medical guide: 
 

a) Good rigidity so the guide will retain its profile when being handled and worked 

b) Good wear resistance capabilities to prevent damage from surgical tools 

c) High temperature resistance, which enables high temperature sterilisation  

d) Increased freedom of movement for surgeons to reduce line of sight complications 
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Figure 5.12 RP and CAD methodology procedure for generating customised designed 

implants. [77] 
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Chapter 6.0 Bio-compatible materials  

 
6.1 Introduction: 

The primary aim of medical intervention is to restore the human anatomy to its original 

state after it has undergone some form of physical trauma, disease or genetic defect. 

Biocompatibility and custom manufacturability are significant indicators of successful 

implant surgery.  

Biomaterials have emerged over the years through constant research and development and 

have permeated many fields of the medical profession.  A biomaterial is classified as “any 

material used to manufacture devices that replace a part or a function of the body in a safe 

and reliable way”. [78]  

Owing to the increase in the average life expectancy of the general population, implants 

especially orthopaedic implants, are being installed on a more frequent basis. As patients 

become older their joints degrade leading to decreased mobility and associated pain. This 

indicates the need for implant surgery in an increasing proportion of the population. This 

need has become one of the key drivers for research and development in medical implant 

and biomaterials technology. 

Therefore it is essential that the application of biomaterials extends to as many regions of 

the body as possible. This will play an important part in creating a permanent solution to 

issues such as mobility and function. 

Although the range of experimental biomaterials is expanding, only approved biomaterials 

can be utilised for the manufacture of biomedical implants.  Materials can only be 

classified as approved after extensive medical testing has been performed in order to 

ascertain the biocompatibility of the material with the human body.  Problems such as 

bacterial infection, blood clots and tissue trauma are possible medical problems when a 

material is used in the design of a medical implant.  Hence the material in question must 

undergo rigorous clinical trials to establish its biocompatibility and become FDA or 

equivalent compliant.  A suitable surface coating may be applied to allow the implant to be 

fitted in vivo. 
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Figure 6.1 the classification of biomaterials. [79] 

 

6.2 Biocompatibility 

 “The biocompatibility of a long-term implantable medical device refers to the ability of 

the device to perform its intended function, with the desired degree of incorporation in the 

host, without eliciting any undesirable local or systemic effects in that host.” [80] 

 

6.3 Biomaterial Applications 

Examples are: 

 Bone plates 

 Heart valves  

 Contact lenses 

 Skin repair devices 

 Blood vessel prostheses 

 Dental implants 

 Orthopaedic replacements 

 Customised medical implants 
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6.4 Biomaterial Classification: 

 Biomaterials can be classified into three main groups: metals, ceramics and polymers.  

 

 

 

 

 

 

 

 

Figure 6.2 Categorized approved biomaterials. [81] 

Metallic biomaterials are indicated for use in areas of high static or cyclic stress. Such 

activities include lifting, running, bending or chewing. All of these actions will transfer 

stresses to the implant, and metallic materials are best suited to these applications. Ceramic 

materials are designated where resistance to wear is of primary importance, and polymeric 

materials are used where stability, flexibility and controlled porosity are required. [82] 

 

Careful selection of material is vital in ensuring that the implant: 

a) Functions correctly 

b) Is biocompatible  

c) Is degradable or absorbable if required 

If these fundamental selection criteria are satisfied this will increase the probability of a 

successful biomedical implant design. [83] 

 
  

Metals Ceramics Polymers 
316L stainless steel Alumina(Al2O3) 

 

Ultra high molecular weight 
polyethylene 

Co-Cr Alloys Zirconia 

 

Polyurethane 

Titanium Carbon 

 

 

Ti6Al4V Hydroxyapatite  
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6.5 Approved Biomaterials 

 

6.5.1 Metals: 

6.5.1.1 316L Stainless Steel 
 
This material demonstrates high strength, high corrosion resistance and improved 

biocompatibility when compared to other grades of stainless steel. This material is used for 

pins, plates and screws for locating and fixing. [84] 

 

6.5.1.2 Co-Cr Alloys 

Cobalt chrome alloys have extensive industrial applications and are also used for medical 

implants. EBM is a process capable of producing such implants using CoCrMo ASTM 75.  

In terms of medical applications this material is used for orthopaedic and dental implants. 

[85] 

 

6.5.1.3 Titanium 

Titanium Alloy Ti6Al4V contains properties that are desirable for medical implants, these 

are: 

a. High strength 

b. Bio-compatibility 

c. Low density 

d. Good corrosion resistance 

This material can be used in conjunction with the EBM or SLM process to produce good 

quality accurate medical implants such as cranial plates and acetabular implants. [86] 

 

6.5.2 Ceramics: 

Ceramic materials are typically solid inert compounds; they offer many advantages in the 

manufacture of medical implants, including: 

 They are bioactive, inert and absorbable 

 Surfaces can be polished to a high degree 

 High rigidity, required in certain applications 

 Improved cell and tissue bonding [87] 

 



58 
 

Examples of ceramics currently used for medical implants are: 

 

6.5.2.1 Alumina (AL2O3) 

This material is mainly used for orthopaedic and dental implants.  Alumina can be polished 

to a high degree having a low average roughness value (Ra) with a high hardness value.  

Due to these properties Alumina is used in load bearing applications such as total hip 

arthroplasties as the femoral head. [88] 

 

6.5.2.2 Zirconia 

Biomedical grade zirconia was first used in the 1980s to solve the problem of alumina 

brittleness and ultimately the failure of medical implants.  Although this material is 

extremely hard it is susceptible to age hardening when in contact with water which leads to 

crack propagation and failure.  In 2001 approximately 400 zirconia Prozyr femoral heads 

failed in application. This had a catastrophic effect on this material as an approved 

biomaterial.  Since then detailed R&D has been undertaken which shows that the failure of 

these femoral heads was due to two factors: 

a) Accelerated ageing of the ceramic 

b) A change in the heating process technique 

Tests carried out have concluded that zirconia with a grain size above 0.6 microns reduces 

the ageing dramatically.  One solution was to add yttria as a dopant which increased the 

toughness and reduced the signs of aging in the implant.  Zirconia toughened alumina may 

be another alternative as the addition of alumina to zirconia reduces the effect of ageing 

dramatically.  For the immediate future, alumina and zirconia composites appear to be the 

solution and are currently been introduced to the area of dental implants. [89] 

 

6.5.2.3 Hydroxyapatite (HA)  

HA is a naturally occurring mineral form of calcium apatite also found in bone and teeth.  

Medical applications include the replacement of amputated bone and bone growth 

promotion (osseoconductivity) in prosthetic implants.  

SLS is capable of producing medical implants from this material because the powders are 

subjected to low compression forces which naturally produce porous components. This is a 

key characteristic for some in vivo medical implants such as drug delivery devices.  HA 
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has been used in several in vivo applications such as dense sintered ceramics for middle 

ear implants, alveolar ridge reconstructions and augmentation, orbit implants for orbital 

floor fractures and general volume augmentation.  HA is also used as a biocompatible 

surface coating for metals. [90] 

 

6.5.3 Polymers: 

Medical grade polymers are used in various medical applications including tissue repair, 

drug delivery devices, wound healing and medical implants.  Polymers have an extensive 

range of controllable structural properties including molecular weight, entanglement 

density, degree of crystallinity, and degree of crosslinking.  In general polymers exhibit 

time-dependent mechanical behaviour and are said to be viscoelastic.  When polymers are 

subjected to sustained loads this can result in time-dependent strain or creep.  Time-

dependent material properties make the prediction of in vivo performance difficult, 

especially when the loading conditions become complex.  During use, load bearing 

medical devices may subject their polymer components to their fatigue, fracture and wear 

limits. [91] 

 
Figure 6.3 Compares strain on a ceramic, metal and polymer implant subjected to a 

given physiological stress. [92] 

 

6.5.3.1 Ultra High Molecular Weight Polyethylene (UHMWPE) 

UHMWPE is a material better known as high performance polyethylene which is a 

thermoplastic polyethylene.  Owing to its long chain like structure it can distribute loads 

more efficiently helping to reduce wear and increase stability.  It has a high resistance to 
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chemical attack and absorbs only minute amounts of moisture.  In terms of medical 

applications UHMWPE is the preferred material when performing arthroplasty procedure 

for spine and orthopaedic implants. [93] 

 

 
 

Figure 6.4 A complete hip replacement using UHMWPE as the acetabular cup with 

Co-Cr femur head. [94] 

 

6.5.3.2 Poly(methyl methacrylate) (PMMA) 

PMMA is a material that is highly biocompatible and is commonly used in the production 

of intraocular lenses. This material is better known as Vitroflex, Acrlyex or Perspex. This 

material can be used in RP to produce medical implants such as scaffolds and bioactive 

implants in conjunction with the SLS process.  In orthopaedic surgery PMMA is used as 

bone cement to locate and fix implants and to remodel and replace damaged or lost bone.  

PMMA is also used in the production of dentures and in cosmetic surgery to reduce the 

appearance of visible scar tissue. [95] 

 

6.6 Performance of Polymer Implants  

For a medical implant or device to function correctly it is important that the following 

factors are discussed and analysed prior to material selection. 

Factors are: 

 Implant design 

 Structural Requirements 

 Clinical Issues 

 Processing Treatments 

 Material Selection 
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Figure 6.5 Key factors influencing the performance of a polymer in a medical device 

or implant. [96] 

 

6.7 RP Biomedical materials 

In terms of RP there are several processes that can produce medical implants. These are: 

i. SLS  

ii. SLA  

iii. EBM (Electron Beam Melting) 

iv. SLM  

v. LENS (Laser Net Shaping) 

SLS and SLA normally focus on polymers and ceramics whereas EBM, SLM and LENS 

deal with producing metal implants. 
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6.8 Biocompatible materials and medical applications 

 

Material Medical Application 

Low density polyethylene 

(LDPE) 

Tubing , Shunts, Catheters 

High density polyethylene 

(HDPE) 

Plastic surgery implants 

Ultrahigh molecular weight polyethylene 

(UHMWPE) 

Acetabulum in total hip prostheses, artificial 

knee prostheses 

Polypropylene Heart valve structures 

Polyvinylchloride 

(PVC) 

Catheters, Maxillofacial prostheses 

Polytetrafluoroethylene 

(PTFE) 

Catheter coatings, facial prostheses, heart 

valves 

Polydimethylsiloxane Shunts, Maxillofacial prostheses heart valve 

structures 

Poly(methyl methacrylate) (PMMA) Bone cement, Middle Ear Prosthesis, 

intraocular lenses 

 

Figure 6.6 Biocompatible polymers used in biomedical applications. 

 
In terms of degradable polymeric biomaterials, typical applications include sutures, drug 

delivery devices, orthopaedic fixation devices, temporary vascular graphs and tissue 

engineering for guided tissue regeneration scaffolds. [97] 
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Material Medical Application 

Stainless Steel 

AISI316Llvm, 319L 

Customised medical implants 

Stainless Steel F745 (Cast stainless steel) Location and fixing devices, screws and pins 

Co-Cr-Mo F75 (Vitallium) Dental implants 

Co-Cr-Mo F799 (Forged Co-Cr-Mo) Coatings on artificial joints 

Co-Cr-W-Ni F90 Surgical fixation wires 

Co-Ni-Cr-Mo-Ti F562 Customised medical implants 

Pure Ti, grade 4 F67 Spinal fixation devices, femoral components 

Ti-6Al-4V ELI F136-79 Orthopaedic Implants and prosthesis 

 

Figure 6.7 Biocompatible metals used in biomedical applications.  

 

Ceramics Medical Application 

Alumina (AL2O3) Total hip arthroplasties (Femoral Head) 

Zirconia Dental implants and crowns 

Hydroxyapatite (HA)  Middle ear implant 

Alveolar ridge reconstruction 

Orbit implants for orbital floor fractures  

 

Figure 6.8 Biocompatible ceramics used in biomedical applications. [98] 

 

6.9 Ethical issues in the development of new biomaterials 

6.9.1 Biocompatibility 

Materials specified for implant production must be biocompatible. Non biocompatible 

materials can cause infections, create toxins which cause illness and in certain cases be 

fatal. 

 

6.9.2 Osseointegration 

This is the direct relationship between osseo or calcium tissue e.g. bone and the surface of 

a biomaterial used in a medical implant.  Two biomaterials that demonstrate 

osseointegration are hydroxyapatite and titanium.  This material characteristic helps to 
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increase the rigidity of the recovery site and promotes bone growth in the affected area 

therefore reducing the recovery time and improving the integration of the implant. [99] 

 

        
 

Figure 6.9 A titanium implant (black) integrated into bone shown in red. [100] 

 

Osseointegration is important in craniofacial, ear, nose and orbital prosthesis in increasing 

rigidity and is especially useful for bone anchored hearing aids which rely on the 

transmission of vibration to hear.  

 

6.9.3 Clinical trials: 

Clinical trials are performed to ascertain the safety and efficacy data required for 

biomaterials and medical devices.  These trials can only be performed when satisfactory 

data has been collated and trials are in compliance with FDA or similar medical regulatory 

bodies. Clinical trials are mandatory and must be conclusive before materials are allowed 

to be used as approved biomaterials.  

Clinical trials are put in place to achieve a number of outcomes.  Some of these are: 

a) Assess the safety and biocompatibility of the material 

b) Assess the risk of infection 

c) Assess the long term stability of the material in terms of mechanical 

properties e.g. age hardening in zirconia. [101] 

Once the clinical trials are successful, and meet the specifications required the material can 

be categorised as an approved biomaterial. 

 

 

 

 

Titanium Plate    

           Bone 

 
 

 

http://upload.wikimedia.org/wikipedia/commons/b/bc/Osseointegration_Histology.jpg
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Chapter 7.0 – Growth of RP in the medical sector 
 

7.1 Medical Device Market 

Due to the global economic downturn there has been a decline in the UK’s gross domestic 

product (GDP) for the first half of 2009. Nevertheless in the last quarter of 2009 there has 

been a 0.4% growth which indicates there is an economic upturn.  In terms of the 

healthcare sector the medical device industry is recovering at a faster pace. This is mainly 

due to the fact that the demand for healthcare products is not directly related to consumer 

spending and therefore tends to remain more stable during times of economic difficulty.  

 

 

Figure 7.1 U.K medical devices industry projected forecast. [102] 

 

In 2009 the U.K medical device industry was valued at £8.2 billion. The main driving 

element was the fact that there was an increase in the average age and decrease of average 

health in the population. Forecasts expect that the market will grow by 8.2% annually over 

the next seven years to reach £14.2 billion ($21 billion) by 2016.  

Another area that is forecast to see extensive growth is the orthopaedics device market. 

The primary driver been an increase in the number of incidents related to arthritis and 

musculoskeletal disorders.  Arthritis affects one fifth of the adult population in the U.K.   

It was reported that an estimated 539,000 cases related to musculoskeletal was recorded 

between 2007 and 2008.  This increase coupled with the improvements in related implant 

technologies and superior products such as hip resurfacing implants the orthopaedic device 

market estimated at £665million ($997 million) in 2009 and is forecast to grow by 8% 

annually over the next seven years to a value of £1.14 billion ($1.76 billion) by 2016.  
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The medical device industry in the U.K will undergo significant challenges due to the 

policy adopted by the National Health Executive (NHS) in its attempt to implement 

“efficiency- saving measures”.  It is estimated that 39.5 million people have related contact 

with a medical device on a daily basis in the U.K and with the increase in demand for 

medical devices that save and increases the quality of life this sustained growth is expected 

to continue on an upward trend. [103] 

 

7.2 Current state of play of RP industry 

The Wohler’s report is a document published annually since 1995 that gives a global 

account and analysis of the current state of the RP industry.  The report also highlights a 

number of elements within RP including industries investing in RP technology, the 

integration of applications, annual revenues, industry growth and predicted forecasts.  This 

thesis outlines some of these areas and focuses on the biomedical sector where RP 

technology is been harnessed to increase the accuracy and confidence of surgeons. 

The last year has been a rather steady one for RP industry in terms of new material and 

processes releases.  Although the economic downturn has had an effect on the sector direct 

part production from RP technologies continues to grow especially in the dental area which 

has been the strongest area of growth for the past four years.  

The RP industry, which includes products and services, had a worldwide annual growth of 

3.7% from $1.141 billion in 2007 to $1.183 billion in 2008. This is set to continue in 2009. 

[104] 

7.3 Processes Advancements 

Some recent advancement contributed by equipment and material manufacturers in the RP 

industry over the past 2 years is listed below. 

(a) Direct Metal Sintering/Melting is now been investigated as an alternative process 

capable of performing satisfactorily in the biomedical and aerospace industries. 

 

(b) EOS in May 2008 introduced its high elongation polyamide PrimePart DC for 

plastic laser sintering and Stainless PH1 for its direct metal laser sintering 

platforms. 
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(c) In May 2008 Arcam released its Titanium Grade 2 material for electron beam 

melting systems. 

(d) 3D Systems released their new large frame iPro 9000 XL SLA Centre and the iPro 

8000 MP SLA Centre aimed directly at the hearing aid, dental and medical sectors. 

(e) In December 2008, Stratasys introduced a vapour-honing product called Fortus 

Finishing Stations for finishing FDM parts made form ABS. 

(f) In February 2009 EOS and Victrex revealed a new PEEK material, PEEK HP3 for 

use in their high temperature EOSINT P800. 

(g) In March 2009 3D Systems formed an alliance with Dreve GmbH to develop and 

market dental application solutions. [105] 

 

 

7.4 Current Applications of RP Technology in Industry 

The industries availing of RP technology are numerous, but the sectors benefiting from it 

most can be seen below. 

 

 

Figure 7.2 Results carried out by 65 system manufacturers in relation to sectors they 

service and revenues generated. [106] 

 

 

Consumer 
Products/ 
Electronics 

23.5%

Motor Vehicles 
20.1%

Medical/ Dental 
13.4%

Industrial/Busines

s Machines
11.5%

Aerospace 9.%

Academic 
Institutions 7.2%

Government/ 
Military 6.4%

Architectural 
4.3%

Others 4.5%
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7.5 Potential of RP 

The applications of RP are quite extensive and its boundaries are continuing to be tested.  

Current areas of integration are: 

a) Castings for microsurgery tools 

b) Reconstructive surgery for victims with skull traumas 

c) Drill guides for Jigs and fixtures  

d) Finite Element Analysis (FEA) using colour models to reveal stress levels 

e) Aerospace and motorsport wind tunnel design [107] 

 

7.6 Medical Applications 

With the increased access to medical imaging technology due to using small office type 

cone-beam CT (CBCT) scanners, high quality images are been produced on a more 

frequent basis at a fraction of the original cost. This is mainly due to orthodontic processes 

that require dental data to produce accurate implants and dentures. As discussed there are a 

number of processes available but two in particular have developed a niche market in the 

medical sector. These are EBM by Arcam and DMLS by EOS. These processes can 

produce parts from stainless steel, cobalt-chrome alloys and titanium alloys. Both EBM 

and DMLS has become recognised processes for producing medical implants due to the 

extensive compliance carried out with relation to regulatory affairs in Europe for CE 

certification of implants. [108] 

 

7.7 RP Medical Developments 

 

7.7.1 Background 

Cleft lip and palate is a deformity frequently seen in infants worldwide. One of the 

methods used for reversing this deformity is achieved by fitting a Dento Maxillary 

Appliance (DMA). This process requires surgical pinning of an implant to the roof of the 

mouth and tightening by means of screws on a daily basis to close the opening.  
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Figure 7.3 Baby with cleft lip and palate. [109] 

 
 
7.7.2 New Procedure Process steps 
  

i. Obtain a profile of patients palate using a 3D laser scanner 

ii. Using Geomagic software to design the final palate shape 

iii. Produce a series of progressive implants from start to finish using SLS RP system 

 

 
Figure 7.4 First and final customised implant. [110] 

 

 
 

Figure 7.4 Dr Stoddard examining a complete range of RP inserts. [111] 
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Figure 7.5 One of the original patients to be treated using this process. [112] 

 

7.7.3 Process Advantages 

i. Less invasive  

ii. Aesthesia not required 

iii. Process repeatable and results are more consistent 

iv. Cost efficient [113] 
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Chapter 8.0 - Case Study Methodology 
In this chapter five separate case studies were selected. These cases illustrate how medical 

problems can be addressed with medical design software and RP technology to produce 

reliable medical solutions. 

 

8.1 Systematic Approach 
 
 

 
 
 

 
 
 

Figure 8.1 Systematic approach applied to case studies. 
 

 

8.2 Methodology 

i. Identification and selection of medical test cases 

ii. Identification of relevant software solutions  

iii. Identify a systematic approach for each case  

iv. Evaluation of  methodology and results 

 

Select case studies

Obtain DICOM scan data

Import and edit STL 
files in Mimics

Import STL files and 
edit in 3-matic

Save design as STL and 
uplaod to RP machine

Build RP model

Perform post processing 

Test for fit and function

Design Stage 

Manufacture 
Stage 
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8.3 Case Study Selection 
 
8.3.1Case study one – Cranial defect comparison of methods 

Build a partial skull model from a Z-Corp 3D printer and design and build 2 model cranial 

plates using two different methods using a 3D Systems SLA machine. Compare the two 

methods of producing a cranial plate using CT DICOM data, Materialise Mimics and 

Materialise 3-matic software and discuss the results. 

 

8.3.2 Case study two – Right Hand Cranial Defect of Skull 

Produce a RP model of a patient’s skull with a side cranial defect using a Z-Corp 3D 

printer and subsequently design a completed cranial plate implant using Materialise 

Mimics and 3-matics software to produce a SLA model of the cranial plate. 

 

8.3.3 Case study three – Acetabular Fracture Reconstruction  

Process data using Materialise 3-matic software to reconstruct an acetabular fracture and 

build the reconstructed parts on a Z-Corp 3D printer and discuss results.  

 

8.3.4 Case study four – Design an Acetabular Cup Implant 

Using a patient’s DICOM data and Materialise Mimics and 3-matic software to design and 

produce a customised acetabular cup implant using RP technology. 

 

8.3.5 Case study five – Aorta Segmentation, Aneurysm Design and Alignment of 

Heart Valve 

Using a patient’s DICOM data, Materialise Mimics and 3-matics software solutions to 

analyse an aorta under varying conditions including the alignment and fitting of a heart 

valve. 

 

8.4 Software Solutions  

To integrate DICOM data with the finished RP product, software solutions programmes 

are necessary to make this link.  These are: 

 Materialise Mimics – used to convert 2D DICOM data from MRI/CT scans 

to 3D data 

 Materialise, Magics and 3-matics – used for  the manipulation of line 

geometry, editing and processing of files 
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8.5 Evaluation of results 

The results obtained overall were good in all cases but should be evaluated by consulting 

an expert in the area or a surgeon who performs interventions on a regular basis. Only then 

can the results be evaluated properly. 
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Chapter 9.0 - Case Studies 
 

9.1 Case Study 1- Cranial Defect Comparison of Methods 

This case study required a cranial plate to be designed and manufactured due to sustained 

blunt force trauma to a patient’s right hand side of the craniofacial region. A model of the 

patient’s skull was converted from CT scanned data and manipulated using Mimics and   

3-matics software to produce a 3D image file in STL format.  Using 3-matic software two 

cranial plates were designed and manufactured on a 3D Systems SLA machine. The first 

cranial plate was designed using the “Create Cranioplasty" prosthesis tool.  This method 

generates the plate automatically using the existing geometry of the patient’s skull and the 

algorithms within the software.  This method is generally used when the surface area 

concerned is reasonably uniform.  

The second plate was designed using the “Create Spline” command. This allows a cross 

section of the patient’s skull to be viewed and a spline created through the skull 

intersecting the affected area.  Inserting control points along the spline, the position of the 

spline can be manipulated by moving each point individually to match the profile of the 

opposite side of the skull. Therefore this is a subjective method of achieving the profile of 

the cranial plate. 

 

9.1.1 Process steps 

 

9.1.1.1 Mimics Process Steps 

The data in this case study had already been converted from DICOM 2D data to 3D data 

and saved in STL format.  

 

Mimics steps include: 

 DICOM data images imported into Mimics software 

 Project loaded and orientation selected 

 Threshold set to default; 226 points and first mask will appear 

 Selecting a particular area on the skull and selecting region grow will produce a 

new mask in yellow and eliminate background interference 

 By selecting “Calculate 3D” a 3D model will appear.  When the mask has been 

edited the file must be saved as a binary STL file, for file transfer 



75 
 

9.1.1.2   3-matic Automatic Method  
 

 
 

Figure 9.1. Part imported as STL file. 
 

 

       
 

 
Figure 9.2. (a), (b) Curve tool selected and polyline plotted around the cranial defect. 

 
 

    
 

 

Figure 9.3 (a), (b) Front and plan view of cranial plate generated by selecting “Create 

Cranioplasty” tool. 
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A more pronounced profile is generated by this method. The create cranioplasty tool 

automatically creates tangency to the existing shape of the skull edge and uses algorithms 

in the software to generate profile. 

 

9.1.1.3   3-matic Manual Method  
 
 

 
 

Figure 9.4 3D skull cross section. 

 

A spline is fitted through a cross section of the skull and control points fitted so the profile 

of skull can be adjusted to generate a corresponding match. (Select sketcher, new sketch, 

import an intersection of skull into sketch) 
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Figure 9.5 A 2D skull cross section. 

 

A cross section of the skull is inserted into a new sketch and a spline created and 

manipulated by control points to generate symmetry. (Select sketcher, create spline and 

drag control points) 

   

       
 

Figure 9.6 (a), (b), skull front and top view. 

 

Under the tools tab select “Create Cranioplasty” icon and select the guide curve defined in 

sketch. A cranial plate is generated using software algorithms for the surrounding edge and 
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the inserted spline.  It can be seen that the profile of the cranial plate is relatively 

symmetrical with the opposite side due to the inserted spline controlling the profile. The 

file is then saved as an STL file. 

 

 

Cranioplasty tool 
 

 
 

Figure 9.7 Differences between cranial plates generated by two different methods. 

 

 
 

Figure 9.8 Front view of both cranial plates showing their different profiles. 

 

Cranial plate made 
from automatic 
cranial plate tool 

Cranial plate made 
from spline method 
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Figure 9.9 A sliced 3D Z-Corp case study skull model. 

 

                    
 

Figure 9.10 Cranial plates rapid prototyped on 3D Systems 250 SLA machine. 

 

    
Figure 9.11 A partial RP generated skull with cranial plate made by the automatic 

“Cranioplasty Tool” in 3-matics. The concentric pattern denotes a greater change in 

curvature. 

Cranial plate and 

skull model.  

Radius of curvature 

is not as uniform 

when compared to 

manual method. 
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Figure 9.12 Section of skull with cranial plate made from inserting spline, manual 

method. 

 

9.1.2 Summary: 

Both plates, although designed from the same data, have different profiles but give a 

satisfactory fit.  However the shape of the plate designed from the manual method is more 

symmetrical and therefore would look more aesthetically pleasing if designed and 

manufactured out of a biocompatible material such as titanium and fitted as a custom 

designed implant.  However using the “Create Cranioplasty tool” is more time efficient.  

  

Cranial plate and 

skull model.  Radius 

of curvature is more 

uniform.  
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9.2 Case Study 2- Cranial defect on right hand side of skull 

 

This case study required a cranial plate to be designed and manufactured due to a sustained 

blunt force trauma to the frontal area of the right craniofacial region. The skull model was 

made on the Z-Corp 3D printer and the cranial plate was made on the 3D Systems 250 

SLA machine. This method involved the use of Materialise Mimics and 3-matic software.  

In this case Boolean subtractions and extrude commands were required.  Four tabs were 

also designed and attached to the cranial plate to provide a method of fixing the plate in 

position. 

 

9.2.1 Process steps  

 

9.2.1.1 Mimics Process Steps 

 

 
 

Figure 9.13 DICOM data images been imported into Mimics software. 
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Figure 9.14 DICOM data being converted. 

 

 
 

Figure 9.15 Orientation of project is selected. 
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Figure 9.16 Screen above will appear when orientation has been selected. 

 

 
 

Figure 9.17 Setting the threshold for mask. 

The threshold button should be set to 226 points and select region grow button for first 

mask to appear. 
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Figure 9.18 Skull area selection. 

Select a particular area of the skull and select region grow this will reduce the interference 

around the skull and a new mask will be generated in a different colour. 

 

 
 

Figure 9.19 3D calculation. 

 

Select "calculate 3D" button and select yellow file, 3D image of skull will appear. 



85 
 

 
 

Figure 9.20 Mask editing process. 

Mask will need editing to separate mandible bone from skull as it is not required this is 

done by selecting the erase tool and erasing all points in contact with the skull on each 

slice. 

 

 
 

Figure 9.21 File saved as a binary STL file. 
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9.2.1.2 3-matic Process Step 

 

 
 

Figure 9.22 Project file imported into 3-matic in STL format. 

 

 
 

Figure 9.23 Curve tool selected and polyline is plotted around the cranial defect. 
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Figure 9.24 Cranial plate creation. 

 

The “Create Cranioplasty” icon is selected and a cranial plate is automatically generated 

using algorithms in the software and the surrounding edges.  

When the cranial plate is generated some editing might be required and any undercuts will 

need to be trimmed and surface repaired. The red section represents a hole and must be 

repaired to create a complete surface for RP. 

 

    
 

Figure 9.25 (a) and (b) polylines are used to cut away protruding edges and bad 

surfaces are repaired by selecting the CAD command, selecting bad surface and 

repairing. 
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The next stage is to create a location point for fixing tabs. This is achieved by evenly 

spacing the number of tabs required. This will depend on the extent of the trauma. Under 

the “Mark” tab a triangle is selected at the point of reference. Then a new sketch is 

selected. This generates a sketch plane parallel to the selected triangle. The tab geometry is 

drawn, using grid points as reference. 

 

   
 

Figure 9.26 (a), (b) Triangle selected onto which is placed a sketch plane for tab. The 

grid tool is selected and the profile of the tab is drawn. 

 

When the sketch geometry is completed it is extruded in both directions using the 

“Extrude” command the required amount and additional features such as fillet radii added. 

 

   
 

Figure 9.27 (a), (b) Sketch is selected and extruded 2mm upwards and 1mm 

downwards ensuring complete surface contact. 
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Other features added include a surface fin. By right clicking on the edge highlighted in 

blue and applying a value of 2mm the fin is created. 

 

 
 

Figure 9.28 Shows the creation of a surface fin. 

 

 
 

Figure 9.29 Four tabs are constructed in the same method and evenly placed around 
the periphery of the cranial plate. 

 
 

Once the four tabs have been drawn and constructed they must be permanently joined to 

the cranial plate to become one complete part. Under the “CAD” tab “Boolean Union” 

command is highlighted. All tabs and plate are selected and the Boolean union performed. 
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Figure 9.30 Four tabs are then permanently joined to the plate using the Boolean 
union tool. 

 

 
 

Figure 9.31 Cranial plate and tabs unioned into one part. 

 

To aid with the location of the cranial plate a “Union Subtraction” is performed. The 

cranial plate is selected as the entity and the skull as the subtraction entity and operation 

applied. 
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Figure 9.32 Cranial plate and tab assembly undergoes a Boolean Subtraction; this 
allows the tabs to sit neatly onto the surface geometry of the cranial plate. 

 

 
 

Figure 9.34 A Boolean subtraction can be seen on tabs. 

 

 
 

Figure 9.35 A completed cranial plate and skull model. 
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Figure 9.36 Completed skull model produced on Z-Corp 3D printer and cranial plate 
model produced on EOS 250 SLA RP machine. 

 

9.2.2 Summary 

As in case study 1 the procedure of processing DICOM 2D data to 3D data is identical, 

using Mimics and 3-matic software. Generating the cranial plate in 3-matic is faster when 

compared to Magics due to “Create Cranioplasty” tool. The cranial plate produced a good 

fit and the Boolean subtraction performed on the tabs provided better location. The STL 

file for the cranial plate required supports to be generated in Magics before it was 

downloaded to SLA machine. 
 

 
 

Figure 9.37 Generation of support material in Magics for cranial plates in case study 

one and two. 
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9.3 Case Study 3 - Acetabular Fracture Reconstruction 

The acetabular is part of the pelvis bone that forms the hip socket. An acetabular fracture is 

a common injury that requires reconstruction or replacement. An acetabular fracture occurs 

when the socket of the hip joint fractures. This joint is covered internally with cartilage 

which provides a load bearing surface on which the ball of the femur can rotate.  This 

fracture can happen due to trauma or weakening of the bone from osteoporosis.  The extent 

of the treatment to repair an acetabular fracture depends upon the quantity of cartilage 

movement and the volatility of the hip. The method of restoring the functionality to the 

joint involves a surgical procedure which takes place in three steps: 

 Good alignment of the cartilage surface 

 Removing bone debris lodged in the hip joint 

 Re-establish stability to the hip  

If the joint cannot be repaired a custom made acetabular cup implant and femur head may 

be required. Depending on the severity of the fracture, the joint may be allowed to heal 

itself without any invasive surgery, although the alignment may not be ideal, this is 

sometimes applied to elderly people so as to prevent the patient undergoing the trauma of 

surgery and recovery which can be very demanding. 

 

9.3.1 Process Steps 

9.3.1.1 3-matic Process Steps 

In this case study the data had already been processed through Mimics software and the 

data converted from 2D to 3D  therefore required editing in 3-matics. 

 

 
 

Figure 9.38 view of a hip joint indicating fragment out of position. 
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As part of the implant construction process the following steps are required. 
 

   
Figure 9.39 (a), (b) Femur hidden and mark plane icon is selected to mark triangles 

on socket surface so an analytical sphere can be fitted to marked triangles. 
 

   
Figure 9.40 (a), (b) Mark plane icon selected to mark triangles on fragment surface. 

Create analytical sphere selected and fitted to marked triangles. 
 

 
Figure 9.41 Acetabulum sphere measured radius is 25.4516 mm and bone fragment 

measured radius is 27.16mm error offset by 1.5mm. 
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Figure 9.42 Distance between centres of spheres is measured using the measure point 

to point command. The displacement error is 17.13mm. 
 

 
 

Figure 9.43 Under the edit tab the translate option and point to point option is 
selected which makes the centre points coincident. 

 
 
Figures 9.39(a) to 9.43 explains the process required to reconstruct an acetabular fracture. 

The process involves selecting the surface of the acetabular cup, fitting an analytical 

sphere to these points and the radius recorded. The same process is performed for the 

fragment. The distance between the two sphere centres is noted.  Using the translate option 

and selecting point to point the fragment sphere is made coincident with the cup sphere.  

The fragment also required adjustment in the z and y axis to complete alignment. This was 

performed using the revolve command.   

             

Translate Option 

 Revolve Option 
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Figure 9.45 (a), (b) Fragment requires rotation using interactive rotate tool based on 
pelvis sphere fitted centre. (Z=150, Y=100) 

 

 
 

Figure 9.46 Reconstructed acetabular joint with femur in position. 

 

 
 

Figure 9.47 Bottom view of reconstructed acetabular joint. 
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9.3.2 Additional Work 

Research carried out at De Montfort University, test data has been collated that allows the 

Z-Corp 3D printer to produce parts more accurately. 
 

Build 
Orientation 

Average  
Offset 
Error(mm) 

Offset 
Compensation 
Values (mm) 

Average 
Scaling Error 

Rescaling 
Factor 

X 0.5165 0.25825 0.002 1-0.002=0.998 
Y 0.6285 0.31415 0.000 1-0.1 
Z 0.3775 0.18883 0.004 1-0.004=0.996 
 

Figure 9.48 Table containing parameter values for x, y, and z axis. 
 

 
 

Figure 9.49 Under “Tools” option, rescaling values can be entered into Magic’s 
before building commences. 

 

 
 

Figure 9.50 Under “Tools” option, offset values can be entered into Magic’s before 
building commences. 
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Figure 9.51 Pelvis, femur and fragment built on Z-Corp 3D printer. 

 

                         
Figure 9.52 (a), (b) Z-Corp model of pelvis and femur head. 

 

 
Figure 9.53 Reconstructed hip joint. Cavities shown on femur head can be caused by 
selecting the incorrect threshold value when converting 2D data to 3D data in Mimics 

or could also represent anchorage or cartilage. 
 



99 
 

9.3.3 Summary 

Using 3matic and Magics software demonstrated the flexibility of the software to 

manipulate STL files.  Selecting the correct threshold level in Mimics can play a 

significant feature in part geometry and accuracy.  Although rescaling and offset values 

were entered into Magics to produce parts with greater dimensional accuracy, some 

finishing operations were required to achieve a good fit. Waxing of the parts was also 

required to increase part stability.  
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9.4 Case Study 4- Design of an Acetabular Cup Implant 

The previous case study was a reconstruction of an acetabular fracture. This case study 

takes the process a step further and produces an acetabular cup implant based on the 

existing geometry of the acetabular cup and femoral head. 

 

9.4.1 Process Steps 

9.4.1.1 Mimics Process Steps 
 

  
 

Figure 9.54 (a), (b) CT data is been loaded into Mimics. CT compression is selected to 
compress the files and then select convert to load images into Mimics. 

 
 

   
 

Figure 9.55 (a), (b) Orientation must also be selected by clicking on x. 
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Figure 9.56 (a), (b) Threshold selection. 

 

Selecting the “Threshold” tab and select the predefined threshold value for bone CT, 226 

points and choose high quality, multiple parts will be selected and green mask will be 

generated. 

 

   
 

Figure 9.57 (a) and (b) Region growing. 

 

Selecting the femur and clicking on region growing tool with high quality tab the femur 

will be separated from the neighbouring bones.  Selecting “Calculate 3D” with high quality 

a new yellow mask will. This region growing operation excluded the coccyx and the 

patella from the mask, but the pelvic bone and tibia are still connected to the femur. To 

separate the pelvic bone certain editing operations using the lasso tool is required. 
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Figure 9.58 Pelvic bone separated. 

 

 
 

Figure 9.59 Boolean subtraction. 

 

The femur has to be separated from the Tibia this can be achieved by subtracting the cyan 

from the green mask.  The fuchsia mask contains the femur, tibia, fibula and the patella. 

 

 
 

                                             
 

Figure 9.60 (a), (b) Mask editing. 
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Activate the “Edit Mask in 3D” function and select the lasso tool. Then select the Tibia and 

Fibula and click on “Remove” to exclude these pixels from the Fuchsia mask. 

 

         
 

Figure 9.61 (a), (b) Slicing. 

 

Select axial view and select slice 460.5 and select the complete femoral head, repeat this 

for slices 450 and 436.5 and select “Interpolate”. 

A temporary mask must be created on the distal extremity for slices 87, 69 and 60 to aid 

with femur extraction.  Click on “interpolate” and set the threshold valve to 120 and select 

“Apply”. 

 
 

Figure 9.62 Region growing. 

 

Select the region growing tool. Select the new orange mask and rename it “Femur”.  Then 

calculate the 3d object of this mask with optimal quality. 

 

 
 

Figure 9.63 Wrapping operation. 

 

There may still be some small holes visible. These holes can be removed using the “Wrap” 

function using the values above. 
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 Figure 9.64 Femur and pelvis as separate identities. 
 

9.4.1.2 3-matic Process Steps 

Similar to the previous case studies the STL file from Mimics is imported into 3-matic. 

This is achieved by selecting “Import part” and browsing to c:\MedData\FemurCaseStudy. 
 

 
 

Figure 9.65 Parts loaded into 3-matic. 

 

 
 

Figure 9.66 (a), (b) Triangles are marked on femur head and an analytical sphere is 
fitted to the marked triangles. 
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Figure 9.67 (a), (b) An analytical sphere is fitted to marked triangles on cup surface. 
The centre points of both the spheres are noted. The pelvic cup is used as it is 

stationary. 
 

 
 

Figure 9.68 The “Curve” tool is used to define the edge of the pelvic cup rim. 
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Figure 9.69 (a), (b) The cup surface is selected, separated and deleted. This allows a 
new flat surface to be fitted to aid in the design of implant. 

 

  
Figure 9.70 (a), (b) A new flat surface is inserted this prevents the cup flanges from 
entering into the original cup.  A new sphere is generated from the original pelvis 

cup. 
 

      
 

Figure 9.71 (a), (b) The external sphere is offset to get the inner surface of cup and a 
Boolean operation performed to subtract the inner sphere from the outer sphere to 

give a thin wall section. 
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Figure 9.72 (a), (b) Using the “Mark” tool, triangles are selected to define datum 
plane for hemisphere alignment. 

 
 

      
 

Figure 9.73 (a), (b) The “Cut” command is used to cut the sphere along the plane. 
Hemisphere is to low and is moved in the Z+ direction using the “Interactive 

Translate” tool. 
 
 

 
 

Figure 9.74 Acetabular cup in position. 



108 
 

    
 

Figure 9.75 (a), (b) Area for flanges marked using “Lasso” area mark tool. Edges of 
marked area are smoothened. Triangles fit along perimeter edge. 

 

        
 

Figure 9.76 (a), (b) Smoothened outer edges and merging of different marked regions. 
 

       
 

Figure 9.77 (a), (b) Separation of the new surface, copied as a new part and a 
thickness applied. 
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Figure 9.78 (a), (b) Solid flange after creation and flange and cup in position. 
 

 

   
 

Figure 9.79 (a), (b) Flange requires trimming to outer cup surface shown in green. 
Completed solid part shown in yellow. 

 
 
 

 
 

Figure 9.80 (a), (b) Two alternative views of implant and pelvis. 
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Figure 9.81 (a), (b) Generation of a sketch plane parallel to screen view; the blue dot 
represents the height and circle sketched on plane. 

 
 

      
 

Figure 9.82 (a), (b) Sketch circles for fixing holes extruded, diameter 2mm. 
 

 

 
 

Figure 9.83 Completed acetabular implant in position. 
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Figure 9.84 (a), (b) Acetabular cup model implant shown with support material on 
FDM machine. Pelvis 3d printer model with acetabular cup model assembled. 

 

 
 

Figure 9.85 (a), (b) Femur, pelvis and model implant. Original Femur and pelvis 
assembled. 

 

9.4.2 Summary 

This case study contained the process steps of extracting DICOM data and converting it to 

STL format. Designing an acetabular cup model implant in 3-matic, building the 3 

components, two on a Z-Corp 3D printer and one on Stratasys FDM machine. This case 

study demonstrates to a high degree the feasibility of using medical software solutions and 

RP manufacturing methods for the design of an in vivo medical model implant. Some post 

finishing was required to maintain the integrity of the components. 
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9.5. Case Study 5 - Aorta Segmentation, Aneurysm Design and Valve Alignment 

This case study involves the conversion of DICOM  data from 2D to 3D. The aim of this 

case study is to get a 4D data set of a human aorta at different points in time during the 

cardiac cycle. Two sets of data are required, one for diastole and one for systole. In 

achieving this, identification of the important features of the aorta is required. In addition 

how to model the characteristics of an aortic aneurysm and the insertion of a heart valve is 

also included.   

 

9.5.1 Process Steps 

9.5.1.1 Mimics Process Steps 

The file is loaded into and converted in Mimics. The file is then opened in Mimics by 

browsing C:\MedData/Aorta.mcs. 

 

 
 

Figure 9.86 Aorta case study imported into Mimics. 
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Figure 9.87 (a), (b) Dynamic region growing is selected the region of interest is 
cropped. Outer boundaries must be identified by scrolling through each slice.  

 

         
 

Figure 9.88 Select the “Fill Cavities” and “Multiple Layer” setting deviation points to 
100 and 220 respectively.  The seed point must be set by selecting a point on the Aorta 

in the arch. 
 
 

 
 

Figure 9.89 Segmentation of the Aorta. 
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Figure 9.90 Starting at slice 112.5 everything must be erased except the aorta, this 
will remove any connection to surrounding tissue. 

 
 

 

 
 

 Figure 9.91 Choose “normal region growing” to select aorta.  
 

  

   
 

Figure 9.92 Select the manual editing option to erase parts not required or fill parts 
that should be included. 
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Figure 9.93 (a), (b) Calculating a 3D view of the mask is useful when identifying 
irregularities.  Aorta is added from slice 93.75 to 112.5 to the mask using manual 

drawing. 
 

 
 

Figure 9.94 When editing is complete select “Calculate 3D” and select the aorta with 
the above settings. 

 



116 
 

 
Figure 9.95 Final segmented aorta. 

 
 

             
 

Figure 9.96 (a), (b) Selecting the “Fit Centreline” option, choosing the values shown 
and turn on transparency the centreline of the aorta can be viewed. 

 
 

          
 

Figure 9.97 (a), (b) Aorta re-meshing. 
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The aorta before and after the surface mesh has been optimised and smoothened.  This is 

achieved by selecting the “Smooth” icon, selecting the aorta surface and applying. The 

number of triangles can also be reduced by selecting “Reduce Triangle” icon and 

performing a “Quality Preserving “triangle reduction.  

 

 
Figure 9.98 Aorta with optimised mesh. 

 

The same procedure is followed for “Aorta 2” so as to obtain the 2 data sets required for 

comparison. 

 

9.5.1.2 3-matic Process Steps 

9.5.1.2.1 Comparison Analysis: 

The aorta files are now imported into 3-matic by selecting the STL “Aorta1” and “Aorta 

2”. 
 

  
 

Figure 9.99 (a), (b) Comparison analysis. 
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The analysis tab is selected to create a part comparison analysis. This compares the aorta at 

diastole (Aorta1) and systole (Aorta2). The slider is set to analyse the movement of 

surfaces between -3mm and +3mm. Red indicating positive and green representing 

negative. 

 
Figure 9.100 Analysis of aorta. 

 

9.5.1.2.2 Aneurysm Design: 

Aneurysms are a common medical problem that leads to many fatalities every year. 

Understanding their effect on the aorta in terms of pressure and blood flow could 

potentially save lives. The following section demonstrates how an aneurysm can be 

designed in 3-matics software and how the variation in size and shape effect pressure and 

blood flow. 

              

 
 

Figure 9.101 (a), (b) Selecting the “Morphing” tab and using the settings shown, hold 
the Ctrl button to pull on the surface and rotate aorta to complete. 
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Figure 9.102 Example of CFD blood pressure analysis on a similar aorta. 
 

 

 
 

 
 

Figure 9.103 (a), (b) Aorta prototype. 
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For the aorta to be rapid prototyped and in flow analysis performed the aorta must be given 

a wall thickness. This is achieved by separating the inlet and outlet surfaces to another part. 

Therefore the aorta consists of the outer surface only. 

 

 

 
 

 
 

Figure 9.104 (a), (b) Select the offset option from the CAD toolbar and using the 
values shown to create an aorta with a wall thickness. 
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9.5.1.2.3 Fitting Heart Valve 

 

                        
 

Figure 9.105 (a), (b) IGES file of a heart valve is imported. 
 

In the “Import Dialog Box” enable “Fix Normals” and “Automatic Stitching”. 

 

    
 

Figure 9.106 Valve alignment. 
 

Selecting the properties above for aligning the valve and the aorta ensuring the arrow 

orientation is correct (arrow not shown) 
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Figure 9.107 Interactive translate option is selected to accurately position the valve.  
 

 
 

Figure 9.108 Aorta modification. 
 

The aorta inlet requires to be modified to fit the valve. This is achieved by moving the 

surfaces back to the active scene. 

 

           
 

Figure 9.109 (a), (b) Part stitching.  
 

Selecting the “Fixing Tab” and clicking “Project Mesh” then selecting the inlet surface as 

entity and select valve outer surface as target entity. The aorta surface will be altered. 
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Figure 9.110 (a), (b) Alternative method. 
 

Another method of meshing aorta to valve is the end of the Aorta is marked using the 

“Mark” tool it is deleted to give a definite gap so the valve edge can be correctly joined to 

the aorta body.  

 

      
 

Figure 9.111 (a), (b) Gap bridging. 
 

Using the create triangle the gap is bridged between the Aorta and the valve.  This crates 

one hole that can be filled using automatic hole fill. This process was repeated for the 

internal wall also. 
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Figure 9.112 Result after meshing.  
 

 

             
 

Figure 9.113. (a), (b) Final aorta prototype. 
 

Z-Corp 3D prototype model illustrating a heart valve and the three branches of the aortic 

arch, brachiocephalic, left common carotid and left subclavian. 
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Figure 9.114 Combined Z-Corp RP model of aorta and heart valve. 
 

 

9.5.2 Summary 

This case study illustrates how medical software solutions can be used to edit STL files, 

compare analysis, design aneurysms and integrate in vivo components such as heart 

valves. CFD can also be performed on the prototype to evaluate the effects of valves on 

blood flow and pressure fluctuations within the aorta.  While the aorta model was built on 

the Z-Corp 3D printer, a better option would be to build it on an SLA machine so as blood 

flow could be observed during analysis. 
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Chapter 10.0 – Conclusions, Further Work and Recommendations 
 

10.1 Discussion 

On completion of this project it became apparent that certain RP technologies and 

associated software such as Materialise, Mimics and 3-matic has indeed many advantages 

to offer the medical profession with regard to preoperative planning models and 

customised medical implants. Although not fully accepted by all, constant research and 

development in RP technology, biomaterials and software solutions, means that medical 

implant technology will continue to improve.  
 

10.2 Conclusions  

Case Study 1  

i. Generating the cranial plate using the two methods produced 2 plates of similar fit. 

ii. The profiles of the two plates were considerably different 

iii. Using the “Create Cranioplasty” tool was significantly easier and faster than the 

manual method. 

iv. The two cranial plates should have been made 0.5mm thicker to provide better 

location on the skull. 

v. The manual method is subjective by nature and allows the designer to intuitively 

control the final design 

Case Study2 

i. The cranial plate was generated using the automatic method. 

ii. The preoperative planning model produced on the 3D printer clearly depicted the 

nature and extent of the patient’s trauma. 

iii. Performing a Boolean subtraction on the tabs improved the fit and location of the 

plate on the skull model.  

Case Study 3 

i. The components produced on the 3D printer were satisfactory.  

ii. The offset compensation values and rescaling factors entered into Magics 12.0 

produced components of increased dimensional accuracy. 

iii. Finished components required post processing to increase component rigidity.  
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Case Study 4 

i. Producing an acetabular cup implant using 3-matic software was intuitive and 

efficient. 

ii. The 3D Z-Corp print models produced were of good quality.  

iii. The design and fit of the cup implant was sufficient but could have been refined if 

produced by the SLA process, due to process accuracy. 

iv. The flange thickness was a little thin in two specific areas and should have been 

made 0.5mm thicker to increase part stability 

Case Study 5 

i. Aorta segmentation, aneurysm design and alignment of a heart valve were all 

achieved. 

ii. A combined model of the aorta and valve were satisfactorily built on the Z-Corp 

3D printer.   

iii. Ideally this model should have been built on the SLA machine so blood flow could 

be observed and changes noted when performing CFD analysis and the effect of the 

valve recorded. 

 
10.3 Recommendations 

With reference to case study one the automatic method should be used on areas where the 

skull geometry is relatively constant. In contrast the manual method should be used where 

the rate of change of skull geometry is high. This allows the cranial plate profile to be 

designed in a subjective manner yielding more accurate results in terms of replicating a 

mirror image and achieving symmetry. 

The approach taken in case study two is the standard method used by Materialise experts 

for designing a cranial plate in 3-matic software. Although the process involved a 

considerable number of steps the design process was systematic and produced very good 

results. Therefore based on the results obtained the approach adopted should be maintained 

until changes in software provide a more efficient alternative. 

Case Study three was a straight forward process. The anatomical reconstruction produced 

good results but consultation with a surgeon would have proven beneficial in terms of 

ascertaining a professional medical opinion on the quality of the models. Furthermore, 
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explaining possible reasons for the irregularities or cavities on the femoral head and 

possible methods of reducing such. 

Case study four was similar to case study two in terms of time and process steps. The 

method applied again is standard and is used by Materialise experts. Although there is a 

similar method of designing an acetabular cup implant model, the method chosen was 

more efficient in terms of time. Therefore the approach taken should be maintained unless 

the case characteristics or experts demand otherwise. 

Case Study five differed from the other four cases in so far as this case focused primarily 

on software capabilities. Using Mimics software to extract complex anatomical part 

geometries and 3-matic demonstrated its flexibility and scope in coping with various 

design situations. This was achieved in terms of component attachment, aneurysm design 

and analysis of the aorta in reference to systolic and diastolic pressure characteristics. The 

capability of the software appeared very proficient and highlighted the degree of flexibility 

it offers users.  

 

10.4 Further work 

With reference to case study one, a series of test cases could be selected and a range of 

cranial plates produced. Based on the results obtained with respect to profile and fit the 

cranial could be categorised into areas particularly suited to each method. 

In case study two, research could be conducted into the different designs of cranial plates 

currently available and examine why these particular designs exist.  Thereafter, analysis 

could be conducted on each design and a determination made regarding which design 

would be the most suitable to address the vast majority of cases.  

In case study three, although the parts were of good quality further research into offset 

compensation values and rescaling could be performed to yield increased part accuracy. 

Furthermore research into CT tissue recognition and classification would greatly improve 

the geometrical accuracy of anatomical models produced giving rise to better diagnosis of 

patients’ pathologies. 

Case study four involved the production of an acetabular cup implant and although the 

design was good, investigation into the design methodology applied could be examined 

and alternative approaches investigated.   

Finally in case study five the aorta model produced could be prototyped by the SLA 

process to provide transparency to visualise fluid flow during CFD analysis. In addition to 
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this, design and build a number of aortic models each incorporating different medical 

implants devices such as heart valves, stents and catheters. Then analyse the results in 

terms of resistance to fluid flow and pressure fluctuations. A similar process could be 

conducted for aneurysm design. 
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Appendix - List of terms: 

i. Rapid Prototyping : (RP) 

ii. Digital Imaging and Communications in Medicine : (DICOM) 

iii. Standard Triangle Language : (STL) 

iv. Computer Numerically Controlled : (CNC) 

v. Computerised Tomography : (CT) 

vi. Magnetic Resonance Imaging : (MRI) 

vii. Archiving and Communication  Systems : (PACS) 

viii. Computer Axial Tomography : (CAT) 

ix. Additive Manufacturing : (AM) 

x. Computer Aided Design : (CAD) 

xi. Stereolithography Apparatus (SLA) 

xii. Fused Deposition Model : (FDM) 

xiii. Solid Ground Curing : (SGC) 

xiv. Laminated Object Manufacture : (LOM) 

xv. Computational Fluid Diagnostics : (CFD) 

xvi. Rapid Tooling : (RT) 

xvii. Direct Metal Laser Sintering : (DMLS)  

xviii. Reverse Engineering : (RE) 

xix. Solid Creation Systems : (SCS) 

xx. Multi-jet Modelling Systems : (MJM) 

xxi. Three Dimensional Printing : (3DP) 

xxii. Direct Shell production Casting : (DSPC) 

xxiii. Selective Laser Sintering : (SLS) 

xxiv. Electron Beam Melting : (EBM) 

xxv. Polymethylmethacrlate : (PMMA) 

xxvi. Design for Manufacture and Assembly : (DFMA) 

xxvii. International Graphics Exchange System : (IGES) 

xxviii. Ultra High Molecular Weight Polyethylene (UHMWPE) 

xxix. Poly(methyl methacrylate) : (PMMA) 

xxx. Hydroxyapatite : (HA) 

xxxi. Laser Net Shaping : (LENS) 

xxxii. Cone-beam CT : (CBCT) 
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