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Abstract 

The electricity sector in Ireland has undergone a number of changes in the last 20 

years. In the early 90’s the fuel mix was predominantly fossil fuel based with a very 

small percentage of renewables on the system. The electricity generation portfolio 

was dominated by coal/gas/peat fired power stations which used large synchronous 

machines to generate electricity. These synchronous machines provided the necessary 

system inertia and kept the system frequency stable. However, rising fuel costs, 

dwindling fossil fuel supplies, climate change etc. has driven the growth of renewable 

energy especially in the electricity sector. Current targets for renewable energy in the 

electricity sector are set at 40% by 2020. This is outlined in detail in the RES-E 

targets.  

 

As of July 2011, approximately 1700MW of renewable generation capacity was 

connected to the Irish power system with wind been the largest contributor. 

Furthermore, in April 2011 wind generation output reached 1323MW. With current 

projections indicating somewhere between 3000-5000MW of wind energy on the 

system by 2020, serious concerns are beginning to be raised especially in the area of 

system stability.  

 

With the percentage of electricity generated from wind turbines increasing, it is vital 

to ensure that this wind generation is not needlessly disconnected from the system. 

This project focuses on the interface protection requirements to determine if a loosing 

of the protection requirements could aid system stability. The project will also look at 

international practice in regards to interface protection requirements with a view to 

determining if certain international practices could be adopted on the Irish power 

system. This project will focus mainly on the Doubly Fed Induction Generator wind 

turbine as this is the predominant turbine on the system. This project will be carried 

out in PSS/E simulation software. 
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Chapter 1 
 
Introduction 
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1 Introduction 

1.1 Overview 

Over the last 20 years, the world has been faced with a number of challenges in the 

areas of energy, economics and the environment. From both an energy and economic 

perspective, it can be observed that from 1985 to approximately September 2003, the 

inflation-adjusted price of a barrel of crude oil was under $25/barrel (excluding 

intermittent spikes). However, during 2003, the price rose above $30/barrel and by 

August 2005 reached $60/barrel and peaked at a $147/barrel in July 2008. These price 

increases can be attributed to the decline in petroleum reserves, peak oil fears, energy 

speculation as well as tension in the Middle East. While the price of fuel has reduced 

some what due to global economic recession, the fact of the matter remains that fossil 

fuels are running out and what ever remaining fuel stock exist will become more and 

more expensive.  

From an environmental perspective, it can be observed that over the last 20 years 

there has been a major push to tackle climate change on both a national and 

international level. Some international scientists fear that if nothing is done to tackle 

climate change, irreversible damage will be done to the environment. Environmental 

effects include rising global temperatures, melting of the ice caps, rising sea levels 

and more extreme weather.  

It is these aforementioned issues which have driven the growth in renewable energy 

on a global scale. In Ireland, it is envisaged that by 2020, 40% of electricity 

consumption will be from renewable sources which include wind, hydro, landfill and 

wave. With somewhere between 3000 – 5000MW of renewable energy connecting to 

the Irish power system over the next 10 years, serious concerns are been raised by 

both of the system operators (transmission/distribution). 

 

1.2 Problem Definition and Motivation 

The connection of significant amounts of wind generation to the power system brings 

a number of technical challenges in terms of system stability and power system 

protection. For both the Transmission System Operator (TSO) and the Distribution 

System Operator (DSO), the area of power system stability is a significant issue. With 

the generating portfolio shifting from one composed of large synchronous machines 
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(ranging from 100-500MW in size) to a mix of large synchronous machines and large 

quantities of smaller Induction Machines (ranging from 1-3MW in size) which are in 

turn embedded in the power system, the TSO/DSO is now faced with potential 

voltage and frequency stability issues. This is primarily due to the fact that wind 

turbines (induction machines) are limited by the voltage and frequency support which 

they can provide to the system. The other issue associated with Embedded Generation 

(EG) is power system protection. In the event of a fault on the power system, it is 

necessary to ensure that embedded generation is disconnected in a fast, safe and 

secure manner. This is a legal obligation which the TSO/DSO must discharge. Both 

the TSO and the DSO outline protection requirements for embedded generators which 

must be implemented by the EG. The interface protection specified by the TSO/DSO 

includes Voltage, Frequency and Loss of Mains (LOM) requirements. In particular 

the LOM requirement has had the biggest effect on power system stability. The most 

popular forms of LOM protection on the Irish system are Rate of Change of 

Frequency (ROCOF) and Vector Shift with the ROCOF relay been the most popular. 

Both the ROCOF and Vector Shift relays are considered to be extremely sensitive and 

there are numerous cases of spurious operation of both devices on both a national and 

international level. In the past, the spurious operation of LOM protection would not 

have been an issue due to the fact that there were relatively low levels of embedded 

generation on the system. With more and more embedded generation connected to the 

transmission and distribution system, it is essential to ensure that embedded 

generation is not needlessly disconnected from the power system. It is very important 

to ensure interface protection requirements reflect the changing nature of turbine 

technology. The original interface protection requirements were devised primarily for 

synchronous generator technology. With turbine technology constantly changing as 

well as the introduction of new technologies, it is critical to ensure that interface 

protection requirements can meet the requirements of safe, secure and reliable 

operation. It is these requirements which will be looked at in greater detail in the 

thesis with a view to modifying existing requirements to improve power system 

performance and stability. 
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1.3 Aims and Objectives 

The aim of this thesis is to conduct a power system analysis using PSS/E simulation 

software to evaluate the impact of existing interface protection requirements on the 

stability of wind farms. Based on the outcomes of the power system analysis, 

appropriate changes to existing interface protection requirements will be proposed. 

1.4 Approach 

The thesis is composed of four main components which are as follows: 

• Review of Embedded Generation Technology (Chapter 2) 

• Review of Interface Protection Requirements (Chapter 3) 

• Development and Testing of the Test Network in PSS/E (Chapter 4) 

• Review of Findings (Chapter 5) 

 

Chapter 2 contains an introduction to embedded generation in Ireland. This includes 

looking at the past, present as well as the predicted growth of embedded generation in 

Ireland over the next 10 years. This introduction is followed by a review of the 

different types of embedded generation currently installed on the Irish system (Wind, 

Hydro, and Landfill Gas) outlining total installed capacity to date and percentage 

share of each technology to the renewable mix in Ireland. Furthermore, this chapter 

looks at the generator technology (Synchronous/Asynchronous Generator) involved 

outlining how each technology operates along with perceived advantages and 

disadvantages. This chapter then focuses on wind generation technology namely the 

Doubly Fed Induction Generator, the Fixed Speed Induction Generator and the 

Inverter Interfaced induction Generator. The advantages and disadvantages of each of 

the wind turbine generators are also quantified. Finally, this chapter ends with a 

review of the integration of embedded generation into the Irish System. The goal of 

this chapter is to put into perspective the rapid growth of embedded generation in 

Ireland over the last decade and to highlight the challenges associated with the 

integration of large amounts of embedded generation of different technologies into the 

Irish power system.  

 

Chapter 3 contains an introduction to interface protection requirements in Ireland. 

This chapter outlines the history of interface protection requirements in Ireland 
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spanning the last twenty years. Furthermore, this chapter quantifies the importance of 

interface protection at embedded generation sites especially for the distribution 

system operator. This chapter focuses on five main interface protection requirements 

which are voltage, frequency, overcurrent, earth fault and loss of mains. Each of the 

aforementioned protection requirements are compared with the protection 

requirements of Denmark, Finland, France, Germany, Norway, Portugal, Spain and 

the United Kingdom. This chapter also highlights the incompatibility of existing 

interface protection requirements with distribution code requirements namely 

frequency and fault ride through requirements. On comparison of international 

practice with Irish requirements, proposals are put forward to modify existing Irish 

Interface protection requirements especially for voltage, frequency and loss of mains 

requirements. This chapter is of major importance as the proposed settings derived 

were then tested in the PSS/E test network.  

 

Chapter 4 outlines the approach and methodology taken in the thesis. This chapter 

discusses the simulation software (PSS/E) used to create the test model of the 

distribution system. This chapter looks at the PSS/E wind turbine model used as part 

of this thesis and how the various components interact. This chapter also looks at the 

dynamic modelling of the infinite grid along with the implementation of voltage and 

frequency protection in PSSE. This chapter outlines the steps taken to develop the test 

network, network components used and the number of test models created as well as 

system loading and generation dispatches. This chapter goes on to outline the three 

main scenarios to be tested which were 110kV fault simulation, 38kV fault simulation 

and loss of mains events along with fault duration for each of the aforementioned 

scenarios.  

 

Chapter 5 outlines the assumptions made as part of the thesis along with the results 

obtained from the simulation software. This chapter outlines the simulation of 

scenarios, the results of the power flow studies, the results of the fault studies 

followed by the results of the loss of mains analysis. In this chapter, the performance 

of existing interface protection requirements are compared and contrasted with the 

proposed interface protection requirements outlined in Chapter 3 of the thesis. Finally 

this chapter ends with a discussion on the findings of the dynamics studies followed 

by a summary outlining the newly proposed interface protection requirements.
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1.5 Scope of Thesis 

Chapter 2 starts with a general overview of embedded generation in Ireland. The 

chapter outlines the growth of generation in Ireland over the last 20 years and the 

expected growth over the next 10 years. The chapter goes on to look at the different 

types of embedded generation (Wind, Hydro, Landfill etc.), embedded generation 

technologies involved and highlights the technical challenges associated with 

induction generator technology.  

Chapter 3 looks at the Irish distribution code and interface protection requirements. 

The chapter goes on to compare Irish requirements with international interface 

protection requirements and proposes changes to the Irish interface protection 

requirements. The chapter also looks at the issues associated with loss of mains 

protection namely ROCOF and Vector Shift. 

Chapter 4 outlines the approach and methodology for the thesis. This chapter looks at 

the simulation software utilised and the test model created for the purpose of testing 

the interface protection requirements. All major parts of the test model are described 

in this chapter. The chapter goes on to look at the scenarios to be tested and outlines 

the main areas of concern. 

Chapter 5 defines the scenarios tested and discusses the results obtained from the 

power system studies.  

Chapter 6 summarises the conclusions of the thesis and outlines future work. 
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Chapter 2 
 
 
Embedded Generation Technology
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2 Embedded Generation Technology 

2.1 Introduction to Embedded Generation in Ireland 

Over the last 20 years, Ireland has experienced a significant growth in the amount of 

renewable generation connected to the Irish power system. This is largely due to 

rising fuel prices, dwindling fossil fuel reserves and a growing urgency to tackle 

climate change. As a nation, Ireland imports over 90% [15] of its energy needs. This 

heavy dependency on energy imports has left Ireland very susceptible to rising fuel 

prices. It is both the economic ramifications of rising energy prices and the growing 

urgency to tackle climate change at both a national and international level which has 

resulted in significant growth in renewable energy in Ireland.  

Table 2.1 show the growth of renewables in the electricity sector over the last 20 

years. It can be observed that between 1990 and 2008, the share of renewables used in 

electricity generation grew from 1.9% to 6.4%. This can be contributed to the 

ambitious targets set out for renewables on both a national level (The White Paper 

2007 [21]) and European level (RES-e directive 2009/28/EC [10]). On a national 

level, Ireland has committed to an ambitious target of 40% of electricity consumption 

from renewable by 2020 while on a European level Ireland has committed to a legally 

binding target of 16% of total energy consumption to be generated from renewable 

energy by 2020. 

 Fuels used in electricity generation (ktoe) Share % 
 1990 1995 2000 2005 2006 2007 2008 1990 2008 

Coal 1,245 1,499 1,430 1,416 1,265 1,124 1,046 40.3 20.4 
Peat 604 574 491 511 444 438 566 19.5 11.0  
Oil  341 625 1,039 774 693 404 351 11.0 6.8 
Natural Gas 843 1,063 1,828 2,044 2,417 2,737 2,811 27.3 54.7 
Renewables 60 63 117 180 232 258 329 1.9 6.4 
Electricity 

Imports 

0 -1 8 176 153 114 39 0.0 0.8 

Total 3,093 3,822 4,914 5,101 5,205 5,075 5,141   
Table 2.1: Fuels used in electricity generation 1990 – 2008 [15] 

Table 2.2 shows a breakdown of the electricity produced by renewable energy. It can 

be observed that wind energy accounted for 68.1% of the electricity generated by 

renewables in 2008.  
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 Renewables electricity generated (GWh) Share % 
 1990 1995 2000 2005 2006 2007 2008 1990 2008 

Hydro 697 713 847 631 724 667 968 100.0 27.4 
Wind 0 16 244 1,112 1,622 1,958 2,410 0.0 68.1 
Solid 

Biomass 

0 0 0 8 8 14 33 0.0 0.9 

Landfill Gas 0 0 95 106 108 102 111 0.0 3.1 
Biogas 0 0 0 16 12 17 17 0.0 0.5 
Total 697 729 1,186 1,873 2,475 2,758 3,539   
          
Share of 

GEC 

4.9% 4.1% 5.0% 6.8% 8.6% 9.4% 11.9%   

Table 2.2: Renewables Electricity Generated 1990 – 2008 [15] 

From Table 2.2 above, it is clear that the predominant form of renewable generation 

connected to the power system is wind energy. Figure 2.1 shows the growth in wind 

capacity in Mega Watts over the last 10 years. It can be seen from the graph that the 

total wind capacity in Ireland has grown by over 1,000MW in the last 10 years.  

 

Figure 2.1: Installed Wind Generating Capacity 2000 – 2009 [31] 

As of January 2011, 1741MW [13] of renewable capacity was installed on the Irish 

power system. Considering that the maximum system load for 2010 was 5,090MW 

and the minimum system load was 1,597MW and that the installed capacity of 

renewable energy is 1,741MW, renewable energy has reached the point where it can 

have a significant impact on power system performance. This was observed on the 

12th of February 2011 where the total electricity generated by wind energy reached 
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1,248MW at 7pm which contributed to approximately 33% of total system demand at 

that moment in time. This also meant that 1,248MW of fossil fuel based energy was 

not required on the power system which has advantages in terms of CO2 production. 

However, this figure was surpassed on the 4th of April 2011 when the percentage wind 

contribution to total system demand reached almost 50% (see Appendix H). 

According to projections made by EirGrid in the Annual Renewable Report (2010) 

[5], 37% of renewable electricity consumption will be from wind energy. This figure 

is based on a 31% wind power capacity factor. This means that approximately 4,500-

5,000MW of wind energy would have to be connected to the Irish power system by 

2020. Figure 2.2 shows an indicative trajectory of the amount of wind generation 

which will have to be connected to the Irish power system by 2020 to meet our 

National/European obligations. The graph shows that Ireland will have to treble it 

existing total installed capacity of wind generation by 2020 in order to achieve its 

renewable objectives. This is a significant undertaking especially in the context of a 

worldwide economic recession.  

Figure 2.2: Indicative Trajectory of Wind Capacity connected to the Irish Power 

System  
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2.2 Types of Embedded Generation 

The main forms of embedded generation in Ireland are Hydro, Wind, Solid Biomass, 

Landfill Gas and Biogas. In the early 90’s, hydro generation accounted for 100% of 

the electricity generated by renewable energy. However, the percentage share of 

Hydro has shrunk significantly with the growth of wind energy. As of 2008, wind 

energy accounted for 68.1% of the renewable electricity generated with landfill gas 

(3.1%), Biogas (0.5%) and solid Biomass (0.9%) making up the balance.  

2.2.1 Hydro Generation  

At present there are a total of 14 hydroelectric generators connected to the Irish power 

system. The combined output of all hydro plant connected to the Irish system is 

approximately 212 MW. This equates to approximately 2.8% of the total connected 

generation capacity on the Irish system. In terms of micro hydroelectric generators (< 

1 MW), approximately 52 plants are connected to the Irish distribution system with a 

total installed capacity of 25.1 MW. As a final point, there are a total of 6 micro 

generation projects equating to 11MW in capacity contracted for connection to the 

distribution system.  

2.2.2 Landfill Gas 

Currently, landfill gas is only utilised in Ireland for the purposes of electricity 

generation. Presently there are a total of 15 landfill gas generators connected to the 

distribution system with a combined MEC of 35.8 MW. It should also be noted that a 

further 2.6 MW is contracted and 16.2 MW of capacity requesting connection outside 

of the Gate 3 process. Finally, landfill gas is not likely to experience significant 

growth as a source of energy  primarily due to constraints on the volume of  waste 

that can be sent to landfills. 

2.2.3 Wind Generation 

Over the last decade, the amount of wind generation connecting to the transmission 

and distribution system has grown spectacularly. This can be observed in figures 

released in 2009 which saw the total output from wind generation reach 2,955 

gigawatt hours (GWh). This represented an overall increase of 23% on figures from 

2008, which was also the same increase as seen between 2007 and 2008. It should 

also be noted that wind generation accounted for approximately 10.5% of the gross 

electrical consumption seen in 2009 (8.1% of gross electrical consumption in 2008). 
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The surge in wind farm construction activity in the period 2003 – 2006 resulted in 

Ireland reaching the highest level of wind power penetration in the world. While 

Ireland has a total installed wind capacity which is low compared to countries like 

Denmark, Spain and Germany, the penetration of wind power is actually higher in the 

Irish power system than in the UCTE, British or NORDEL power systems. There was 

a substantial slowdown in the development of wind farms in 2007, however, in 2008 

and 2009 the rate of wind farm development increased again. The total wind 

generation capacity reached approximately 1,264 MW by January 2010. 

2.3 Embedded Generation Technology 

Various technologies are used for generating electricity from other forms of energy. 

These generation technologies usually take one of the following forms: 

• Rotating Machines connected to Synchronous Generators 

• Rotating Machines connected to Induction Machines 

2.3.1 Synchronous Generators 

Three phase Synchronous Generators are the primary source of all electrical energy 

produced and are commonly used to convert the mechanical power output of steam 

turbines, gas turbines, hydro turbines and wind turbines into electrical power. 

Synchronous generators are known as synchronous generators due to the fact that they 

operate at synchronous speed. This means that the speed of the rotor (with a constant 

magnetic field) always matches the supply frequency of the stationary winding. It 

should be noted that the constant magnetic field of the rotor can be produced either by 

the persistent magnetic field of a rotor permanent magnet assembly or by controlling 

direct current (dc) to a rotor field winding (i.e., electromagnet) fed through a slip-ring 

assembly or via some other brushless means.  

Synchronous generators can generate both active and reactive power independently 

and can play an important role in voltage control. 

In comparison to an induction generator, the synchronous generator is both more 

expensive and more complexed mechanically. However, the synchronous generator 

has one main advantage over the induction generator, primarily, that it does not 

require a reactive magnetizing current. 

In regards to embedded generation, synchronous generators are generally used in 

Combined Heat and Power (CHP) plants; some wind turbine application, Waste to 

Energy Plants as well as small scale hydro applications. Furthermore, just over 82% 



13 

[4] of the installed generation capacity in Ireland (Northern Ireland & Republic of 

Ireland) is comprised of synchronous generators.  

2.3.2 Induction Generators 

The induction generator is composed of a conventional armature winding and a 

squirrel-cage rotor. The induction generator is based on a very rugged and simple 

design which makes it less expensive compared to the synchronous machine. Over the 

last twenty years, the induction generator has played a large part in the wind industry 

thanks to its simple, rugged and inexpensive design (compared to the synchronous 

generator). However, the main draw back of the induction generator is the fact that the 

induction machine has no field windings which means that the current required to 

magnetise the machine must be supplied by the power system to which it is 

connected. Thus, the power system must be capable of supplying the lagging vars 

required to establish the air-gap flux in the induction generator [6]. These vars may be 

supplied by overexcited synchronous machines installed on the power system, or they 

can be supplied by shunt capacitors. When shunt capacitors are used at the terminals 

of the induction generator, the problem of self excitation must be considered.  

As a generator, the induction machine is required to be driven by a prime mover 

(wind/water); and as the speed of the rotor is increased to equal synchronous speed, 

there is no relative motion between the rotor conductors and the flux. Hence, no 

voltage or current is induced in the rotor bars. Increasing the speed beyond 

synchronous speed causes a reversal in relative direction of rotation between the rotor 

bars and the flux, and thus the rotor voltage and current are reversed accordingly. The 

slip under this condition is considered to be negative. Essentially, shaft torque, 

supplied by the prime mover, is transferred across the air gap to the stator, from which 

it is delivered to the system as generated power. The net power output of the induction 

generator corresponds to the shaft input less the losses within the machine and is a 

function of the slip [6]. 

In Ireland (Northern Ireland & Republic of Ireland), less than 18% [4] of the installed 

generation capacity is comprised of induction generators. The vast majority of the 

induction generators installed on the Irish power system are located in wind farms 

spread out across the country. However, this percentage will increase due to the large 

number of wind farms predicted to come online over the next 10-15 years.
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2.4 Wind Generation Technology 

The following section looks briefly at the technology involved in wind generation 

namely the Fixed Speed Induction Generator, the Doubly Fed Induction Generator 

and the Inverter Interfaced Embedded Generator.  

2.4.1 Doubly Fed Induction Generators 

The Doubly-fed induction generator (DFIG) is one of the most popular types of 

generator used in wind turbines. This is primarily due to the fact that DFIGs allow 

variable speed operation to maximise the electrical power output. It is this fact that 

makes them very attractive for large wind-turbine applications. Figure 2.3 shows the 

basic layout of a DFIG wind turbine. It can be observed from Figure 2.3 that the rotor 

circuit is connected through slip rings to a back to back converter. The back to back 

converter arrangement is in turn controlled by Pulse Width Modulation (PWM) 

strategies. Both the voltage magnitude and power direction between the rotor and the 

supply can be varied by controlling the switch impulses that drive the Insulated Gate 

Bipolar Transistors (IGBTs) [25]. 

The back to back converters consist of two voltage source converters (ac-dc-ac) with 

a dc link capacitor connecting them. The generator side converter takes the variable 

frequency voltage and converts it into dc voltage. The grid side converter obtains the 

ac voltage from the dc link as an input and outputs an AC voltage at the specified grid 

voltage [25]. The role of the gearbox is to match the speed between the blades and the 

rotor. The stator is connected directly to the grid while the rotor needs a step down 

transformer in order to connect to the grid. 

In addition, DFIGs can tolerate temporary voltage dips without disconnection, thus 

providing compliance with Grid and Transmission/Distribution Code requirements in 

terms of fault-ride-through capabilities. Furthermore, the DFIG has been observed to 

have little impact on the transient stability performance of the power system. Also, 

DFIG can provide sufficient reactive power support and voltage control to meet grid 

code requirements. However, one issue that has surfaced with the DFIG is the fault 

ride through capability during a local, solid three phase fault. Depending on the length 

of transmission line and the impedance of the transformer between the generator and 

the fault, the voltage at the low-voltage generator bus can sometimes dip slightly 

below the ride-though capability [23]. One method of counter acting this condition is 
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to supply a transformer with a slightly higher impedance to ensure the wind farm will 

not trip out during the fault [23]. 

 

Figure 2.3: DFIG Wind Turbine System [25] 

2.4.2 Fixed Speed Induction Generators  

Fixed Speed Induction generators (FSIGs) are similar in design to induction motors in 

which torque is applied to the shaft by the prime mover. For fixed speed wind turbine, 

the generator utilised is a squirrel-cage induction generator which is directly 

connected to the grid as shown in Figure 2.4. The rotor of a FSIG rotates at a fixed 

speed which is determined by the grid frequency, the gear ratio and the pole pairs of 

the generator. Furthermore, a fixed-speed wind turbine is connected to the grid 

through a soft-starter. 

In the case of the FSIG, the network supplies the necessary stator current to generate a 

rotating magnetic field. A rotor torque is then induced which acts against the direction 

of rotation. In order to maintain the speed above the synchronous speed (i.e. negative 

slip), the prime mover needs to overcome this torque. It should also be noted that at 

any given operating point, the prime mover must operate at constant speed. Finally, a 

simple form of control is required to maintain this speed ( 102-106% of synchronous 

speed). This is generally achieved through the utilisation of stall or pitch control in 

wind-farms. 

FSIG wind turbines have the advantage of being robust, simple and generally cost-

efficient compared to the other wind turbine types on the market. However, the 

reactive power consumption cannot be controlled. Another drawback associated with 
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the fixed speed wind turbine is that wind speed fluctuation is transmitted into the 

mechanical torque which in turn is transferred to the electrical power on the grid. The 

fluctuation in the power delivered to the grid can lead to large voltage fluctuation in 

the case where the wind farm is connected to a weak grid [38].  

The risk of loss of synchronism due to over-speed* is other disadvantages of this type 

of wind turbine. While preventive/corrective measures could be taken, the measures 

available are confined to limiting acceleration during voltage dips through 

improvement in pitch control and providing reactive power support during and after 

the clearing of faults, via Flexible AC Transmission System (FACTS) devices. 

However, the installation of FACTS devices such as Static Var Compensators (SVCs) 

and STATCOMS can prove costly. 

 
Figure 2.4: Direction Connection of Fixed-Speed Induction Generator to the Grid [33] 
 
As previously stated, the main drawback of FSIG’s is that, due to the lack of external 

excitation, these machines draw large amounts of reactive power from the grid. This 

reactive power is required to sustain the rotating magnetic field in the air gap between 

the cage rotor and the stator windings. As a result, induction generators can not 

operate independently from the grid. In order to overcome this fact, capacitor banks 

can be installed locally so provide reactive power compensation. Furthermore, wind 

farms connected via long cables can utilise the capacitance of the cable to provide 

some or all of its reactive power needs. In the case of the power factor correction 

capacitors and the long cable connections, the induction generator can go into “self-

excitation” mode and conceivably operate disconnected from the grid. Self-excitation, 

as referred to for induction generators and motors, is the condition by which an 

                                                
* Generally caused by voltage dips and increased reactive power consumption, especially during/after 
fault clearance. 
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electrical resonance occurs between the internal inductance of the machine and an 

external capacitance. This operating condition is highly undesirable as, depending on 

the saturation characteristics of the generator, large distorted voltages can be 

developed as the unit accelerates. This phenomenon has been reported to cause 

damage to equipment connected to an isolated part of a network fed by induction 

generators with power factor correction capacitors [14]. 

2.4.3 Inverter Interfaced Induction Generators 

In the case of variable-speed wind turbines which utilise full converter technology, 

the generator can either be a squirrel-cage induction or a synchronous generator. The 

generator (synchronous or induction) is connected to the grid via a power electronic 

converter as shown in Figure 2.5. As observed in Figure 2.5, the total power output 

from generator flows through the converter. This in turn requires the converter to be 

rated to take the full power output of the generator. The advantage of the fully 

convertor connected wind turbine is that the voltage level and the reactive power can 

be regulated by the power electronic converters. However, the main advantages 

associated with this type of wind turbine are its dynamic behaviour during disturbances, 

with minimum transients at fault occurrence and clearing. The Inverter Interfaced 

Embedded Generator (IIEG) also has the capability to enhance active and reactive power 

control and in turn the compatibility of the wind turbine with grid code requirements can 

be satisfied [28]. 

 

Figure 2.5: Full Converter Wind Turbine [26] 

A feature of power electronic devices is that they cannot carry large currents for a 

sustained amount of time and, as a result, protection systems must be implemented in 

the controllers. In the event of a system fault, the generator will increase its current 

output to several times the rated current value of the generator according to its internal 

reactance. This sudden increase in current will be detected by the converters’ 

protective circuits causing the controllers to stop the firing of the semiconductor 
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valves. This has the effect of limiting the fault current contribution of the turbine to a 

value close to the full rated current of the machine .The amplitude and duration of the 

fault current contribution is highly dependant on the controllers’ strategy and the 

protection deployed on the controllers. While the limiting of the fault current 

contribution of the inverter interface wind turbine has its advantages, it also has its 

disadvantages especially for overcurrent protection which relies on a substantial 

difference between full load output of a turbine and fault conditions in order to make 

a correct trip/no trip decision. This area will be explored in more detail in chapter 3. 

2.5 Integration of Embedded Generation into the Irish Power 
System 

By the end of 2011, a total of 2021MW [4] of renewable capacity will be installed on 

the Irish (ROI) power system. Of the 2021MW of renewable capacity to be installed 

in 2011, almost 50% will be connected directly into the distribution system. 

Furthermore, it is predicted by 2020 that almost 4800MW (Figure 2.6) capacity will 

be installed in the Irish power system. In response, the TSO has set out its strategy in 

the form of Grid25 [22]. According to the strategy, over €4 billon will be spent in 

network reinforcement and renewal over the next 10 years. The expenditure will 

include the construction of 1,150km of new transmission circuits and the upgrading of 

2,300km of the existing transmission circuits. This represents a massive investment in 

the Irish power system. These necessary network reinforcements are required to 

enhance system stability due to the large amount of renewable generation which will 

be connected over the next 10 years.  

Another issue for the TSO is wind curtailment. In order to maintain system security, 

wind generation may have to be curtailed. The reasons for this include maintaining a 

minimum level of synchronous inertia on the system or to try and avoid overloading a 

transmission line [18]. While curtailment has not been a major issue to date, with the 

massive increase in wind generation capacity expected over the next 10 years, wind 

curtailment will fast become a major issue for concern from both a security and 

reliability point of view. 

It is not just the transmission system which will experience major challenges in the 

coming years. Over the last 20 years, the Irish distribution system has shifted from a 

passive system to an active power system with bi-directional power flow. This has 

brought a number of challenges which include voltage control issues, stability issues, 
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potential islanding issues as well as protection issues. These challenges have also 

helped push the Smart Grid concept and the research/implementation of intelligent 

power systems. Over the last 10 years, a large number of technical papers have been 

written which explore the smart grid/intelligent power system concept. These 

technical papers cover all aspects to the smart grid concept and more importantly 

highlight the fact that the expectations held for the Smart Grid are increasing the 

pressure on all aspects of network operation for improved performance [7]. With the 

installation of significant amount of embedded generation into the distribution system 

over the next 10 years, the DSO will come under increasing pressure in terms of 

system stability, voltage control as well as protection.  

Partially/Non-Dispatchable Plant in Ireland 
Year end: 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 

Onshore Wind 

(MW) 

1538 1764 1990 2215 2441 2667 2893 3118 3344 3570 3796 

Offshore Wind 

(MW) 

0 36 36 252 252 252 252 416 529 533 555 

Small Scale 

Hydro (MW) 

22 22 22 22 22 22 22 22 22 22 22 

Solid Biofuels 

(MW) 

13 21 29 38 46 55 57 59 61 63 65 

Landfill Gas 

(MW) 

35 35 45 46 47 84 85 86 87 88 89 

CHP (MW) 129 134 139 144 149 154 159 164 169 174 179 
Industrial/DSU 

(MW) 

9 9 9 9 9 9 9 9 9 9 9 

Tidal/Wave 

(MW) 

0 0 0 0 0 0 0 13 25 38 75 

Total 1,746 2,021 2,270 2,726 2,966 3,243 3,477 3,887 4,246 4,497 4,790 

Figure 2.6: Renewable Capacity in Ireland 2010 – 2020 [4] 
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Chapter 3 
 
 
Interface Protection 
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3 Interface Protection 

3.1 Introduction to Interface Protection 

When an embedded generator seeks to connect to the Irish distribution system, it is 

required to install a suite of protection at the point of common coupling (PCC). The 

PCC marks the boundary between ESB Networks distribution system and the 

generator. The main protection requirements specified are under/over voltage, 

under/over frequency, overcurrent, loss of mains and earth fault. This protection is 

generally referred to as the interface protection and will be referred to as interface 

protection for the remainder of this thesis. It should be noted that different interface 

protection requirements apply depending on the generator type, connection method 

and voltage level. For example, a generator connecting to the system for the purposes 

of peak lopping would not require the same interface protection requirements as a 

generator which continuously feeds onto the distribution system. 

There are a number of reasons for installing interface protection. The first reason is to 

ensure that any private generator connected is isolated form ESB Networks 

distribution system when abnormal or undesirable conditions occur on the distribution 

system. The second reason is to protect ESB staff, plant and customers from adverse 

effects which could be caused by the generator connecting to the distribution system.  

It should also be noted that the DSO has a legal obligation to clear faults on the 

distribution system. These obligations are outlined in the following 

documents/rules/Statutory Instrument (SI): 

• SI 44 of the Electricity Regulations / Part 7 SHAWAW ‘05 

• DSO License condition 31.1 

• Irish Distribution Code  

Over the last twenty years, there have been two key documents produced by ESB 

Networks in regards to interface protection requirements which were as follows: 

• Distribution Standard 931030: Parallel Operation of Private Generators, 

August 1995 (G10 Requirements) [15] 

• Conditions Governing Connection to the Distribution System, March 2006 [9] 

The following chapter will look at the Irish requirements for Interface protection 

which are outlined in “Conditions Governing Connection to the Distribution System, 

March 2006” and compare them to the requirements of Denmark, Finland, France, 
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Germany, Norway, Portugal, Spain and United Kingdom. The interface protection 

requirements for Denmark, Finland, France, Germany, Norway, Portugal and Spain 

are taken from a document compiled by CIGRE working group B5.34 entitled “The 

Impact of Renewable Energy Sources and Distributed Generation on Substation 

Protection and Automation”, August 2010 [37]. The interface protection requirements 

for the United Kingdom are taken from Engineering Recommendation G59 [16] and 

Engineering Recommendation G75 [17].  

3.2 Interface Protection Requirements 

The following Interface protection requirements will be looked at in detail for Ireland, 

Denmark, Finland, France, Germany, Norway, Portugal, Spain and the United 

Kingdom.  

• Frequency Protection 

• Voltage Protection 

• Overcurrent Protection 

• Earth Fault Protection 

• Loss of Mains Protection 

The above protection requirements will be compared and contrasted with a view to 

optimise the interface protection requirements for the Irish system. 

3.2.1 Frequency Protection Requirements 

The main forms of frequency protection are under frequency and over frequency 

protection. Under frequency protection is used to detect an overloading of a generator 

due to either a partial or complete loss of the grid supply to the local network. Under 

frequency relays are set to disconnect the generator if the frequency drops below a 

predefined threshold for a time greater than a user defined delay. Under frequency 

settings should be set to coordinate with under frequency load shedding schemes. This 

is important as load shedding schemes are designed to dump predefined blocks of 

load in an attempt to restore system frequency. If under frequency protection is not 

coordinated with load shedding schemes adequately, blocks of generation could be 

disconnected from the system which reduces the probability of a power system 

recovering from the initial overload. Over frequency protection is used to prevent 

damage to a generator caused by over-speeding resulting from a loss of load. Over 
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frequency relays are set to disconnect the generator if the frequency rises above a 

predefined threshold for a time greater than a user defined delay. 

3.2.1.1 Irish Requirements 

The under/over frequency protection requirements outlined by ESB Networks for 

embedded generation connecting to the Irish distribution system are outlined in 

Tables 3.1 and 3.2. It can be observed that for wind generation the frequency 

requirements are slightly looser compared with the requirements for synchronous 

generators shown in Table 3.1. One obvious observation is that the frequency 

requirements are significantly tighter than the system frequency requirements outlined 

in the Transmission and Distribution Code (see Figure 3.1). According to the 

distribution code, the normal operating range for the frequency is 49.8Hz to 50.2Hz 

with the frequency range extending to 48.0Hz to 52.0Hz during a system disturbance. 

Furthermore, the distribution code also outlines that wind farms should meet the 

following requirements (Figure 3.2):  

• Remain connected to the Distribution System at Frequencies within the range 

47.5 Hz to 52 Hz for a duration of 60 minutes. 

• Remain connected to the Distribution System at Frequencies within the range 

47.0 Hz to 47.5 Hz for a duration of 20 seconds required each time the 

Frequency is below 47.5 Hz.  

However, the distribution code concedes that the above requirements are dependent 

on what frequency settings are implemented on the interface protection. With the 

settings outlined in Tables 3.1 and 3.2 below, the embedded generator would not meet 

the frequency requirements outlined in the distribution code. Immediately it is clear 

that the frequency settings could be tailored to be more in line with the 

transmission/distribution code frequency requirements for generators. 

Interface Protection Monitoring 
Details 

Operating 
Settings (%) 

Operating 
Settings 

(Hz) 

Trip Time 

Under Frequency ESB 
Networks 

Supply 1ph 
 

-4% 48.0Hz < 0.5 
seconds 

Over Frequency ESB 
Networks 

Supply 1ph 

+1% 50.5Hz < 0.5 
seconds 

Table 3.1: Irish Frequency Protection Settings for Embedded Generator Installations 
[9]
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Interface Protection Monitoring 
Details 

Operating 
Settings (%) 

Operating 
Settings 

(Hz) 

Trip Time 

Under Frequency ESB 
Networks 

Supply 3ph 
 

-6% 47.0Hz 0.5 seconds 

Over Frequency ESB 
Networks 

Supply 3ph 

+1.6% 50.8Hz 0.5 seconds 

Table 3.2: Irish Frequency Protection Settings for Embedded Generator Installations 
(Wind) [9] 

 

 
Figure 3.1: Frequency Limits – Distribution Code [11] 

 

 
Figure 3.2: Frequency Requirements – Distribution Code [11] 

 

3.2.1.2 International Requirements 

Denmark 

Denmark has an installed capacity of 3734MW [40] of wind power with wind power 

accounting for over 21% of Danish electricity usage. The Eltra and Elkraft System are 

responsible for preparing technical regulations for connecting to the electricity supply 

grid as well as regulations relating to market player obligations. It can be observed 

from Table 3.3 that Danish frequency protection requirements are not as tight as Irish 

frequency protection requirements. In the case of over frequency protection, the 
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Danish allow a +6% increase in system frequency before tripping the generator. 

Furthermore, the Danish settings are more inline with the frequency requirements 

outlined in the Irish Transmission/Distribution code.  

Interface Protection Monitoring 
Details 

Operating  
Settings (%) 

Operating 
Settings 

(Hz) 

Trip Time 

Under Frequency  -6% 47Hz 0.3 seconds 
  47Hz < f < 47.5hz  ≥ 10 seconds 

 
Over Frequency  +6% 53Hz 0.3 seconds 

Table 3.3: Danish Frequency Protection Settings for Embedded Generator 
Installations [34], [24], [35] 

 

Finland 

Finland has an installed wind capacity of approximately 197MW. This capacity is 

miniscule compared with other countries. However Finland does have a significant 

amount of hydro installed. The Finnish frequency protection requirement can be 

found in SENER: Pienvoimaloiden liittäminen jakeluverkkoon (Connection of small 

power plants to distribution network), Helsinki 2001. While the under frequency 

protection setting is broadly inline with Danish and Irish requirements, the Finnish 

over frequency setting is only marginally broader than Irish requirements.  

Interface Protection Monitoring 
Details 

Operating 
Settings (%) 

Operating 
Settings 

(Hz) 

Trip Time 

Under Frequency  -6% 47Hz 0.2 seconds 
Over Frequency  +2% 51Hz 0.2 seconds 

Table 3.4: Finnish Frequency Protection Settings for Embedded Generator 
Installations 

 

France 

France has an installed wind capacity of 5660MW [20]. Overall, wind power now 

produces 1.8% of the country’s electricity demand. However, at one point in 

November 2010, this share reached 7%. The French frequency protection 

requirements are outlined by the French Distribution System Operator (eRDF). On 

observation of the French frequency protection requirements it can be observed that 

the French have tighter frequency requirements compared to Ireland. This is 

understandable considering France is part of a heavily interconnected and heavily 

meshed power system. The French protection requirements would not be suited to the 

Irish system. 
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Interface Protection Monitoring 
Details 

Operating 
Settings 

(%) 

Operating 
Settings 

(Hz) 

Trip Time 

Under Frequency 1 phase – 
phase 

Voltage 

-1% 49.5Hz Instantaneous 

Over Frequency 1 phase – 
phase 

Voltage 

+1% 50.5Hz Instantaneous 

Table 3.5: French Frequency Protection Settings for Embedded Generator 
Installations 

 

Germany  

Germany has an installed wind capacity of 27,214MW [20]. This is the largest wind 

capacity installed in Europe with only 1 or 2 countries outside of Europe with similar 

installed capacity. Wind energy generated 37.3 TWh of electricity in 2010, which 

accounted for 6.2% of the country’s power consumption. In total, 17% of electricity 

was generated from renewable sources in Germany in 2010, with wind being the 

single largest contributor [20]. A summary of German frequency protection 

requirement can be found in [37]. On observation of the German frequency protection 

requirements it can be observed that the Germans have similar frequency 

requirements to both the Danish and the Irish. However, the German over frequency 

protection requirements are broader compared to Ireland.  

Interface Protection Monitoring 
Details 

Operating 
Settings (%) 

Operating 
Settings 

(Hz) 

Trip Time 

Under Frequency  -5% 47.5Hz 0.1 seconds 
Over Frequency  +3% 51.5Hz 0.1 seconds 

Table 3.6: German Frequency Protection Settings for Embedded Generator 
Installations 

 

Norway 

Norway has an installed wind capacity of 423MW. While this would be considered 

small in comparison to other European countries, Norway has one of the largest hydro 

resources in Europe with approximately 30,000MW of Hydro capacity installed [45].  

A summary of Norwegian frequency protection requirement can be found in [37]. It 

can be observed that the Norwegian frequency requirements are similar to Irish 

requirements. However, as seen with other countries, the Norwegian Over frequency 

setting is broader compared to Irish requirements. 
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Interface Protection Monitoring 
Details 

Operating 
Settings (%) 

Operating 
Settings 

(Hz) 

Trip Time 

Under Frequency  -4% 48Hz 0.2 seconds 
Over Frequency  +2% 51Hz 0.2 seconds 

Table 3.7: Norwegian Frequency Protection Settings for Embedded Generator 

Installations 

Portugal 

Portugal has an installed wind capacity of 3702MW [20]. Portugal is one of the 

leading countries in Europe in terms of wind power penetration, with 17.1% of its 

electricity demand covered by nearly 4,000 MW of installed wind power capacity in 

2010. A summary of Portuguese frequency protection requirement can be found in 

[37]. It can be observed that the Portuguese frequency requirements are broadly inline 

with those of Germany.  

Interface Protection Monitoring 
Details 

Operating 
Settings (%) 

Operating 
Settings 

(Hz) 

Trip Time 

Under Frequency  -5% 47.5Hz 0.0 -0.15 
seconds 

Over Frequency  +3% 51.5Hz 0.0 -0.15 
seconds 

Table 3.8: Portuguese Frequency Protection Settings for Embedded Generator 
Installations 

 

Spain 

According to the Spanish Wind Energy Association (AEE), the total wind capacity 

installed is approximately 20,676 MW [20]. Furthermore, Spain has the second 

highest total installed wind capacity after Germany. The leading region in Spain in 

terms of installed wind capacity is Castilla y León with almost 4,000 MW. In 2010, 

wind energy accounting for 16.6% of the national net power consumption. All 

renewable energy sources combined produced around 38% of Spain’s electricity 

needs, with wind being the largest single contributor within the renewable energy mix 

[20]. A summary of Spanish frequency protection requirement can be found in [37]. It 

can be observed from Table 3.9 that the Spanish frequency requirements are similar to 

those of other European countries.  
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Interface Protection Monitoring 
Details 

Operating 
Settings (%) 

Operating 
Settings 

(Hz) 

Trip Time 

Under Frequency  -4% 48.0Hz 3 seconds 
Over Frequency  +2% 51.0Hz 0.2 seconds 

Table 3.9: Spanish Frequency Protection Settings for Embedded Generator 
Installations 

 

United Kingdom 

The United Kingdom has an installed wind capacity of 5204MW [20] and is ranked 

the 8th largest producer of wind power. The two main documents in the UK in regards 

to interface protection requirements for embedded generation are Engineering 

recommendation G59 [16] and Engineering Recommendation G75 [17]. Table 3.10 

below outlines the frequency protection settings. It can be observed that the UK has 

adopted multi stage frequency protection. Multi stage frequency protection has 

advantages which are discussed in section 3.2.1.3. 

Interface Protection Monitoring 
Details 

Operating 
Settings (%) 

Operating 
Settings 

(Hz) 

Trip Time 

Under Frequency Stage 1 -5% 47.5Hz 20 seconds 
 Stage 2 -6% 47.0Hz 0.5 seconds 
Over Frequency Stage 1 +3% 51.5Hz 90 seconds 
 Stage 2 +4% 52.0Hz 0.5 Seconds 
Table 3.10: UK Frequency Protection Settings for Embedded Generator Installations 

 

3.2.1.3 Discussion 

On observation of Irish under/over frequency protection requirements, it is clear that 

the Irish frequency settings can be improved. The first improvement would be the 

introduction of multi stage frequency protection. This would not be seen as a costly 

introduction as most frequency protection devices allow for multi stage frequency 

protection as standard. Furthermore, multi stage frequency protection can allows for 

enhanced control over the power system provided intelligent settings are chosen. 

Table 3.11 proposes alternative under/over frequency settings to the settings proposed 

in [9]. These settings would allow for the frequency requirements in the 

Transmission/Distribution code to be implemented and at the same time providing 

rapid disconnection of the embedded generator for extreme system conditions.  

Choosing 47Hz as the lower threshold has merit in that in the event that the system 

frequency reached 47Hz, it can be assumed that load shedding schemes on the system 
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have operated and were unsuccessful. At this stage the system would be heading for a 

blackout condition and the generator should be disconnected (if not already 

disconnected) for reconnection when the system is restored. Choosing 52.5Hz as the 

upper threshold also has merit as this setting allows for ramping down of the power 

output of larger machines before disconnecting the embedded generator.  

It should be noted that the settings below are currently been considered by the DSO as 

part of the DSO’s review of Interface protection requirements for embedded 

generators. 

Interface Protection Monitoring 
Details 

Operating 
Settings (%) 

Operating 
Settings 

(Hz) 

Trip Time 

Under Frequency 2 phases 
(minimum) 

 ≤-6% 47.0Hz 0.5 seconds 

  ≤ -5% 47.5Hz 20 seconds 
Over Frequency 2 phases 

(minimum) 
≥ +4% 52.0Hz 20 seconds 

  ≥ +5% 52.5Hz 0.5 seconds 
Table 3.11: Proposed Frequency Protection Settings for Embedded Generator 

Installations 

 

3.2.2 Voltage Protection Requirements 

The main forms of voltage protection are under voltage and over voltage protection. 

Under voltage protection is required to detect voltage depressions caused by a close in 

fault and to trip the embedded generator after a predefined time delay. The under-

voltage protection function is important for the detection of immediate network faults 

(either phase-phase or three-phase) for which overcurrent protection may not operate. 

This is primarily due to the possible low current contribution from the EG 

(technology specific). This issue is of particular significance to EG technologies 

deemed incapable of supporting short-circuit current contribution such as Fixed Speed 

Induction Generators, Doubly Fed Induction Generators and Inverter Interfaced 

Induction Generators. In the circumstances where the fault current contribution of the 

generator cannot be relied upon, the under-voltage protection function is the only 

reliable means of fault detection. The undervoltage protection is set to disconnect the 

generator if the voltage dips below a predefined threshold for a time greater than a 

user defined delay. 

Overvoltage protection is required to protect equipment against damage caused by 

overvoltages on the system. The main causes of overvoltages on a network are 
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switching operations, load rejection, over-speed, lightning and earth faults. The 

overvoltage protection is set to disconnect the generator if the voltage rises above a 

predefined threshold for a time greater than a user defined delay. 

3.2.2.1 Irish Requirements 

The under/over voltage protection requirements outlined by ESB Networks for 

embedded generation connecting to the Irish distribution system are shown in Tables 

3.12 and 3.13 below. It can be seen that for wind generation the voltage requirements 

are slightly looser compared with the requirements for synchronous generators shown 

in Table 3.12. 

Interface Protection Monitoring 
Details 

Operating 
Settings (%) 

Trip Time 

Under Voltage ESB 
Networks 

Supply 3ph 
 

-10% < 0.5 
seconds 

(Typical) 

Over Voltage ESB 
Networks 

Supply 3ph 

+10% < 0.5 
seconds 

(Typical) 
Table 3.12: Irish Voltage Protection Settings for Embedded Generator Installations 

 
Interface Protection Monitoring 

Details 
Operating 

Settings (%) 
Trip Time 

Under Voltage ESB 
Networks 

Supply 3ph 
 

-20% 1 second 

Over Voltage ESB 
Networks 

Supply 3ph 

+10% < 0.5 
seconds 

(Typical) 
Table 3.13: Irish Voltage Protection Settings for Embedded Generator Installations 

(Wind) 
 

It should be noted that the voltage requirements above are in conflict with the fault 

ride through requirements outlined in the distribution code. Figures 3.3 and 3.4 

outline the fault ride through requirements for generators connecting to the 

distribution system. Super-imposing the under voltage requirements on to the fault 

ride through requirements (Figures 3.5 & 3.6), it can be seen that for wind farms 

connecting directly to 110kV busbars, the under voltage protection requirements 

conflict with the fault ride through requirements. It is clear that some modifications to 
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the voltage settings can be done to bring the voltage protection requirements inline 

with the fault ride through requirements outlined in the distribution code. 

 

Figure 3.3: Fault Ride Through Capability for Types B, C, D and E Wind Farm Power 

Stations Connected to the Distribution System [11] 

 

 

 

 

Figure 3.4: Fault Ride Through Capability for Types A Wind Farm Power Stations 

Connected to the Distribution System [11] 
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Figure 3.5: Fault Ride Through Capability for Types B, C, D and E Wind Farm Power 

Stations Connected to the Distribution System [11] 

 

 

 

 

 

Figure 3.6: Fault Ride Through Capability for Types A Wind Farm Power Stations 

Connected to the Distribution System [11] 

Under Voltage 

Settings Compatible 

Under Voltage 

Settings  

In-Compatible 
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3.2.2.2 International Requirements 

Denmark 

The Danish voltage protection requirements are outlined in Table 3.14 below. It can 

be observed that the Danish require multi stage voltage protection. The advantage of 

this approach is two fold in that: 

• Rapid clearance of the generator can be achieved for close in faults where fast 

fault clearance is required (stability)  

• Slow clearance of the generator for remote faults  

Interface Protection Monitoring 
Details 

Operating 
Settings (%) 

Trip Time 

Under Voltage  < 90% 2 -10 seconds 
  < 70% 0.05 seconds 
Over Voltage  >106% 30 - 60 seconds 
  >110% 0.05 seconds 

Table 3.14: Danish Voltage Protection Settings for Embedded Generator Installations  

 

Finland 

The Finnish voltage protection requirements are outlined in Table 3.15 below. Similar 

to the Danish, the Finnish also utilise multi stage voltage protection. 

Interface Protection Monitoring 
Details 

Operating 
Settings 

(%) 

Trip Time 

Under Voltage  < 90% 2 – 10 seconds 
  < 50% 50 – 100ms 
Over Voltage  > 106% 30 – 60 seconds 
  > 110%  50ms 

Table 3.15: Finnish Voltage Protection Settings for Embedded Generator Installations 

 

France 

The French voltage protection requirements are outlined in Table 3.16 below. The 

French also utilise multi stage voltage protection.  

Interface Protection Monitoring 
Details 

Operating 
Settings 

(%) 

Trip Time 

Under Voltage  85% 1 – 2 seconds 
  25% Instantaneous 
Over Voltage  115% 0.1 seconds 

Table 3.16: French Voltage Protection Settings for Embedded Generator Installations 
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Germany 

The German voltage protection requirements are outlined in Table 3.17 below. As 

seen with Denmark, Finland and France, the Germans also utilise multi stage voltage 

protection. 

Interface Protection Monitoring 
Details 

Operating 
Settings 

(%) 

Trip Time 

Under Voltage
2
  80% 1.5 – 2.4 seconds 

Under Voltage
3
  80% 1 second 

  25% Instantaneous 
Over Voltage  120% 0.1 seconds 

Table 3.17: German Voltage Protection Settings for Embedded Generator Installations 

 

Norway 

The Norwegian voltage protection requirements are outlined in Table 3.18. As 

observed with Denmark, Finland, France and Germany, the Norwegians also utilise 

multi stage voltage protection. 

Interface Protection Monitoring 
Details 

Operating 
Settings 

(%) 

Trip Time 

Under Voltage  < 85%  1.5 seconds 
  < 50% 0.2 seconds 
Over Voltage  > 105% 1.5 seconds 
  > 115% 0.2 seconds 
Table 3.18: Norwegian Voltage Protection Settings for Embedded Generator 

Installations 
 

Portugal 

The Portuguese voltage protection requirements are outlined in Table 3.19. It can be 

observed that Portuguese requirements are similar to Irish voltage protection 

requirements.  

Interface Protection Monitoring 
Details 

Operating 
Settings 

(%) 

Trip Time 

Under Voltage  85% 1 second 
    
Over Voltage  115% 1 second 
Table 3.19: Portuguese Voltage Protection Settings for Embedded Generator 

Installations

                                                
2 Connection to a MV substation through a dedicated line 
3 Connection to MV line 
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Spain 

The Spanish voltage protection requirements are outlined in Table 3.20. It can be 

observed that Spanish requirements are similar to Irish voltage protection 

requirements. 

Interface Protection Monitoring 
Details 

Operating 
Settings 

(%) 

Trip Time 

Under Voltage  80% 0.6/1.2 seconds4 
    
Over Voltage  115% 0.2 seconds 

Table 3.20: Spanish Voltage Protection Settings for Embedded Generator Installations 
 

United Kingdom 

The UK voltage protection requirements are outlined in Table 3.21. As observed with 

Denmark, Finland, France, Germany and Norway, the UK also utilise multi stage 

voltage protection. 

Interface Protection Monitoring 
Details 

Operating 
Settings 

(%) 

Trip Time 

Under Voltage Stage 1 -13% 2.5 seconds 
 Stage2 -20% 0.5 seconds 
Over Voltage Stage 1 +10% 1.0 seconds 
 Stage 2 +15% 0.5 seconds 

Table 3.21: UK Voltage Protection Settings for Embedded Generator Installations 

 

3.2.2.3 Discussion 

On observation of Irish under/over voltage protection requirements, it is clear that the 

Irish voltage settings can be improved. The first improvement is the use of multi stage 

voltage protection. The advantage of multi stage voltage protection is that the settings 

can be tailored to provide rapid clearance for close in faults and delayed tripping for 

remote faults. This would not be seen as a costly introduction as most voltage 

protection devices allow for multi stage voltage protection as standard. The second 

improvement would be to modify the existing voltage protection settings to aid fault 

ride through compliance for the generator. 

The over voltage setting should be modified in order to be compatible with the 

operating voltage limits outlined in the distribution code (Figure 3.7). A setting of 

1.13pu would be compatible with the operating voltage limits outlined in the 

                                                
4 Default Setting/Meet Fault Ride Through Requirements 
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distribution code. Furthermore, a timer setting of 0.7 seconds is recommended in 

order to comply with the fault ride through requirements outlined in the distribution 

code. The proposed alteration to the overvoltage setting would also comply with the 

overvoltage requirements outlined in the incoming entsoe requirements.  

 

Figure 3.7: Operating Voltage Limits [11] 

Table 3.22 proposes alternative under/over voltage settings to the settings proposed in 

[9]. The settings below would be considered compatible with the fault ride through 

requirements outlined in the distribution code. Furthermore, the settings strike a 

balance between the fault ride through requirements and rapid clearance of the 

generator for close-in faults. The settings proposed below are also in-line with the 

voltage protection requirements outlined by other utilities. 

Interface Protection Monitoring 
Details 

Operating 
Settings (%) 

Operating 
Settings 

(pu) 

Trip Time 

Under Voltage
5
 3 phases  < -13% 0.87 3.0 seconds 

  < -20% 0.80 1.0 second 
     
Under Voltage

6
 3 phases  < -13% 0.87 2.5 seconds 

  < -50% 0.50 1.85 seconds 
     
Over Voltage 3 phases > +13% 1.13 0.7 seconds 

Table 3.22: Proposed Voltage Protection Settings for Embedded Generator 
Installations 

 

3.2.3 Overcurrent Protection Requirements 

The main function of overcurrent protection is to disconnect the generator if a fault on 

the network has not been cleared within an acceptable time limit. The relays purpose 

is to protect the distribution system against excessive damage and prevents the 

generator from exceeding its thermal limits. When considering overcurrent settings, it 

is necessary to ensure that the settings are set high enough to allow the maximum 

                                                
5 Wind Farm Types B,C,D and E 
6 Wind Farm Type A 
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conceivable output of the wind farm. However, it is also important to ensure that the 

overcurrent protection is capable of picking up for remote faults. For synchronous 

machines, overcurrent protection is adequate as in the event of a fault, the 

synchronous machine will supply an acceptable level of fault current that should 

result in the operation of the overcurrent protection. For synchronous generators the 

difference between full load output and fault current contribution can be as much as 5 

– 10 times rated output of the machine.  

However, for embedded generation composing of induction or DFIG technology, 

acceptable level of fault current cannot be relied upon to operate overcurrent 

protection. Due to the rapid decay in fault current contribution from these devices in 

the event of a fault, an overcurrent relay at the embedded generator connection point 

could not be relied upon to pick up for an external fault. 

3.2.3.1 Irish Requirements 

Table 3.23 below outlines the Irish overcurrent protection requirements. It can be 

observed that the overcurrent setting is set at 120% of the Maximum Export Capacity 

(MEC) of the generator. The setting below would be considered adequate for a 

synchronous generator as the generator would be more than capable of supplying the 

required fault current to be capable of discerning between fault and load. However, 

for a wind farm composed of multiple induction generators or DFIGs, a setting of 

120% would be unreliable as depending on the number of wind turbines operating at 

the time of a fault and the technology involved, the wind farm may be incapable of 

supplying the required fault current to trigger the overcurrent protection. 

Interface Protection Monitoring 
Details 

Operating 
Settings (%) 

Trip Time Notes 

Directional  

Overcurrent
7
 

ESB Networks 
Supply 3ph 

 

≤ 50% < 0.5 
seconds 

No- Export 
Generators 

 ESB Networks 
Supply 3ph 

≤ 120% < 0.5 
seconds 

Generators 
with agreed 

export 
Table 3.23: Irish Overcurrent Protection Settings for Embedded Generator 

Installations 
 

                                                
7 May not be required if generator  rating is < 1MVA @ MV PCC or < 200kVA @ LV PCC 
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3.2.3.2 International Requirements 

Denmark 

Table 3.24 outlines the overcurrent requirements for Denmark. The overcurrent 

protection is required to trip in 50ms once the current reaches a pre-defined threshold. 

However, the threshold for the overcurrent protection is determined by the utility. 

Negative sequence overcurrent protection is important to ensure the generator is 

protected against negative sequence currents which can lead to excessive heating and 

damage to the generator.  

Interface Protection Monitoring 
Details 

Operating 
Settings (%) 

Trip Time 

Overcurrent  I>> 0.05 seconds 
Negative Sequence 

Current 

 5-20% 3 - 10 seconds 

Table 3.24: Danish Overcurrent Protection Settings for Embedded Generator 
Installations 

 

Finland 

Similar to Denmark, overcurrent protection is required by the Finnish. However, the 

technical details relating to the implementation of overcurrent protection must be 

agreed with the utility. 

 

France 

The provision of overcurrent protection is not strictly defined by the French. 

However, the Installation of this type of protection must be agreed with the DNO. 

 

Germany  

The provision of short circuit protection is required for LV systems. The technical 

details concerning the actual implementation of the short circuit protection are not 

stated. However, the guidelines state that if the DG unit leads to the short circuit 

current of the grid to be higher than the rated short circuit current, the short circuit of 

the distributed generator has to be limited. 
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Norway 

The provision of Overcurrent protection is required. However, the technical details 

relating to the implementation of overcurrent protection must be agreed with the 

utility. 

 

Portugal 

Table 3.25 outlines the overcurrent protection requirements outlined by the 

Portuguese. It can be observed that the Portuguese require a setting between 100 – 

200% of rated current with a trip time between 0 and 1 second. The specific settings 

must be agreed with the utility.  

Interface Protection Monitoring 
Details 

Operating Settings 
(%) 

Trip Time 

Overcurrent  100 - 200% In 0 - 1 second 
Table 3.25: Portuguese Overcurrent Protection Settings for Embedded Generator 

Installations 

 

Spain 

The provision of overcurrent protection is required by the Spanish. Installation of this 

type of protection must be agreed with the DNO. 

 

United Kingdom 

The provision of short circuit protection is considered by G59/1. In the event that 

overcurrent protection is deemed necessary by the Public Electricity supplier (PES), 

the implementation and setting of the protection must be agreed with the PES. 

 

3.2.3.3 Discussion 

The provision of overcurrent protection is required by the Danish, French, Finnish, 

Norwegian, Spanish, Portuguese, German and the UK. The precise setting for the 

overcurrent protection is provided by the utilities in the respective countries. The 

installation of overcurrent protection has both its advantages and disadvantages. For 

synchronous machines, the difference between full load output and fault conditions is 

considered wide enough to ensure correct operation of the protection device. 

Furthermore, overcurrent protection is widely available and is considerably cheaper 

than other forms of protection. However, for induction machines, DFIG’s and full 
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converter connected generators; overcurrent protection cannot be considered to be 

reliable enough. For wind farms, depending on the number of generators on line at the 

time of the fault and the technology involved, the contribution from the wind farm 

may not be sufficient to operate the overcurrent protection. Furthermore, depending 

on the time of year (Summer Night Valley/Winter Peak) the short circuit level will 

vary on the power system. In the case of Ireland, it is recommended that the 

overcurrent protection requirement should be dropped for induction generator based 

technology and full converter interfaced technology and replaced by a more reliable 

form of protection. The replacement of overcurrent protection with duplicate under 

voltage protection would be considered a more reliable as well as a cost effective 

solution. For synchronous generators, the overcurrent protection requirement can be 

kept for aforementioned reasons. 

3.2.4 Earth Fault Protection Requirements  

Earth fault protection is required for the detection of earth faults on the power system. 

The most popular form of earth fault detection is Neutral Voltage Displacement 

(NVD) protection. This form of protection is generally installed on the neutral of a 

transformer and would be considered reliable. The installation of a zero sequence 

current relay can also be used to detect earth faults on the system. The type and 

operation of earth fault protection is dependent on the grounding connection to which 

the embedded generator is connected too. 

3.2.4.1 Irish Requirements 

The earth fault requirements outlined by ESB Networks can be observed in Table 

3.26. It can be seen that ESB Networks require the earth fault protection to be set to 

detect a 30% NVD with a required operation time of ≤ 30 seconds.  

Interface Protection Monitoring 
Details 

Operating 
Settings (%) 

Trip Time 

Earth Fault  ESB Networks 
MV or 38kV 

Supply 

30% NVD8 ≤ 30 
seconds 

Table 3.26: Irish Earth Fault Protection Settings for Embedded Generator Installations 

                                                
8 Neutral Voltage Displacement 
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3.2.4.2 International Requirements 

Denmark 

The Danish earth fault protection requirements are shown in Table 3.27. It can be 

observed that the Danish require NVD protection to detect 20% NVD with an 

operation time of 60 seconds.  

Interface Protection Monitoring 
Details 

Operating 
Settings (%) 

Trip Time 

Earth Fault  Vn 20%  60 seconds 
Table 3.27: Danish Earth Fault Protection Settings for Embedded Generator 

Installations 
 

Finland 

Earth Fault protection is required for MV networks. The technical details relating to 

the implementation of the earth fault protection are to be agreed with the utility. 

 

France 

The French earth fault requirements are shown in Table 3.28 (RTE) and Table 3.29 

(eRDF). The RTE make provisions for the implementation of either overcurrent earth 

fault protection or zero sequence voltage protection. The RTE requirements are 

considerably broader that the Irish requirements. The eRDF outline zero sequence 

voltage requirements for earth fault detection. The eRDF requirements are 

considerably tighter than the Irish earth fault protection requirements.  

 

Interface Protection Protection 
Type 

Operating 
Settings 

Trip Time 

Earth Fault  51N 100A  4 seconds 
 59N Vo = 0.5Vn 4 seconds 

Table 3.28: French Earth Fault Protection Settings for Embedded Generator 
Installations (RTE) 

 

Interface Protection Protection  
Type 

Operating 
Settings (%) 

Trip Time 

Earth Fault  59N 10% Vn  1 - 2 seconds 
Table 3.29: Earth Fault Protection Settings for Embedded Generator Installations 

(eRDF) 
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Germany 

The requirement for the implementation of earth fault protection is not strictly defined 

in German Embedded Generator requirements. 

 

Norway 

The provision of earth fault protection is not specifically defined by the Norwegians. 

However, the technical details relating to the implementation of the earth fault 

protection must be agreed with the utility. 

 

Portugal 

The Portuguese earth fault protection requirements are outlined in Table 3.30. The 

Portuguese outline both voltage and current requirements for the detection of earth 

faults. The Portuguese require the NVD protection to operate for a 10% voltage 

displacement in 1 second. The Portuguese zero sequence current settings are set at 

10% threshold to operate in 0.4 seconds. The Portuguese earth fault settings are 

considerably tighter compared with Irish requirements.  

Interface Protection Protection 
Type 

Operating 
Settings 

Trip Time 

Earth Fault  50N 10% In 0.4 seconds 
 59N 10% Vn 1.0 second 

Table 3.30: Portuguese Earth Fault Protection Settings for Embedded Generator 

Installations 

Spain  

The Spanish earth fault protection settings are outlined in Table 3.31. The Spanish 

specify a zero sequence voltage setting of 35% with a trip time of either 0.6 seconds 

(default) or 1.2 seconds (Fault Ride Through Requirements). While the pickup setting 

is similar to the Irish requirement, the operating time is significantly quicker 

compared with Irish requirements.  

Interface Protection Protection 
Type 

Operating 
Settings 

Trip Time 

Earth Fault  59N 35% Vn 0.6/1.2 seconds 
    

Table 3.32: Spanish Earth Fault Protection Settings for Embedded Generator 

Installations 
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United Kingdom 

The UK requirements for earth fault detection are outlined in Table 3.32. The UK 

have an identically pickup settings compared to Irish earth fault requirements. 

However, the trip time must be agreed with the distribution system operator. The 

similar earth fault settings are understandable considering the Irish and UK power 

systems have numerous similarities in terms of grounding arrangements etc.  

Interface Protection Protection 
Type 

Operating 
Settings 

Trip Time 

Earth Fault  NVD >30% Vn Time Delayed 
to coordinate 
with network 
ground fault 
protection 

Table 3.32: UK Earth Fault Protection Settings for Embedded Generator Installations 

3.2.4.3 Discussion 

The provision of earth fault protection is required by the Danish, French, Finnish, 

Norwegian, Spanish, Portuguese, German and the UK. On comparison of 

international requirements with Irish requirements, it can be observed that there are 

similarities especially between Ireland and the UK. This is understandable 

considering the similarities between the two countries in terms of voltage levels, 

frequency and grounding arrangements. The main conclusion which can be reached in 

regards to earth fault protection is that the requirement for the interface protection to 

trip the embedded generator for earth faults should be dependent on the how earth 

faults are treated on the network by the utility. For example, earth fault protection 

installed on the 38kV system in Ireland is set to indicate and not trip for earth faults. 

This is due to the fact that the 38kV system in Ireland is grounded via a Peterson Coil. 

Therefore earth fault protection installed at the interface for 38kV connected 

embedded generators should be set to indicate and not trip for earth faults.  

3.2.5 Loss of Mains Protection Requirements 

When a fault occurs on the distribution system, the protection installed on the power 

system detects the fault and sends a trip command to a circuit breaker. The fault is 

said to be isolated when the fault is cleared from all sources of supply. When the 

distribution system was considered to be a passive system with very little or no 

embedded generation installed, the clearance of faults was considered straight forward 

and under the control of the distribution system operator. However, the introduction 
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of embedded generation has considerably complicated the fault clearance process. 

One of the main issues with embedded generation is the risk of islanding. In the event 

of a fault, an embedded generator could become islanded. This can result in an 

embedded generator supplying the part of the distribution network which has been 

islanded from the main power system. It should be noted that the chances of an 

embedded generator continuing to operate after the loss of the grid connection are 

extremely low. However, with more and more embedded generation coming online 

over the next 5 – 10 years, the risk of islanding is becomes greater especially if the 

generators are capable of islanded operation.  

The main reason why islanding is extremely rare is due to the fact that sustained 

islanding requires the exact matching of both active and reactive power in the 

disconnected section of the network as well as the generator having the capability of 

exercising some degree of voltage and frequency control. While the possibility of 

sustained islanding is a rare event, it is not impossible and can prove costly if it occurs 

(YEDL use intertripping due to an islanding incident in the past). However, temporary 

islanding lasting a few hundred milliseconds, or even seconds, is not implausible.  

The main problems associated with islanding are quality of supply to the customer, 

health and safety concerns and resynchronisation of the generator to the network. If 

islanding occurs, the quality of supply to customers on the islanded system cannot be 

guaranteed as the utility no longer has control over the islanded section of network. 

This can result in degraded power quality for the customers connected to the islanded 

piece of network. Furthermore, the subsequent resynchronisation of the island to the 

grid after a disturbance can result in out-of-phase re-closing since synchronising 

facilities are not available at distribution networks installations. Out-of-phase re-

closing can produce power transients in the local system which could affect the utility 

and/or the generator. The risks associated with out-of-phase re-closing are as follows: 

• Stress/damage to the generators and motors connected to the island.  

• Substantial degradation of the network’s reliability  

• Damage to the network switch/CB/fuse used to make the out of synchronous 

re-closure.  

• A potential safety hazard to an operator. 

The main forms of Loss of Mains protection are Rate of Change of Frequency 

(ROCOF) and Vector Shift (VS). 
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Rate of Change of Frequency Protection 

ROCOF protection work on the basis that if islanding occurs, there will be an 

imbalance between the generation and load in the islanded network [41][1]. Once 

islanding has occurred, the ensuing power imbalance will cause the frequency to 

increase/reduce dynamically depending on a generation surplus/deficit. Immediately 

after the islanding event, the power imbalance will cause the frequency to change. 

The rate at which the frequency changes can be approximated by the following 

equation if governor action is ignored: [14], [30]. 
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Where 

PG = Output of the distributed Generator 

PL = Load in the Island 

SGN = Distributed Generator Rating 

H = Inertia Constant of Generating Plant 

Fr  = Rated Frequency 

 

ROCOF protection measure the rate at which the frequency changes and once the rate 

of change of frequency exceeds a pre-set threshold, a trip signal is sent to the breaker 

and the breaker opens. However, other system events could theoretically cause 

ROCOF protection to operate. For example, network transient events could 

conceivably cause a change in the system frequency, which in turn can result in the 

incorrect operation of ROCOF protection. While ROCOF protection can be set very 

sensitive and can in theory provide reliable operation for islanding events, it is the 

potential spurious operation for transient events on the system that are of most 

concern [36]. 

Furthermore it has been observed in [41] that ROCOF protection from different 

manufacturers can operate differently to the same event on a power system, even 

when the devices are setup with the exact same settings. This is due to the fact that 

different manufactures use different methods to detect rate of change of frequency. It 

is these differences which can result in spurious operation of the ROCOF protection.  
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Vector Shift Protection 

Voltage Vector Shift protection is based upon voltage angle measurements performed 

on phase voltages. Depending upon the manufacturer, vector shift protection can use 

either single phase or three phase voltage quantities to make a decision. While using 

single phase voltage quantities to make a decision is perfectly adequate, the use of 

three phases makes the vector shift relay immune to harmonic distortion as well as 

other sources of interference.  

The Vector Shift relay works by measuring the length of each cycle of the voltage 

waveform. If the grid becomes disconnected from the local distribution system (fault 

condition/mal operation of a protection device etc.), the sudden change in the 

generation/load balance will invariably result in a sudden change in the voltage cycle 

length. The change in waveform length is translated into a value in degrees. When this 

value exceeds a predefined threshold, the vector shift protection operates. 

Unfortunately the Vector Shift method suffers from the same problems associated 

with ROCOF protection. The vector shift relay is susceptible to incorrect operation 

for network transient events. Nuisance trips have been observed by many utilities in 

the presence of normal network events, such as line switching operations, capacitor 

bank switching etc. Furthermore, there have been events where the vector shift relay 

has failed to operate for valid trip conditions where the power imbalance between the 

generator and the grid is low. 

3.2.5.1 Irish Requirements 

The Irish requirements for loss of mains detection are outlined in Tables 3.33 and 

3.34. It can be observed that provisions are made for both vector shift and ROCOF 

protection. It can be observed from Table 3.35 that for wind generators, the ROCOF 

protection is desensitised slightly.  

Interface Protection Monitoring 
Details 

Operating 
Settings (%) 

Trip Time Notes 

Loss of Mains  3 phase Typical 
0.4Hz/sec 

< 0.5 
seconds 

 

Rate of 
Change of 
Frequency 
(ROCOF) 

 
 1 phase + 

asymmetry relay 
Typical 6 
Degrees 

< 0.5 
seconds 

 

Vector Shift 

Table 3.33: Irish Loss of Mains Protection Settings for Embedded Generator 
Installations
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Interface Protection Monitoring 
Details 

Operating 
Settings (%) 

Trip Time Notes 

Loss of Mains  3 phase 0.55Hz/sec < 0.5 
seconds 

 

Rate of 
Change of 
Frequency 
(ROCOF) 

Table 3.34: Irish Loss of Mains Protection Settings for Embedded Generator 
Installations (Wind) 

 

3.2.5.2 International Requirements 

Denmark 

The loss of main protection requirements are outlined in Table 3.35. It can be 

observed that the Danish loss of mains requirements are substantially broader 

compared with Irish requirements. The ROCOF relay has given rise to a significant 

amount of forced outages of local CHP units connected to the Danish distribution 

system. The reason is partly that some types of ROCOF relays are sensitive to the 

phase shift which is a resultant of short circuits and couplings in the network and 

partly because Eltra’s originally recommended settings were considered to be too 

sensitive for the ROCOF relay (df/dt > 1.5 Hz/s and df/dt< -0.7 Hz/s). The increase of 

the ROCOF settings to +/- 2.5Hz has resulted in increased stability in the Danish 

distribution system. However, desensitising the protection means the ROCOF 

protection may not pick up for cases were the difference between load and generation 

is small. 

Interface Protection Monitoring 
Details 

Operating 
Settings (%) 

Trip Time Notes 

Loss of Mains   +/- 2.5Hz/s 80 - 100ms 
 

Rate of 
Change of 
Frequency 
(ROCOF) 

Table 3.35: Danish Loss of Mains Protection Settings for Embedded Generator 
Installations  

 

Finland 

In Finland, loss of mains protection is required. The protection is required to take 

three phase voltage and frequency into consideration. Generally the Under/over 

voltage and under/over frequency protection is used for loss of mains protection. 

However, a dedicated loss of mains relay can be used if the risk of islanding is 

deemed plausible. 
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France 

In terms of loss of mains protection, no special requirements for this protection are 

made by the French. This approach was taken following the results of special studies 

which indicated that there is no risk of unintentional islanding because the “margin” is 

kept large enough to prevent it. In the event of loss of mains, it is perceived that the 

generator would be unable to maintain the island. However, transfer tripping may be 

used if there is a creditable risk of islanding. 

 

Germany 

Table 3.36 specifies the loss of mains requirements for generators connecting to the 

German system. It can be observed that the loss of mains requirement is specified in 

terms of a frequency range. In the event that the frequency varies by +/- 0.4%, the 

generator would be disconnected from the power system.  

Interface Protection Operating Settings (Hz) Trip Time Notes 
Loss of Mains  49.8 – 50.2Hz 5 seconds 

 
 

Table 3.36: German Loss of Mains Protection Settings for Embedded Generator 
Installations  

 

Norway 

In Norway, Anti-islanding protection is required. Anti-islanding protection can either 

take the form of transfer tripping or ROCOF protection. Transfer tripping is used if 

tele-protection is available. Transfer tripping is considered to be a reliable form of 

anti-islanding protection and doesn’t suffer from the stability issues associated with 

ROCOF or Vector Shift protection. If tele-protection is unavailable, ROCOF 

protection can be utilised with an operating time of 2 seconds.  

 

Portugal 

On observation of Portuguese rules and regulations, it was found that no specific 

requirements were made in terms of loss of mains protection.  

 

Spain 

In terms of unintentional islanding, BOE-219 states that “In the case of circuit breaker 

opening in the line, the plant connected to that line will not maintain the voltage in the 

grid”. The technical requirement goes on to state that “If it were possible for the plant 
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to maintain voltage (synchronous generator or self-excited asynchronous generator), a 

remote tripping system (Intertripping) will be installed so that the plant can be 

disconnected from its substation”. The technical requirement concludes with 

“Overhead lines with automatic re-closing will be equipped with the necessary 

devices to prevent the plant to reconnect until re-closing is firm”. At present, the 

utilisation of transfer tripping seems to be the most popular method of providing loss 

of mains functionality. 

 

United Kingdom 

Engineering Recommendation G59/1 states that the unplanned islanded operation of 

distributed generators is generally regarded as unsafe and undesirable. In order to 

prevent unplanned islanding, all distributed generators of capacity larger than 

150kVA must be fitted with loss of mains protection, which aims to detect when a 

generator is islanded and to disconnect it from the network. Although there are 

various types of relay that can be used to detect Loss of Mains, the most commonly 

used form of Loss of Mains protection is the rate of change of frequency relay, 

usually referred to as a ROCOF relay. Alternatively, vector shift or other types of 

relay can be also used.  

Changes to Engineering Recommendations G59/G75 

The changes to G59/G75 Protection Requirements are as follows: 

• Protection Settings for LV & HV Generation 

o Vector Shift Relay: K1 x 6° (K1 = 1, Low Impedance 

Network or K1 = 1.66 – 2 for High Impedance Network ) 

o ROCOF: K1 x 0.125Hz/z (K1 = 1, Low Impedance Network 

or K1 = 1.66 – 2 for High Impedance Network )  

o ROCOF: K2 x 0.125Hz/z (K2 = 1, Low Impedance Network 

or K1 = 1.6  for High Impedance Network ) 

• Medium Power Stations 

o Inter-tripping (preferred) 

3.2.5.3 Discussion 

The purpose of loss of mains protection at the interface of embedded generation sites 

is to detect the presence of an islanding condition and to immediately disconnect the 

generator from the islanded system. The most popular forms of loss of mains 
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protection are ROCOF and Vector Shift. Both ROCOF and Vector Shift are sensitive 

protection devices which are capable of detecting islanding events were the difference 

between load and generation are quiet low. Unfortunately it is this in built sensitivity 

which makes this form of protection susceptible to mal operations. In the case of 

Denmark, it was found that ROCOF protection was responsible for the incorrect 

disconnection of CHP plants on the Danish distribution system. Furthermore, the 

Danish deemed it necessary to broaden the ROCOF settings to ensure greater stability 

for the CHP plants on the system. In the case of Ireland, the ROCOF settings can be 

considered very sensitive in that the ROCOF setting is set to detect for 0.4Hz/s 

deviations for synchronous machines and 0.55Hz/s for wind farms. The Irish system 

lacks any major interconnectivity and is a small system in comparison with the UK 

and other European countries. This means that faults in Tralee can result in voltage 

dips as far away as Dublin and Donegal. In the past when there was little or no 

embedded generation on the system, the problems associated with loss of mains 

protection would not have been perceived as an issue. However, with instances were 

> 1000MW of wind generation has been generating onto the system and instances 

were over 30% of the power generated on the system has been wind, the sudden loss 

of this generation due to mal-operations of the loss of mains protection would be 

unacceptable. Table 3.38 outlines proposed changes to the loss of mains requirements. 

A setting of +/- 2.5Hz/s would desensitise the loss of mains protection. The proposed 

setting would improve system stability and a timer setting of 0.7 seconds would 

ensure the loss of mains protection is compatible with fault ride through requirements. 

The disadvantage of desensitising the loss of mains protection is that for islanding 

conditions were by a small difference between load and generation exists, the loss of 

mains protection may not operate or experience delayed operation.  

Interface Protection Monitoring 
Details 

Operating 
Settings (%) 

Trip Time Notes 

Loss of Mains   +/- 2.5Hz/s 700ms 
 

Rate of 
Change of 
Frequency 
(ROCOF) 

Table 3.38: Proposed Loss of Mains Protection Settings for Embedded Generator 
Installations  



51 

Intertripping 

In cases were a protection class communication channel exists between the utility and 

the embedded generator, intertripping should be utilised instead of ROCOF or Vector 

Shift protection. Intertripping is a secure method of implementing loss of mains 

protection. Intertripping works on the basis that when the utility circuit breaker opens, 

a trip command is sent to the embedded generators circuit breaker there by 

disconnecting the embedded generator from the system.  

 

Load Vs Generation Balance 

As previously stated, loss of mains protection is required to detect islanding events 

and to disconnect the generator in a rapid manner. However, a number of issues were 

raised in section 3.2.5.3 which shows that loss of mains protection is susceptible to 

spurious operation. One method of getting around the loss of mains requirement is 

network planning. For example, if the network planner was to ensure that when 

offering an embedded generator a connection agreement, the maximum conceivable 

output of the embedded generator never exceeded 50% of the minimum system load 

in the area in which the generator is connected, then the need for dedicated loss of 

mains protection is removed. In this case simple under/over voltage and under/over 

frequency protection would suffice.  
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Chapter 4 
 
 
Approach and Methodology 
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4 Approach and Methodology 

The approach and methodologies adopted for the system studies are outlined in this 

chapter. The chapter begins with an introduction to the simulation software used to 

study the impact of the interface protection requirements on embedded generation. 

This is followed by a brief discussion on the project structure and the characteristics 

of the test distribution system involved. Finally, an explanation of the methods used 

for the study will be presented. 

4.1 PSS/E Simulation Software 

PSS/E stands for Power System Simulator/Engineering and is developed by Siemens 

Power Technologies International (PTI). PSS/E is used primarily by utilities and 

consultancy firms to carry out power system studies. PSS/E has the ability to perform 

both phase vector and electromechanical simulations and has become the industrial 

standard within the power system industry. When an Independent Power Provider 

(IPP) applies for a grid connection in Ireland, the provision of a PSS/E model of the 

connecting generator is a mandatory requirement. The PSS/E model is necessary so 

that the TSO can quantify the response of the generator for long term and short term 

stability scenarios and ensure compliance with transmission/distribution code 

requirements. In the case of wind turbines, the wind turbine manufacturer provides a 

PSS/E model that is used by the utility for verification of the transmission and 

distribution grid codes. These models are not publically available and the vast 

majority of these models are bound by non-disclosure agreements. PSS/E contains a 

number of wind turbine models as standard which can be used to carry out dynamic 

studies.  

PSS/E contains a number of modules which can be used to investigate the 

performance of a transmission system, industrial plant or a generator for both steady-

state and dynamic conditions. PSS/E is capable of carrying out power flow studies, 

short circuit studies (balanced and unbalanced) as well as dynamic simulations.  

Power Flow 

The power flow module in PSS/E allows a user to carry out a power flow study where 

by the flow of active and reactive power in a network can be quantified. The software 

allows the user to choose the Gauss Siedel or Newton Rhapson method to solve the 

power flow for a given system.  
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Power flow studies are important because they allow for the planning and future 

expansion of existing/non-existing power systems. A power flow study can also be 

used to optimise the design of power systems. 

Dynamics 

The dynamic simulation program contains all the functionality required for transient, 

dynamic and long term stability analysis. The dynamic modelling module is used to 

predict the performance of a generator/power system/industrial plant under a wide 

range of conditions and to identify any problems which could result in system 

instability.  

4.1.1 PSS/E Wind Turbine Model 

In version 32 of the PSS/E software, five wind turbine models exist. The model used 

as part of this study is the type 3 DFIG model. The dynamic model for the type 3 

DFIG is constructed according to the recommendations made by GE Energy. When 

using this model for dynamic studies, a number of points must be considered which 

include:  

• The model is adequate for bulk power system studies and is valid for positive 

sequence phasor time-domain simulations. 

• The model assumes that the analysis is mainly focused on how the wind 

turbine-generator reacts to grid disturbances, such as faults on transmission 

system. 

• Manufacturer specific PSS/E wind turbine models should be used were 

available in order to evaluate the performance of that model. 

In order to construct a complete wind turbine model in PSS/E, four device models are 

required which are as follows: 

• Generator/Convertor Model (WT3G1) 

• Electrical Control Model (WT3E1) 

• Mechanical Control Module (WT3T1) 

• Pitch Control module (WT3P1) 

The interaction of these models is shown in Figure 4.1. 

It should be noted that the standard DFIG dynamic model in PSS/E does not fully 

represent the limitations of the DFIG wind turbine. There are a number of deficiencies in 

the model which include the lack of protection systems for the converter and rotor as well 

as the lack of under/over voltage protection and rotor current limits. Furthermore, the 



55 

upper and lower limitation in the voltage control loop will affect the voltage stability 

depending on how there configured. However, there is no direct relation between the 

maximum over load on the converters and the limitation in voltage control loop in the 

dynamic model. 

 

Figure 4.1: Wind Turbine Dynamic module 

4.1.2 Generator/Convertor Model (WT3G1) 

The generator/converter model (WT3G1) is the equivalent model of the generator and 

the field converter and provides the interface between the wind turbine and the 

network. The primary difference between the WT3G1 model and conventional 

generator/convertor models is that the WT3G1 contains no mechanical variables for 

the rotor of the machine. These variables are contained in the WT3T1 module. 

Furthermore, the flux dynamics have been neglected in order to achieve a faster 

response to the high level commands received from the electrical controls through the 

convertor.  

Essentially, the generator is modelled as a current controlled source as shown in 

Appendix A. This current controlled source delivers the required current that must be 

injected to the grid in response to the flux and active current commands which are 

produced by the converter control model [3].  

In the event of an over voltage condition, the amount of injected current to the grid is 

reduced to mitigate the over voltage condition. The two first-order low-pass filters 

represent the electronic control systems. Both filters have a time constant of 20 msec.  



56 

In reality, a phase locked loop (PLL) exists in the actual convertor controls of a wind 

turbine which is required to synchronise the generator rotor currents with the stator. 

However due to the particularly fast response of PLL dynamics relative to the 

generator/field converter time frame; it is not shown in the model.  

The excitation current input is responsible for adjusting the output voltage. The active 

current input is responsible for determining the amount of active power which should 

be delivered to the grid. X’’ represents the effective equivalent reactance of the 

generator. T represents the transfer function of the generator network. The vector 

diagram of the voltages and currents is shown in the wind generator model data sheet 

Appendix A. 

4.1.3 Electrical Control Model (WT3E1) 

The electrical control model is responsible for determining the amount of active and 

reactive power that must be delivered to the grid by the generator. The electrical 

convertor control model compares the measured active power (Pgen) with the ordered 

active power from the turbine model (Pcmd) and the measured reactive power at the 

wind turbine terminal (Qgen) with the ordered reactive power (Qcmd) from the 

reactive power control model. The electrical control model provides the required 

voltage and current commands and transmits these commands to the generator model 

by comparing the measured active and reactive power with the required amount of the 

active and reactive power.  

The necessary control procedure for active power is specified in the turbine model. 

The model for reactive power control can be observed in the electrical model data 

sheet in Appendix A. The WT3E1 comes with three different options for reactive 

power control. The three options can be accessed by changing the position of the 

varflg switch. In position 1, the voltage magnitude at a particular bus is compared 

with the voltage reference magnitude, and this voltage is regulated by sending a 

reactive command to all of the wind turbine generators. The reference voltage 

magnitude is specified during the load flow study. In position -1 the reactive power 

command comes from power factor regulation and in position 0 the reactive power 

command is set to follow a certain amount of reference magnitude for reactive power 

[27]. The reactive power command is compared with reactive power measured at the 

terminal of the wind turbine in another model that is shown in the electrical model 

data sheet in Appendix A. The output of the PI controller is the reference voltage. The 
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reference voltage compared with voltage magnitude at the terminal point of the wind 

turbine generator to make the voltage command (E”qcmd) for the generator model. 

The overall electrical model is presented in the electrical model data sheet in 

Appendix A. 

4.1.4 Dynamic Model of the Infinite Grid 

A thevenin equivalent can be used to represent a large power system. In order to 

represent the dynamic response of this simplified network, an appropriate dynamic 

model is required. For the purposes of the project, the infinite grid was represented 

using the following components available in PSS/E: 

• Generator Model (GENROU) 

• Excitation Control Model (SCRX) 

• Governor Model (TGOV1) 

The generator model (GENROU) represents a round rotor generator and was chosen 

to represent a power system dominated by conventional generation. The excitation 

model (SCRX) represents a simple excitation control system and was chosen to 

represent the response of a system again dominated by conventional generation. The 

governor model (TGOV1) represents a simple governor control system and was 

chosen to represent the response of a system dominated by conventional generation. 

Ideally speaking, a full dynamic model of a power system should be used to 

determine the dynamic response of a system to a disturbance. While EirGrid publish 

the PSS/E power flow model of the Irish system, the dynamic model is not publically 

available. The reason for this is that the dynamic model contains technical details on a 

generator which can be commercially sensitive. Therefore it was necessary to make a 

number of assumptions based on previous experience to determine an appropriate 

dynamic model for the Infinite grid.  

4.1.5 Voltage & Frequency Relay  

PSS/E contains a customisable voltage (VTGTPA) and frequency (FRQTPA) relay 

which was utilised for simulating the interface protection. The documentation for both 

the voltage and frequency relay is contained in Appendix J. 

4.2 Project Structure 

The thesis was developed in a number of phases. Phase 1 of the thesis, the research 

phase looked at the growth of embedded generation in Ireland, the technologies 
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involved and the interface protection requirements outlined by different utilities 

around Europe. Phase 2 of this thesis focused on the system study aspect of the 

project. Finally, phase 3 highlights the conclusions and recommendations reached on 

the outcome of the research and system studies phases. 

4.3 Test Distribution System 

For the purposes of this project, two main test systems were developed which are as 

follows: 

• Test Distribution System 1: Summer Night Valley 

• Test Distribution System 2: Winter Peak 

For each of the above test systems, three variations were derived for the 110kV fault 

simulations which were as follows: 

• 15% Embedded Generation Output 

• 50% Embedded Generation Output 

• 100% Embedded Generation Output 

For each of the test systems mentioned above, two variations were derived for the 

38kV fault simulations and loss of mains simulations which were as follows: 

• 15% Embedded Generation Output 

• 100% Embedded Generation Output 

In total eight test systems were created. The single line diagrams of the test systems 

involved can be found in Appendix C of this thesis.  

4.3.1 Test Distribution System – 110kV Equivalent Impedance 

For the purposes of this study, Tralee 110kV substation was chosen as the location to 

create the test system. Tralee was chosen on the basis that the Tralee network is 

located on the periphery of the Irish distribution system and contains significant 

amounts of embedded generation. The thevenin equivalent of the network behind 

Tralee 110kV system was obtained from the 2010 summer night valley and 2010 

winter peak PSS/E models of the Irish System located on the EirGrid website [44]. 

The technical information for T141 and T142 110/38kV transformers was also taken 

from the PSS/E models located on the EirGrid website. The thevenin impedance for 

the summer night valley scenario represents a lightly loaded system with minimum 

generation dispatched. The thevenin impedance for the winter peak scenario 
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represents a heavily loaded system with maximum generation dispatched. The 

thevenin impedances used in this thesis can be found in Appendix E. 

4.3.2 Test Distribution System – 38kV Network 

The 38kV network emanating from the main 110kV node is composed of three radial 

feeds with five 38kV substations and one wind farm of 30MW in size. The technical 

information for the 38kV distribution network can be found in Appendix E. It should 

be noted that the 38kV network is not representative of the Tralee 38kV network but 

rather a typically 38kV network. For the 38kV network, the technical information for 

the 38kV feeders and 38/10kV transformers is based on typical network components. 

4.3.3 Test Distribution System – 38kV Wind Farm 

The technical information for the wind farm can be found in Appendix D of this 

thesis. The wind turbine chosen was the DFIG. The DFIG was chosen as the DFIG 

wind turbine is the most popular wind turbine on the Irish power system. The wind 

farm is composed of fifteen 2MW turbines with an MEC of 30MW. The technical 

information for the wind turbine, transformers and internal 20kV feeders is based on 

data outlined in [19] as well as typical wind farm data. The wind farm parameters 

(dynamic and steady state) were taken from [19]. Three wind farm dispatches were 

chosen for the 110kV fault simulations which were 15%, 50% and 100% output. Two 

wind farm dispatches were chosen for the 38kV fault simulation and the loss of mains 

simulation which were 15% and 100% output. It should be noted that 15% and 100% 

were chosen to represent minimum and maximum output of the wind farm. While 

10% was originally chosen to represent minimum wind farm output, the use of 10% 

led to problems especially with the pitch control module (WT3P1) and the 

Generator/Convertor Model (WT3G1) in PSS/E 

4.3.4 Test Distribution System – System Loading 

Two sets of system loading were chosen. For the summer night valley scenario, a 

system loading was chosen to represent a lightly loaded system. For the winter peak 

scenario, a system loading was chosen to represent a heavily loaded system. The 

system dispatches can be observed in Appendix E of this thesis. It should be noted 

that both the summer and winter dispatches were chosen on the basis that islanding 

events could be simulated. 
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4.3.5 Protection Relays 

For the purpose of this thesis, the voltage, frequency and loss of mains protection are 

assumed to have the following parameters: 

Fault Location Relay Pickup Time Relay Drop Out Time Reset 
Ratio 

Voltage Protection  50ms 50ms 1.05 
Frequency Protection 100ms 100ms 1.05 
ROCOF Protection 200ms - 0.6 

Table 4.1: Relay Pickup Time 

The above parameters are taken from the Siemens 7RW600 V3.0 manual [32].  

4.3.6 Dynamic Model Setup PSS/E 

On construction of the power flow model in PSS/E, a number steps must be taken 

before the model can be utilised for dynamic simulation. The steps which must be 

taken are as follows: 

• Ensure power flow converges with minimum MW/MVAr mismatch 

• Convert Loads and Generators 

• Order Network for Matrix Operations (ORDR) 

• Factorise Admittance Matrix (FACT) 

• Solution for Switching Studies (TYSL) 

On completion of the above steps, the power flow model can then be used for 

dynamic simulations. 

4.4 Conditions for Analysis 

In chapter 2 of this thesis, the different embedded generator technologies were 

discussed. It was found that synchronous generators produced significant amounts of 

fault current and provided inertia for the power system. For power system protection 

this has obvious advantages in terms of fault detection and discrimination. However, 

for induction generator based devices and full convertor connected devices, short 

circuit current contribution and inertia are of a major concern and can pose problems 

for power system protection as well as power system stability. 

Chapter 3 outlined the interface protection requirements for Ireland and compared 

Irish requirements with international requirements. On the basis of this comparison, 

modifications to Irish interface requirements were proposed. The test system 

developed was used to test existing interface protection requirement and the proposed 
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modifications to the interface protection requirements and to determine the 

advantages and disadvantages with each set of requirements.  

4.5 Methodology 

The system analysis conducted through the PSS/E software will be composed of a 

number of scenarios. For the purposes of this project, two system conditions will be 

considered which are as follows: 

• A System Fault 

• A Loss of mains Event 

Each of the above conditions was tested on the two main test systems which were 

developed as part of this thesis: 

• Test Distribution System 1: Summer Night Valley 

• Test Distribution System 2: Winter Peak 

Furthermore, each of the above events was tested for different wind farm outputs.  

• 15% Embedded Generation Output 

• 50% Embedded Generation Output 

• 100% Embedded Generation Output 

4.5.1 Fault Analysis 

Faults on a power system can be a minor or major event depending on fault type, 

duration and location. Power system faults can be either transient in nature or 

permanent. A power system fault can result in voltage dips on the system, loss of load 

or generation and can result in system instability if not cleared quickly enough. For 

the purposes of this thesis, the response of the wind farm was tested for Line to Line, 

Three Phase and Single Line to Ground faults on the 110kV busbar. Table 4.2 outlines 

the faults applied, fault clearance time and wind farm output tested on both of the 

distribution test systems.  

Fault Location Fault Type Fault 
Clearance 

Time 
(Primary) 

Wind Farm 
Output 

110kV Busbar  Line to Line 0.1 15/50/100% 
 Single Line to Ground 0.1 15/50/100% 

Table 4.2: 110kV System Faults 
 

The response of the wind farm was tested for Line to Line and three phase faults on 

the 38kV system. Single Line to Ground faults were not tested on the 38kV system as 
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the 38kV protection is not required to trip for Single line to Ground faults. The reason 

for this is that the 38kV system is earthed via a Peterson Coil. As such in the event of 

a Single Line to Ground fault, the Peterson Coil will theoretically reduce the fault 

current to zero amps at the fault site. Table 4.3 outlines the faults applied, fault 

clearance time and wind farm output tested on both of the distribution test systems. 

Fault Location Fault Type Fault Location Fault 
Clearance 

Time  

Wind Farm 
Output 

Substation B  Line to Line 38kV Busbar 0.5 15/100% 
 Three Phase 38kV Busbar 0.5 15/100% 
     
Substation C  Line to Line 38kV Busbar 0.5 15/100% 
 Three Phase 38kV Busbar 0.5 15/100% 
     
Substation D  Line to Line 38kV Busbar 0.5 15/100% 
 Three Phase 38kV Busbar 0.5 15/100% 
     
Substation E  Line to Line 38kV Busbar 0.5 15/100% 
 Three Phase 38kV Busbar 0.5 15/100% 
     
Substation F  Line to Line 38kV Busbar 0.5 15/100% 
 Three Phase 38kV Busbar 0.5 15/100% 

Table 4.3: 38kV System Faults 
 

4.5.2 Loss of Mains Analysis 

In Ireland, islanding is not allowed. In the event of islanding, all embedded generation 

must be disconnected from the islanded system. In order to detect islanding events, 

the embedded generator requires a protection device capable of detecting islanding.  

For the purposes of this thesis, the response of the wind farm will be tested for 

islanding events. The following islanding scenarios were tested: 

• Loss of 110/38kV substation  

• Loss of 110/38kV substation + 38kV feeder (Substation B –C) 

• Loss of 110/38kV substation + 38kV feeder (110/38KV Substation – B) 

• Loss of 110/38kV substation + 38kV feeder (110/38KV Substation – D) 

• Loss of 110/38kV substation + 38kV feeder (110/38KV Substation – F) 

• Loss of 110/38kV substation + 38kV feeder (Substation D – E) 

• Loss of 110/38kV substation + 38kV feeder (Substation F – Wind farm) 

The aforementioned scenarios were tested on the two main test systems (summer 

night valley & winter peak) for 15%/50%/100% wind farm output.  
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Chapter 5 
 
 
Results and Discussion 
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5 Results and Discussion 
This chapter will present the results of the simulations performed using PSS/E based 

on the project structure outlined in Chapter 4. A brief description of the steps taken to 

perform the studies will be included along with graphs and tabulations displaying the 

effects of faults and loss of mains events on the performance of the embedded 

generator. Furthermore the impact of the interface protection requirements will also 

be assessed on the embedded generator and the advantages/disadvantages associated 

with the proposed embedded generator interface requirements explored. However, the 

chapter will first list the assumptions made during the implementation of each 

scenario. 

5.1 Assumptions 

As part of the system studies, a number of assumptions were made. The following 

assumptions will apply for all of the scenarios outlined in this thesis: 

• Test System 1 and 2 are assumed to be balanced 

• The system loads are assumed to be of constant MW and MVAR values 

• The Base MVA is defined as 100MVA 

• The wind turbines are assumed to have a 0.95 power factor 

• The 110kV busbar will operate at 1.07pu or 117.7kV 

• The Single Line to Ground fault is defined with a fault impedance of 0Ω 

(Worse Case Scenario) 

• Wind farm Outputs 

o 10% = 15 x Wind turbines producing 0.2MW each 

o 15% = 15 x Wind turbines producing 0.3MW each 

o 50% = 15 x Wind turbines producing 1.0MW each 

o 100% = 15 x Wind turbines producing 2.0MW each 

• The governor ramp rate is assumed to be 20MW per second 

• The dynamic response of the power system is assumed (See Appendix E) 

• The dynamic response of the wind farm as per data in appendix D 

• Protection systems inside the wind farm have not been modelled 

• A fault clearance time of 500ms (Relay + Breaker Operating Time) for 38kV 

faults 
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• A fault clearance time of 100ms (Relay + Breaker Operating Time) for 110kV 

faults 

• The Statcom is assumed to operate within a +10/-5 MVARs characteristic with 

the ability to vary the output of the Statcom in 1MVAR steps 

5.2 Simulation of Scenarios 

This section of the thesis outlines the scenarios simulated in PSS/E and the steps take 

to simulate each of the scenarios outlined below.  

5.2.1 110kV Fault Simulation 

For the 110kV fault simulation both a line to line fault and a single line to ground 

fault were simulated on the 110kV busbar at the 110/38kV substation (Node 101) in 

PSS/E. Faults were plotted on the 110kV busbar for three different wind farm 

dispatches (15/50/100%) and two different system loadings (Summer Night Valley 

(SNV) and Winter Peak (WP)). The 110kV fault simulation was carried out in PSS/E 

using the following steps: 

• Run the system for 1 second in steady state operation 

• Apply fault on Node 101 for 100ms 

• Clear fault after 100ms 

• Observe system recovery over a 5 seconds window 

5.2.2 38kV Fault Simulation 

For the 38kV fault simulation both a line to line fault and a three phase fault were 

simulated on the following 38kV busbars: 

• Substation B 38kV busbar (Node 601) 

• Substation C 38kV busbar (Node 901) 

• Substation D 38kV busbar (Node 501) 

• Substation E 38kV busbar (Node 801) 

• Substation F 38kV busbar (Node 401) 

Single line to ground faults were not plotted as the 38kV system is earthed via a 

Peterson Coil and as such, protection installed on the 38kV system is not required to 

trip for single line to ground faults. However, the protection must indicate the 

presence of single line to ground faults. 
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Faults were plotted on each of the 38kV busbar above for two different wind farm 

dispatches (15/100%) and two different system loadings (SNV and WP). The 38kV 

fault simulation was carried out in PSS/E using the following steps: 

• Run the system for 1 second in steady state operation 

• Apply fault on 38kV busbar for 500ms 

• Clear fault after 500ms 

• Trip feeder on which the fault is located (simulate loss of load after fault 

event) 

• Observe system recovery over a 5 seconds window 

5.2.3 Loss of Mains Events 

The following loss of mains events were simulated in PSS/E.  

• Loss of 110/38kV substation 

• Loss of 110/38kV substation + 38kV Feeder (B-C) 

• Loss of 110/38kV Substation + 38kV Feeder (38kV Node – B) 

• Loss of 110/38kV Substation + 38kV Feeder (38kV Node – D) 

• Loss of 110/38kV substation + 38kV feeder (38kV Node – F) 

• Loss of 110/38kV substation + 38kV feeder (D – E) 

• Loss of 110/38kV substation + 38kV feeder (F – Wind farm) 

The loss of mains events were simulated for two different wind farm dispatches 

(15/100%) and two different system loadings (SNV and WP). The loss of mains 

simulation was carried out in PSS/E using the following steps: 

• Run the system for 1 second in steady state operation 

• Trip the selected network 

• Observe system response over a 5 seconds window 

5.3 Power Flow Results 

Power flow studies were conducted on the following eight test networks: 

• Test Distribution System 1: Summer Night Valley - 10% EG output 

• Test Distribution System 1: Summer Night Valley - 15% EG output 

• Test Distribution System 1: Summer Night Valley - 50%  EG output 

• Test Distribution System 1: Summer Night Valley - 100% EG output 

• Test Distribution System 2: Winter Peak - 10% EG output 

• Test Distribution System 2: Winter Peak - 15% EG output 
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• Test Distribution System 2: Winter Peak - 50% EG output 

• Test Distribution System 2: Winter Peak - 100% EG output 

Power flow studies were conducted to obtain the initial conditions for dynamic 

simulation. The power flow studies highlight possible network issues and provide the 

bus voltage magnitudes, the bus voltage angles as well as the active and reactive 

power flow in the test systems. The power flow results obtained for the eight test 

networks are shown in Appendix F of this thesis. On observation of the power flow 

results, it can be observed that all bus voltages are within the voltage requirements 

outlined in the distribution code. Furthermore it can be observed that all 38kV busbars 

voltage magnitudes are within a +/- 6% tolerance for both summer night valley and 

winter peak scenarios. It was also observed that no transformer or distribution feeder 

is over loaded. Finally, the MW/MVAR mismatch between load and generation is 

within tolerance so as not to cause issues with the dynamic simulations.  

5.4 Fault Simulation Results – 110kV Faults 

5.4.1 Summer Night Valley Results 

Tables 5.1 and 5.2 outline the results of the 110kV fault simulation. The voltage 

outputs from PSSE can be found in appendix I of this thesis. It was observed that the 

voltage recovered quickly after the clearance of both the single line to ground and line 

to line faults. It was also observed that the wind farm interface protection did not 

operate. 

Fault Location Fault Type Fault 
Clearance 

Time  

Wind Farm 
Output 

Wind farm 
Trip 

110kV Busbar  Line to Line 0.1 15% NO 
  0.1 50% NO 
  0.1 100% NO 

Table 5.1: 110kV System Faults - Line to Line Fault – SNV 
 

Fault Location Fault Type Fault 
Clearance 

Time  

Wind Farm 
Output 

Wind farm 
Trip 

110kV Busbar  Single Line to Ground 0.1 15% NO 
  0.1 50% NO 
  0.1 100% NO 

Table 5.2: 110kV System Faults – Single Line to Ground Fault – SNV 
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5.4.2 Winter Peak Results 

Tables 5.3 and 5.4 outline the results of the 110kV fault simulation. The voltage 

outputs from PSS/E can be found in appendix I of this thesis. It was observed that the 

voltage recovered quickly after the clearance of both the single line to ground and line 

to line faults. It was also observed that the wind farm interface protection did not 

operate.  

Fault Location Fault Type Fault 
Clearance 

Time  

Wind Farm 
Output 

Wind Farm 
Trip 

110kV Busbar  Line to Line 0.1 15% NO 
  0.1 50% NO 
  0.1 100% NO 

Table 5.3: 110kV System Faults - Line to Line Fault - WP 
 

Fault Location Fault Type Fault 
Clearance 

Time  

Wind Farm 
Output 

Wind Farm 
Trip 

110kV Busbar  Single Line to Ground 0.1 15% NO 
  0.1 50% NO 
  0.1 100% NO 

Table 5.4: 110kV System Faults – Single Line to Ground Fault – WP 
 

5.5 Fault Simulation Results – 38kV Faults 

5.5.1 Summer Night Valley Results 

Table 5.5 and 5.6 outline the results of the 38kV fault simulation. The voltage outputs 

from PSS/E can be found in appendix I of this thesis. It was observed that while the 

existing interface protection requirements and the proposed interface protection 

requirements had a similar performance, the proposed interface settings allowed the 

wind farm to remain online for six cases were the wind farm should not have been 

tripped. In the case of the summer night valley scenarios, the proposed interface 

protection settings improved performance by 30% compared to the existing settings. 
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Fault Location Fault Type Fault 
Clearance 

Time  

Wind Farm 
Output 

Wind Farm 
Trip 

(Existing 
Interface 

Protection) 

Wind Farm 
Trip 

(Proposed 
Interface 

Protection) 
Substation B  Line to Line 0.5 15% YES NO 
38kV Busbar Three Phase 0.5 15% YES NO 
      
Substation C  Line to Line 0.5 15% NO NO 
38kV Busbar Three Phase 0.5 15% YES NO 
      
Substation D  Line to Line 0.5 15% NO NO 
38kV Busbar Three Phase 0.5 15% YES NO 
      
Substation E  Line to Line 0.5 15% NO NO 
38kV Busbar Three Phase 0.5 15% YES NO 
      
Substation F  Line to Line 0.5 15% YES YES 
38kV Busbar Three Phase 0.5 15% YES YES 

Table 5.5: 38kV System Faults – 15% Output - SNV 
 

Fault Location Fault Type Fault 
Clearance 

Time  

Wind Farm 
Output 

Wind Farm 
Trip 

(Existing 
Interface 

Protection) 

Wind Farm 
Trip 

(Proposed 
Interface 

Protection) 
Substation B  Line to Line 0.5 100% NO NO 
38kV Busbar Three Phase 0.5 100% YES YES 
      
Substation C  Line to Line 0.5 100% NO NO 
38kV Busbar Three Phase 0.5 100% NO NO 
      
Substation D  Line to Line 0.5 100% NO NO 
38kV Busbar Three Phase 0.5 100% YES NO 
      
Substation E  Line to Line 0.5 100% NO NO 
38kV Busbar Three Phase 0.5 100% NO NO 
      
Substation F  Line to Line 0.5 100% YES YES 
38kV Busbar Three Phase 0.5 100% YES YES 

Table 5.6: 38kV System Faults - 100% Output - SNV 
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5.5.2 Winter Peak Results 

Table 5.7 and 5.8 outline the results of the 38kV fault simulation. The voltage outputs 

from PSS/E can be found in appendix I of this thesis. It was observed that while the 

existing interface protection requirements and the proposed interface protection 

requirements had a similar performance, the proposed interface settings allowed the 

wind farm to remain online for four cases were the wind farm should not have been 

tripped. In the case of the winter peak scenarios, the proposed interface protection 

settings improved performance by 20% compared to the existing settings. 

 

Fault Location Fault Type Fault 
Clearance 

Time  

Wind Farm 
Output 

Wind Farm 
Trip 

(Existing 
Interface 

Protection) 

Wind Farm 
Trip 

(Proposed 
Interface 

Protection) 
Substation B  Line to Line 0.5 15% NO NO 
38kV Busbar Three Phase 0.5 15% NO NO 
      
Substation C  Line to Line 0.5 15% NO NO 
38kV Busbar Three Phase 0.5 15% NO NO 
      
Substation D  Line to Line 0.5 15% NO NO 
38kV Busbar Three Phase 0.5 15% YES NO 
      
Substation E  Line to Line 0.5 15% NO NO 
38kV Busbar Three Phase 0.5 15% NO NO 
      
Substation F  Line to Line 0.5 15% YES YES 
38kV Busbar Three Phase 0.5 15% YES YES 

Table 5.7: 38kV System Faults – 15% Output - WP



71 

Fault Location Fault Type Fault 
Clearance 

Time  

Wind Farm 
Output 

Wind Farm 
Trip 

(Existing 
Interface 

Protection) 

Wind Farm 
Trip 

(Proposed 
Interface 

Protection) 
Substation B  Line to Line 0.5 100% YES NO 
38kV Busbar Three Phase 0.5 100% YES NO 
      
Substation C  Line to Line 0.5 100% NO NO 
38kV Busbar Three Phase 0.5 100% NO NO 
      
Substation D  Line to Line 0.5 100% YES NO 
38kV Busbar Three Phase 0.5 100% YES YES 
      
Substation E  Line to Line 0.5 100% NO NO 
38kV Busbar Three Phase 0.5 100% NO NO 
      
Substation F  Line to Line 0.5 100% YES YES 
38kV Busbar Three Phase 0.5 100% YES YES 

Table 5.8: 38kV System Faults - 100% Output - WP 
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5.6 Loss of Mains Analysis 

5.6.1 Loss of 110/38kV Substation  

Summer Night Valley Results 

Tables 5.9 and 5.10 below outline the results obtained from PSS/E for loss of the 

main 110/38kV substation. For the 15% wind farm output it was observed that both 

the existing interface protection requirements and the proposed interface protection 

requirements detected the islanding event and tripped the wind farm with similar 

performance. 

For the 100% wind farm output it was observed that both the existing interface 

protection requirements and the proposed interface protection requirements detected 

the islanding event and tripped the wind farm. However, in the case of the proposed 

interface protection requirements, only the under voltage protection operated. It 

should also be noted that the proposed settings would be 500ms slower tripping the 

wind farm compared to existing interface protection. 

Interface Protection Wind Farm 
Trip 

(Existing 
Interface 

Protection) 

Wind Farm 
Trip 

(Proposed 
Interface 

Protection) 

Operating 
Time 

(Existing 
Interface 

Protection) 

Operating 
Time 

 (Proposed 
Interface 

Protection) 
Under Voltage YES YES 0.5 Seconds 1 Second 
Over Voltage NO NO - - 

     
Under Frequency YES YES 0.5 Seconds 0.5 Seconds 
Over Frequency NO NO - - 
     
ROCOF YES YES 0.5 Seconds 0.7 Seconds 

Table 5.9: Loss of 110kV Substation– 15% Output - SNV 
 

Interface Protection Wind Farm 
Trip 

(Existing 
Interface 

Protection) 

Wind Farm 
Trip 

(Proposed 
Interface 

Protection) 

Operating 
Time 

(Existing 
Interface 

Protection) 

Operating 
Time 

 (Proposed 
Interface 

Protection) 
Under Voltage YES YES 0.5 Seconds 1 Second 
Over Voltage NO NO - - 

     
Under Frequency NO NO - - 
Over Frequency Yes NO 0.5 Seconds - 
     
ROCOF YES NO 0.5 Seconds - 

Table 5.10: Loss of 110kV Substation– 100% Output - SNV 
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Winter Peak Results 

Tables 5.11 and 5.12 below outline the results obtained from PSS/E for loss of the 

main 110/38kV substation. For the 15% wind farm output it was observed that both 

the existing interface protection requirements and the proposed interface protection 

requirements detected the islanding event and tripped the wind farm with similar 

performance. 

For the 100% wind farm output it was observed that both the existing interface 

protection requirements and the proposed interface protection requirements detected 

the islanding event and tripped the wind farm with similar performance. 

Interface Protection Wind Farm 
Trip 

(Existing 
Interface 

Protection) 

Wind Farm 
Trip 

(Proposed 
Interface 

Protection) 

Operating 
Time 

(Existing 
Interface 

Protection) 

Operating 
Time 

 (Proposed 
Interface 

Protection) 
Under Voltage YES YES 0.5 Seconds 1 Second 
Over Voltage NO NO - - 

     
Under Frequency YES YES 0.5 Seconds 0.5 Seconds 
Over Frequency NO NO - - 
     
ROCOF YES YES 0.5 Seconds 0.7 Seconds 

Table 5.11: Loss of 110kV Substation– 15% Output - WP 
 

Interface Protection Wind Farm 
Trip 

(Existing 
Interface 

Protection) 

Wind Farm 
Trip 

(Proposed 
Interface 

Protection) 

Operating 
Time 

(Existing 
Interface 

Protection) 

Operating 
Time 

 (Proposed 
Interface 

Protection) 
Under Voltage YES YES 0.5 Seconds 1 Second 
Over Voltage NO NO - - 

     
Under Frequency YES YES 0.5 Seconds 0.5 Seconds 
Over Frequency NO NO - - 
     
ROCOF YES YES 0.5 Seconds 0.7 Seconds 

Table 5.12: Loss of 110kV Substation– 100% Output - WP 
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5.6.2 Loss of 110/38kV Substation + 38kV Feeder (B – C) 

Summer Night Valley Results 

Tables 5.13 and 5.14 below outline the results obtained from PSS/E for loss of the 

main 110/38kV substation and loss of the 38kV feeder between substation B and C. 

For the 15% wind farm output it was observed that both the existing interface 

protection requirements and the proposed interface protection requirements detected 

the islanding event and tripped the wind farm with similar performance. 

For the 100% wind farm output it was observed that both the existing interface 

protection requirements and the proposed interface protection requirements detected 

the islanding event and tripped the wind farm. However, in the case of the proposed 

interface protection requirements, only the under voltage protection operated. It 

should also be noted that the proposed settings would be 500ms slower tripping the 

wind farm compared to existing interface protection. 

Interface Protection Wind Farm 
Trip 

(Existing 
Interface 

Protection) 

Wind Farm 
Trip 

(Proposed 
Interface 

Protection) 

Operating 
Time 

(Existing 
Interface 

Protection) 

Operating 
Time 

 (Proposed 
Interface 

Protection) 
Under Voltage YES YES 0.5 Seconds 1 Second 
Over Voltage NO NO - - 

     
Under Frequency YES YES 0.5 Seconds 0.5 Seconds 
Over Frequency NO NO - - 
     
ROCOF YES YES 0.5 Seconds 0.7 Seconds 

Table 5.13: Loss of 110kV Substation + Feeder B - C – 15% Output - SNV 
 

Interface Protection Wind Farm 
Trip 

(Existing 
Interface 

Protection) 

Wind Farm 
Trip 

(Proposed 
Interface 

Protection) 

Operating 
Time 

(Existing 
Interface 

Protection) 

Operating 
Time 

 (Proposed 
Interface 

Protection) 
Under Voltage YES YES 0.5 Seconds 1 Second 
Over Voltage NO NO - - 

     
Under Frequency YES NO 0.5 Seconds - 
Over Frequency NO NO - - 
     
ROCOF YES NO 0.5 Seconds - 

Table 5.14: Loss of 110kV Substation + Feeder B - C – 100% Output - SNV 
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Winter Peak Results 

Tables 5.15 and 5.16 below outline the results obtained from PSS/E for loss of the 

main 110/38kV substation and loss of the 38kV feeder between substation B and C. 

For the 15% wind farm output it was observed that both the existing interface 

protection requirements and the proposed interface protection requirements detected 

the islanding event and tripped the wind farm with similar performance. 

For the 100% wind farm output it was observed that both the existing interface 

protection requirements and the proposed interface protection requirements detected 

the islanding event and tripped the wind farm. However, in the case of the proposed 

interface protection requirements, only the under voltage and under frequency 

protection operated.  

Interface Protection Wind Farm 
Trip 

(Existing 
Interface 

Protection) 

Wind Farm 
Trip 

(Proposed 
Interface 

Protection) 

Operating 
Time 

(Existing 
Interface 

Protection) 

Operating 
Time 

 (Proposed 
Interface 

Protection) 
Under Voltage YES YES 0.5 Seconds 1 Second 
Over Voltage NO NO - - 

     
Under Frequency YES YES 0.5 Seconds 0.5 Seconds 
Over Frequency NO NO - - 
     
ROCOF YES YES 0.5 Seconds 0.7 Seconds 

Table 5.15: Loss of 110kV Substation + Feeder B - C – 15% Output - WP 
 

Interface Protection Wind Farm 
Trip 

(Existing 
Interface 

Protection) 

Wind Farm 
Trip 

(Proposed 
Interface 

Protection) 

Operating 
Time 

(Existing 
Interface 

Protection) 

Operating 
Time 

 (Proposed 
Interface 

Protection) 
Under Voltage YES YES 0.5 Seconds 1 Second 
Over Voltage NO NO - - 

     
Under Frequency YES YES 0.5 Seconds 0.5 Seconds 
Over Frequency NO NO - - 
     
ROCOF YES NO 0.5 Seconds - 

Table 5.16: Loss of 110kV Substation + Feeder B - C – 100% Output - WP 
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5.6.3 Loss of 110/38kV Substation + 38kV Feeder (38kV Node – B) 

Summer Night Valley Results 

Tables 5.17 and 5.18 below outline the results obtained from PSS/E for loss of the 

main 110/38kV substation and loss of the 38kV feeder between the 110kV substation 

and substation B. For the 15% wind farm output it was observed that both the existing 

interface protection requirements and the proposed interface protection requirements 

detected the islanding event and tripped the wind farm with similar performance. 

For the 100% wind farm output it was observed that both the existing interface 

protection requirements and the proposed interface protection requirements detected 

the islanding event and tripped the wind farm. However, in the case of the proposed 

interface protection requirements, only the under voltage protection operated with a 

tripping time 2.5 seconds slower than the existing interface protection clearance time.  

Interface Protection Wind Farm 
Trip 

(Existing 
Interface 

Protection) 

Wind Farm 
Trip 

(Proposed 
Interface 

Protection) 

Operating 
Time 

(Existing 
Interface 

Protection) 

Operating 
Time 

 (Proposed 
Interface 

Protection) 
Under Voltage YES YES 0.5 Seconds 1 Second 
Over Voltage NO NO - - 

     
Under Frequency NO NO - - 
Over Frequency NO NO - - 
     
ROCOF YES YES 0.5 Seconds 0.7 Seconds 

Table 5.17: Loss of 110kV Substation + Feeder B – 15% Output - SNV 
 

Interface Protection Wind Farm 
Trip 

(Existing 
Interface 

Protection) 

Wind Farm 
Trip 

(Proposed 
Interface 

Protection) 

Operating 
Time 

(Existing 
Interface 

Protection) 

Operating 
Time 

 (Proposed 
Interface 

Protection) 
Under Voltage NO YES - 3 Seconds 
Over Voltage NO NO - - 

     
Under Frequency NO NO - - 
Over Frequency YES NO 0.5 Seconds - 
     
ROCOF YES NO 0.5 Seconds - 

Table 5.18: Loss of 110kV Substation + Feeder B – 100% Output - SNV 
 



77 

Winter Peak Results 

Tables 5.19 and 5.20 below outline the results obtained from PSS/E for loss of the 

main 110/38kV substation and loss of the 38kV feeder between the 110kV substation 

and substation B. For the 15% wind farm output it was observed that both the existing 

interface protection requirements and the proposed interface protection requirements 

detected the islanding event and tripped the wind farm. 

For the 100% wind farm output it was observed that both the existing interface 

protection requirements and the proposed interface protection requirements detected 

the islanding event and tripped the wind farm with similar performance. 

Interface Protection Wind Farm 
Trip 

(Existing 
Interface 

Protection) 

Wind Farm 
Trip 

(Proposed 
Interface 

Protection) 

Operating 
Time 

(Existing 
Interface 

Protection) 

Operating 
Time 

 (Proposed 
Interface 

Protection) 
Under Voltage YES YES 0.5 Seconds 1 Second 
Over Voltage NO NO - - 

     
Under Frequency YES YES 0.5 Seconds 0.5 Seconds 
Over Frequency NO NO - - 
     
ROCOF YES YES 0.5 Seconds 0.7 Seconds 

Table 5.19: Loss of 110kV Substation + Feeder B – 15% Output - WP 
 

Interface Protection Wind Farm 
Trip 

(Existing 
Interface 

Protection) 

Wind Farm 
Trip 

(Proposed 
Interface 

Protection) 

Operating 
Time 

(Existing 
Interface 

Protection) 

Operating 
Time 

 (Proposed 
Interface 

Protection) 
Under Voltage YES YES 0.5 Seconds 1 Second 
Over Voltage NO NO - - 

     
Under Frequency YES YES 0.5 Seconds 0.5 Seconds 
Over Frequency NO NO - - 
     
ROCOF YES YES 0.5 Seconds 0.7 Seconds 

Table 5.20: Loss of 110kV Substation + Feeder B – 100% Output - WP 
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5.6.4 Loss of 110/38kV Substation + 38kV Feeder (38kV Node – D) 

Summer Night Valley Results 

Tables 5.21 and 5.22 below outline the results obtained from PSS/E for loss of the 

main 110/38kV substation and loss of the 38kV feeder between the 110kV substation 

and substation D. For the 15% wind farm output it was observed that both the existing 

interface protection requirements and the proposed interface protection requirements 

detected the islanding event and tripped the wind farm. However, it was observed that 

the undervoltage protection was 500ms quicker compared to existing requirements. 

For the 100% wind farm output it was observed that both the existing interface 

protection requirements and the proposed interface protection requirements detected 

the islanding event and tripped the wind farm. However, the proposed interface 

protection settings were 19.5 seconds slower clearing the fault. 

Interface Protection Wind Farm 
Trip 

(Existing 
Interface 

Protection) 

Wind Farm 
Trip 

(Proposed 
Interface 

Protection) 

Operating 
Time 

(Existing 
Interface 

Protection) 

Operating 
Time 

 (Proposed 
Interface 

Protection) 
Under Voltage YES YES 3.5 Seconds 3 Seconds 
Over Voltage NO NO - - 

     
Under Frequency NO NO - - 
Over Frequency NO NO - - 
     
ROCOF YES YES 0.5 Seconds 0.7 Seconds 

Table 5.21: Loss of 110kV Substation + Feeder D – 15% Output - SNV 
 

Interface Protection Wind Farm 
Trip 

(Existing 
Interface 

Protection) 

Wind Farm 
Trip 

(Proposed 
Interface 

Protection) 

Operating 
Time 

(Existing 
Interface 

Protection) 

Operating 
Time 

 (Proposed 
Interface 

Protection) 
Under Voltage NO NO - - 
Over Voltage NO NO - - 

     
Under Frequency NO NO - - 
Over Frequency YES YES 0.5 Seconds 20 Seconds 
     
ROCOF YES NO 0.5 Seconds - 

Table 5.22: Loss of 110kV Substation + Feeder D – 100% Output - SNV 
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Winter Peak Results 

Tables 5.23 and 5.24 below outline the results obtained from PSS/E for loss of the 

main 110/38kV substation and loss of the 38kV feeder between the 110kV substation 

and substation D. For the 15% wind farm output it was observed that both the existing 

interface protection requirements and the proposed interface protection requirements 

detected the islanding event and tripped the wind farm with similar performance. 

For the 100% wind farm output it was observed that both the existing interface 

protection requirements and the proposed interface protection requirements detected 

the islanding event and tripped the wind farm. However, in the case of the proposed 

interface protection requirements, only the under voltage protection operated. It 

should also be noted that the proposed settings would be 500ms slower tripping the 

wind farm compared to existing interface protection. 

Interface Protection Wind Farm 
Trip 

(Existing 
Interface 

Protection) 

Wind Farm 
Trip 

(Proposed 
Interface 

Protection) 

Operating 
Time 

(Existing 
Interface 

Protection) 

Operating 
Time 

 (Proposed 
Interface 

Protection) 
Under Voltage YES YES 0.5 Seconds 1 Second 
Over Voltage NO NO - - 

     
Under Frequency YES YES 0.5 Seconds 0.5 Seconds 
Over Frequency NO NO - - 
     
ROCOF YES YES 0.5 Seconds 0.7 Seconds 

Table 5.23: Loss of 110kV Substation + Feeder D – 15% Output - WP 
 

Interface Protection Wind Farm 
Trip 

(Existing 
Interface 

Protection) 

Wind Farm 
Trip 

(Proposed 
Interface 

Protection) 

Operating 
Time 

(Existing 
Interface 

Protection) 

Operating 
Time 

 (Proposed 
Interface 

Protection) 
Under Voltage YES YES 0.5 Seconds 1 Second 
Over Voltage NO NO - - 

     
Under Frequency NO NO - - 
Over Frequency YES NO 0.5 Seconds - 
     
ROCOF YES NO 0.5 Seconds - 

Table 5.24: Loss of 110kV Substation + Feeder D – 100% Output - WP 
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5.6.5 Loss of 110/38kV substation + 38kV feeder (38kV Node – F) 

Summer Night Valley Results 

Tables 5.25 and 5.26 below outline the results obtained from PSS/E for loss of the 

main 110/38kV substation and loss of the 38kV feeder between the 110kV substation 

and substation F. For the 15% wind farm output it was observed that both the existing 

interface protection requirements and the proposed interface protection requirements 

detected the islanding event and tripped the wind farm. However, the under voltage 

protection only operated for the proposed interface protection settings.  

For the 100% wind farm output it was observed that both the existing interface 

protection requirements and the proposed interface protection requirements detected 

the islanding event and tripped the wind farm with similar performance. 

Interface Protection Wind Farm 
Trip 

(Existing 
Interface 

Protection) 

Wind Farm 
Trip 

(Proposed 
Interface 

Protection) 

Operating 
Time 

(Existing 
Interface 

Protection) 

Operating 
Time 

 (Proposed 
Interface 

Protection) 
Under Voltage NO YES - 3.0 
Over Voltage NO NO - - 

     
Under Frequency NO NO - - 
Over Frequency NO NO - - 
     
ROCOF YES YES 0.5 Seconds 0.7 Seconds 

Table 5.25: Loss of 110kV Substation + Feeder F – 15% Output - SNV 
 

Interface Protection Wind Farm 
Trip 

(Existing 
Interface 

Protection) 

Wind Farm 
Trip 

(Proposed 
Interface 

Protection) 

Operating 
Time 

(Existing 
Interface 

Protection) 

Operating 
Time 

 (Proposed 
Interface 

Protection) 
Under Voltage NO NO - - 
Over Voltage NO NO - - 

     
Under Frequency NO NO - - 
Over Frequency YES YES 0.5 Seconds 0.5 Seconds 
     
ROCOF YES YES 0.5 Seconds 0.7 Seconds 

Table 5.26: Loss of 110kV Substation + Feeder F – 100% Output - SNV 
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Winter Peak Results 

Tables 5.27 and 5.28 below outline the results obtained from PSS/E for loss of the 

main 110/38kV substation and loss of the 38kV feeder between the 110kV substation 

and substation F. For the 15% wind farm output it was observed that both the existing 

interface protection requirements and the proposed interface protection requirements 

detected the islanding event and tripped the wind farm.  

For the 100% wind farm output it was observed that both the existing interface 

protection requirements and the proposed interface protection requirements detected 

the islanding event and tripped the wind farm. 

Interface Protection Wind Farm 
Trip 

(Existing 
Interface 

Protection) 

Wind Farm 
Trip 

(Proposed 
Interface 

Protection) 

Operating 
Time 

(Existing 
Interface 

Protection) 

Operating 
Time 

 (Proposed 
Interface 

Protection) 
Under Voltage YES YES 0.5 Seconds 1 Second 
Over Voltage NO NO - - 

     
Under Frequency NO NO - - 
Over Frequency NO NO - - 
     
ROCOF YES YES 0.5 Seconds 0.7 Seconds 

Table 5.27: Loss of 110kV Substation + Feeder F – 15% Output - WP 
 

Interface Protection Wind Farm 
Trip 

(Existing 
Interface 

Protection) 

Wind Farm 
Trip 

(Proposed 
Interface 

Protection) 

Operating 
Time 

(Existing 
Interface 

Protection) 

Operating 
Time 

 (Proposed 
Interface 

Protection) 
Under Voltage NO NO - - 
Over Voltage NO NO - - 

     
Under Frequency NO NO - - 
Over Frequency YES YES 0.5 Seconds 20 Seconds 
     
ROCOF YES YES 0.5 Seconds 0.7 Seconds 

Table 5.28: Loss of 110kV Substation + Feeder F – 100% Output - WP 
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5.6.6 Loss of 110/38kV substation + 38kV feeder (D – E) 

Summer Night Valley Results 

Tables 5.29 and 5.30 below outline the results obtained from PSS/E for loss of the 

main 110/38kV substation and loss of the 38kV feeder between the 110kV substation 

and substation feeder D - E. For the 15% wind farm output it was observed that both 

the existing interface protection requirements and the proposed interface protection 

requirements detected the islanding event and tripped the wind farm with similar 

performance. 

For the 100% wind farm output it was observed that both the existing interface 

protection requirements and the proposed interface protection requirements detected 

the islanding event and tripped the wind farm. However, in the case of the proposed 

interface protection requirements, only the under voltage protection operated. It 

should also be noted that the proposed settings would be 500ms slower tripping the 

wind farm compared to existing interface protection. 

Interface Protection Wind Farm 
Trip 

(Existing 
Interface 

Protection) 

Wind Farm 
Trip 

(Proposed 
Interface 

Protection) 

Operating 
Time 

(Existing 
Interface 

Protection) 

Operating 
Time 

 (Proposed 
Interface 

Protection) 
Under Voltage YES YES 0.5 Seconds 1 Second 
Over Voltage NO NO - - 

     
Under Frequency NO NO - - 
Over Frequency NO NO - - 
     
ROCOF YES YES 0.5 Seconds 0.7 Seconds 

Table 5.29: Loss of 110kV Substation + Feeder D – E – 15% Output - SNV 
 

Interface Protection Wind Farm 
Trip 

(Existing 
Interface 

Protection) 

Wind Farm 
Trip 

(Proposed 
Interface 

Protection) 

Operating 
Time 

(Existing 
Interface 

Protection) 

Operating 
Time 

 (Proposed 
Interface 

Protection) 
Under Voltage YES YES 0.5 Seconds 1 Second 
Over Voltage NO NO - - 

     
Under Frequency NO NO - - 
Over Frequency YES NO 0.5 Seconds - 
     
ROCOF YES NO 0.5 Seconds - 

Table 5.30: Loss of 110kV Substation + Feeder D – E – 100% Output - SNV 
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Winter Peak Results 

Tables 5.31 and 5.32 below outline the results obtained from PSS/E for loss of the 

main 110/38kV substation and loss of the 38kV feeder between the 110kV substation 

and substation feeder D - E. For the 15% wind farm output it was observed that both 

the existing interface protection requirements and the proposed interface protection 

requirements detected the islanding event and tripped the wind farm.  

For the 100% wind farm output it was observed that both the existing interface 

protection requirements and the proposed interface protection requirements detected 

the islanding event and tripped the wind farm. 

Interface Protection Wind Farm 
Trip 

(Existing 
Interface 

Protection) 

Wind Farm 
Trip 

(Proposed 
Interface 

Protection) 

Operating 
Time 

(Existing 
Interface 

Protection) 

Operating 
Time 

 (Proposed 
Interface 

Protection) 
Under Voltage YES YES 0.5 Seconds 1 Second 
Over Voltage NO NO - - 

     
Under Frequency YES YES 0.5 Seconds 0.5 Seconds 
Over Frequency NO NO - - 
     
ROCOF YES YES 0.5 Seconds 0.7 Seconds 

Table 5.31: Loss of 110kV Substation + Feeder D – E – 15% Output - WP 
 

Interface Protection Wind Farm 
Trip 

(Existing 
Interface 

Protection) 

Wind Farm 
Trip 

(Proposed 
Interface 

Protection) 

Operating 
Time 

(Existing 
Interface 

Protection) 

Operating 
Time 

 (Proposed 
Interface 

Protection) 
Under Voltage YES YES 0.5 Seconds 1 Second 
Over Voltage NO NO - - 

     
Under Frequency YES YES 0.5 Seconds 0.5 Seconds 
Over Frequency NO NO - - 
     
ROCOF YES YES 0.5 Seconds 0.7 Seconds 

Table 5.32: Loss of 110kV Substation + Feeder D – E – 100% Output - WP 
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5.6.7 Loss of 110/38kV substation + 38kV feeder (F – Wind farm) 

Summer Night Valley Results 

Tables 5.33 and 5.34 below outline the results obtained from PSS/E for loss of the 

main 110/38kV substation and loss of the 38kV feeder between the 110kV substation 

and substation feeder F - Wind farm. For the 15% wind farm output it was observed 

that both the existing interface protection requirements and the proposed interface 

protection requirements detected the islanding event and tripped the wind farm. 

However, in the case of the proposed interface protection settings, only the ROCOF 

protection operated.  

For the 100% wind farm output it was observed that both the existing interface 

protection requirements and the proposed interface protection requirements detected 

the islanding event and tripped the wind farm with similar performance. 

Interface Protection Wind Farm 
Trip 

(Existing 
Interface 

Protection) 

Wind Farm 
Trip 

(Proposed 
Interface 

Protection) 

Operating 
Time 

(Existing 
Interface 

Protection) 

Operating 
Time 

 (Proposed 
Interface 

Protection) 
Under Voltage NO NO - - 
Over Voltage NO NO - - 

     
Under Frequency NO NO - - 
Over Frequency YES NO 0.5 Seconds - 
     
ROCOF YES YES 0.5 Seconds 0.7 Seconds 

Table 5.33: Loss of 110kV Substation + Feeder F – Wind farm – 15% Output - SNV 
 

Interface Protection Wind Farm 
Trip 

(Existing 
Interface 

Protection) 

Wind Farm 
Trip 

(Proposed 
Interface 

Protection) 

Operating 
Time 

(Existing 
Interface 

Protection) 

Operating 
Time 

 (Proposed 
Interface 

Protection) 
Under Voltage NO NO - - 
Over Voltage NO NO - - 

     
Under Frequency NO NO - - 
Over Frequency YES YES 0.5 Seconds 0.5 Seconds 
     
ROCOF YES YES 0.5 Seconds 0.7 Seconds 

Table 5.34: Loss of 110kV Substation + Feeder F – Wind farm – 100% Output - SNV 
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Winter Peak Results 

Tables 5.35 and 5.36 below outline the results obtained from PSS/E for loss of the 

main 110/38kV substation and loss of the 38kV feeder between the 110kV substation 

and substation feeder F - Wind farm. For the 15% wind farm output it was observed 

that both the existing interface protection requirements and the proposed interface 

protection requirements detected the islanding event and tripped the wind farm. 

However, in the case of the proposed interface protection settings, only the ROCOF 

protection operated.  

For the 100% wind farm output it was observed that both the existing interface 

protection requirements and the proposed interface protection requirements detected 

the islanding event and tripped the wind farm with similar performance. 

Interface Protection Wind Farm 
Trip 

(Existing 
Interface 

Protection) 

Wind Farm 
Trip 

(Proposed 
Interface 

Protection) 

Operating 
Time 

(Existing 
Interface 

Protection) 

Operating 
Time 

 (Proposed 
Interface 

Protection) 
Under Voltage NO NO - - 
Over Voltage NO NO - - 

     
Under Frequency NO NO - - 
Over Frequency YES NO 0.5 Seconds - 
     
ROCOF YES YES 0.5 Seconds 0.7 Seconds 

Table 5.35: Loss of 110kV Substation + Feeder F – Wind farm – 15% Output - WP 
 

Interface Protection Wind Farm 
Trip 

(Existing 
Interface 

Protection) 

Wind Farm 
Trip 

(Proposed 
Interface 

Protection) 

Operating 
Time 

(Existing 
Interface 

Protection) 

Operating 
Time 

 (Proposed 
Interface 

Protection) 
Under Voltage NO NO - - 
Over Voltage NO NO - - 

     
Under Frequency NO NO - - 
Over Frequency YES YES 0.5 Seconds 0.5 Seconds 
     
ROCOF YES YES 0.5 Seconds 0.7 Seconds 

Table 5.36: Loss of 110kV Substation + Feeder F – Wind farm – 100% Output - WP 
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5.7 Findings 

Both the fault and loss of mains simulations in PSS/E highlighted the main issues 

associated with choosing interface protection settings. From both the 110kV and 

38kV fault simulations it was observed that changing the interface protection 

requirements to the settings shown in Tables 5.37, 5.38 and 5.41 resulted in improved 

performance of the wind farm. Out of the forty faults simulated, it was found that the 

proposed interface protection settings improved performance for ten of the cases. This 

is a 25% improvement in performance. The advantages of using the settings outlined 

in Tables 5.37, 5.38 and 5.41 is that these settings are compatible with transmission 

and distribution code requirements especially voltage and frequency requirements. 

Furthermore, the proposed settings allow the power system extra time to recover 

before tripping the embedded generator.  

However, the loss of mains analysis highlighted the main issues associated with 

loosening protection settings which is delayed tripping for genuine fault scenarios. It 

was observed that the proposed settings were anywhere between 200ms – 20 seconds 

slower in certain cases compared with existing interface protection requirements.  

With anywhere between 3000-5000MW of renewable generation connecting to the 

system over the next 10 years, it is important to ensure that embedded generation is 

not needlessly disconnected from the system. The settings presented in Tables 5.37 – 

5.41 strike a balance between improved performance and rapid fault clearance.  

 

Interface Protection Monitoring 
Details 

Operating 
Settings (%) 

Operating 
Settings 

(Hz) 

Trip Time 

Under Frequency 2 phases 
(minimum) 

 ≤-6% 47.0Hz 0.5 seconds 

  ≤ -5% 47.5Hz 20 seconds 
Over Frequency 2 phases 

(minimum) 
≥ +4% 52.0Hz 20 seconds 

  ≥ +5% 52.5Hz 0.5 seconds 
Table 5.37: Recommended Frequency Protection Settings for Embedded Generator 

Installations 
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Interface Protection Monitoring 
Details 

Operating 
Settings (%) 

Operating 
Settings 

(pu) 

Trip Time 

Under Voltage
***

 3 phases  < -13% 0.87 3.0 seconds 
  < -20% 0.80 1.0 second 
     
Under Voltage

†††
 3 phases  < -13% 0.87 2.5 seconds 

  < -50% 0.50 1.85 seconds 
     
Over Voltage 3 phases > +13% 1.13 0.7 seconds 

Table 5.38: Recommended Voltage Protection Settings for Embedded Generator 
Installations 

 
Interface Protection Monitoring 

Details 
Operating 

Settings (%) 
Trip Time Notes 

Directional  

Overcurrent
‡‡‡

 

ESB Networks 
Supply 3ph 

 

≤ 50% < 0.5 
seconds 

No- Export 
Generators 

 ESB Networks 
Supply 3ph 

≤ 120% < 0.5 
seconds 

Generators 
with agreed 

export 
Table 5.39: Recommended Irish Overcurrent Protection Settings for Embedded 

Generator Installations 
 

Interface Protection Monitoring 
Details 

Operating 
Settings (%) 

Trip Time 

Earth Fault  ESB Networks 
MV or 38kV 

Supply 

30% 
NVD§§§ 

Alarm 
(Indicate 

Only) 
Table 5.40: Recommended Irish Earth Fault Protection Settings for Embedded 

Generator Installations 
 
Interface Protection Monitoring 

Details 
Operating 

Settings (%) 
Trip Time Notes 

Loss of Mains   +/- 2.5Hz/s 700ms 
 

Rate of 
Change of 
Frequency 
(ROCOF) 

Table 5.41: Recommended Loss of Mains Protection Settings for Embedded 
Generator Installations  

 
 

                                                
*** Wind Farm Types B,C,D and E 
††† Wind Farm Type A 
‡‡‡ May not be required if generator  rating is < 1MVA @ MV PCC or < 200kVA @ LV PCC 
§§§ Neutral Voltage Displacement 
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Chapter 6 
 
 
Conclusion 
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6 Conclusion 

6.1 Conclusions 

The aim of this thesis was to evaluate the impact of existing interface protection 

requirements on the stability of wind farms and to propose appropriate changes to 

these interface protection requirements. In order to carry out this objective it was 

necessary to carry out a review of international practice in regards to interface 

protection requirements. From the review it was found that many utilities 

implemented multi stage voltage and frequency protection. On the basis of the review, 

the utilisation of multi stage frequency protection was put forward with settings that 

would ensure compatibility with distribution code requirements for frequency. The 

implementation of multi stage frequency protection would not be seen as a costly 

introduction as most modern devices are capable of implementing multi stage 

protection as standard.  

The utilisation of multi stage voltage protection was also put forward. The benefit of 

multi stage voltage protection is that the settings can be tailored to provide rapid 

clearance for close in faults and delayed tripping for remote faults. Furthermore, with 

under voltage protection, the settings can be chosen to ensure compatibility with the 

fault ride through requirements outlined in the distribution code. Again this would not 

be seen as a costly introduction as most voltage protection devices allow for multi 

stage voltage protection as standard.  

In regards to the overcurrent protection requirement, it was found that for 

synchronous machines the use of overcurrent protection was justifiable in that 

synchronous machines can provide adequate fault current contribution to be able to 

discriminate between fault and load conditions. With DFIG and Full Convertor 

connected technologies (Type 4), adequate fault current contribution (magnitude and 

duration) cannot be guaranteed to be able to discriminate decisively between load and 

fault conditions. In the case of Induction generator and full convertor technology, the 

overcurrent protection requirement could be dropped and replaced with duplicate 

undervoltage protection.  

For earth fault protection requirements, it is recommended that the NVD protection 

should be set to alarm only for 38kV applications. The 38kV system in Ireland is 

earthed via a Peterson Coil primarily to improve continuity of supply. Since existing 

protection schemes are designed to detect and indicate the presence of earth faults, it 
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is reasonable to assume that the embedded generator earth fault protection at the 

interface should also alarm and indicate the presence of earth faults. It should be 

noted that the generator would be expected to trip for double line to ground faults and 

line to line to ground faults.  

The loss of mains protection requirement was found to be an issue for most utilities 

with some utilities opting for Intertripping as a more secure option. At present a 

number of possible replacement options are been considered which include Active 

Techniques, GPS Synchronised Phasor Measurement Units (PMUs), Centralised Loss 

of Mains Protection, Accumulated Phase Angle Difference (PAD) as well as Power 

Line Signalling Based Techniques. While the aforementioned could each provide a 

solution to the loss of mains problem, substantial testing of the technology is still 

required. For the moment, a loosening of the ROCOF protection requirements is 

proposed for wind farm applications. For the loss of mains protection, it is 

recommended that the existing settings for ROCOF should be widened to +/-2.5Hz 

(wind farms only). This would help to improve stability of this protection for transient 

events such as switching etc. However, while widening the ROCOF setting increases 

stability it also reduces sensitivity. In cases were the difference between load and 

generation on the islanded system is small, the loss of mains protection operation 

could be delayed. 

The Simulations carried out in PSS/E for both fault and Loss of Mains analysis 

highlighted the main issues when choosing protection settings. The fault analysis 

demonstrated that a loosing of the interface protection requirements resulted in 

improved performance of the wind farm. It was observed that the proposed interface 

protection settings improved performance by approximately 25%. This would be seen 

as a significant improvement. However, the loss of mains analysis highlighted the 

main issues associated with loosening protection settings which is delayed tripping for 

genuine fault scenarios. It was observed that the proposed settings were anywhere 

between 200ms – 20 seconds slower in certain cases compared with existing interface 

protection requirements.  

Another point to note is that while the interface protection requirements can be 

modified to meet voltage, frequency and loss of mains requirements, it is the 

protection systems inside the wind farm (Turbine/Feeder/Transformer/Statcom 

Protection) that will ultimately dictate how the wind farm will respond to system 

events. For example, the voltage protection for the wind turbine could be set to trip 
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the wind turbine for a +/-10% voltage variation in 100ms while the interface 

protection is set up for a -20/+10% voltage variation with a trip time of 

1.0/0.5seconds. In this case a wind farm could conceivably reduce its output to zero 

after a fault scenario yet the interface protection has not operated. If the wind farm 

output is relatively small, the loss of the wind farm would not be significant. 

However, if the wind farm output is relatively large then the loss of the wind farm 

could have a significant impact.  

 

6.2 Future Work 

The work carried out in this thesis focused primarily on wind farm connections to the 

38kV distribution system and the use of DFIG wind turbines at these sites. DFIG’s 

were chosen on the basis that DFIG’s are the most popular wind turbine on the Irish 

system. Future work should include an evaluation of interface protection requirements 

at the MV and LV distribution level as well as incorporating the effects of other 

embedded generator devices on the performance of the interface protection.  

Furthermore, the data used to evaluate the performance of the DFIG wind turbine was 

based on typical data obtained from two separate technical sources. While the data 

gives a good indication on how the wind farm would react to fault/loss of mains 

scenarios on the system it is not representative of any one manufacturer. In order to 

evaluate the effects of a specific manufacturers wind turbine, the technical data 

(Dynamic and Short Circuit Data) would need to be obtained from the manufacturer. 

However, this data can only be obtained by the TSO and usually comes with a non 

disclosure agreement and as such can not be accessed publically.  
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Appendix 

A PSS/E Wind Turbine Model Documentation  
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Wind Generator Model Data Sheet [29] 

 
 
 

 

 

 

 

 

 

 



98 

 

 

 

 

 

 
 
 



99 

Wind Electrical Model Data Sheet [29] 
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Wind Mechanical Model Data Sheet [29] 
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Wind Pitch Control Model Data Sheet [29] 
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B PSS/E Generator Turbine Model Documentation 
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Generator Model Data [29] 
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Excitation System Model Data [29] 
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Turbine Governor Model Data [29] 
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C Single Line Diagrams 
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38kV Distribution System Test Model - Summer Valley 
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38kV Distribution System Test Model – Winter Peak 
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Wind farm Single Line Diagram 
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D Wind Farm Technical Data 
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Wind Turbine Power Flow Data  
 

Symbol Value Unit 
Sn 2.00 MVA 
Qmax 0.65 MVAr 
Qmin -0.65 MVAr 
Pmax 2.00 MW 
Pmin 0.10 MW 
Zsource 0 + j0.8 p.u 
Mbase 2.1 MVA 

Table D.1: Wind Turbine Generator Data [19] 
 
 

Wind Turbine Step up Transformer Data 
 

Symbol Value Unit 
Sn 2.10 MVA 
HV  20.00 KV 
LV 0.69 KV 
Ztrafo 0.0073 + j0.06 p.u 
Mbase 2.10 MVA 

Table D.2: Wind Turbine Transformer Data [19] 
 
 

Wind Turbine Dynamic Data 
 

Symbol Value Unit 
Xeq 0.8 p.u 
Pll gain 30 con 
Pll integrator gain 0 con 
Pll maximum 0.1 cons 
Turbine MW rating 2 MW 
Nr. of lumped WT-s 1 Integer 
Table D.3: Generator Model WT3G1 [19] 

 
 

Symbol Value Unit 
Vw 1.2 p.u 
H 4.95 MW*sec/MVA 
DAMP 0 p.u P/pu 
Kaero 0.007 const. 
Theta2 21.98 deg. 
Htfac 0.875 Hturb/H 
Freq1 1.8 Hz 
DSHAFT 1.5 p.u P/pu 
Table D.4: Turbine Model WT3T1 [19] 
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Symbol Value Unit 
Tfv 0.15 sec 
Kpv 18 p.u 
Kiv 5 p.u 
Xc 0 p.u 
Tfp 0.05 sec 
Kpp 3 p.u 
Kip 0.6 p.u 
PMX 1.12 p.u 
PMN 0.1 p.u 
QMX 0.309 p.u 
QMN -0.309 p.u 
IPMAX 1.1 p.u 
TRV 0.05 sec 
RPMX 0.45 p.u 
RPMN -0.45 p.u 
T_Power 5 sec 
KQi 0.05 con 
VMINCL 0.9 con 
VMAXCL 1.2 con 
Kqv 40 Con 
XIQmin -0.5 con 
XIQmax 0.4 con 
Tv 0.05 sec 
Fn 1 con 
Wpmin 0.69 p.u 
Wp20 0.78 p.u 
Wp40 0.98 p.u 
Wp60 1.12 p.u 
Pwp 0.74 p.u 
Wp100 1.2 p.u 
Table D.5: Electrical Model WT3E1 [19] 

 
 

Symbol Value Unit 
Tp 0.3 sec 
Kpp 150 pu 
Kip 25 pu 
Kpc 3 pu 
Kic 30 pu 
TetaMin 0 deg 
TetaMax 27 deg 
RTetaMax 10 deg/sec 
PMX 1 p.u on Mbase 

Table D.6: Pitch Model WT3P1 [19] 
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Wind Farm Internal Cable Data – Positive Sequence Data 
 

Feeder Length 

(Km) 

Conductor Type R 
(p.u) 

X 
(p.u) 

B 
(p.u) 

MVA 
Rating 

20kV Collector - WTG 1 0.5 150mm AAAC 0.02906 0.04741 0.0000061 12.2 
WTG 1 - WTG2 0.5 150mm AAAC 0.02906 0.04741 0.0000061 12.2 
WTG 2 - WTG3 0.5 150mm AAAC 0.02906 0.04741 0.0000061 12.2 
WTG 3 - WTG4 0.5 50mm Cu 0.04909 0.04979 0.0000058 6.10 
WTG 4 - WTG5 0.5 50mm Cu 0.04909 0.04979 0.0000058 6.10 
20kV Collector - WTG 6 0.5 150mm AAAC 0.02906 0.04741 0.0000061 12.2 
WTG 6 - WTG7 0.5 150mm AAAC 0.02906 0.04741 0.0000061 12.2 
WTG 7- WTG8 0.5 150mm AAAC 0.02906 0.04741 0.0000061 12.2 
WTG 8 - WTG9 0.5 50mm Cu 0.04909 0.04979 0.0000058 6.10 
WTG 9 - WTG10 0.5 50mm Cu 0.04909 0.04979 0.0000058 6.10 
20kV Collector - WTG 11 0.5 150mm AAAC 0.02906 0.04741 0.0000061 12.2 
WTG 11 - WTG12 0.5 150mm AAAC 0.02906 0.04741 0.0000061 12.2 
WTG 12 - WTG13 0.5 150mm AAAC 0.02906 0.04741 0.0000061 12.2 
WTG 13 - WTG14 0.5 50mm Cu 0.04909 0.04979 0.0000058 6.10 
WTG 14 - WTG15 0.5 50mm Cu 0.04909 0.04979 0.0000058 6.10 

Table D.7: Wind farm Internal Cable Data (Positive Sequence Data) 
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Wind Farm Internal Cable Data – Zero Sequence Data 
 

Feeder Length 

(Km) 

Conductor Type R 
(p.u) 

X 
(p.u) 

B 
(p.u) 

MVA 
Rating 

20kV Collector - WTG 1 0.5 150mm AAAC 0.04747 0.21395 0.0000032 12.2 
WTG 1 - WTG2 0.5 150mm AAAC 0.04747 0.21395 0.0000032 12.2 
WTG 2 - WTG3 0.5 150mm AAAC 0.04747 0.21395 0.0000032 12.2 
WTG 3 - WTG4 0.5 50mm Cu 0.06759 0.22248 0.0000029 6.10 
WTG 4 - WTG5 0.5 50mm Cu 0.06759 0.22248 0.0000029 6.10 
20kV Collector - WTG 6 0.5 150mm AAAC 0.04747 0.21395 0.0000032 12.2 
WTG 6 - WTG7 0.5 150mm AAAC 0.04747 0.21395 0.0000032 12.2 
WTG 7- WTG8 0.5 150mm AAAC 0.04747 0.21395 0.0000032 12.2 
WTG 8 - WTG9 0.5 50mm Cu 0.06759 0.22248 0.0000029 6.10 
WTG 9 - WTG10 0.5 50mm Cu 0.06759 0.22248 0.0000029 6.10 
20kV Collector - WTG 11 0.5 150mm AAAC 0.04747 0.21395 0.0000032 12.2 
WTG 11 - WTG12 0.5 150mm AAAC 0.04747 0.21395 0.0000032 12.2 
WTG 12 - WTG13 0.5 150mm AAAC 0.04747 0.21395 0.0000032 12.2 
WTG 13 - WTG14 0.5 50mm Cu 0.06759 0.22248 0.0000029 6.10 
WTG 14 - WTG15 0.5 50mm Cu 0.06759 0.22248 0.0000029 6.10 

Table D.8: Wind farm Internal Cable Data (Zero Sequence Data) 
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Wind Farm Grid Transformer 
 

Symbol Value Unit 
Sn 35 MVA 
HV  38 KV 
LV 20 KV 
Ztrafo (Positive Sequence) 0.00486 + j0.108892 p.u 
Ztrafo (Zero Sequence) 0.00437 + j0.098600 p.u 
Mbase 35 MVA 
No. of Taps   
Max Tap  KV 
Min Tap  KV 

Table D.9: Wind Farm Grid Transformer 
 
 

Statcom 
 

Symbol Value Unit 
Voltage 20 KV 
Reactive Power Range + 10/-5 MVARs 
Step Size 1 MVAR 

Table D.10: Statcom 
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E 38kV Distribution System Technical Data 
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38kV Distribution System Feeder Data – Positive Sequence Data 
 

Feeder Voltage 

(kV) 

Length 

(Km) 

R 
(p.u) 

X 
(p.u) 

B 
(p.u) 

38kV Node - Substation B  38 8.9 0.229 0.234 0.00106 
Substation B - Substation C  38 10.7 0.285 0.297 0.00046 
38kV Node - Substation D  38 14.3 0.376 0.392 0.00086 
Substation D - Substation E  38 13.9 0.085 0.117 0.01420 
38kV Node - Substation F  38 20.8 0.274 0.587 0.00154 
Substation F - Wind farm 38kV 

PCC 

38 16.0 0.395 0.426 0.00156 

Table E.1: 38kV Distribution System Feeder Data (Positive Sequence Data) 
 

38kV Distribution System Feeder Data – Zero Sequence Data 
 

Feeder Voltage 

(kV) 

Length 

(Km) 

R 
(p.u) 

X 
(p.u) 

B 
(p.u) 

38kV Node - Substation B  38 8.9 0.319 1.041 0.00088 
Substation B - Substation C  38 10.7 0.395 1.283 0.00024 
38kV Node - Substation D  38 14.3 0.522 1.695 0.00058 
Substation D - Substation E  38 13.9 0.176 0.097 0.01420 
38kV Node - Substation F  38 20.8 0.486 2.245 0.00122 
Substation F - Wind farm 38kV 

PCC 

38 16.0 0.556 1.838 0.00126 

Table E.2: 38kV Distribution System Feeder Data (Zero Sequence Data
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5MVA 38/10kV Transformer Data 
 

Symbol Value Unit 
Sn 5 MVA 
HV  38 KV 
LV 10 KV 
Ztrafo 7.56 % 
Mbase 5 MVA 
No. of Taps 15  
Max Tap 41.251 KV 
Min Tap 34.686 KV 

Table E.3: 5MVA 38/10kV Transformer Data 
 
 

10MVA 38/10kV Transformer Data 
 

Symbol Value Unit 
Sn 10 MVA 
HV  38 KV 
LV 10 KV 
Ztrafo 9.61 % 
Mbase 10 MVA 
No. of Taps 15  
Max Tap 41.250 KV 
Min Tap 34.710 KV 

Table E.4: 10MVA 38/10kV Transformer Data 
 
 

63MVA 110/38kV Transformer Data 
 

Symbol Value Unit 
Sn 63 MVA 
HV  110 KV 
LV 38 KV 
Ztrafo 0.0105 + j0.3380 p.u 
Mbase 100 MVA 
No. of Taps 13  
Max Tap 122.50 KV 
Min Tap 92.50 KV 

Table E.5: 63MVA 110/38kV Transformer Data 
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System Thevenin Impedance – Summer Valley 2010 [44] 
 
     PSS®E IEC 60909 SHORT CIRCUIT CURRENTS          FRI, JUL 29 2011  17:21 
 / CASE: 2010;  SUMMER 01/07/2010; FORECAST STATEMENT 2010 -  ** +VE SEQ LINE CHARGING 0.0 ** 
 / FS10_NOV 09 - MEMO  GALLERY_T;  09:56:59  THURSDAY, DECEMB ** +VE SEQ LOAD,FIXED SHUNT,SWITCHED SHUNT 0.0 ** 
     VOLTAGE FACTOR C=1.10,   NOMINAL FREQUENCY=50.0 Hz,   BREAKING CURRENT at TIME= 0.100 seconds 
<-SCMVA-><-SymI''krms--><-ip(B)-><-ip(C)-><-DC Ib-><SymIb-><AsymIb> 
                                                 /I/    AN(I)      /I/       /I/       /I/       /I/       /I/ 
 X---------- BUS ----------X          MVA        AMP      DEG       AMP       AMPAMPAMPAMP 
   5281 [TRALEE      110.00] 3PH    1133.48    5949.2   -76.83   14569.3   12712.4      73.4    5940.1    5940.6 
                              LG    1032.41    5418.7   -79.05   13823.2   12044.7     140.5    5418.7    5420.6 
 Note - ip(B) currents include safety factor multiplier (1.15). 
THEVENIN IMPEDANCE, X/R  (OHM)    Z+:2.675+j11.434, 4.27492  Z-:2.073+j8.856, 4.27256  Z0:2.597+j17.682, 6.80765 
 
 --------------------------------------------------------------------------------------------------------------- 
 

System Thevenin Impedance – Winter Peak 2010 [44] 
 
                              PSS®E IEC 60909 SHORT CIRCUIT CURRENTS          FRI, JUL 29 2011  17:28 
 / CASE: 2010/2011;  WINTER 01/12/2010; FORECAST STATEMENT 20 ** +VE SEQ LINE CHARGING 0.0 ** 
 / FS10_NOV 09 - MEMO  GALLERY_T;  16:24:29  MONDAY, NOVEMBER ** +VE SEQ LOAD,FIXED SHUNT,SWITCHED SHUNT 0.0 ** 
     VOLTAGE FACTOR C=1.10,   NOMINAL FREQUENCY=50.0 Hz,   BREAKING CURRENT at TIME= 0.100 seconds 
<-SCMVA-><-SymI''krms--><-ip(B)-><-ip(C)-><-DC Ib-><SymIb-><AsymIb> 
                                                 /I/    AN(I)      /I/       /I/       /I/       /I/       /I/ 
 X---------- BUS ----------X          MVA        AMP      DEG       AMP       AMPAMPAMPAMP 
   5281 [TRALEE      110.00] 3PH    1668.72    8758.5   -78.37   22057.0   19310.4     236.4    8726.9    8730.1 
                              LG    1348.74    7079.1   -80.22   18469.9   16122.5     257.8    7079.1    7083.7 
 Note - ip(B) currents include safety factor multiplier (1.15). 
 THEVENIN IMPEDANCE, X/R  (OHM)    Z+:1.608+j7.812, 4.85778  Z-:1.382+j6.655, 4.81456  Z0:2.039+j14.708, 7.21217 
 
 --------------------------------------------------------------------------------------------------------------- 
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38KV System Loading – Summer Valley 
 

Substation Active 
Power 
(MW) 

Reactive 
Power 

(MVARs) 
B 3.14 1.03 
C 2.67 0.88 
D 6.81 2.24 
E 3.84 1.26 
F 6.40 2.10 

Table E.6: System Loading – Sumer Valley 
 

38KV System Loading – Winter Peak 
 

Substation Active 
Power 
(MW) 

Reactive 
Power 

(MVARs) 
B 6.28 2.06 
C 5.34 1.76 
D 13.61 4.47 
E 7.67 2.52 
F 12.79 4.20 

Table E.7: System Loading – Winter Peak 
 

System Equivalent Generator Model Data 
 

Symbol Value Unit 
T'do (> 0) 6.4  
T''do (> 0) 0.045  
T'qo (> 0) 0.54  
T''qo (> 0) 0.085  
Inertia H 5.545  
Speed Damping D 0  
Xd 2.06  
Xq 1.97  
X'd 0.305  
X'q 0.51  
X''d = X''q 0.0945  
Xl 0.175  
S(1.0) 0.0497  
S(1.2) 0.3978  
Table E.8: System Equivalent Generator Model 
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System Equivalent Excitation Model Data 
 

Symbol Value Unit 
TA/TB 0.1  
TB (> 0) 10  
K 100  
TE 0.1  
EMIN -0.88  
EMAX 5  
CSWITCH (0=bus fed, 1=solid fed) 0  
rc/rfd 0  
TA/TB 0.1  
TB (> 0) 10  
K 100  

Table E.9: System Equivalent Excitation Model 
 

System Equivalent Governor Model Data 
 

Symbol Value Unit 
R 0.0200  
T1 (>0)(sec) 0.3000  
V MAX 0.6250  
V MIN -0.5000  
T2 (sec) 0.0000  
T3 (>0)(sec) 1.0000  
Dt 30.0000  

Table E.10: System Equivalent Governor Model 
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F Power Flow Results 
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Summer Night Valley – 10% Wind Farm Output 
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Summer Night Valley – 15% Wind Farm Output 
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Summer Night Valley – 50% Wind Farm Output 
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Summer Night Valley – 100% Wind Farm Output 
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Winter Peak – 10% Wind Farm Output 



133 

Winter Peak – 15% Wind Farm Output 
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Winter Peak – 50% Wind Farm Output 
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Winter Peak – 100% Wind Farm Output 
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G ESB Networks Interface Protection Requirement 
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Embedded Generator Protection Requirements 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Table G.1: Embedded Generation Protection Requirements [9] 
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Embedded Generator Interface Protection Settings 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table F.G: Embedded Generation Interface Protection Settings [9] 

 

Wind Generator Interface Protection Settings 

 

 

 

 
 

 

 

 

Table G.3: Wind Generation Protection Requirements [9]
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H Irish Power System Data 
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System Records 

 
Figure H.1: System Records [42] 

 
Wind Generation Capacity Growth in Ireland1992 – 2016 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure H.2: Wind Generation Capacity Growth in Ireland 1992 -2016 [39] 
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System Demand Vs Wind Generation - 4th of April 2011  

 
Figure H.3: System Demand Vs Wind Generation – 4th of April 2011 [43] 

 
 
 

Wind Contribution - 4th of April 2011 

 
Figure H.4: % Wind Contibution to Total System Demand – 4th of April 2011 
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I Dynamic Results 
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Fault Analysis 

Scenario 1A – 110kV System Faults  
Details: 
Fault Type: Single Line to Ground Fault 
Fault Duration: 100ms Duration 
Results: Summer Night Valley 
Wind Farm Output: 15% 
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Wind Farm Output: 50% 

Voltage Windfarm PCC (38kV)
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Wind Farm Output: 100% 

Voltage Windfarm PCC (38kV)
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Results: Winter Peak  
Wind Farm Output: 15% 

Voltage Windfarm PCC (38kV)
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Wind Farm Output: 50% 

Voltage Windfarm PCC (38kV)
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Wind Farm Output: 100% 

Voltage Windfarm PCC (38kV)

1 - VOLT    701 [WINDFARM PCC38.000] : 100_SLG_Wintergfedcb
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Scenario 1B – 110kV System Faults  

 
Details: 

Fault Type: Line to Line Fault 
Fault Duration: 100ms Duration 
Results: Summer Night Valley  
Wind Farm Output: 15% 

Voltage Windfarm PCC (38kV)
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Wind Farm Output: 50% 

Voltage Windfarm PCC (38kV)
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Wind Farm Output: 100% 

Voltage Windfarm PCC (38kV)
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Results: Winter Peak Results 
Wind Farm Output: 15% 

Voltage Windfarm PCC (38kV)
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Time (seconds)

543210

V
o

lt
a
g

e
 (

p
u

)

1.3

1.2

1.1

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

 

Wind Farm Output: 50% 

Voltage Windfarm PCC (38kV)
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Wind Farm Output: 100% 

Voltage Windfarm PCC (38kV)
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Scenario 2 – 38kV System Faults 

Details: 

Fault Type: Line to Line Fault 
Fault Duration: 500ms Duration 
Results: Summer Night Valley  
Wind Farm Output: 15% 
Fault Location: Substation B (Node 601) 
Existing Windfarm Interface Protection Trip: Yes 
Proposed Windfarm Interface Protection Trip: No 
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Fault Location: Substation C (Node 901) 
Existing Windfarm Interface Protection Trip: No 
Proposed Windfarm Interface Protection Trip: No 

Voltage Windfarm PCC (38kV)
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Fault Location: Substation D (Node 501) 
Existing Windfarm Interface Protection Trip: No 
Proposed Windfarm Interface Protection Trip: No 

Voltage Windfarm PCC(38kV)
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Fault Location: Substation E (Node 801) 
Existing Windfarm Interface Protection Trip: No 
Proposed Windfarm Interface Protection Trip: No 

Voltage Windfarm PCC(38kV)
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Fault Location: Substation F (Node 401) 
Existing Windfarm Interface Protection Trip: Yes 
Proposed Windfarm Interface Protection Trip: Yes 

Voltage Windfarm PCC (38KV)
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Details: 
Fault Type: Line to Line Fault 
Fault Duration: 500ms Duration 
Results: Summer Night Valley  
Wind Farm Output: 100% 
Fault Location: Substation B (Node 601) 
Existing Windfarm Interface Protection Trip: No 
Proposed Windfarm Interface Protection Trip: No 

Voltage Windfarm PCC (38kV)

2 - VOLT    701 [WINDFARM PCC38.000] : SubB_L2Lgfedcb
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Fault Location: Substation C (Node 901) 
Existing Windfarm Interface Protection Trip: No 
Proposed Windfarm Interface Protection Trip: No 

Voltage Windfarm PCC (38kV)
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Fault Location: Substation D (Node 501) 
Existing Windfarm Interface Protection Trip: No 
Proposed Windfarm Interface Protection Trip: No 

Voltage Windfarm PCC (38kV)
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Fault Location: Substation E (Node 801) 
Existing Windfarm Interface Protection Trip: No 
Proposed Windfarm Interface Protection Trip: No 

Voltage Windfarm PCC (38kV)
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Fault Location: Substation F (Node 401) 
Existing Windfarm Interface Protection Trip: Yes 
Proposed Windfarm Interface Protection Trip: Yes 

Voltage Windfarm PCC (38kV)

Time (seconds)

543210

V
o

lt
a
g

e
 (

p
u

)

1.3

1.2

1.1

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

 



158 

Details: 
Fault Type: Three Phase Fault 
Fault Duration: 500ms Duration 
Results: Summer Night Valley  
Wind Farm Output: 15% 
Fault Location: Substation B (Node 601) 
Existing Windfarm Interface Protection Trip: Yes 
Proposed Windfarm Interface Protection Trip: No 

Voltage Windfarm PCC (38kV)
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Fault Location: Substation C (Node 901) 
Existing Windfarm Interface Protection Trip: Yes 
Proposed Windfarm Interface Protection Trip: No 

Voltage Windfarm PCC(38kV)
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Fault Location: Substation D (Node 501) 
Existing Windfarm Interface Protection Trip: Yes 
Proposed Windfarm Interface Protection Trip: No 

Voltage Windfarm PCC (38kV)
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Fault Location: Substation E (Node 801) 
Existing Windfarm Interface Protection Trip: Yes 
Proposed Windfarm Interface Protection Trip: No 

Voltage Windfarm PCC (38KV)
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Fault Location: Substation F (Node 401) 
Existing Windfarm Interface Protection Trip: Yes 
Proposed Windfarm Interface Protection Trip: Yes 

Voltage Windfarm PCC (38KV)
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Details: 
Fault Type: Three Phase Fault 
Fault Duration: 500ms Duration 
Results: Summer Night Valley  
Wind Farm Output: 100% 
Fault Location: Substation B (Node 601) 
Existing Windfarm Interface Protection Trip: Yes 
Proposed Windfarm Interface Protection Trip: Yes 

Voltage Windfarm PCC (38kV)
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Fault Location: Substation C (Node 901) 
Existing Windfarm Interface Protection Trip: No 
Proposed Windfarm Interface Protection Trip: No 

Voltage Windfarm PCC (38kV)
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Fault Location: Substation D (Node 501) 
Existing Windfarm Interface Protection Trip: Yes 
Proposed Windfarm Interface Protection Trip: No 

Voltage Windfarm PCC (38kV)
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Fault Location: Substation E (Node 801) 
Existing Windfarm Interface Protection Trip: No 
Proposed Windfarm Interface Protection Trip: No 

Voltage Windfarm PCC (38kV)
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Fault Location: Substation F (Node 401) 
Existing Windfarm Interface Protection Trip: Yes 
Proposed Windfarm Interface Protection Trip: Yes 

Voltage Windfarm PCC (38kV)

Time (seconds)

543210

V
o

lt
a
g

e
 (

p
u

)

1.2

1.1

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

 
 



164 

Details: 
Fault Type: Line to Line Fault 
Fault Duration: 500ms Duration 
Results: Winter Peak  
Wind Farm Output: 15% 
Fault Location: Substation B (Node 601) 
Existing Windfarm Interface Protection Trip: No 
Proposed Windfarm Interface Protection Trip: No 

Voltage Windfarm PCC (38KV)
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Fault Location: Substation C (Node 901) 
Existing Windfarm Interface Protection Trip: No 
Proposed Windfarm Interface Protection Trip: No 

Voltage Windfarm PCC (38KV)
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Fault Location: Substation D (Node 501) 
Existing Windfarm Interface Protection Trip: No 
Proposed Windfarm Interface Protection Trip: No 

Voltage Windfarm PCC (38KV)
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Fault Location: Substation E (Node 801) 
Existing Windfarm Interface Protection Trip: No 
Proposed Windfarm Interface Protection Trip: No 

Voltage Windfarm PCC (38KV)
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Fault Location: Substation F (Node 401) 
Existing Windfarm Interface Protection Trip: Yes 
Proposed Windfarm Interface Protection Trip: Yes 

Voltage Windfarm PCC (38KV)
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Details: 
Fault Type: Line to Line Fault 
Fault Duration: 500ms Duration 
Results: Winter Peak  
Wind Farm Output: 100% 
Fault Location: Substation B (Node 601) 
Existing Windfarm Interface Protection Trip: Yes 
Proposed Windfarm Interface Protection Trip: No 

Voltage Windfarm PCC (38kV)
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Fault Location: Substation C (Node 901) 
Existing Windfarm Interface Protection Trip: No 
Proposed Windfarm Interface Protection Trip: No 

Voltage Windfarm PCC (38kV)
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Fault Location: Substation D (Node 501) 
Existing Windfarm Interface Protection Trip: Yes 
Proposed Windfarm Interface Protection Trip: No 

Voltage Windfarm PCC (38kV)
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Fault Location: Substation E (Node 801) 
Existing Windfarm Interface Protection Trip: No 
Proposed Windfarm Interface Protection Trip: No 

Voltage Windfarm PCC (38kV)

Time (seconds)
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Fault Location: Substation F (Node 401) 
Existing Windfarm Interface Protection Trip: Yes 
Proposed Windfarm Interface Protection Trip: Yes 

Voltage Windfarm PCC (38kV)

Time (seconds)
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Details: 
Fault Type: Three Phase Fault 
Fault Duration: 500ms Duration 
Results: Winter Peak  
Wind Farm Output: 15% 
Fault Location: Substation B (Node 601) 
Existing Windfarm Interface Protection Trip: No 
Proposed Windfarm Interface Protection Trip: No 

Voltage Windfarm PCC (38KV)
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Fault Location: Substation C (Node 901) 
Existing Windfarm Interface Protection Trip: No 
Proposed Windfarm Interface Protection Trip: No 

Voltage Windfarm PCC (38KV)

Time (seconds)
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Fault Location: Substation D (Node 501) 
Existing Windfarm Interface Protection Trip: Yes 
Proposed Windfarm Interface Protection Trip: No 

Voltage Windfarm PCC (38KV)

Time (seconds)
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Fault Location: Substation E (Node 801) 
Existing Windfarm Interface Protection Trip: No 
Proposed Windfarm Interface Protection Trip: No 

Voltage Windfarm PCC (38KV)

Time (seconds)
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Fault Location: Substation F (Node 401) 
Existing Windfarm Interface Protection Trip: Yes 
Proposed Windfarm Interface Protection Trip: Yes 

Voltage Windfarm PCC (38KV)

Time (seconds)
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Details: 
Fault Type: Three Phase Fault 
Fault Duration: 500ms Duration 
Results: Winter Peak  
Wind Farm Output: 100% 
Fault Location: Substation B (Node 601) 
Existing Windfarm Interface Protection Trip: Yes 
Proposed Windfarm Interface Protection Trip: No 

Voltage Windfarm PCC (38kV)
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Fault Location: Substation C (Node 901) 
Existing Windfarm Interface Protection Trip: No 
Proposed Windfarm Interface Protection Trip: No 

Voltage Windfarm PCC (38kV)

Time (seconds)

543210

V
o

lt
a
g

e
 (

p
u

)

1.15

1.1

1.05

1

0.95

0.9

0.85

0.8

0.75

0.7

0.65

 
 

 

Fault Location: Substation D (Node 501) 
Existing Windfarm Interface Protection Trip: Yes 
Proposed Windfarm Interface Protection Trip: Yes 

Voltage Windfarm PCC (38kV)
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Fault Location: Substation E (Node 801) 
Existing Windfarm Interface Protection Trip: No 
Proposed Windfarm Interface Protection Trip: No 

Voltage Windfarm PCC (38kV)

Time (seconds)
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Fault Location: Substation F (Node 401) 
Existing Windfarm Interface Protection Trip: Yes 
Proposed Windfarm Interface Protection Trip: Yes 

Voltage Windfarm PCC (38kV)

Time (seconds)
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Loss of Mains Event 

Scenario 1: Loss of 110/38kV substation  

 
Details: 
Results: Summer Night Valley  
Wind Farm Output: 15% 
Existing Windfarm Interface Protection Trip: Yes 
Proposed Windfarm Interface Protection Trip: Yes 
Comments: Simulation Unstable 

 
Results: Summer Night Valley  
Wind Farm Output: 100% 
Existing Windfarm Interface Protection Trip: Yes 
Proposed Windfarm Interface Protection Trip: Yes 
Comments: Simulation Stable 

Voltage Windfarm 38kV (PCC)

1 - VOLT    701 [WINDFARM PCC38.000] : 100_Loss_110kVgfedcb
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Frequency Windfarm 38kV (PCC)

50*(1+A) : 100_Loss_110kVgfedcb
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Results: Winter Peak  
Wind Farm Output: 15% 
Existing Windfarm Interface Protection Trip: Yes 
Proposed Windfarm Interface Protection Trip: Yes 
Comments: Simulation Unstable 

 

 
Results: Winter Peak  
Wind Farm Output: 100% 
Existing Windfarm Interface Protection Trip: Yes 
Proposed Windfarm Interface Protection Trip: Yes 
Comments: Simulation Unstable 
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Scenario 2: Loss of 110/38kV substation + 38kV feeder 

(Substation B –C) 

 
Details: 
Results: Summer Night Valley  
Wind Farm Output: 15% 
Existing Windfarm Interface Protection Trip: Yes 
Proposed Windfarm Interface Protection Trip: Yes 
Comments: Simulation Unstable 

 
Results: Summer Night Valley  
Wind Farm Output: 100% 
Existing Windfarm Interface Protection Trip: Yes 
Proposed Windfarm Interface Protection Trip: Yes 
Comments: Simulation Stable 

Voltage Windfarm PCC (38kV)

1 - VOLT    701 [WINDFARM PCC38.000] : Scenario2gfedcb
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Frequency Windfarm PCC (38kV)

50*(1+A) : Scenario2gfedcb
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Results: Winter Peak  
Wind Farm Output: 15% 
Existing Windfarm Interface Protection Trip: Yes 
Proposed Windfarm Interface Protection Trip: Yes 
Comments: Simulation Unstable 

 

 
Results: Winter Peak  
Wind Farm Output: 100% 
Existing Windfarm Interface Protection Trip: Yes 
Proposed Windfarm Interface Protection Trip: Yes 
Comments: Simulation Unstable 
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Scenario 3: Loss of 110/38kV substation + (110/38KV 

Substation – C) 

 
Details: 
Results: Summer Night Valley  
Wind Farm Output: 15% 
Existing Windfarm Interface Protection Trip: Yes 
Proposed Windfarm Interface Protection Trip: Yes 
Comments: Simulation Stable 

Voltage Windfarm PCC (38kV)

2 - VOLT    701 [WINDFARM PCC38.000] : Scenario3gfedcb
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Frequency Windfarm PCC (38kV)

50*(1+A) : Scenario3gfedcb
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Results: Summer Night Valley  
Wind Farm Output: 100% 
Existing Windfarm Interface Protection Trip: Yes 
Proposed Windfarm Interface Protection Trip: Yes 
Comments: Simulation Stable 

Voltage Windfarm PCC (38kV)

1 - VOLT    701 [WINDFARM PCC38.000] : Scenario3gfedcb
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Frequecny Windfarm PCC (38kV)

50*(1+A) : Scenario3gfedcb

Time (seconds)

543210

F
re

q
u

e
n

c
y
 (

H
z
)

52.25

52

51.75

51.5

51.25

51

50.75

50.5

50.25

50

49.75

 



187 

Results: Winter Peak  
Wind Farm Output: 15% 
Existing Windfarm Interface Protection Trip: Yes 
Proposed Windfarm Interface Protection Trip: Yes 
Comments: Simulation Unstable 

 

 
Results: Winter Peak  
Wind Farm Output: 100% 
Existing Windfarm Interface Protection Trip: Yes 
Proposed Windfarm Interface Protection Trip: Yes 
Comments: Simulation Unstable 
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Scenario 4: Loss of 110/38kV substation + (110/38KV 

Substation – D) 

 
Details: 
Results: Summer Night Valley  
Wind Farm Output: 15% 
Existing Windfarm Interface Protection Trip: Yes 
Proposed Windfarm Interface Protection Trip: Yes 
Comments: Simulation Stable 

Voltage Windfarm PCC (38kV)

1 - VOLT    701 [WINDFARM PCC38.000] : Scenario4gfedcb
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Frequecny Windfarm PCC (38kV)

50*(1+A) : Scenario4gfedcb
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Results: Summer Night Valley  
Wind Farm Output: 100% 
Existing Windfarm Interface Protection Trip: Yes 
Proposed Windfarm Interface Protection Trip: Yes 
Comments: Simulation Stable 

Voltage Windfarm PCC (38kV)

1 - VOLT    701 [WINDFARM PCC38.000] : Scenario4gfedcb
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Frequency Windfarm PCC (38kV)

50*(1+A) : Scenario4gfedcb
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Results: Winter Peak  
Wind Farm Output: 15% 
Existing Windfarm Interface Protection Trip: Yes 
Proposed Windfarm Interface Protection Trip: Yes 
Comments: Simulation Unstable 

 

 
Results: Winter Peak  
Wind Farm Output: 100% 
Existing Windfarm Interface Protection Trip: Yes 
Proposed Windfarm Interface Protection Trip: Yes 
Comments: Simulation Stable 

Voltage Windfarm PCC (38kV)

1 - VOLT    701 [WINDFARM PCC38.000] : Scenario4gfedcb
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Frequency Windfarm PCC (38kV)

50*(1+A) : Scenario4gfedcb
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Scenario 5: Loss of 110/38kV substation + (110/38KV 

Substation – F) 
 

Details: 

Results: Summer Night Valley  
Wind Farm Output: 15% 
Existing Windfarm Interface Protection Trip: Yes 
Proposed Windfarm Interface Protection Trip: Yes 
Comments: Simulation Stable 

Voltage Windfarm PCC (38kV)

1 - VOLT    701 [WINDFARM PCC38.000] : Scenario5gfedcb
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Frequency Windfarm PCC (38kV)

50*(1+A) : Scenario5gfedcb
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Results: Summer Night Valley  
Wind Farm Output: 100% 
Existing Windfarm Interface Protection Trip: Yes 
Proposed Windfarm Interface Protection Trip: Yes 
Comments: Simulation Stable 

Voltage Windfarm PCC (38kV)

1 - VOLT    701 [WINDFARM PCC38.000] : Scenario5gfedcb

Time (seconds)

543210

V
o

lt
a
g

e
 (

p
u

)

1.06

1.05

1.04

1.03

1.02

1.01

1

0.99

0.98

0.97

0.96
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Frequency Windfarm PCC (38kV)

50*(1+A) : Scenario5gfedcb

Time (seconds)

543210

F
re

q
u

e
n

c
y
 (

H
z
)

54.5

54

53.5

53

52.5

52

51.5

51

50.5

50

49.5
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Results: Winter Peak  
Wind Farm Output: 15% 
Existing Windfarm Interface Protection Trip: Yes 
Proposed Windfarm Interface Protection Trip: Yes 
Comments: Simulation Stable 

Voltage Windfarm PCC (38kV)

1 - VOLT    701 [WINDFARM PCC38.000] : Scenario5gfedcb

Time (seconds)

543210

V
o

lt
a
g

e
 (

p
u

)

1.2

1.15

1.1

1.05

1

0.95

0.9

0.85

0.8

0.75

0.7

0.65
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Frequency Windfarm PCC (38kV)

50*(1+A) : Scenario5gfedcb

Time (seconds)

543210

F
re

q
u

e
n

c
y
 (

H
z
)

50.1

50

49.9

49.8

49.7

49.6

49.5

49.4

49.3

49.2

49.1
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Results: Winter Peak  
Wind Farm Output: 100% 
Existing Windfarm Interface Protection Trip: Yes 
Proposed Windfarm Interface Protection Trip: Yes 
Comments: Simulation Stable 

Voltage Windfarm PCC (38kV)

1 - VOLT    701 [WINDFARM PCC38.000] : Scenario5gfedcb

Time (seconds)

107.552.50

V
o

lt
a
g

e
 (

p
u

)

1.1

1.075

1.05

1.025

1

0.975

0.95

0.925

0.9

0.875

0.85
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Frequency Windfarm PCC (38kV)

50*(1+A) : Scenario5gfedcb

Time (seconds)

107.552.50

F
re

q
u

e
n

c
y
 (

H
z
)

52.5

52.25

52

51.75

51.5

51.25

51

50.75

50.5

50.25

50
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Scenario 6: Loss of 110/38kV substation + 38kV feeder 

(Substation D – E) 

 
Details: 
Results: Summer Night Valley  
Wind Farm Output: 15% 
Existing Windfarm Interface Protection Trip: Yes 
Proposed Windfarm Interface Protection Trip: Yes 
Comments: Simulation Stable 

Voltage Windfarm PCC (38kV)

1 - VOLT    701 [WINDFARM PCC38.000] : Scenario6gfedcb

Time (seconds)

543210

V
o

lt
a
g

e
 (

p
u

)

1.1

1.05

1

0.95

0.9

0.85

0.8

0.75

0.7

0.65

0.6

0.55
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Frequency Windfarm PCC (38kV)

50*(1+A) : Scenario6gfedcb

Time (seconds)

543210

F
re

q
u

e
n

c
y
 (

H
z
)

50.75

50.5

50.25

50

49.75

49.5

49.25

49

48.75

48.5

48.25
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Results: Summer Night Valley  
Wind Farm Output: 100% 
Existing Windfarm Interface Protection Trip: Yes 
Proposed Windfarm Interface Protection Trip: Yes 
Comments: Simulation Stable 

Voltage Windfarm PCC (38kV)

1 - VOLT    701 [WINDFARM PCC38.000] : Scenario6gfedcb

Time (seconds)

543210

V
o

lt
a
g

e
 (

p
u

)

1.2

1.15

1.1

1.05

1

0.95

0.9

0.85

0.8

0.75

0.7
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Frequency Windfarm PCC (38kV)

50*(1+A) : Scenario6gfedcb

Time (seconds)

543210

F
re

q
u

e
n

c
y
 (

H
z
)

52.25

52

51.75

51.5

51.25

51

50.75

50.5

50.25

50

49.75
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Winter Peak Results 
Results: Winter Peak  
Wind Farm Output: 15% 
Existing Windfarm Interface Protection Trip: Yes 
Proposed Windfarm Interface Protection Trip: Yes 
Comments: Simulation Unstable 

 

 
Results: Winter Peak  
Wind Farm Output: 100% 
Existing Windfarm Interface Protection Trip: Yes 
Proposed Windfarm Interface Protection Trip: Yes 
Comments: Simulation Unstable 
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Scenario 7: Loss of 110/38kV substation + 38kV feeder 

(Substation F – Wind Farm) 
Details: 
Results: Summer Night Valley  
Wind Farm Output: 15% 
Existing Windfarm Interface Protection Trip: Yes 
Proposed Windfarm Interface Protection Trip: Yes 
Comments: Simulation Stable 

Voltage Windfarm PCC (38kV)

1 - VOLT    701 [WINDFARM PCC38.000] : Scenario7gfedcb

Time (seconds)

543210

V
o

lt
a
g

e
 (

p
u

)

1.05

1.045

1.04

1.035

1.03

1.025

1.02

1.015

1.01

1.005

1
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Frequency Windfarm PCC (38kV)

50*(1+A) : Scenario7gfedcb

Time (seconds)

543210

F
re

q
u

e
n

c
y
 (

H
z
)

51

50.9

50.8

50.7

50.6

50.5

50.4

50.3

50.2

50.1

50
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Details: 
Results: Summer Night Valley  
Wind Farm Output: 100% 
Existing Windfarm Interface Protection Trip: Yes 
Proposed Windfarm Interface Protection Trip: Yes 
Comments: Simulation Stable 

Voltage Windfarm PCC (38kV)

1 - VOLT    701 [WINDFARM PCC38.000] : Scenario7gfedcb

Time (seconds)

543210

V
o

lt
a
g

e
 (

p
u

)

1.11

1.1

1.09

1.08

1.07

1.06

1.05

1.04

1.03

1.02

1.01
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Frequency Windfarm PCC (38kV)

50*(1+A) : Scenario7gfedcb

Time (seconds)

543210

F
re

q
u

e
n

c
y
 (

H
z
)

54.5

54

53.5

53

52.5

52

51.5

51

50.5

50

49.5

 
 



211 

Results: Winter Peak  
Wind Farm Output: 15% 
Existing Windfarm Interface Protection Trip: Yes 
Proposed Windfarm Interface Protection Trip: Yes 
Comments: Simulation Stable 

Voltage Windfarm PCC (38kV)

1 - VOLT    701 [WINDFARM PCC38.000] : Scenario7gfedcb

Time (seconds)

543210

V
o

lt
a
g

e
 (

p
u

)

1.02

1.015

1.01

1.005

1

0.995

0.99

0.985

0.98

0.975

0.97
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Frequency Windfarm PCC (38kV)

50*(1+A) : Scenario7gfedcb

Time (seconds)

543210

F
re

q
u

e
n

c
y
 (

H
z
)

51

50.9

50.8

50.7

50.6

50.5

50.4

50.3

50.2

50.1

50
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Results: Winter Peak  
Wind Farm Output: 100% 
Existing Windfarm Interface Protection Trip: Yes 
Proposed Windfarm Interface Protection Trip: Yes 
Comments: Simulation Stable 

Voltage Windfarm PCC (38kV)

1 - VOLT    701 [WINDFARM PCC38.000] : Scenario7gfedcb

Time (seconds)

543210

V
o

lt
a
g

e
 (

p
u

)

1.11

1.1

1.09

1.08

1.07

1.06

1.05

1.04

1.03

1.02

1.01
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Frequency Windfarm PCC (38kV)

50*(1+A) : Scenario7gfedcb

Time (seconds)

543210

F
re

q
u

e
n

c
y
 (
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z
)

54.5

54

53.5

53

52.5

52

51.5

51

50.5

50

49.5
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J PSS/E Relay Documentation 



216 
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K ROCOF Protection Operation 



219 

Scenario 1 Loss of 110/38kV substation    

        

Summer Valley 15% Wind Farm Output    100% Wind Farm Output 

ROCOF PROTECTION     ROCOF PROTECTION   

          

Pload 23.5   Pload 23.5 

          

Pgen 3   Pgen 30 

          

H 4.95   H 4.95 

          

MW MACHINE 3   MW MACHINE 30 

          

ROCOF 34.51178451   ROCOF -1.094276094 

          

FREQUENCY 50   FREQUENCY 50 

        

Winter Peak 15% Wind Farm Output    100% Wind Farm Output 

ROCOF PROTECTION     ROCOF PROTECTION   

          

Pload 48.3   Pload 48.3 

          

Pgen 3   Pgen 30 

          

H 4.95   H 4.95 

          

MW MACHINE 3   MW MACHINE 30 

          

ROCOF 76.26262626   ROCOF 3.080808081 

          

FREQUENCY 50     FREQUENCY 50 



220 

Scenario 2 Loss of 110/38kV substation + Feeder B - C 
        

Summer Valley 15% Wind Farm Output    100% Wind Farm Output 

ROCOF PROTECTION     ROCOF PROTECTION   

          

Pload 20.6   Pload 20.6 

          

Pgen 3   Pgen 30 

          

H 4.95   H 4.95 

          

MW MACHINE 3   MW MACHINE 30 

          

ROCOF 29.62962963   ROCOF -1.582491582 

          

FREQUENCY 50   FREQUENCY 50 

        

Winter Peak 15% Wind Farm Output    100% Wind Farm Output 

ROCOF PROTECTION     ROCOF PROTECTION   

          

Pload 42.6   Pload 42.6 

          

Pgen 3   Pgen 30 

          

H 4.95   H 4.95 

          

MW MACHINE 3   MW MACHINE 30 

          

ROCOF 66.66666667   ROCOF 2.121212121 

          

FREQUENCY 50     FREQUENCY 50 
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Scenario 3 Loss of 110/38kV substation + Feeder B 
        

Summer Valley 15% Wind Farm Output    100% Wind Farm Output 

ROCOF PROTECTION     ROCOF PROTECTION   

          

Pload 17.5   Pload 17.5 

          

Pgen 3   Pgen 30 

          

H 4.95   H 4.95 

          

MW MACHINE 3   MW MACHINE 30 

          

ROCOF 24.41077441   ROCOF -2.104377104 

          

FREQUENCY 50   FREQUENCY 50 

        

Winter Peak 15% Wind Farm Output    100% Wind Farm Output 

ROCOF PROTECTION     ROCOF PROTECTION   

          

Pload 36.3   Pload 36.3 

          

Pgen 3   Pgen 30 

          

H 4.95   H 4.95 

          

MW MACHINE 3   MW MACHINE 30 

          

ROCOF 56.06060606   ROCOF 1.060606061 

          

FREQUENCY 50     FREQUENCY 50 
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Scenario 4 Loss of 110/38kV substation + Feeder D 
        

Summer Valley 15% Wind Farm Output    100% Wind Farm Output 

ROCOF PROTECTION     ROCOF PROTECTION   

          

Pload 12.3   Pload 12.3 

          

Pgen 3   Pgen 30 

          

H 4.95   H 4.95 

          

MW MACHINE 3   MW MACHINE 30 

          

ROCOF 15.65656566   ROCOF -2.97979798 

          

FREQUENCY 50   FREQUENCY 50 

        

Winter Peak 15% Wind Farm Output    100% Wind Farm Output 

ROCOF PROTECTION     ROCOF PROTECTION   

          

Pload 24.8   Pload 24.8 

          

Pgen 3   Pgen 30 

          

H 4.95   H 4.95 

          

MW MACHINE 3   MW MACHINE 30 

          

ROCOF 36.7003367   ROCOF -0.875420875 

          

FREQUENCY 50     FREQUENCY 50 
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Scenario 5 Loss of 110/38kV substation + Feeder F 
        

Summer Valley 15% Wind Farm Output    100% Wind Farm Output 

ROCOF PROTECTION     ROCOF PROTECTION   

          

Pload 6.4   Pload 6.4 

          

Pgen 3   Pgen 30 

          

H 4.95   H 4.95 

          

MW MACHINE 3   MW MACHINE 30 

          

ROCOF 5.723905724   ROCOF -3.973063973 

          

FREQUENCY 50   FREQUENCY 50 

        

Winter Peak 15% Wind Farm Output    100% Wind Farm Output 

ROCOF PROTECTION     ROCOF PROTECTION   

          

Pload 12.8   Pload 12.8 

          

Pgen 3   Pgen 30 

          

H 4.95   H 4.95 

          

MW MACHINE 3   MW MACHINE 30 

          

ROCOF 16.4983165   ROCOF -2.895622896 

          

FREQUENCY 50     FREQUENCY 50 
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Scenario 6 Loss of 110/38kV substation + Feeder D - E 
        

Summer Valley 15% Wind Farm Output    100% Wind Farm Output 

ROCOF PROTECTION     ROCOF PROTECTION   

          

Pload 19.1   Pload 19.1 

          

Pgen 3   Pgen 30 

          

H 4.95   H 4.95 

          

MW MACHINE 3   MW MACHINE 30 

          

ROCOF 27.1043771   ROCOF -1.835016835 

          

FREQUENCY 50   FREQUENCY 50 

        

Winter Peak 15% Wind Farm Output    100% Wind Farm Output 

ROCOF PROTECTION     ROCOF PROTECTION   

          

Pload 38.4   Pload 38.4 

          

Pgen 3   Pgen 30 

          

H 4.95   H 4.95 

          

MW MACHINE 3   MW MACHINE 30 

          

ROCOF 59.5959596   ROCOF 1.414141414 

          

FREQUENCY 50     FREQUENCY 50 
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Scenario 7 Loss of 110/38kV substation + Feeder F - Wind farm 
        

Summer Valley 15% Wind Farm Output    100% Wind Farm Output 

ROCOF PROTECTION     ROCOF PROTECTION   

          

Pload 0   Pload 0 

          

Pgen 3   Pgen 30 

          

H 4.95   H 4.95 

          

MW MACHINE 3   MW MACHINE 30 

          

ROCOF -5.050505051   ROCOF -5.050505051 

          

FREQUENCY 50   FREQUENCY 50 

        

Winter Peak 15% Wind Farm Output    100% Wind Farm Output 

ROCOF PROTECTION     ROCOF PROTECTION   

          

Pload 0   Pload 0 

          

Pgen 3   Pgen 30 

          

H 4.95   H 4.95 

          

MW MACHINE 3   MW MACHINE 30 

          

ROCOF -5.050505051   ROCOF -5.050505051 

          

FREQUENCY 50     FREQUENCY 50 
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