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Nomenclature
Symbol Description SI units
abs. absolute
A area m?
a acceleration ms™~?
c specific heat Jkg 'K?
capacity
const. constant
COP coefficient of
performance
d diameter m
E energy J
Eqump pump overall
efficiency
E volumetric
efficiency
Ey thermal efficiency
E., energy input rate W
e specific energy Jkg™!
F force N
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Nomenclature

Symbol Description SI units
f function
g acceleration due to  ms™2
gravity
h specific enthalpy Jkg™*
L length dimension
M mass dimension
m mass kg
m molar mass kgmol
m mass flow rate kgs™t
N amount of
substance
dimension
n polytropic
exponent
(or index)
n amount of mol
substance
p pressure Nm™2 or Pa
o heat transfer J
0 heat transfer rate "
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Nomenclature

Symbol Description SI units

q heat transfer per Jkg!
unit mass

R specific gas Jkg 'K
constant

R universal gas Jmol *K™!
constant

r ratio

S entropy JK™!

s specific entropy Jkg 'K

s displacement m

SI (Systeme
International),
International
System

T time dimension

T absolute K
temperature

t conventional °C
temperature

7 time S

TEV thermostatic

expansion valve
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Nomenclature

Symbol Description SI units

U internal energy J

u specific internal Jkg™!
energy

vV velocity ms~1

v, velocity at position m s~
n

v volume m?

v volume flow rate m3s~!

v specific volume m’kg~!
work J
power, rate of work W

w work per unit mass  Jkg™!

X dryness fraction

X arbitrary variable

y arbitrary variable

z elevation m

Greek letters

y adiabatic index (gamma)
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Symbol Description SI units
A indicates an (uppercase
increment of the delta)

following variable
e.g. Ayisa
difference between

two values of y

o indicates a small (lowercase
amount of the delta)
following variable
e.g. 00 is a small

amount of heat

transfer

C) temperature (uppercase
dimension theta)

0 angle rad (lowercase

theta)

p density kgm™3 (rho)

Subscripts

adiab adiabatic

avg average

cl clearance

comp compressor

cond condenser
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Nomenclature

Symbol Description SI units

const constant

elec electrical

evap evaporator

f saturated liquid

fg increment from
saturated liquid to
dry saturated
vapour

g dry saturated
vapour

gauge identifies a gauge
pressure

H higher temperature
reservoir

horiz horizontal

L lower temperature
reservoir

ind induced

k kinetic

p potential

re re-expansion

Xi
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Nomenclature

Symbol Description SI units
refr refrigerant

refrig refrigeration

S saturation

s/h superheat

SW swept

turb turbine

vol volumetric

w water
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Preface

Applied Energy Systems modules have developed and evolved at the
Dublin Institute of Technology (DIT) within the framework of the
Bachelor of Engineering Technology degree and the programmes that
preceded it. The present work is a textbook for such a module
addressing rudimentary thermodynamics. Specifically, it is an
introduction to the thermodynamics of incompressible matter, ideal
gases, steam power cycles and refrigeration cycles. To allow for
learners of diverse backgrounds, the level of mathematics is kept
simple. The book does not attempt to cover the principles of
thermodynamics comprehensively. Rather, it provides a practical but
theoretically sound foundation, linked to some key areas. Some
familiarity with laws of mechanics and principles of physics and
chemistry is assumed. Any gaps in knowledge can be filled on a need-

to-know basis by using the Internet or a library.

‘Energy’ is often very topical. There is a widespread appreciation that
energy must be used efficiently and a general willingness to make use
of all forms of energy that are renewable and sustainable. Likewise
there is a general desire to avoid, where possible, making use of forms
of energy that are finite (i.e. already stored in limited quantities on the
planet Earth) or that damage the environment when they are used. The
underlying principles and scientific knowledge relating to energy
utilization are common, whether energy is being used well or
ineffectively and irrespective of the source of the energy. This present

work fits into that general picture.

We live in an environment where air is always present. The same air
plays a central role in many of the energy conversion processes used by
mankind: from wind power, to boilers for space or process heating, to
fuel-fired power plants, to air-conditioning in buildings or vehicles. An
understanding of the energy-related properties of air is therefore

essential to Applied Energy Systems. Water can exist in solid, liquid

xiii
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and vapour forms and it too plays a central role in many energy
conversion processes: the steam power cycle continues to be highly
important. Refrigeration cycles that involve a two-phase fluid, such as
refrigerant 134a, are further good examples of how thermodynamics is
employed in the service of mankind. The selection of topics treated in
this textbook is sufficient for learners to appreciate the significance of
thermodynamics and to apply it in a useful range of situations. In this
way they are prepared for applying the same and similar principles to a

much broader range of practical applications in the future.

Learners who have ambition to work with the most exciting and
innovative ways of harnessing energy will find that what they learn
through taking an Applied Energy Systems module in Rudimentary
Thermodynamics will serve them well. Of course, not all applied
technologists work at the forefront of technological development and
innovation. The everyday work of society must go on. If that work
touches upon energy conversions involving heat, work and the
properties of substances in any way, the learner will find that their
learning within the scope of such a module will have been relevant and
worthwhile. However, the relevance of a module of this type is
significantly broader yet. In common with other modules on an
engineering programme, it involves engineering units (specifically the
SI system) and important and generic engineering approaches such as
experimentation, measurement, representation of practical problems in
mathematical form, teamwork and communication. Learners are
encouraged to make use of the Internet and library services for
additional and supplementary information. They are also encouraged to
discuss the topics among themselves and to participate as teams in

performing associated laboratory assignments.

Xiv
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Chapter 1 Quantities, Units and
Dimensions

Key Quantities in Thermodynamics

The word energy is part of everyday language, so most people have a
good grasp of what it means. That everyday meaning might be
encapsulated by a phrase such as ‘the capacity to bring about change’.
For engineers and scientists, energy is quantified in terms of a

mechanical effect that can be brought about, called work.

Work

Work is readily visualized as the occurrence wherein a force is applied
to an object (e.g. a pebble) that undergoes a movement or displacement
along the line of action of the force. If there is no displacement along

the line of action of the force, there is no work, i.e. the work is zero.

Equally well, work can be visualized as the occurrence wherein an
object undergoes a displacement while a force is applied to it along the
line of the displacement. If there is no force acting along the line of the

displacement, the work is zero.

F s

N —
7 7

Figure 1-1 Work, where the point of action of force F

moves through a displacement s, which is collinear with F.

Figure 1-2 Work, where the point of action of force F

moves through a displacement s, which is at an angle 6 to F.
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Force and displacement are both vector quantities, i.e. each has a
magnitude and a direction. If the force F and the displacement s are in
the same direction, as shown in Figure 1-1, then the work Wis simply

the product of the two magnitudes, i.e. W= Fs.

For a force at an angle to a displacement, as represented in Figure 1-2,

the work is given by

W= Fscos @
(I-1)
where
w = work J
F = force N
s = displacement m
0 = angle rad

In Equation (1-1) the expression s cos 8 represents the component of the
displacement s in the direction of the force F. Similarly, Fcos 8
represents the component of the force F in the direction of the
displacement s. If the angle 6 is zero, cos@ equals 1 and the work
equals F's. If the angle 0 is /2 or 90°, cos 6 equals O and the work is

ZET10.

While the ST unit for angle is the radian, many calculators, by default,
require the angle to be entered in degrees in evaluating trigonometric

functions such as cos.

It is important to grasp that work is transient and exists only while it is
occurring. Work is said to be done on an object when a force acts on
the object and there is a displacement (or component of displacement)
of the object in the same direction. Work is done by an object when the
object exerts a force and moves (or has a component of displacement)

in the direction of the force. The SI unit for work is the newton metre
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(Nm), which is known as the joule (J). Work is not a property of an

object, or of matter.

Example 1-1 Work on a Bogie

A constant horizontal force of 113 N is applied to push a loaded bogie
up an inclined plane that is at an angle of 15° to the horizontal. What
amount of work is done by the force if the distance travelled along the

plane is 25 m?

Solution
25 m

113N

 ———

15°

The distance travelled in the direction of the force is given by

=scos § =25[m]cosl5°=24.15m

Shoriz
Hence,

W =113 [N] x 24.15 [m] = 2729 ]

Energy

Energy is the capacity to do work, i.e. to apply a force (in newtons)
through a distance (in metres). The unit of energy is therefore the same
as the unit of work, the newton metre, Nm, or the joule, J. While work
is transient, the capacity to do work, known as energy, endures and can
be passed or transferred from one system to another. An object or
system or amount of matter can possess energy in various ways. Energy

is thus a property of an object, a system or an amount of matter.

Kinetic Energy

A speeding bullet or a speeding train has kinetic energy associated with
its velocity. Part or all of that kinetic energy can be used to do

mechanical work. Kinetic energy is calculated as
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mV?
E, =2
K72
(1-2)
where
E, = kinetic energy J
m = mass kg
V = velocity ms~!
Potential Energy

mass m

o
vl

Figure 1-3 Diagram to illustrate potential energy of

a boulder on a cliff.

A boulder on the top of a cliff, Figure 1-3, can be allowed to fall through
a height in the Earth’s gravitational field, thereby acquiring kinetic
energy, which could be used to do mechanical work. Alternatively, by
means of a rope and pulley system, the lowering of the boulder could
be used to raise another object. The capacity for doing work that the
boulder has due to its elevation is known as gravitational potential

energy (or ‘potential energy’ for short).

Potential energy is calculated as

Ep =mgz
(1-3)
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where

E, = potential energy J

m = mass kg

z = elevation m

g = acceleration due to gravity — ms™>
Strain Energy

A coil spring may possess energy due to the fact that it has been pre-
compressed or pre-extended. Mechanical work could be done as the
spring returns to its original length. Such energy can be described as

strain energy.

Internal Energy

Solids, liquids and gases possess energy, known as internal energy,
which 1s associated with translation, rotation or vibration of the
molecules or sub-molecular constituents that comprise matter and with
the attractive or repulsive forces that bind matter together or determine
its atomic and molecular level arrangement and configuration. While
kinetic energy, potential energy or strain energy are fully available for
the production of mechanical work at the macroscopic level, the
availability of internal energy is more restricted, as there is no practical
means of extracting all of the random energy possessed by individual
molecules or sub-molecular constituents and converting it directly to

macroscopic work.

For a given molecular configuration of matter (e.g. solid, liquid or gas)
the internal energy increases with temperature. In other words, for a
known substance as a solid, liquid or gas, the temperature is an indicator

of the amount of internal energy possessed by the substance.

Both temperature and internal energy are properties that a system or an

amount of matter can possess. Thus, internal energy is a property that
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characterizes the capacity of a system or an amount of matter to do work

(whether at the sub-molecular, molecular or macroscopic level).

Heat

The word ‘heat’ as used by scientists and engineers in technical contexts
has a more restricted and precise meaning than the same word as used
in everyday language. The important aspect to grasp is that heat in the
technical sense is energy transfer across a boundary due to a
temperature difference between matter on one side of the boundary and
matter on the other side of the boundary. There is no technical

difference between ‘heat’ and ‘heat transfer’.

Heat transfer can occur between objects or systems that are separated
by a vacuum—this is how the Earth receives energy from the Sun. Such

heat transfer is known as radiant heat transfer, or radiation.

Heat transfer can also occur by direct contact between objects or
systems, or amounts of substance. This is known as conduction. Where
the conduction is also accompanied by relative movement between a
solid and a fluid, or by differential velocities within a fluid, the heat

transfer is described as convection.

Thus, whether the mode of heat transfer is radiation, conduction or
convection, heat is the occurrence of energy transfer due to temperature
difference. Heat is not a property of a system or of matter. Also, in the

technical sense, heat is not something that can be possessed by matter.

In principle, the temperature difference may be extremely small, but
heat, or heat transfer, cannot occur if there is no temperature difference
between the ‘source’ and the ‘sink’ of internal energy i.e. the region that

loses energy and the region that gains energy by heat transfer.

Frictional or Stirring Work

It is well known that friction causes a local increase in temperature. This
occurs where one surface slides over another. For instance, a moving

brake disc in a car slides over a fixed brake pad. Friction also occurs
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when mechanical energy is used to stir or mix a fluid. Thus, mechanical
work can cause a direct increase in internal energy. The addition of
energy to matter by surface friction or fluid friction is a one-way
process: the energy transferred to the matter becomes random atomic
and molecular level energy of the matter and there is no direct way that
that energy can be ‘organized’ so that it yields back a work output, as if

the original frictional work interaction had never taken place.

Figure 1-4 is a schematic representation of a device of the type
originally used by James Prescott Joule for a famous experiment. The
falling weight does work on the system due to fluid friction between the

moving paddles and the fixed blades. The internal energy of the water

Shaft with Pulley
cord roller \ﬁg
O
Water \ | I |

q
Insulation ——— | || /_I,, |
|

is thereby increased.

Moving paddles 4:1_ | Weight
Fixed blades i1 A

S | |

Figure 1-4 Work input causing an increase in internal energy.

Units

Table 1-1 lists SI and some non-SI units that are used in this text. A
physical quantity such as an amount of heat transfer Q is represented as
a pure number, such as 736, multiplied by a unit, such as kJ (kilojoule).
Hence, an amount of heat transfer might be written as 736 kJ. If we

divide the heat transfer by its unit we are left with just the pure number:
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(0] _ 736 [KJ]

=736
(kJ] [kJ]

The same physical quantity may be expressed in terms of different
units, for instance the Joule or the kJ for heat transfer. The relationship
between different units for the same quantity can be expressed as an

equation such as

1 kJ = 1000 joule.

Hence
joule
1 =1000
and
1=1073- K
joule

The right hand sides of the previous two equations are examples of
conversion factors between different units. Table C-2, Appendix C, lists

some common SI prefixes.

The ST unit for angle is the radian (abbreviation rad). The relationships

between the degree (°) and the radian are

27 rad = 360°

Energy Conservation
The principle of conservation of energy states that energy is conserved,
i.e. it can be transformed from one form to another, but cannot be

created or destroyed.

First Law of Thermodynamics

The first law of thermodynamics states that if a system has undergone

no net change after heat transfer and work interactions have taken place
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then the sum of the net heat transfer into the system plus the net work
done on the system must be zero. It is a statement that recognizes that
work and heat transfer are both forms of energy transfer and that energy

18 conserved.

Dimensions

Of all the physical quantities that are encountered, the units for these
quantities are made up of five fundamental types of units, or
dimensions. Symbols can be used to represent these fundamental unit
types (or dimensions) as follows: mass M, length L, time T, temperature
® and amount of substance N. Acceleration would have the
fundamental units LT~2. From Newton’s second law' it can be deduced
that force has the fundamental units MLT 2. Pressure would therefore
have the fundamental units MLT_ZL_Z, which is equivalent to
ML~ T2,

Table 1-1 Units

Physical SI base unit Other units
quantity
mass kg (kilogram) 1g=10"2kg
tonne:
1t=10%kg
length m (metre) Imm=10"m
1km=10’m

lem=10"2m

time s (second) I min =60 s

1 h =3600s

' See Formulae and Glossary
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Physical SI base unit Other units
quantity
force N (newton) 1kN=10°N

1 MN =10°N
area m? 1em? = 1074 m?

1 mm? = 107% m?2

volume m’ lem® = 1070 m?
1 mm® =10~ m?
litre:
1IL=10"%m?
millilitre:
ImL=10"%m?
pressure Pa (pascal) 1Pa=1Nm™>
1 kPa = 10° Pa
1 MPa = 10° Pa
1 GPa = 10° Pa
1 hPa = 10% Pa
1 bar = 10° Pa
atmosphere:

1 atm = 101,325 Pa

amount of mol (mole) kilomole:

substance 1 kmol = 10> mol

10
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Physical SI base unit Other units

quantity

velocity ms™!

acceleration ms?

density kg m™3

energy, work, Jjoule (=1 Nm) 1kl =107

heat 6

1MJ=10"J

power W(=1JshH 1kW =10"W
1 MW = 10° W
I mW=10"W
1pyW =10"W

conventional or  °C (degree Celsius)

customary

temperature

thermodynamic K (kelvin)

or absolute

temperature

torque (moment) Nm

angle rad o= 2% rad

360
revolution:

1 rev =2xrad

n

1 Quantities, Units, Dimensions
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Physical SI base unit Other units
quantity
angular velocity rads™! revolutions per second:

1r.ps.=2xrads™!

revolutions per minute:

lrpm. = 2z rad s7!

60

angular rad s72
acceleration
volume flow m3s~! I1Ls ' =103 m3s!
rate

0—3

1L min~! = — m?s7!
60

mass flow rate kg s~

Problems

1-1 Indicate which of the following statements are true and which are

false

A A know mass of a specified gas at a specified constant
temperature and constant pressure within a container of a
specified volume possesses internal energy that is
constant.

B Kinetic energy and potential energy at the macroscopic
level can be used directly to produce mechanical work.

C Heat and work are the same because they are both energy
transfer.

D All of the internal energy of a system or substance can be

used directly to produce mechanical work at the

12
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macroscopic scale.
E  Work is a manner or occurrence by which energy can
leave an amount of substance.
F Ice has less heat than liquid water.
1 kg of compressed air at ambient temperature has more
work than 1 kg of air at ambient temperature and pressure.
H Heat transfer is a manner or occurrence by which energy

can enter a system.

1-2  Match the physical quantities on the left with the base SI units on

1-3

the right.
Physical quantity SI base units
A power 1 m’kg™!
B volume per unit mass 2 K
C angle 3 °C
D energy per unit mass 4 mol
E temperature (absolute) 5  Jkg!
F  volume 6 m’s!
G pressure 7 rad
H volume flow rate 8 kgm™
I density 9 PaorNm™
J  mass flow rate 10 WorNms™!
K mass 11 kgs™!
L amount of substance 12 kg
M temperature 13 m?
(conventional)

Match the symbols in the left column below with the numbers and

units in the right column.

13
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1-4

Symbol Number and unit
A hPa or mbar 1 107 m?
B kPa 2 1,000,000 Pa
C MPa 3 1000J
D bar 4 1000 Pa
E kI 5 10°Pa
F Ml 6 100 Pa
G L orlitre 7 1,000,000 W
H gorgram 8 1000 W
I mL or millilitre or cc 9 10° W
or cubic centimetre
]I MW 10 1,000,000 J
kW 11 1073 kg
L GW or gigawatt 12 107 m?

Match the quantities in the left column below with dimensions in

the right column.

Quantity Dimensions
A pressure 1 ML?>T3
B temperature 2 L}
C volume 3 ML~ T2
D heat transfer 4 LT
E  work per unit time 5 ©
F density 6 MLT?
G acceleration 7 ML>T?
H force 8 ML

14

1 Quantities, Units, Dimensions
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1-5
214 N

30°

A skier advances up a smooth incline due to a pulling force from
a ski tow of 214 N that is at an angle of 30° to the slope, as shown
in the diagram. The skier covers a distance of 150 m up the slope
in 43 seconds. Calculate the work done on the skier by the ski tow

and the rate at which the work is done.

1-6 A mass of 2.3 kg is raised through a height of 3.7 m in the Earth’s
gravitational field and its original velocity of 1.2 m/s is increased

by 1.6 m/s. By how much does the energy of the mass increase?

1-7 A boulder with a mass of 251 kg has fallen off a cliff. It has a
velocity of 15 m/s and is at a height of 60 m from the ground
below. Evaluate its kinetic energy and its potential energy. What
is the maximum of kinetic plus potential energy that the rock

could have when it hits the ground? Explain your answer.

1-8 Is there heat transfer between Venus and Earth and if so what is
its direction? As a (big) simplification assume that Venus, which
is 30% nearer the Sun than the Earth, has a higher effective

temperature for radiation exchange than the Earth.

1-9 A cuckoo clock is powered by an elevated mass of 0.32 kg that
descends 1.60 m in 24 hours. Calculate the average power

provided to the clock in microwatts.

15
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Chapter 2 Properties of Substances

Properties

Substance is matter of a particular chemical composition. Water
substance, H,O, can exist as solid ice, liquid water or as water vapour,
which is also called steam. Within a refrigeration system, a refrigerant
such as R134a, which has the chemical formula C,H,F,, exists as a
liquid and as a vapour. Air is a mixture of gases, principally nitrogen
N, (about 78% by volume) and oxygen O, (about 21% by volume). In
this chapter, information is provided in relation to some important
thermodynamic properties of substances, e.g. pressure, temperature,

volume and mass.

Water and R134a are examples of pure substances, whereas air is a
mixture of pure substances: oxygen, nitrogen, a small amount of argon
and very small amounts of carbon dioxide and other gases. As the
relative amounts of the constituents of air are almost invariant, it can be
regarded as a pseudo-substance for the purposes of engineering
calculations. Most pure substances can exist in three principal phases,

or molecular configurations: solid, liquid and gas (or vapour’).

A system, Figure 2-1, is a region in space, or the content of a real or
virtual container. It is defined by a boundary that encloses volume.
Within a system there may be substances or objects made of matter or
even nothing at all (vacuum). A system can be described by its
properties, some of which may be relevant in relation to energy or
energy-interaction calculations. Such properties are known as

thermodynamic properties.

* A vapour is a gas at a temperature low enough that the substance could also be a
solid-gas mixture or a liquid-gas mixture at the same temperature if the pressure

were high enough.

16
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Piston
7N \
/ \ \
l/ System V' =
/ | :
\ / Gas
> Z -7 : :
Boundary System

Figure 2-1 A general system and a specific example

In thermodynamics, the state of a system or substance is defined by
giving the values of sufficient properties to describe it. For instance, a
system containing just liquid water at a uniform temperature and
pressure could be adequately described by giving the mass of water
present, its temperature and its pressure. As water is a well-documented
substance, all other thermodynamic properties could be determined

from published information, given these three properties.

In general, the thermodynamic properties of a system may vary from
place to place within the system. There may or may not be sufficient
information to describe exactly how these properties vary within the
system. However, if a system is in a special type of state, known as an
equilibrium state, it is relatively easy to describe the thermodynamic

state.

A system is said to be in an equilibrium state if none of its
thermodynamic properties would change if the system were instantly
enclosed by a boundary that prevented energy inputs from its

surroundings and energy outputs to its surroundings.

If a system contains only a pure substance that is in equilibrium, then
the number of independent thermodynamic properties required to
describe the system is usually just three, e.g. mass, pressure and
temperature. However, if the state of a system is described on a basis
that does not depend on its extent or size, two independent properties
are usually sufficient. In this case the independent properties must not

depend on the extent or size of the system. Volume per unit mass

17
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(m?/kg), rather than volume, and internal energy per unit mass (J/kg),
rather than internal energy, are examples of properties that are
independent of the extent or size of a system: any fraction of the system

would have the same properties.

Pressure

Pressure is force exerted per unit area in a direction that is normal to

and towards the area. It is expressed as

_r
P=7%
(2-1)
where
D = pressure Pa
F = force N
A = area m?

Atmospheric pressure is the pressure of the atmosphere, which can be

measured by a barometer.
1 standard atmosphere = 1.01325 x 10° Pa

Gauge pressure is a relative pressure: it i1s the amount by which the

pressure exceeds the pressure of the atmosphere.

Absolute pressure is the true pressure. This term is used when it is
necessary to emphasize that the pressure being referred to is not a
relative pressure, such as gauge pressure, or a differential pressure, such
as the pressure drop across a valve. The lowest possible value of

absolute pressure is zero (in any pressure units).

Unless otherwise stated it will be taken that pressure is absolute
pressure. The pressure that a substance is at is a property of the

substance.

18
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Internal Energy

In this book the symbol U with the unit J (joule) is used to represent
internal energy. For a given substance in a given state, much of this is
kinetic energy associated with the movement of atoms and molecules.
The atoms in solids vibrate and thus have stored energy associated with
the vibrations. In liquids, molecules also have translational kinetic
energy. In gases, molecules have kinetic energy associated with random
translation. Multi-atomic gases also have kinetic energy that is
associated with the rotation of each molecule about its centre of gravity.
The internal energy of a substance also includes energy stored in
association with electrostatic or nuclear forces that bind atoms and
molecules together. Such energy can be released in chemical reactions
or, much less commonly, atomic reactions. Within engineering
thermodynamics it is not usually necessary to quantify, or work with,
the absolute internal energy possessed by a substance and that
magnitude is not important in itself. Rather, it is appropriate and
necessary to calculate changes in internal energy associated with
changes in the state of a substance, or substances. It is common to take
the internal energy per unit mass as zero at a convenient reference state

for each substance.

The ratio of the internal energy of a system or substance to its mass is

known as the specific internal energy, which has the units J/kg.

(2-2)
Typically, in the calculations and problems presented in this book, a
difference in specific internal energy between two states is evaluated,

1.e. the increase from state 1 to state 2 would be written as
Aul_)z = Ll2 — ul.

The specific internal energy difference Au is independent of the
arbitrary reference state at which the specific internal energy is assigned

the value zero.
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Temperature

Temperature is the formal measure of the property that humans sense
as ‘hotness’ or ‘coldness’. Objects that are at higher temperatures will
lose energy to objects that are at lower temperatures if they are allowed
to interact by being brought into contact or by the removal of anything

that could block energy exchange by radiation between them.

The Celsius temperature scale is the everyday or conventional
temperature scale, which has a zero value at the freezing point of water
substance and a value of 100 at its boiling point, where the water is at
atmospheric pressure in both cases. The symbol ¢ will be used to denote

conventional temperature.

Absolute Temperature

In thermodynamics it is often appropriate to make use of an absolute
scale and this is taken to be the definitive temperature scale. No system
or substance can be cooled down to a temperature that is lower than
zero on the absolute scale. At absolute zero the thermal energy of a
system (the part of the internal energy that the system can lose by heat

. 3
transfer) is zero'.

The absolute temperature scale requires one fixed reproducible
temperature for its definition. Fortunately there exists a convenient and
unique temperature, the triple point temperature of water, at which
solid, liquid and vapour phases of water substance can co-exist in
equilibrium. This reproducible reference temperature is used to define
the Kelvin scale of absolute temperature and is assigned the value
273.16 kelvin (273.16 K).

The freezing temperature of water (273.15 K) at standard atmospheric

pressure is slightly lower than the triple point temperature (273.16 K).

* In fact the second law of thermodynamics implies that a refrigeration plant would
require an infinite input of work to cool a finite amount of substance to absolute zero

temperature.
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One deliberate consequence of the way in which the absolute
temperature scale is defined is that one degree of temperature difference
on the conventional scale equals one unit of temperature difference on

the absolute scale.

1 °C temperature difference = 1 K temperature difference

The symbol T will be used to denote absolute temperature and ¢ to
denote conventional temperature. The absolute temperature is got by

adding 273.15 K to the Celsius temperature, €.g.

55 °C is equivalent to (55 + 273.15) K, i.e. 328.15 K.

While using ¢ to represent conventional temperature and 7 to represent
absolute temperature, the following equation can be written as a basis

of converting from one scale to the other.

t =T-273.15 [K]
(2-3)
Volume and Mass

Volume 7° and mass m are two more properties that a system or a
substance can have. The ratio of volume to mass is known as the

specific volume v. It has the units of m>/kg.

(2-4)

Whereas density p is commonly used in fluid mechanics, specific

volume is much more commonly used in thermodynamics.

1
v=-—
)
(2-5)
Amount of Substance

‘Amount of substance’ is a measure and a property of a collection of

specified entities of a substance (or mixture of substances) at the atomic
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or molecular level. The entities would typically be atoms, molecules or
ions (ions are charged atoms or molecules). The SI unit for amount of

substance is the mole, which can be abbreviated to mol.

A mole is an amount of substance with the same number of entities as
there are atoms of carbon 12 in 0.012 kg (i.e. 12 g) of carbon 12. (The
actual number of entities is known as Avogadro’s number, 6.022 X
105 mol_l). The kilomole is often used and is abbreviated to kmol. The
molar mass of carbon 12 is 0.012 kg/mol, which is commonly written
as 12 kg/kmol.

Note that some carbon atoms have a higher molar mass because of
additional neutrons in the nucleus, e.g. carbon 14 has 6 protons and 8

neutrons in its nucleus compared to 6 of each for carbon 12.

For a given substance, the molar mass, m, is the mass per amount of
substance. The SI base unit for molar mass is kg/mol, but in common
usage it is usual to favour either kg/kmol (as in this text) or g/mol. For
instance, oxygen has a molar mass of approximately 32 kg/kmol. The
amount of substance, n, corresponding to a mass of a given substance

can be calculated as follows:

mass
molar mass

_m
T m
(2-6)

Example 2-1 Amount of Substance of CO,

What amount of substance of CO, (in kmol) is present in 55 kg of the

gas? The molar mass can be taken as approximately 44 kg /kmol.

Solution
55 [ke]

= —————=1.25 kmol
44 [kg/kmol]

_m
m
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Incompressible Substances
An incompressible substance is a substance whose volume does not
change when it is subjected to changes in pressure while the
temperature is held constant. Most substances are very nearly
incompressible when in the solid or liquid phase. For example, it would
require a pressure of 22 MPa to reduce the volume of liquid water by
just 1%. For incompressible substances, pressure and temperature can
be varied independently of one another and the main thermodynamic
properties (other than pressure or any property that is defined to include
pressure’) depend only on temperature and are not influenced by
pressure. For most liquids and solids the following approximations
apply:

v~ 1(T)

u = f(T).
That is, as an approximation, the specific volume and the specific

internal energy of a substance that is considered incompressible can be

written as a function of temperature only.

Specific Heat of Incompressible Solids or Liquids

In order to perform calculations that involve changes in internal energy
it is useful to define the specific heat capacity (or specific heat, for

short) of an incompressible substance as follows:

c=Au|
AT |x7g
2-7)
where
c = specific heat JkgK
u = specific internal energy J/kg

* The product of pressure and specific volume puv is itself a property, but it clearly

depends on pressure.
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AT = increase in temperature K

In words, Equation (2-7) states that the specific heat of an
incompressible substance is the ratio of the increase in specific internal
energy to an increase in temperature for a small increase in temperature
(that tends towards zero). The specific heat itself may vary with
temperature, but a mean value over a temperature range can usually be
used for calculation purposes. It follows therefore that the change in the
specific internal energy of an incompressible substance corresponding

to a change in temperature between two states is given by

AMincomp A e cavg(TZ - Tl)
(2-8)
where
Cavg = average specific heat over temperature range
J/kgK

In engineering calculations there are two main options when it is desired
to calculate a difference in specific internal energy between two states
of a solid or liquid substance. The first option is to find the specific
internal energy at the initial and final states, whether from
thermodynamic tables, from an empirical equation or from a software
application. The second option is to use Equation (2-8), which only
requires a value of the specific heat that is applicable for the

temperature range.

Example 2-2 Energy Loss from a Storage Tank

A hot water storage tank in an industrial plant contains 4.63 m? of
water. Over a period of 8 hours at night the temperature of the water
drops by 3.77 K due to heat loss. During that period there is no energy
addition and no flow of water in or out of the tank. Calculate the amount
of energy that is lost from the water and the average rate of heat loss for
the period. Take the specific volume of the water as 0.00103 m>/ kg and
the specific heat as 4.12 kJ /kgK.
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Solution

_ Qloss

From the information provided it can be assumed that the energy loss

comes entirely from a reduction in the internal energy of the water.
Calculate the mass of water.

3
m=ZL o203 _ 4ig5y,
v 0.00103 [m/kg]

Calculate the energy loss.
E = —AU = —mAu = mc(T; — T5)
= 4495 [kg] x 4.12 [kJ/kgK] X 3.77 [K]
= 69.82 x 10° kJ

= 69.8 MJ

Calculate the average rate of heat loss by dividing the energy loss by
the time, 7.

 Eis _ 69.82 x 103 [K]]

) = = = 2.42 kW
Quoss == 8 [h] x 3600 [s/h]

Ideal Gases

Gases are highly compressible and their main thermodynamic
properties depend on pressure and temperature. Just as an
incompressible substance is an idealized but useful representation of
solids and liquids, an 1ideal gas is a relatively uncomplicated

representation of gases.
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The Ideal Gas Equation

Many gases can be modelled as being ideal in the sense that the
relationship between the properties p, 7", m and T can be described by

a simple equation:
p7 = mRT
(2-9)

where R is a constant known as the specific gas constant. This equation
is known as the ideal gas equation and the units of R can be established

by rearranging it as follows:

r=2Z
mT
Hence, the units of R are
Nm2m’ Nm J

or or
kg K kg K kg K

By dividing both sides of Equation (2-9) by m, the ideal gas equation
can also be written as:

pv=RT
(2-10)

The value of R depends on the particular gas, e.g. for air R =
0.2871 kJ/kgK; for helium R = 2.077 kJ/kgK. Data for some selected
ideal gases are listed in Table D-1, Appendix D.

Some Applications

(1) Find the mass of a particular gas (of known R) at known p and T in

a container of known volume.

pY
m=-—
RT
(ii) Find the density of a known gas at a given temperature and pressure.

RT
V= —
p
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Hence

p

1
P=VTRT

(iii) Describe how the pressure of a given mass of gas varies with

volume if the temperature remains constant.
p?" = mRT = constant

Hence

p7" = constant

or
Db &=

@2-11)

This is known as Boyle’s law. For two different states

7= p 7,
or
7, N
71 p

(iv) Describe how the volume of a given mass of gas varies with

temperature if the pressure remains constant.

7" mR
— = —— = constant
T p
Hence
7 xT.

(2-12)

This is known as Charles’ law. For two different states

7, 7,

T, T,
or

7, T,

7, T
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(v) Find the specific gas constant for a known mass of an unknown gas

at known T and p in a container of known volume.

_»7
“mT

R

(vi) If the pressure, volume and temperature of a closed system
containing a gas are known and if two of these properties are changed
while the system remains closed then the third property at the new state

can be found, Figure 2-2.

n7, P77,
=mR =
T, T,

Hence, if p;,7"; and T are known and if p, and T, are also known,

then
128 . 17,

and so

Gas
Gas

Time 1 Time 2

Figure 2-2 A closed system of variable volume at two

different times

It is important to remember that 7" and p are both absolute in the ideal

gas equation.
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Example 2-3 Gas Spring

2 Properties of Substances

VT Piston ( Nitrogen
\ . L

Nitrogen
\ |

\\ Day X: 1.5 MPa abs., 8 °C

Day Y: 26 °C, 7y = 78% 75

On a day when a hospital trolley is in a storeroom where the temperature

is 8 °C a fixed amount of nitrogen within one end of a gas spring on the

trolley is at a pressure of 1.5 MPa. On another day the trolley is in a

hospital ward where the temperature is 26 °C and the gas spring is in a

more compressed state such that the volume of the gas has been reduced

to 78% of what it was at the previously described state. Calculate the

pressure of the nitrogen under the second set of conditions. Assume the

gas spring piston is leak-tight.

Solution

Note that only the volume of nitrogen on the left of the piston is

involved in the problem.

Hence

n7, _

The following are given:

mR

_ 12X

p; = 1.5 MPa
T, =(@8+273.15) K=281.15K
T, = (26 +273.15) K=299.15 K

7i_ 1
7, 0.78
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Hence

1 299.15

1.5 MPa = 2.05 MPa abs.
0.78 281.15

Py =

Example 2-4 Find the Density of Air

Use the ideal gas equation to find the density of air at a pressure of 2
bar gauge and a temperature of 32 °C. Take atmospheric pressure as
999 hPa.

Solution

p= (2% 10° +999 x 10?) Pa

=2.999 x 10° Pa
T=32+273.15) K = 305.15K

From Table D-1
R =287.1J/kgK
Hence

3 2.999 x 10° [Pa]
P = 287.1 [1/kgK] x 305.15 [K]

=3.424 [Nm™> N m " kgKK™|

3.424 kg/m?

The Universal Gas Constant
For ideal gases (or real gases at low pressure) it is found that for a given
temperature, pressure and volume the amount of substance present is

the same irrespective of which gas or mixture of gases is involved.
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Hence, as m = p7'/RT

P

= ——— = constant
mRT

n=

3|3

and this applies for different gases when p, 7" and T are fixed. Therefore
m R is a constant for all ideal gases and is known as the universal or

molar gas constant, R. Thus

R =mR
(2-13)
and
rR=%
m
(2-14)
The ideal gas equation can be written using R as
o7 = ml_i T
m
or
p? =nRT.
(2-15)

The universal gas constant R has the value 8.3145 kJ/kmolK.

Example 2-5 Amount of Substance of Air

An industrial clean room contains 40 m> of air at a temperature of 21
°C and a pressure of 1030 hPa absolute. Calculate the amount of
substance of air that is present in kilomoles. Hence, given that the molar

mass of air is 28.97 kg/kmol, find the mass of air present.

Solution
PV 1030 x 100 [Pa] x 40 [m’]
"= RT 83145 D/kmolK] X 21 + 273.15)[K]

1030 x 100 x 40
"~ 8314.5 x294.15

m = nii = 1.685 [kmol] x 28.97 [kg kmol™'| = 48.8 kg

kmol = 1.685 kmol
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Specific Heat at Constant Volume

For substances in general, the specific internal energy depends on two
independent properties, such as pressure and temperature or specific
volume and temperature. It is useful to define the specific heat capacity

at constant volume as follows:

. A
’ AT |AT—>0, v = const
(2-16)
where
c, = specific heat at constant volume J/kgK
u = specific internal energy J/kg
AT = increase in temperature K
v = specific volume m? kg_1

In words, Equation (2-16) states that the specific heat at constant
volume is the ratio of the increase in specific internal energy to an
increase in temperature for a small increase in temperature (that tends
towards zero), while the specific volume is held constant. The specific
heat itself may vary with temperature, but a mean value over a
temperature range can usually be used in calculations. It follows
therefore that the change in the specific internal energy of a substance
corresponding to a change in temperature between two states that have

the same specific volume is given by

I
Au| = u—u =c
v = const

(T, = T)).

v, avg
(2-17)
where

Cpavg = average specific heat at constant volume

over temperature range
J/kgK
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Fortunately, for ideal gases the specific internal energy depends only

on the temperature of the gas, i.e.
u=f(T).

Hence, for ideal gases, Equation (2-17) is much less restrictive. It
applies between any two states of the ideal gas, whether or not the

specific volume remains constant. Therefore, for an ideal gas

Au=u2—ul=c TZ_TI)'

v, avg (

(2-18)
In many practical engineering calculations, gases can be taken as
approximately ideal and Equation (2-18) is a convenient way of
evaluating changes in specific internal energy. Values of c, for various

ideal gases are presented in Table D-1, Appendix D.

Example 2-6 Internal Energy Increase of Compressed Air

A rigid pressure vessel contains 1.32 kg of compressed air at an initial
temperature of 18 °C. If the temperature of the gas is increased by 5 K,
determine the corresponding increase in the internal energy of the gas.
Assume the air can be regarded as an ideal gas with a constant specific

heat at constant volume, c,,.

Solution

From Table D-1, ¢, = 0.7171 kJ/kgK. Assume this value is valid over
the temperature range 18 °C to 23 °C.

AU =mc, AT

kJ

= 1.32 [kg] X 0.7171 l— X5 [K]=4.73k]
kgK

Safety and Environmental Issues Associated

with Gases
Persons working with gases need to be aware of the associated safety
issues. Because of their nature, whereby a gas will fully occupy any

empty space, gases cannot be stored in open containers. They must be
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stored in sealed containers. In most cases, for the container to be of a
reasonable size quite a high pressure must be used. Any such container
is a pressure vessel and its construction and use are regulated to ensure
public safety. If the valve of a pressurized gas container is suddenly
opened or a puncture occurs in the container, the emerging jet of gas
can cause physical injury or, for instance, could cause dirt or grit to be
propelled into a person’s eyes. If the temperature of a sealed container
of gas is increased, the pressure within it will increase. This effect could
possibly cause failure of the container or the escape of the gas. Some
gases are toxic or harmful to health if inhaled. Gases may also be highly
flammable or potentially explosive when mixed with air. Leaks of
oxygen or mixtures of gases that are rich in oxygen can increase the risk
of unintended or unexpected combustion within a region affected.
Gases can also cause suffocation by displacing air and it is important to
realize that such a potential danger would not be visible, as gases are

usually transparent.

Some gases produced in combustion or in power plants are pollutants
in the environment. Some of these gases and also some working fluids
used in refrigeration, heat pump or air-conditioning equipment can
cause ozone depletion in the upper atmosphere or can contribute to

global warming through the greenhouse effect.

Knowledge of the nature of gases and the principles of thermodynamics

is useful and relevant for mitigating the risks associated with gases.

Problems
2-1 Express 56 °C, 431.6 °C and —186.2 °C in absolute units.

2-2  Match the physical quantities on the left with the base SI units on

the right.

Physical Quantity Base Unit
A pressure 1 kgmol ™!
B molar mass 2 Jmol~'K™!
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C absolute temperature 3 Pa

D  specific heat 4 J

E  density 5 Jkg™!

F conventional temperature 6 W%

G  universal or molar gas 7 kelvin
constant

H  rate of heat transfer 8 Jkg 'K™!

I work 9 °C

J specific volume 10 m’kg™!

K amount of substance 11 kgm™

L specific energy 12 mole

2-3 If the atmospheric pressure is 1010 hPa and the pressure in a tyre

is 240 kPa gauge what is the absolute pressure in the tyre?

2-4  Aniron casting with a mass of 29.1 kg and at 156 °C is cooled to
18.2 °C by immersion in a tank that contains 1.62 m> of water. If
the specific heat of the iron is 0.448 kJ/kgK, calculate the energy
loss from the casting. Also, assuming that all of the energy lost
by the iron is gained by the water, calculate the increase in
temperature of the water. Take the specific volume of water as

0.001 m>/kg and take its specific heat as 4.18 kJ/kgK.

2-5 What is the mass of hydrogen in a balloon that has a volume of
90 m? if the pressure is 0.0989 MPa absolute and the temperature
is 14 °C? What would be the mass if air were to replace the
hydrogen?

2-6 Find the mass of carbon dioxide in a container of volume 1.2 X

10~ m? if the pressure is 730 kPa and the temperature is —5 °C.
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2-7 A fixed mass of an ideal gas has a volume of 5.2 m> at a pressure
of 1bar absolute. What volume will it have at the same

temperature if the pressure is increased to 4 bar absolute?

2-8 A container of volume 4.2 m? holds an unknown gas at a pressure
of 14 bar absolute and a temperature of 135 °C. If the mass of the

gas is 69 kg, what is its specific gas constant?

2-9 A container holds a mixture of 2.3 kg of nitrogen gas and 2.7 kg
of carbon dioxide gas. Determine the amount of substance of each
gas present in kmol and in mol. Hence, briefly discuss the
question ‘is there more nitrogen or carbon dioxide in the

container?’

2-10 In a vehicle repair garage, compressed air is stored in a pressure
vessel, called an air receiver, at a pressure of 700 kPa gauge. The
compressed air is used for inflating tyres and for operating
pneumatic tools. Briefly describe four ways in which the
compressed air within or coming from this vessel could cause

failure, damage or personal injury.
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Chapter 3 Non-flow Processes

The Non-Flow Energy Equation

Closed system
-7 - >\/ Boundary

/ \./_
/ AU \
/\(v /
/
Qin h N - s VVin

Figure 3-1 A general non-flow process for a closed system.

Figure 3-1 represents a general closed system. Energy crosses the
boundary as heat and as work and, as a result, the internal energy of the
system changes. The non-flow energy equation, Equation (3-1),

expresses the fact that energy is conserved.

Qin+VVin =AU

(3-D
where
O, = net heat transfer into system J
W, = net work into system J
U = internal energy J
AU = increase in internal energy J

On a per-unit-mass basis, Equation (3-1) can be re-written as Equation
(3-2).

Gin + Wi, = Au
(3-2)
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where
din = net heat transfer into system per

unit mass J/kg
wy, = net work into system per unit mass J/kg
Au = increase in specific internal energy J/kg

It can be noted that for an incompressible substance, changes in specific
internal energy can be calculated with Equation (2-8)’, while for an
ideal gas, changes in specific internal energy can be calculated with

Equation (2-18), i.e. in both cases

Au = c, AT
(3-3)
where
c, = specific heat at constant
volume J/kgK
AT = increase in temperature K

Two Types of Work Processes
The arrow representing ‘net work into the system’ in Figure 3-1
includes all work interactions. There are two main types: shaft work and

displacement work.

Shaft Work

Shaft work is work done by a shear force in the plane of the system
boundary, most commonly where a rotating shaft transmitting
mechanical power passes through the boundary, as represented in

Figure 3-2.

5 . .
¢, = c for an incompressible substance
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Figure 3-2 Shaft work being done on a system.

<«

System boundary
Spiral spring \
A\ Flywheel A%
|\I |
= =
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Gearbox

Figure 3-3 Systems that could store energy.

Figure 3-3 represents some systems that are capable of storing energy
that enters as shaft work. In a system that contained a spring that could
store energy, or a flywheel, or a mass that could be raised or lowered,
an input of shaft work could increase the strain energy of the spring or
the kinetic energy of the flywheel, or the potential energy of the
movable mass within the system. Also, these types of stored energy
could give rise to an output of shaft work from a system. However, if a
system has a constant volume and comprises a simple incompressible
or compressible fluid, an input of shaft work can only increase the
energy of the system (in this case the internal energy) by friction within
the fluid—see Figure 1-4. A system of constant volume comprising

only a simple fluid cannot produce an output of shaft work.
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Displacement Work

Energy input Piston of
/_ area A

I—

Force F
‘ Os |->| ‘

1 Displacement 2'

=
N

Figure 3-4 Displacement work.

Displacement work for a closed system involves a displacement of the
system boundary, i.e. the boundary moves inwards or outwards and the
volume of the system changes accordingly. Figure 3-4 illustrates a
typical example of displacement work. Energy input to a closed system
causes a displacement of the boundary against an externally imposed
resisting force. If there is negligible acceleration of the piston and
negligible friction, the pressure within the system, p, will equal the
force F divided by the area A. The increase in volume for a small

displacement Os is given by A ds.

Pl

Ao 7

Figure 3-5 Variation of pressure with volume in a general

displacement work process.

Figure 3-5 shows how the pressure might vary with volume in the
course of a total displacement s from position 1 to position 2. For a

small increase in volume, 87, as shown in Figure 3-5, corresponding
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to a short displacement ds, as shown in Figure 3-4, the work done by

the system on the piston would be given by

W, = FOs = pAds = pd7’

where
Wy = work done for a small displacement Os J
F = Force exerted on piston N
Os = small displacement m
p = pressure Pa
A = piston area m?
7 = small increase in volume

corresponding to ds m?

As the pressure variation would be negligible for a small displacement
but, in general, would be significant over a large displacement, it is
useful to visualize the overall displacement as a series of small
displacements. It can be noted that W, or p 87" equals the area of the
strip shaded in grey in Figure 3-5. In calculus notation, the work output

for the entire displacement is given by

2
Wt =/ pd7
1

and this is equal to the hatched area under the process curve in Figure
3-5. This mathematical notation simply means that if the total
displacement is visualized as being made up of a very large number of
tiny displacements, the total work done equals the sum of the amounts

of work done for all of the tiny displacements.
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Electrical Work and Power

At this point it is appropriate to reflect on the thermodynamic nature of
electrical work or electrical power. Electric generators are commonly
used to convert mechanical power to electrical power, while motors are
commonly used to convert electrical power to mechanical power. In
principle, the laws of thermodynamics allow for direct conversion from
mechanical power to electrical power or from electrical power to
mechanical power. In practice, electric motors and generators have
efficiencies less than 100%, but machines with very high efficiencies,

e.g. 98% for generators and 95% for motors exist.

Keep in mind that transmitting shaft work through a gearbox involves
inefficiency. Some of the driving shaft work is always used to overcome
friction, so the power output is always less than the power input.
Friction will give rise to temperature rise and heat loss from the gearbox
to the surroundings. Thus, the conversion efficiency for mechanical
power transmission through a gearbox might be a value such as 90%.
However, the laws of thermodynamics do not require this efficiency to
be less than 100% and it is always possible to devise a gearbox that
would involve less friction and would come closer to the ideal
efficiency of 100%. In an analogous way, electric motors and generators
involve friction and electrical resistance that result in the output power
being less than the input power. Of course, energy is conserved as the
sum of the power output plus the rate of heat rejection (in steady state

operation) equals the power input.

Figure 3-6 illustrates the transmission of electric power across a system
boundary, while Figure 3-7 illustrates how, in principle, through the use
of an ideal motor and an ideal generator, this could be replaced by an
equivalent transmission of mechanical power across the same
boundary. In principle, therefore, electric power transmission is
thermodynamically equivalent to mechanical power transmission.
Work is equivalent to power multiplied by time, so an amount of work

done electrically, e.g. using energy that was stored in a battery, is
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equivalent to work done mechanically, e.g. using energy that was stored

as the potential energy of an elevated mass in a gravitational field.

Load ) -

Ideal Ideal
generator motor

Figure 3-7 Equivalent mechanical power transfer across a boundary

Electrical Resistance Heating

X 
[ Te—— I
/= |
m || oy
ystem , o boundary B
boundary A — T k Water 1R
| : : I Power
| : O : I cord
: H |
Resistance : b ———— 2 En=Wh e N
heater —T| T P4
0 —1

Figure 3-8 Energy transfer in a jug kettle.

Electrical energy is commonly used to provide energy transfer as heat,
for instance to heat water in a jug kettle, Figure 3-8. In this figure,
system boundary A is drawn to include all the water in the kettle. The

energy transfer to the water is thus in the form of heat. However, if
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system boundary B (which includes part of the jug kettle and intersects
the power cord) is used instead, energy crosses it as electrical work. A
conversion of electrical work to internal energy and then to heat transfer
occurs within the electrical resistance heater. If losses from the base are
negligible then the heat transfer is approximately equal to the electrical

work.

Constant Volume Processes

p
7=const. ?
7= const.
N
Gas
h P 1
\ Ein = Qin
V=% 7

Figure 3-9 Constant volume process of a gas

Figure 3-9 illustrates a constant volume process for an ideal gas. In
order to achieve this process, in which the volume remains constant as
the pressure increases, energy must be added to the gas, e.g. by heat
transfer, which will cause its temperature to increase. If there was heat
rejection from the system at constant volume, rather than heat transfer

inwards, then both the temperature and the pressure would decrease.

From the ideal gas equation the following relationship applies:

p_ _ D _ D’
—=const. = — = —.
T Tl T2

(3-4)

It can be noted that no work is done on or by the system in the heating

process at constant volume illustrated in Figure 3-9.

44



Applied Energy Systems — Rudimentary Thermodynamics 3 Non-Flow Processes

Constant Pressure Processes

A constant pressure process for an ideal gas is illustrated in Figure 3-10.
It is assumed that the piston is frictionless and leak-tight. The sum of
the mass of the piston and the mass of the load it carries is constant and
therefore the pressure remains constant. In order for the volume to
increase, energy must be added to the gas, e.g. by heat transfer, which

will cause its temperature to rise.

P
LN 1 2
....... 2 >
1
Gas
.3
' E, =0y 7 72

Figure 3-10 Constant pressure process of a gas

From the ideal gas equation, the following relationship applies:

v v _ U
—=const. = — = —
T T, T,

(3-5)
For the constant pressure heating process illustrated in Figure 3-10
work is done on the piston by the system. This work equals the area

underneath the horizontal line, which can be expressed as

Wout 12 =p(Tr=7).

p = const

Specific Heat at Constant Pressure

Constant Volume and Constant Pressure Heat Transfer Processes

In order to understand the meaning of specific heat at constant pressure,

¢,, it 1s useful to compare the constant volume process of Figure 3-9
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with the constant pressure process of Figure 3-10, both of which involve
heat transfer to an ideal gas. Suppose the two systems contain the same
mass of the same gas. Suppose also that the temperature rise for a
process 1 — 2 is the same in both cases. Which process, the one at
constant volume or the one at constant pressure, will require the greater

amount of heat input?

The non-flow energy equation, Equation (3-1), is the basis for the

correct answer. It can be re-written as indicated below
Qin =AU - I/I/in
=AU+ W,

For the constant volume process and the constant pressure process the
increase in internal energy will be the same, but the constant volume

process has zero work. Hence,

Oin1-2 =Uy = Uy =m(uy —uy).
V= const
(3-6)
However, from the non-flow energy equation, the constant pressure
process will require a greater heat input, because W, is greater than
zero for it. In this case the energy input as heat goes to increase the

internal energy and to do work:

Qin,l—>2l =U,=U;+p (72 =7).
p = const
As p, = p; for the constant pressure process, the above expression can

also be written as

Oin1-2 = WU,y +p75)— (U, +p 7).

p = const

(3-7)

The combination of properties U + p7~ arises frequently and has the
name enthalpy, with the symbol H and the unit J. Enthalpy is a

thermodynamic property that depends on the state of the substance or
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system. Specific enthalpy is the enthalpy per unit mass. It is given the
symbol A and has the unit J/kg. The following expressions formally
define the properties enthalpy and specific enthalpy:

H=U+p7
(3-8)
h=u+ pv
(3-9)
where
H = enthalpy J
h = specific enthalpy J/kg

Hence, from Equations (3-7) and (3-8), for a constant pressure heat
transfer process of a closed system, as shown in Figure 3-10, the

following expressions apply

Qin,1—>2| = H,— H; =m(hy — h))

p = const

(3-10)

I _
qin,1—>2| =hy, —h
p = const

(3-11)

Definition of Specific Heat at Constant Pressure

It is useful to define the specific heat capacity at constant pressure as

follows:
L _An
P AT AT—0, p = const
(3-12)
where
¢y = specific heat at constant pressure J/kgK
Ah = increase in specific enthalpy Jikg
AT = increase in temperature K
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p = pressure Pa

In words, Equation (3-12) states that the specific heat at constant
pressure is the ratio of the increase in specific enthalpy to an increase
in temperature for a small increase in temperature (that tends towards
zero), while the pressure is held constant. The specific heat itself may
vary with temperature, but a mean value over a temperature range can
usually be used for calculation purposes. It follows therefore that the
change in the specific enthalpy of a substance corresponding to a

change in temperature between two states that have the same pressure

is given by
Ah :hz—hl :cp,an(Tz_Tl)‘
p = const
(3-13)
where
Cp, avg average specific heat at constant pressure
over temperature range J/kgK

For substances in general, the specific enthalpy depends on two
independent properties, such as pressure and temperature. Fortunately,
for ideal gases the specific enthalpy depends only on the temperature of

the gas, i.e.
h =1(T).

The reason for this is that the two additive terms that make up specific

enthalpy, u + pv, each depend on temperature only:
u=f(T)
pv = RT =1{(T)

Hence, for ideal gases, Equation (3-13) is much less restrictive. It
applies between any two states of the ideal gas, whether or not they are

at the same pressure. Therefore, for an ideal gas
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Ah = h2 - h] = Cp, avg (T2 - T])
(3-14)

In many practical engineering calculations, gases can be taken as
approximately ideal and Equation (3-14) is a convenient way of

evaluating changes in specific enthalpy.

Example 3-1 Differences in Internal Energy and Enthalpy

A leakproof, variable volume closed system contains 2 kg of argon at
state 1, at which the pressure is 2 MPa and the temperature is 278 K.
The system is then brought to state 2, at which the pressure is 4 MPa
and the temperature is 315 K. Evaluate the increase in internal energy
and the increase in specific enthalpy of the gas from state 1 to state 2.
The argon can be regarded as an ideal gas with constant specific heats
¢, and ¢, of 0.3122 kJ/kgK and 0.5203 kJ/kgK respectively.

Solution

For an ideal gas, both the internal energy and the enthalpy depend on

temperature only.

kJ

=2 [kg] X 0.3122 l— X (315-278) [K] =23.10 kJ
kg K

=0.5203 lil X (315-278) [K] = 38.5 kJ/kg
kg K

Isothermal, Polytropic and Adiabatic Processes
Isothermal, polytropic and adiabatic non-flow processes for an ideal gas

are of the general type illustrated in Figure 3-11.

The Isothermal Process

In an isothermal process the temperature is constant. Therefore, from
the ideal gas equation, Equation (2-10), the following relationship
applies:
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pU = const. = pjv; = pv,y
(3-15)

or, if the mass is constant, as is the case for a closed system, Equation
(2-9) yields:

p% = const. = pIWI = pz%z.
(3-16)

—_)

-
|
|
J

-

—> 75

7
Figure 3-11 Diagram for isothermal, polytropic or adiabatic
changes for an ideal gas
A hyperbola is any curve that has the form xy = const. Therefore an
isothermal process of an ideal gas can also be described as a hyperbolic
process. In order to achieve isothermal compression of an ideal gas, the

gas must reject heat as it is compressed. Likewise, in order to achieve

isothermal expansion the gas must accept heat as it expands.

Example 3-2 Isothermal Compression

If an ideal gas is compressed at constant temperature from a pressure of

0.1 MPa absolute and a volume of 50 litres to a pressure of 0.9 MPa,
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determine the volume of the gas when the pressure reaches 0.3 MPa,
0.6 MPa and 0.9 MPa.

Solution
p? =const. =p; 71 =0.1 [MPa] 50 [L] =5MPaL

Hence,
5 [MPa]
p

when p = 0.3 MPa %:05—3L:16.7L

7 = L]

when p = 0.6 MPa %:%L:S,?,?,L

when p = 0.9 MPa %:05—9L:5.56L

The Polytropic Process

A polytropic process is a change in the state of a system or substance

that can be described by an equation of the form

p7"" = const.

(3-17)
where p is absolute pressure, 7" is volume and # is a real number that is
typically within the range 1 to 1.7. It is found experimentally that
certain real processes can be represented accurately in this way. The
isothermal process is a special case where n = 1. More generally, the
polytropic process can represent the compression or expansion of a gas
in a non-isothermal way. Where n is greater than 1, the temperature of

the gas will rise during compression and fall during expansion.

For a polytropic process that takes place from state 1 to state 2, Equation
(3-17) can be written as Equation (3-18)
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P1°71n = chyzn-

(3-18)
On a ‘per-unit-mass’ basis this can also be written in the form®
pivf = pyvy
(3-19)
where
p = pressure Pa
v = specific volume m’ kg_1
v = volume m’
n = polytropic exponent

i.e. either volume or specific volume can be used in the polytropic

relationship.

Temperature Ratios for the Polytropic Process

It is often useful to express the ratio of the start and finish temperatures
of a polytropic process of an ideal gas as a function of the ratio of the

start and finish volumes or pressures, as follows.
From the polytropic relation

p] %ln = pz%zn.

P2 _ @)
P 7,

ﬁ: <ﬂ>l/n
7, 1) '

Hence

and

° See Appendix G for an explanation.
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For a closed system the ideal gas equation gives

7, _ 12
T, T,
Hence
L, _n7,
T, n7,

Substituting (7, /7 ,)" for the pressure ratio p,/p;,
T2 B %l n—1
n \7, '
Substituting (p;/p,)"" for the volume ratio 7,/7;,

2_ <Q><n_1)/n
T, pi

Equations (3-20) and (3-21) show that the higher the value of the

polytropic exponent, the higher will be the gas temperature after a

(3-20)

(3-21)

polytropic compression process.

Example 3-3 Polytropic Expansion

An ideal gas is expanded polytropically from 350 kPa absolute to 115
kPa absolute. The initial temperature of the gas is 35 °C and the
polytropic exponent is 1.2. If the initial volume is 2.7 x 10~ m?, find

the final volume and temperature.

Solution

Hence
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1/1.2
=27%x1073 [m’] (%) = 6.83x 107 m’

T, =35+273.15K =308.15K

p

02/1.2
= 308.15 [K] ( 15 )
350

= 25598 K

From Equation (3-21)

Hence,

1, = (25598 —273.15) [°C] = —-17.2°C

The Ideal Adiabatic Process for an Ideal Gas

The word adiabatic means ‘without heat transfer’. An ideal adiabatic
process for an ideal gas is a change of state of the gas in which the
pressure, volume and temperature of the gas change without any friction
effects being present and without any heat transfer occurring to or from

the gas.

It is found experimentally that a closed system containing a gas at low
pressure obeys the polytropic rule with a characteristic exponent when
it undergoes an ideal adiabatic process. The exponent is known as the

adiabatic index, y.

p7' " = const. = pl%ly = p2‘72y
(3-22)

Thus, an ideal adiabatic process of an ideal gas is a special case of a
polytropic process where n = y. The value of y depends on the particular
gas, e.g. for air and also for nitrogen the adiabatic index is 1.4. Values
of the adiabatic index y for several ideal gases are tabulated in Table D-
1, Appendix D.
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Example 3-4 Diesel Engine Compression

Within the cylinder of a diesel engine, 500 X 107 m? of air at a
temperature of 27 °C and a pressure of —15 hPa gauge is compressed
to a volume of 24 x 107 m?. Assuming the compression takes place
adiabatically as the piston moves towards the cylinder head and given
that the adiabatic index for air is 1.4, find the pressure and the
temperature at the end of compression. Take the atmospheric pressure
as 1019 hPa.

Solution
p; = (1019 — 15) x 100 Pa abs. = 100,400 Pa abs.

B %1 1.4

1.4
= 100,400 [Pa] (%) — 7.047 x 10° Pa abs.

T, =27+273.15K =300.15 K

T2 B %1 n—1
T, \7,

Hence
0.4
T, = 300.15 [K] ( 200 )
24
= 101121 K.
Hence,

1, = (1011.21 - 273.15) [°C] = 738 °C.

Various Non-Flow Process Diagrams

Figure 3-12 illustrates some non-flow processes on diagrams of
pressure versus specific volume for an ideal gas. In each case the
direction of the process is indicated by means of an arrowhead. The

processes are described as follows:

(a) Constant pressure (with volume increase)
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Constant volume (with pressure reduction)

Isothermal and adiabatic processes, both starting from the

same pressure and specific volume and both involving a

Constant volume with cooling followed by constant

pressure with heating followed by polytropic expansion

(b)
(c) Polytropic expansion
(d
reduction in volume
(e)
p p
_—
v
a)
p p
p ¥ "= const.
v
c)
p

v
b)

p "= const.
adiabatic
(T increases)

e)

p7 = const.
isothermal
(T = const.)
v
d)
p7" = const.
v

Figure 3-12 Processes of an ideal gas.
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Problems

3-1 Given that for a polytropic process

p (n—l)/n
p

calculate the final temperature of a gas if it is compressed from
atmospheric pressure of 1013 hPa and a temperature of 25 °C to

3 bar gauge with a polytropic index of 1.6.

3-2 A 15kg mass of carbon dioxide gas (R = 188.9 J/kgK) is
compressed from 200 kPa gauge and 20 °C to 20% of its original
volume and 1700 kPa gauge. It is then cooled back to 20 °C at

constant volume. Take atmospheric pressure as 100 kPa.

Determine:

a) the temperature after compression.
b) the pressure drop due to the cooling.
C) the final specific volume of the gas.

3-3  Dry air within a closed system is compressed from a temperature
of 300 K and a pressure of 0.100 MPa to one tenth of its original
volume. Assuming the process is polytropic, calculate the final
temperature of the air if the polytropic exponent is (a) 1.2 and (b)

1.4. The following equation can be used:

TZ_ %1 n—1
T, \7, '

3-4  Sketch the following processes on diagrams of pressure versus
specific volume for a closed system containing an ideal gas. In
each case indicate the directions of the processes by means of

arrowheads.

(1)  Constant pressure with volume increase followed by

constant volume with pressure increase
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3-6

(ii) Polytropic compression followed by constant volume heat
addition, followed by polytropic expansion, followed by
constant volume heat rejection thereby arriving at the

original state

(111) Isothermal and adiabatic processes, both ending at the
same pressure and specific volume and both involving a

reduction in volume

(iv) Constant pressure with cooling followed by constant

volume with heating followed by polytropic expansion

Calculate the increase in the enthalpy and the increase in the
specific enthalpy of 3.2 kg of air when it is brought from 0.11
MPa and 18 °C to 0.17 MPa and 43.5 °C.

Nitrogen

The volume occupied by 0.1 kg of nitrogen in the system shown
above is to be increased by 25% through the use of an electric
heater. The gas system is assumed to be perfectly insulated and
the piston is assumed to be leak-tight and frictionless. The initial
temperature of the gas is 17 °C and the pressure is 0.121 MPa
absolute. What amount of work is done on the piston? What
energy input must be supplied to the electric heater? The

following equations can be used:

p?7 = mRT

58

3 Non-Flow Processes



Applied Energy Systems — Rudimentary Thermodynamics

= const

|
Wout, displ.1-2 | =p(Tr -7
p
I/Vin, elec,1-2 = m(uy — uy) +P(%2 - %1)

= m(h2 - hl) = me (T2 - Tl)
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Chapter 4 The Reciprocating
Compressor

A compressor is a machine in which a gas is compressed from one
pressure to another. The gas enters the compressor through an inlet or
suction pipe and leaves through a discharge pipe. The reciprocating
compressor, Figure 4-1, is commonly used for providing compressed

air in industry or compressing refrigerant vapour in a refrigeration

system.
/— Discharge valve
~—
=" 1
AN

N

Inlet valve

Piston

Figure 4-1 Schematic diagram of a reciprocating compressor

The reciprocating compressor belongs to a class of compressors known
as positive displacement compressors. In all positive displacement
compressors a quantity of gas is taken in at low pressure, compressed
by the reduction of the volume of the space in which it is enclosed and
then discharged at high pressure. Thus, mechanical work is done on the
gas to increase its pressure. In the reciprocating compressor, one-way

valves control the admission and discharge of the gas.

Pressure-Volume Diagram

Figure 4-2 illustrates the processes that occur within a reciprocating
compressor, assuming no pressure losses through the ideal one-way
valves. It can be noted that the system, bounded by the dashed line in
the figure, is closed for process AB and for process CD on the p-7”
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diagram. For the other two processes, BC and DA, mass is entering and

leaving the system respectively.

Pl a D
P21

n_
p7™ = const. p7" = const.

P1

Figure 4-2 p-7 diagram for a reciprocating compressor and a

schematic representation of the piston in the cylinder.

At position A the piston is at top-dead-centre and the volume within the
cylinder is at a minimum (the clearance volume, 7). From A to B the
piston moves down the cylinder (away from the cylinder head that
contains the valves) and the pressure reduces according to the
polytropic relationship. As the pressure within the cylinder is below the
discharge pressure p, the discharge valve remains closed. The suction
valve also remains closed because the pressure within the cylinder is
higher than the suction pressure p;. At point B the pressure within the
cylinder reaches the suction pressure. It can be noted that the mass of
gas in the cylinder at point B is the same as it was at point A, but the
volume of this mass has increased by an amount known as the re-

expansion volume, 7.
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As the piston moves from B to C, the inlet valve allows gas to enter the
cylinder. The volume of gas which enters is known as the induced
volume, 7/, 4. At point C the piston reaches bottom-dead-centre, which
corresponds to the maximum volume within the cylinder (the sum of

the clearance volume and the swept volume, 7).

As soon as the piston begins to move up the cylinder again, from C to
D, the inlet valve closes and the pressure rises according to the
polytropic relationship. At point D the pressure within the cylinder

reaches the discharge pressure p,.

As the piston moves from D to A, the discharge valve allows the gas to
exit. The mass of gas discharged is the same as the mass of gas that was
induced from B to C.

Volumetric Efficiency

The volumetric efficiency of a reciprocating compressor, Equation
(4-1), is the ratio of the induced volume (the volume of gas taken in at
the suction pressure and temperature) to the swept volume (the volume
through which the piston face sweeps). It can be seen in Figure 4-2 that
the induced volume 77,4 is less than the swept volume 7, due to the
re-expansion of gas that remains in the clearance volume 7" when the

piston is at the top-dead-centre position.

v

ind
E,; = __nd
%SW
(4-1)
where
E,, = volumetric efficiency
Via = induced volume m?3
Vew = swept volume m3
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By applying the polytropic relationship to the processes shown in
Figure 4-2 it can be shown' that the volumetric efficiency of an ideal

reciprocating compressor is given by

o\
Evol, ideal = 1- Fel [<_> - 1]
P

(4-2)
SwW
(4-3)
where
E\o1 ideal = ideal volumetric efficiency
Py = discharge pressure Pa
12 = suction pressure Pa
VR clearance volume m?
Ve = swept volume m’
n = polytropic index
r = clearance ratio

cl

For maximum volumetric efficiency it is therefore important that the
clearance ratio should be kept as small as possible. For a given
clearance ratio, the volumetric efficiency depends on the ratio of the
discharge pressure to the suction pressure. At high pressure ratios, the
volumetric efficiency and the induced volume will be less than at lower

pressure ratios.

Example 4-1 Volumetric Efficiency

Use the expression for the volumetric efficiency of an ideal

reciprocating compressor to calculate the volumetric efficiency at a

" See Appendix G
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pressure ratio of four and at a pressure ratio of eight if the clearance

ratio is 3%. The polytropic exponent is 1.35.

Solution

With a pressure ratio of 4

12 W
Evol,ideal =1- Fel l<_> - 1]
V4

=1-0.03[®¥3 - 1]
= 94.6%

With a pressure ratio of 8
E, o1, igeas = 1 —0.03 [(8)1/1-35 B 1]

= 89.0%

Compression Processes

25 \
20 pu™ = const.
— n=1
5 5 \ — n=1.2
ijl — =14
]
2 \
§10 \
a®
5 \\\\;
0

0 0.2 0.4 0.6 0.8 1
Specific Volume /[m¥/kg]

Figure 4-3 A comparison of three polytropic

compression processes
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In Figure 4-3 three polytropic compression processes are shown. All
three have the same initial pressure and specific volume. The polytropic
indices for the processes are 1, 1.2 and 1.4. The first process (n = 1) is
the isothermal case, with heat rejection to keep the gas at its initial
temperature. If the gas is air, the third process (n =y = 1.4) is the
adiabatic case with no heat rejection and the second (n = 1.2) is a case

where there is some heat loss from the gas during compression.

It is found that compressors that operate with a low polytropic index
require less work for compression than those in which the index is high.
In practical terms, isothermal compression would require the least
amount of work (but is impractical as it is difficult to achieve a high
rate of heat rejection from a compact compressor), while adiabatic
compression requires the most work. In situations where the purpose of
a compressor is simply to increase the pressure of a gas, arrangements

are usually made to reject as much heat as possible during compression.

Intercooler

Stage 1
suction

Stage 2
discharge

Low High
pressure pressure
cylinder cylinder

Crankcase

Figure 4-4 Schematic diagram of a two stage reciprocating

compressor with an intercooler

Compressors may therefore have cooling fins to keep the gas as cool as
possible during compression. Where high pressures are to be produced,
energy can be saved by compressing a gas in several stages, with
cooling of the gas between successive stages, as in Figure 4-4. Note that

the high pressure cylinder is smaller than the low pressure cylinder.
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Stage 2

pv" = const.

Intercooling

p = const.

Stage 1

pU"™ = const.

4 Reciprocating Compressor

Figure 4-5 Two stage compression with intercooling

shown on a p-v diagram

Figure 4-5 shows how the processes for 2-stage compression with

intercooling appear on a pressure versus specific volume diagram. For

the polytropic compression parts of the overall process the fluid is

contained within closed systems (the stage 1 and stage 2 cylinders, with

inlet and discharge valves closed). Otherwise, the fluid is entering or

leaving one of the cylinders or passing through the intercooler.

Example 4-2 Volume of Gas after Compression and Cooling

An initial volume of 17.5 litre of gas is compressed from a pressure of
210 kPa gauge and 18.2 °C to 1250 kPa gauge. The gas is then cooled,

at constant pressure, to 23 °C. Determine the final volume of the gas.

Take atmospheric pressure as 1010 hPa.

Solution

p; = (210 + 101.0) kPa abs. = 311 kPa

Similarly

Py = p3 = (1250 + 101.0) kPa abs.

= 1351 kPa
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The information given is shown on the following diagram. Note that
there is insufficient information to determine the volume or temperature

at state 2, but there is sufficient to find the volume at state 3.

plkPa]
t=23°C
\
1351 L 2
3
t=18.2°C
311 |) 1
17.5 Z/[L]
T, = (18.2+273.15) K=291.35 K
T; = (23 +273.15) K=296.15K
7, =175%x107 m?
The final volume can be found from
n7, _ 37’3
T, T,
Hence
T
gy =P8, X296 15y _ 491
p3T, 1351 x 291.35
Problems

4-1 Within the cylinder of a reciprocating air compressor 1.26 L of
air at a pressure of 1.35 bar gauge is compressed to a volume of
0.17 L, at which point the pressure is measured as 30 bar gauge.
Atmospheric pressure is 1.020 bar. If the temperature of the air is

18 °C at the first state, what is it at the second state?
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4-2  An ideal reciprocating compressor has a bore of 75 mm and a
stroke of 70 mm and operates at 1450 cycles per minute. Air is
taken in at 17 °C and 0.1 MPa and discharged at 0.9 MPa. The
clearance ratio is 2% and the polytropic exponent is 1.35.
Determine the average volume flow rate of air in the inlet pipe in

L/min.

4-3 If a compressor takes in oxygen at 101.3 kPa absolute and 11 °C
at the rate of 92.6 X 10~ m3/s, determine the intake mass flow

rate in kg/s.

4-4  Nitrogen at a pressure of 0.11 MPa and a temperature of 12 °C is
to be compressed to 2 MPa in an ideal compressor for which the
polytropic index is 1.29. Determine the final temperature of the
air (a) if it is compressed in a single stage and (b) if it is
compressed to 0.47 MPa, cooled to 30 °C and then compressed to

2 MPa in a second stage.
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Chapter 5 The Steady Flow Energy
Equation

)

Datum level

Figure 5-1 A general steady-flow process for an open system.

Figure 5-1 represents a system through which a fluid flows at a steady
mass flow rate m. The system is said to be open, as matter passes
through its boundary, which is represented schematically by the dashed
line in the figure. This very general diagram could represent real
devices or components such as a pump, boiler, condenser, evaporator,
length of pipe, nozzle, etc. It can be noted that, as conditions are steady,
i.e. invariant in time, the energy of the system itself is not changing. For
such a steady flow open system, the energy balance equation is

summarized in words in Equation (5-1).

Rate of energy input = Rate of energy output.
(5-1

The net rate of heat transfer into the system across the boundary is
represented by Q ;,, while W, represents the net rate of shaft work

input across the boundary. A number of other modes of energy input
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are also involved and are described below. As a simplification, it is
assumed that the fluid velocities V| and V, are constant over cross
sections 1 and 2 and are equal to the average actual velocities at the

respective positions.

Flow Work

—_———

Figure 5-2 A small element of mass entering the system boundary.

Figure 5-2 is useful to explain how a rate of flow work is done on the
system at flow position 1 and a rate of flow work is done by the system
at flow position 2 in Figure 5-1. The shaded region represents a small
fluid mass dm that is about to enter the system at position 1. In order for
this small mass to enter the system it must travel through the small
distance 8/. The force exerted on the system boundary at 1 is p; A; and
from Equation (1-1), as the force and the displacement are in the same
direction, the flow work (which is a form of displacement work) is

given by
Whow, 1 = P14,5L.

The product of the area A; and the small length &/ equals the volume of

the small mass, 87/, so
Whow, 1 = P187.

Also, the small volume 87" can be expressed in terms of the small mass

dm and the specific volume of the fluid at position 1:

87 = dmuy.
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Hence, the work done on the system when mass dm enters is given by
SWiow, 1 = P1Om v,

and so the flow work done on the system per unit mass at cross section

11is

6Wﬂow, 1 p16m U1
Whow 1 =75, = " 5m

or

Weow, 1 = P1U1-
(5-2)
Similarly the flow work per unit mass done by the system at position 2
is
Weiow,2 = P2U2-
(5-3)
Depending on the pressure and specific volume values, the flow work
input per unit mass at position 1 can be greater than or less than the flow
work output at position 2 per unit mass. As will be seen below, the flow
work terms of Equations (5-2) and (5-3) are usually taken into account
through the use of the property specific enthalpy in the steady flow

energy equation.

The Steady Flow Energy Equation
Equation (5-1) can be written in terms of the parameters shown in
Figure 5-1 as Equation (5-4). This is known as the steady flow energy

equation.
& i .
7 <u+pu+7 +gz> + 0+ Wiy
in

2
=m <u+pv+V— +gZ>
2 out

(5-4)
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where

0., = net heat transfer rate into system W

g = acceleration due to gravity ms~2
W, = net shaft work rate into system A\

u = specific internal energy Jkg™!

p = pressure Pa

v = specific volume m’kg™!
V = velocity ms~!

m = mass flow rate kgs™!

In Equation (5-4) the term pv represents flow work per unit mass of
fluid at inlet or outlet. The term u represents the specific internal energy
of the fluid, i.e. the molecular level energy it possesses per unit mass.
The term V%2 represents the kinetic energy per unit mass of fluid that
crosses the boundary of the system at a specified position. The term gz
represents the potential energy per unit mass of fluid that crosses the

boundary of the system at a specified position.

The combination of properties u + pv is the specific enthalpy, as
defined by Equation (3-9). Hence, Equation (5-4) can be rewritten for

steady flow from position 1 to position 2 as Equation (5-5)

Vi . . V3
m h1+7+g21 +Qin+Win=n'1 h2+7+g22
(3-5)
or, on a per unit mass basis, as Equation (5-6)
2 V2
1 2
hy T8z in T Win = h2+7+g22
(5-6)
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where
Gin = net heat transfer into system per unit mass J/kg
w;, = net shaft work into system per unit mass  J/kg

Steady Flow of an Incompressible Fluid

Liquids passing through a steady flow system can usually be regarded
as incompressible. Therefore if the inlet and outlet temperatures are
known the change in specific internal energy can be calculated from
Equation (2-8):

Au (T, —T))

(repeated) (2-8)

incomp — U2 — U] = Cyyg

Hence, as vy = v, = v,

Ahincomp = h2 - hl = Cavg(TZ - Tl) + (Pz - pl)U
(5-7)

For an incompressible fluid, temperature changes can arise because of
heat transfer into or out of the system. Furthermore, temperature

increases can arise because of fluid friction.

Pumps

Figure 5-3 Symbolic representation of a pump

Figure 5-3 represents a general pump, such as an oil pump or a water
pump. There is an input of shaft power and a rate of heat transfer to the
surroundings. The elevation at outlet is the same as the elevation at
inlet. Also, the velocity of the water in the outlet pipe is the same as that
in the inlet pipe. The temperature of the surroundings is the same as the

temperature of the water entering the pump.
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The pressure at outlet is higher than that at inlet. Also, because of
friction (including fluid friction) within the pump, the outlet
temperature of the water is a little higher than the inlet temperature. If
the pump were ideal, without any such friction, the exit temperature
would be the same as the inlet temperature for an incompressible fluid.

Also, the specific internal energy would be the same at exit as at inlet.
Applying the steady flow energy equation

hy +Win = O o = tithy
Therefore

Win = m(hZ - hl) + Q out*
(5-8)
Making the common assumption that the fluid is incompressible, this

can be written using Equation (5-7) as

Win=m [cavg(TZ —T) + (py = pDV] + O our-
(5-9)
Most commonly, the power input to a pump is measured directly, but it
can be calculated from Equation (5-8) if the values of all the terms on

the right hand side are known.

Ideal Pumping Power

In order to calculate the ideal power we assume the fluid is
incompressible and the pump is ideal, involving no mechanical or fluid
friction and no leakage. We also assume that there is no heat transfer to
or from the surroundings. Subject to these assumptions the temperature
of the fluid remains unchanged as it passes through the pump, the
specific volume is the same at outlet as at inlet (v, = vy = v) and the

specific internal energy is the same at outlet as at inlet (u, = u;). Hence,

Wi ideal = 11 (hy — hy)

=m [(M2 +p202) - (Ml +plul)]
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=m0+ (p, — ppvl.

Thus

Win,ideal = MU (P2 — Py)-
(5-10)
That is, for an ideal frictionless and adiabatic pump the power input
equals the product of the mass flow rate, the specific volume and the
pressure rise. The ideal power can also be expressed in terms of the

volume flow rate as

W in. ideal = 7 (py — py)-

(5-11)
where
v = volume flow rate m>/s
The overall efficiency of a pump is defined as
_ Win, ideal
Eopump = W,
(5-12)

Example 5-1 Water Pump

A water circulator consists of an integrated permanent magnet motor
and a centrifugal pump. The pressure increase across the pump is 24.3
kPa when the flow rate is 1.09 m3/ h, while the electric power
consumption is 26.1 W. If the temperature increase of the water as it
passes through the pump is 0.01 K, calculate the rate of heat loss from
the circulator to the surroundings. Also calculate the overall efficiency

of the circulator based on the electric power input.
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Solution

2 fQout Motor

i T
Pump - /—l/
P \r : Power
: -* \! cable

1 B
Win
Using Equation (5-9),
I/Vin =m [cavg(TZ - Tl) + (p2 - pl)U] + Q out*

Hence,
0 out — Win —m [cavg(T2 —T))+ (py — ppvl.

From Appendix E, for water

3

m
= 0.001 ™
19 kg
]
= 4180 ——
¢ kgK
' 1.09 [m*h Kk
-7 [m7h] — 030282
v 3600 [s/h] x 0.001 [m¥/ke] S

O ou = 26.1 [W] — 0.3028 lgl {4180 lil x 0.01 [K]
S kgK

3
+243x% 103 [ﬁ] x 0.001 |2
m2 kg

—61W
W in, ideal = 7 (p, — py)-
1.09 [m?/h] N
= U 043 %10° [—]
3600 [s/h] 2
= 7358 W
Winideal  7.358 W
Ecircu]ator = Il;/l == 261 W =28.2%

in
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Steady Flow of an Ideal Gas
A gas passing through a steady flow system can often be regarded as
ideal. Therefore if the inlet and outlet temperatures are known the

change in specific enthalpy can be calculated from Equation (3-14):

Ah = h2 - I’ll = Cp’ avg (T2 - Tl)
(repeated) (3-14)

Example 5-2 Electric Hair Drier

Heater o
N\
¥ \
A
v
T
/20°C
/?‘
X__ 5/ Negligible
Boundary Motor velocity
of steady
flow system

The diagram above is a schematic representation of a hair drier. An
appropriate boundary for a steady flow system is also shown®. Ambient
air has a temperature of 20 °C. It can be assumed that the average
velocity over the inlet surface of the boundary, position 1, is negligible.
At the exit surface of the boundary, position 2, the air has a temperature
of 90 °C and a velocity of 18 m/s. The total electric power consumption
is 1796 W (of which 47 W goes to the motor and the balance to the

* Note that the inlet surface of the system boundary is drawn some distance from the
back of the hair drier so that the average velocity is very low and the pressure equals
ambient pressure. At the back of the hair drier the velocity is not known, although it
would be significantly lower than the discharge velocity because of the larger area

and the lower density of the intake air.
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heater). Heat losses through the outer casing of the hair drier can be

neglected. Use ideal gas properties of air from Table D-1, Appendix D.

(a) Determine the mass flow rate of air through the hair drier for the

conditions described.

(b) Compare the overall rate of kinetic energy transfer to the air to

the power that goes to the motor.

Solution

2 2
. Vi : - . Vi
m (h] +7+g21>+Qin+Win=m (h2+7+g22)

The kinetic energy term at inlet can be neglected and the potential
energy terms cancel because the inlet and outlet are at the same level.

Therefore
2

. . . V.
Ein, total — Q in + Win =m <h2 - hl + 72) = 1796 [W]

Also

h2 — hl = Cp(tz - tl)
and ¢, = 1.0042 x 10° J/kgK.

Hence

o 1796 [W]
1.0042 x 103 [J/kgK] x (90 — 20)[K] + (182)/2 [m?/s2]

B 1796 [W]
(70,294 + 162) [J/kg]

=25.49 x 1073 kg/s

The overall rate of kinetic energy transfer to the air is given by

EAek = mAek
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kg

=25.49 %1073 l— x 162 [J/kg]
S

=4.13 W.

In comparison, the power that goes to the motor is 47 W.

Steady Flow with Phase Change

A common area of application of the steady flow energy equation is
where a fluid evaporates, as in a boiler, or condenses, as in a condenser.
In such cases the required specific enthalpy values can be found from
tables such as those for water substance in Appendix E or for refrigerant
134a in Appendix F. The procedures for looking-up such tables are
addressed in Chapter 7 and Chapter 10.

Example 5-3 Steam Boiler

Water enters a boiler at ground level at a rate of 1.7 kg/s, with a velocity
of 1.3 m/s and with a specific enthalpy of 58.8 kJ/kg (corresponding to
its temperature of 14 °C). Steam leaves the boiler at the same mass flow
rate with a specific enthalpy of 2271 kJ/kg (saturation temperature 276
°C, pressure about 6 MPa absolute). The elevation of the outlet is 10 m
relative to the inlet and the exit velocity is 3 m/s. Calculate the rate of

heat transfer to the water substance in the boiler.

10 m

Qin

Datum level

Water
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Solution

Vl2 . . V2'2
m h1+7+g21 +Qin+Win=n'1 h2+7+gZ2

kg 3 1.32 J B
1.7 1= 8x1 2 = ,
[S]<588X0+ +O>l l Oin

2

K
17 |28 (2271 x 103 + -+ 981 x 10 ) |-
S 2 kg

It can be noted that the potential energy and kinetic energy terms are
negligible in comparison the specific enthalpy terms. The net rate of

work input is zero. Hence,

Q. = 172271 —58.8) x 10° [W]
=3761 x10°' W
= 3761 kW or 3.76 MW

Problems
V2 . . V2
51 (hl +7‘+gzl) O+ Wy =i <h2 +72+g22>
With regard to the equation above, match the correct meaning and

the correct base SI units to each symbol in the table below.

Symb. Meaning Base Units
m A elevation 1 Jkeg™!

h B mass flow rate 2 ms~?

|4 C specific enthalpy 3 kgs™!

g D net heat transfer rate 4 m

0 E velocity 5 W

z F acceleration due to gravity 6 ms™!
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5-2  Water enters a boiler at ground level at a rate of 4.6 kg/s, with a
velocity of 3.7 m/s and with a specific enthalpy of 81.5 kJ/kg.
Steam leaves the boiler at the same mass flow rate with a specific
enthalpy of 2571 kJ/kg. The elevation of the outlet is 20 m
relative to the inlet and the exit velocity is 9.2 m/s. Calculate the
rate of heat transfer to the water substance in the boiler. Comment
on the significance of the kinetic and potential energy terms in

this case.

5-3 Water passes through a steady-flow electric water heater at the
rate of 2.16 L/min and its temperature increases from 18 °C to 55
°C. The average specific heat of the water is 4.2 kJ/kgK and the
average specific volume is 0.001007 m>/kg. Calculate the electric

power input to the heater and state any assumptions made.

5-4 Water enters a pressure washer machine with negligible velocity
at atmospheric pressure and 14.5 °C. It exits from a nozzle with a
velocity of 81 m/s at atmospheric pressure and at a temperature
of 14.8 °C. The mass flow rate of the water is 0.106 kg/s. Estimate
the electric power consumption of the machine on the assumption
that all electric energy supplied to the machine is transferred to
the water. If the machine were to be fitted with a heater to raise
the temperature of the water to 45 °C, how much additional
electric power would be required? Take the specific heat of water

as 4.2 kJ/kgK.
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Chapter 6 Properties of Water
Substance

Subcooled, Saturated and Superheated Water

Substance
Figure 6-1 is a schematic representation of three states of a closed

system that contains only water substance. The pressure within the

A

system is the same in each of the three states.

A

A B C
Liquid Liquid Vapour
water water & water

vapour
water

Figure 6-1 Three states of a closed system, all

at the same pressurc

In state B, liquid water and vapour water co-exist in equilibrium. This
is known as a saturated state and, for a given pressure, the temperature
is unique: it is known as the saturation temperature corresponding to the
pressure. Conversely, the pressure can be described as the saturation

pressure corresponding to the temperature.

In state A, the temperature of the water substance is below its saturation

value and there is no vapour present. The water is said to be subcooled.
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In state C the temperature is above the saturation value and there is no
liquid present. The steam is said to be superheated. In reality the volume
of the system in state C can be tens, hundreds or even thousands of times
greater than the volume in state A. For instance, at atmospheric pressure
dry saturated steam occupies about 1600 times as much volume as
saturated liquid water and superheated steam occupies greater volume,

which continues to increase as the amount of superheat increases.

In order to bring the system in Figure 6-1 from state A to state C energy
must be provided to it, usually as heat transfer. There are three distinct

stages to such a heating process:

1. The subcooled liquid is heated to the saturation temperature.

There is a continuous temperature increase as energy is added.

2. While liquid and vapour are both present, the heat transfer to
the system causes the amount of liquid to decrease and the

amount of vapour to increase. There is no temperature change.

3. When there is only vapour present, heat transfer to the system
increases the amount of superheat, i.e. there is a temperature

increase.

The Dryness Fraction or Vapour Fraction or
Quality

In state B, as shown in Figure 6-1, the relative amounts of liquid water
and steam can vary. As long as both phases of water substance co-exist
at the saturation temperature and pressure, the state or condition is
described as saturated. The dryness fraction (or vapour fraction or

quality) is defined as follows:

mass of vapour my
X = = —
total mass of liquid and vapour m
(6-1)
where
X = dryness fraction

83



Applied Energy Systems — Rudimentary Thermodynamics 6 Properties of Water Substance

= mass of vapour kg

= total mass of liquid and vapour kg

For a saturated mixture of liquid water and steam the dryness fraction
or vapour fraction can vary from 0% (known as ‘saturated liquid’) to
100% (known as ‘dry saturated vapour’). If only dry saturated vapour
exists in a closed, constant pressure system then any net heat transfer to
the system will cause the vapour to become superheated. If only
saturated liquid exists in a closed constant pressure system then any net

heat loss will cause the liquid to become subcooled.

For a closed, constant pressure system that contains a saturated mixture
and where the dryness fraction is between zero and unity, heat transfer
to or from the system takes place without any change in temperature.
Heat gain causes the mixture to become drier, while heat loss causes the

mixture to become wetter.

Property Tables

A set of tables of thermodynamic properties of water substance is
provided in Appendix E. The set consists of three tables entitled
‘Saturation properties’, ‘Superheat properties’ and ‘High and
supercritical pressure properties’. In the tables, subscripts are used to

represent properties at the saturation condition. These are listed in Table
6-1.

Table 6-1 Subscripts used in property tables
Subscript Meaning Example

f saturated liquid  u; specific internal energy of

saturated liquid

g dry saturated Vg specific volume of dry
vapour saturated vapour
fg difference hg, = hy — hy

specific enthalpy difference
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Principal Properties Listed in the Tables

The following properties are listed:

p = absolute pressure MPa

t = conventional temperature °C

v = specific volume m3/kg
u = specific internal energy kJ/kg
h = specific enthalpy kJ/kg

In addition there is one further property, which is useful in performing
calculations relating to components such as compressors or turbines.

This is known as specific entropy.

s = specific entropy kl/kgK

Entropy

Entropy, with the symbol S (upper-case letter) and units of J/K, is a
thermodynamic property of a system or an amount of substance, just as
internal energy, temperature, mass and pressure are thermodynamic
properties. Entropy quantifies the thermodynamic disorder of a system
at the atomic and molecular level. In a pure crystalline solid at absolute
zero temperature (0 K) there is no disorder: molecules retain their

arrangement and have no chaotic motions or vibrations.

Entropy is increased when there is net heat transfer to a system and is
decreased when net heat transfer occurs from a system. In fact, if a
system can be considered to be in equilibrium, if a small amount of heat
transfer 8Q occurs to it slowly, the corresponding change in its entropy
is 8Q/T, where T is the absolute temperature of the system as the heat

transfer occurs, Figure 6-2.
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I
System | Boundary
I./
| 50, T
o0 |
6S=T |

Figure 6-2 Entropy change due to heat transfer to a system.
This figure illustrates the entropy increase of a system in quasi-
equilibrium at temperature T when a tiny amount of heat transfer

occurs to it at the same temperature.

In an ideal equilibrium process that involves no heat transfer (known as
an adiabatic equilibrium process) the entropy of a system or a quantity
of substance remains unchanged. Values of specific entropy for water
substance at different states can be found from thermodynamic tables.
Perhaps the most distinctive aspect of entropy is that, unlike mass and

energy, entropy can be created. However, entropy cannot be destroyed.

The Temperature versus Specific Entropy

Diagram
T
Critical
- p = const.
pom )
p = const.
Liquid Vapour

Liqg. + vap.

Saturated
liquid line /

Dry saturated \

vapour line

S

Figure 6-3 The T-s diagram for liquid water and steam
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The constant pressure lines shown on the T-s diagram in Figure 6-3
could correspond to the constant pressure heating process of a closed
system as shown in Figure 6-1. They could also correspond to a steady
flow, constant pressure heating process that occurs in a boiler. Starting
at the left hand side of one of the constant pressure lines, the
temperature of the subcooled liquid water increases until the saturated
liquid line is reached. The temperature remains unchanged from the
saturated liquid state to the dry saturated vapour state, but increases

again in the superheat region.

Problems
6-1 Match the physical quantities on the left in the table below with

the SI units on the right.

Quantity SI Units
A entropy 1 °C
B specific entropy (also specific 2 no units

heat capacity, specific gas

constant)
C specific volume 3 K
D  pressure 4 kIkg™
E conventional temperature 5 kIK™!
F dryness fraction 6 kJ kg_lK_1
G  enthalpy, internal energy 7 MPa
H  specific enthalpy, specific 8 J

internal energy

I absolute temperature, 9 m’kg

temperature difference
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6-2

6-5

(a)

(b)

(©
@)

(e)
®

Find the specific volume of dry saturated steam at 700 kPa

absolute.

Find the specific internal energy of saturated liquid water at

190 °C.
Find the specific enthalpy of dry saturated steam at 165 °C.

Find the specific entropy of saturated liquid water at 1 MPa

absolute.
What is the saturation temperature of steam at 20 bar?

What is the saturation pressure of water substance at 190

°C?

Calculate the specific enthalpy of saturated water and steam at 1

MPa if the dryness fraction is 82%.

A saturated mixture of liquid water and steam at 900 kPa has a

specific enthalpy of 1574 kJ/kg. What is its dryness fraction?

A steady flow of water substance passes through a boiler drum in

which the pressure is 0.8 MPa gauge at the rate of 1.74 x 1072

kg/s. If it enters as saturated liquid and leaves as wet steam with

a vapour fraction of 98%, calculate the rate of heat transfer to the

water substance within the boiler. Take atmospheric pressure to

be 0.1 MPa. The steady flow energy equation, below, applies.

V12 . . V22
m h1+—+gzl +Qin+Win=n'1 h2+7+g22

2
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Chapter 7 Use of Tables for Water
Substance

Traditionally tables, often referred to as steam tables, have been used to
look up the thermodynamic properties of liquid water and steam.
Software is now commonly used for this purpose, but an understanding
of using thermodynamic tables provides a sound basis for the correct

use of such software.

Saturation Properties
Properties of saturated liquid water and of dry saturated vapour can be
found in the saturation properties table, Table E-1, Appendix E. The

tabulated saturation properties are

saturation pressure p./[MPa]

saturation temperature ¢,/[°C]

specific internal energy (ug, u,) /[kl/kg]
specific enthalpy (hy, hy,, ) /[kI/kg]
specific entropy (sy, S, Sg) /[kJ/kgK]
and specific volume (vy, Vtgs Ug) /[m3/kg].

For most calculations it is sufficient to take v; for liquid water as 0.001

m3/kg, but precise values are available in the tables if required.

Example 7-1 Saturation Properties of Liquid Water and Steam

Use the water substance tables in Appendix E to find the following:

Solutions
Saturation pressure at 28 °C: 0.00378 MPa

(or 0.0378 bar)
Saturation pressure at 290 °C: 7.442 MPa
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Solutions
Saturation temperature at 0.2 bar: 60.1 °C
Specific volume of dry saturated
vapour at 40 °C 19.515 m3/kg
Specific internal energy of saturated
liquid at 40 °C 167.5 kJ/kg
Specific internal energy of dry
saturated steam at 25 bar 2602.1 kl/kg
Specific internal energy of saturated
liquid at 1.6 MPa 856.6 kJ/kg
Specific enthalpy of saturated liquid
at 32 °C 134.1 kJ/kg
Specific enthalpy of dry saturated
vapour at 32 °C 2559.2 kl/kg
Specific enthalpy of dry saturated
vapour at 22 MPa 2173.1 kJ/kg
Specific enthalpy difference (h, —
h¢) at 22 MPa 161.8 kl/kg
Specific entropy of saturated liquid
at 50 bar 2.921 kJ/kgK
Specific entropy of dry saturated
steam at 4 MPa 6.070 kJ/kgK
Specific entropy difference (s, — s¢)
at 120 bar 1.997 kl/kgK

Properties of Saturated Mixtures or Wet Steam

If the dryness fraction (vapour fraction) x is known then an equation of
the same form as Equation (7-1) can be used to find v, u, A or s where
these properties are average values per unit mass of the mixture as a

whole.
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h = h¢+ xhy,
(7-1)
e.g.
U= Ug+ Xug

5 =S¢+ XSgg

Sometimes the property value for the mixture is known and it is
required to find the dryness fraction. This can be done by rearranging
the appropriate equation, of the form of Equation (7-1), so that the

dryness fraction is on the left hand side, e.g.

h— h;
hig

X =

(7-2)

Example 7-2 Properties of Saturated Mixtures or Wet Steam
a) Use the Properties of Water Substance tables to find the specific
internal energy and the specific volume of a saturated mixture of

water and steam at 0.45 MPa if the dryness fraction is 0.237.
b) Use the tables to find the vapour fraction of wet steam that has a

specific enthalpy of 2650 kJ/kg at a pressure of 2.5 bar.

Solution
a) At0.45 MPa
up = 622.6 kl/kg

ug, = 1934.5 kl/kg
vp = 0.001088 m>/kg
vgy = 0.4128 m’/kg

Hence
u=1(622.7+0.237 x 1934.4) kJ/kg = 1081.1 kJ/kg

v = (0.001088 + 0.237 x 0.4128) m>/kg = 0.0989 m>/kg
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b) At 2.5 bar
he =535.3 klJ/kg

he, = 2181.2 kl/kg

Hence
_ 2650 —535.3
21812

=0.970

Properties of Subcooled Liquid Water

Subcooled liquid is liquid that is at a temperature below the saturation
value corresponding to its pressure. For instance, at a pressure of 1.4
MPa the saturation temperature is 195.0 °C and so water at a lower

temperature will be subcooled.

For subcooled liquid the properties specific volume, specific internal
energy and specific entropy depend on the temperature and are quite
insensitive to pressure. Therefore the saturation values at the same
temperature can be used for subcooled liquid, e.g. for liquid water at
1.5 MPa and 85 °C the values for u and s are: 356.0 kJ/kg and 1.135
kJ/kgK—these values are read from the saturation table for water
substance at 85 °C for liquid water. It can be noted that the specific

volume of liquid water is about 0.001 m3/kg at low temperatures.

From the definition of specific enthalpy, Equation (3-9), it is clear that

the value depends on the pressure:

h=u+ pv
(repeated) (3-9)
For low values of pressure the pv term in Equation (3-9) is often
negligible in comparison to the u term. This is why at low pressures the

u; and h; values can appear the same.

One way to find the specific enthalpy of subcooled liquid is to look up
the specific internal energy in the saturation table at the temperature of
the subcooled liquid and add on the pv term, Equation (7-3). It is

important to ensure that both additive terms have the same units.
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hsubcooled liquid = Yfe@ertPlr@r-
(7-3)

In some cases it is more convenient to look up the specific enthalpy of
saturated liquid at the temperature of the subcooled liquid and apply a

pv term correction, as follows:

hsubcooled liquid = e T+ (P —Ps@ D Vre T -
(7-4)

Example 7-3 Properties of Subcooled Liquid Water

Find the specific enthalpy of water substance at 1.4 MPa and 150 °C
using Equation (7-3) and also using Equation (7-4).

Solution

At 1.4 MPa t; = 195.0 °C. Therefore the water is subcooled.

P ts Uy Ug hf

[MPa]  [°C]  [md/kg] [kI/kgl  [kI/kg]

04762 150 0.001091  631.7 632.2

Using Equation (7-3), the specific enthalpy of water at 150 °C and 1.4
MPa is therefore

1 3
h=631.7 lﬁ + 1.4 x 10% [kPa] x 0.001091 lﬁl
kg] kg

[kJ KJ KJ
=631.7 |—| +1.527 |[=| = 633.2 —.
kg " [kgl kg

Using Equation (7-4), the specific enthalpy of water at 150 °C and 1.4
MPa is

3
h =632.2 lllj]—gl + (1.4 — 0.4762) x 10° [kPa] x 0.001091 lrlil_gl
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_en2 | +1.008 Kl 63328
kg kg kg

Example 7-4 Properties of Subcooled Liquid Water

Find the specific entropy and the specific enthalpy of water at 8 MPa
and 36 °C.

Solution

At 8 MPa t, = 295.0 °C. Therefore the water is subcooled.

tS p Uf hf Sf

°Cl  IMPal  [mike] [iikgl [Dl/keK]

36 0.00595 0.001006  150.8 0.519

s =s; at 36 °C = 0.519 kl/kgK
h; at 36 °C = 150.8 kl/kg

ps at 36 °C = 0.00595 MPa

Hence
kJ 3 m3
h =150.8 _g (8 —0.00595) x 10° [kPa] x 0.001006 E
kJ kJ kJ
=150.8 | — 8.04 |—| = 158.8 —.
kg] " lkg] kg

Properties of Superheated Steam

The properties of superheated steam are found in the ‘Superheat
properties’ table. In this particular table, regular steps of saturation
pressure and of saturation temperature are used. At each pressure,
values are tabulated for a range of superheat temperatures. The

tabulated properties in the superheat region are

pressure p/[MPa]
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specific internal energy u/[kJ/kg]
specific enthalpy h/[klJ/kg]
specific entropy s/[kJ/kgK]

and specific volume U/[m3/kg].

At each pressure the properties of dry saturated steam are also presented
within a column headed ‘Dry sat.” (Separate symbols with the subscript

‘s’ are not used.):

saturation temperature #,/[°C]
specific internal energy u,/[kJ/kg]
specific enthalpy hy/[kJ/kg]
specific entropy s4/[kJ/kgK]

and specific volume vg/[m3/kg].

Example 7-5 Properties of Superheated Steam

Use the ‘Properties of Water Substance’ tables, Appendix E, to find the
specific enthalpy and the specific volume of superheated steam at 16
MPa and 500 °C. Also find the saturation temperature at the same

pressure.

From the tables:
h =3297.3 kl/kg

v =0.01932 m’/kg

t, =347.4°C

Interpolation

Linear interpolation is used to find properties where the exact values of
the known properties are not listed in the tables. The principle of the
technique is illustrated in Figure 7-1. It can be seen by inspection of this

figure that the estimated value of y; corresponding to x; when the co-
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ordinates (xy, y;) and (X, y,) are known is given by Equation (7-5). It
is not advisable to try to memorize this equation, but rather to
understand it and then apply it in an intuitive way. Linear interpolation

from the tables becomes routine with a little practice.

Y y = f(x)
b

Exact y,

Estimated y,
Y

Xy X
X3

Figure 7-1 Interpolation
X3 — X

1
2 —y1)
Xy — X

y3=y+
(7-5)

Example 7-6 Interpolation

(a) What is the saturation temperature of water at a pressure of 151.8

bar?

(b) What is the specific enthalpy of steam at a pressure of 11 MPa and

a temperature of 512 °C?

Solution

(a)
At150bar 1, =3422°C

Atl160bar 1, =347.4°C

Hence, at 151.8 bar

t, = [342.2 L8150 507 4 342 oC
160 — 150
=343.1°C
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(b)
At 11 MPa and 500 °C h =3362.7 kl/kg
At 11 MPa and 550 °C h =3491.9 kl/kg

Hence, at 512 °C

512 - 500

h= [3362.7 212 = >0
*550 =500

(3491.9 — 3362.7)] Kl/kg

12 kJ
= [3362.7 + 22 129.3]—
[ +50( ) kg

kJ
=3393.7 —
kg

Problems
7-1 If wet steam has a specific enthalpy of 2762 kJ/kg and a pressure

of 10 bar what is its quality? (h = h¢ + xhy,)

7-2  Calculate the specific volume of a saturated mixture of water and

steam at 1.5 MPa given that the vapour fraction is 6.2%.

7-3 Calculate the specific volume of wet steam at 190 °C, given that

the dryness fraction is 98.5%.

7-4 Find (a) the saturation pressure for water at 160 °C and (b) the

specific enthalpy of steam at 1.5 MPa and 362.5 °C.

7-5 Find the specific internal energy, the specific entropy and the
specific enthalpy of liquid water at 15 bar and 165 °C. (h =
hter + (P —PIVte 1)

7-6 (a) Find the specific volume of steam at 2 MPa and 350 °C.

(b) Find the specific internal energy of superheated steam at

250 °C and 3 MPa.

(c) If superheated steam has a specific enthalpy of 2924 kJ/kg

and a pressure of 15 bar, what is its temperature?
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Chapter 8 The Steam Power Plant

A Boiler and Superheater Plant for a Power
Station

Figure 8-1 is a schematic diagram of a gas fired boiler and superheater
plant, which might be part of a power station for generating electricity.
For instance, it might produce 900 kg of steam per second at a pressure
of up to 16 MPa gauge and at a temperature of up to 560 °C. It could
well be as tall as a twelve storey building. In boilers such as this the
entire chamber (within which combustion occurs and the economizer
and superheater tube bundles are suspended) is lined with tubes
containing boiling water. The heat transfer to these tubes (particularly
those with a line of sight to the combustion flames) is largely by
radiation, while the heat transfer to the feed water in the economizer

and to the steam in the superheater tubes is mainly by convection.

S

Boiler drum éﬁ -
Superheaters§ j}\p T4
™~ il

~ ¥
~ Economizer
Steam output \\\ P/Fe od water
Boiler tubes 42
lining the 5 —> | Exhaust duct
combustion M,
chamber -\ —] Heated

intake air

4 <
Gas Gas
burners il 9 burners

Figure 8-1 Schematic of a radiant steam boiler with

superheaters and economizer
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Figure 8-2 is a simplified schematic diagram of a generic economizer,
boiler and superheater arrangement. It incorporates less detail than

Figure 8-1, but the flow path of the water and steam is easier to follow

1n it.
Superheater
Saturated steam
/ Superheated
Boiler > steam
drum
. F
Liquid e(:d
level P Watel - combustion
Al C C - gases to
) ) stack
Steam —
collection \
header
Economizer
Combustion
region \\ ) 4

Boiler tubes
Water distribution header

Figure 8-2 Schematic arrangement of a boiler with an

economizer and a superheater

Block Diagram of a Steam Power Plant

Figure 8-3 shows the main components of a typical steam power plant.
The feed pump pumps water into the boiler where it is heated to its
saturation (boiling) temperature and evaporated to form steam. Point A
in Figure 8-3 represents the position within the boiler at which the liquid
water reaches the saturation temperature. The steam that leaves the
boiler passes through the superheater where its temperature is increased
further, leaving it at position 3. The pressure at positions 2, A, B and 3
is perhaps 8 MPa gauge and the temperature at point 3 could be 470 °C.

The steam that leaves the superheater enters the turbine where it
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expands and provides mechanical power output in the turbine shaft. The
steam leaves the turbine at position 4 at the condenser pressure and at
the saturation (or condensing) temperature that corresponds to that
pressure. The condenser operates under vacuum (at a pressure of

perhaps 4 kPa abs.) and liquid water condensate leaves it at position 1.

Superheater

B

Boiler

Condenser

Feed pump
O\
&, <

1

Figure 8-3 Block diagram of a steam power plant

To summarize, between positions 2 and 3 heat transfer occurs to the
water and steam, e.g. from the combustion of a fuel. Between positions
4 and 1 heat rejection occurs from the steam to the surroundings, e.g. to
cooling water that is at ambient temperature. There is power output
from the turbine and a relatively small amount of power is required to

drive the feed pump.

The Steam Power Plant as a Heat Engine

1y >T,

Figure 8-4 Schematic diagram of a heat engine
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A steam power plant is a good example of what is known as a heat
engine, Figure 8-4. In thermodynamics a heat engine is a system that
undergoes a cycle in the course of which heat transfer is accepted from
a heat source and heat rejection occurs to a heat sink at lower

temperature, while a net work output is produced.

A cycle is a series of processes as a result of which a system or amount
of substance that starts off at a given state is brought through other states
and back to the initial state. After each cycle the system or amount of

substance has undergone no net change.

It is possible for a substance to undergo a cycle as it passes around a
flow circuit in steady flow. This is what happens in the steam power
plant, Figure 8-3. Water enters the feed pump at state 1 and passes
through the feed pump, the boiler and superheater, the turbine and the

condenser to arrive back at its original state.

The thermal efficiency of a heat engine is defined as

W,

t, out
Ey = __fhet,owt
Ql—l, in
(8-1)
where
E, = thermal efficiency
Ou.in = heat input from the thermal
reservoir at the higher
temperature J
Wet., out = net work output J
Also,

I/Vnet, out /AZ

E., =
"0 w/AY

101



Applied Energy Systems — Rudimentary Thermodynamics 8 Steam Power Plant

where A7 is a time interval during which the net work output and the

net heat input occur.

Hence, if the net power output and the net heat input rate are constant,

W,

net, out

Ey = :
QH, in
(8-2)

where

0 H.in = heat input rate from the

s

thermal reservoir at the

higher temperature W

W et out = net work output rate

(net power output) W

Note: sometimes the heat input is supplied at multiple temperatures or
over ranges of temperature. Likewise, heat rejection can occur at

multiple temperatures or over ranges of temperatures.

Example 8-1 Steam Power Plant Thermal Efficiency

The rate at which energy is supplied as heat transfer to the circuit of a
steam power plant is 27.3 MW, while the net electric power produced
is 11.3 MW. What is the thermal efficiency of the plant based on these

values?

Solution

The electric power output can be regarded as a rate of work output. The
thermal efficiency can be written in terms of the heat input and net work

output rates as follows:

I/Vnet, out
Eth =
QH, in

Hence,

113 MW

=2 VW _ 414
th T 9273 MW %
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The Temperature versus Specific Entropy

Diagram for an Ideal Steam Power Plant
Figure 8-5 illustrates the cycle for an ideal steam power plant, the

Rankine cycle, on a T-s diagram. The processes undergone by the water

substance are as follows:

1-2

Water at the saturated liquid state is pumped from the
condenser pressure to the boiler pressure. This is taken to be
an ideal adiabatic process, i.e. there are no friction effects and
there is no heat transfer, so the specific entropy remains
unchanged. The temperature rise from 1 to 2 is greatly
exaggerated on the diagram and can be neglected in practice.

Work input is required.

T Critical p = const.
point )
p = const.
) A
Liq. B
2 Vap.
Lig. + vap.

S

Figure 8-5 The ideal Rankine cycle for a steam power plant

2> A

A->B

shown on a T-s diagram for water substance

The water is heated at constant pressure until it reaches the
saturation temperature. This may occur within the boiler, but
a separate heat exchanger known as an economizer is often
used.

Boiling (evaporation accompanied by considerable vapour
bubble formation) occurs at constant pressure within the

boiler.
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B — 3 The steam is superheated at constant pressure in the
superheater.

3 —>4 The steam is expanded in the turbine, producing work. This is
taken to be an ideal adiabatic process so the specific entropy
remains unchanged.

4 -1 The steam is condensed at constant pressure in the condenser.

The Steady Flow Energy Equation for the

Steam Power Plant

The steady flow energy equation, Equation (5-5), can be applied to the
main components of the steam power plant. Changes in kinetic energy
and potential energy between positions 1, A, B, 2, 3 and 4 in Figure 8-3
are usually negligible. Therefore, when applied to the feed pump, the
boiler and superheater, the turbine and the condenser the steady flow
energy equation usually involves only the heat transfer, work and
specific enthalpy terms. These equations are examined in more detail

for each of the main steam power plant components.

Feed Pump Work or Power
For a given mass flow rate m of water through the feed pump the rate
of energy transfer to the pump as work is given by Equation (5-8),

which is presented here as two variants, Equations (8-3) and (8-4).

Wpump, in = m (hout - hin) + mqpump, out
(8-3)
or
Wpump, in = m (hout - hin) +0 pump, out
(8-4)
where
W oump, in = net rate of work input %
Opump.out = net rate of heat output w
Gpump, out = pump net heat output per

unit mass J/kg
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m mass flow rate kg/s

For an adiabatic pump, or one where the net heat transfer is negligible,
Equation (8-3) for the net work input per unit mass of fluid can be

written as

Wpump, in, adiab = hou — Pin

and the rate of work input, or power, is given by
/4

pump, in, adiab = m (hout — hip)-

Ideal Feed Pump Power

For an incompressible fluid passing through an ideal pump without
fluid friction, mechanical friction or heat transfer, the specific internal
energy would be the same at the outlet as at the inlet. The ideal pump
power input is given by Equation (5-9), which is written here as

Equation (8-5) using ‘in’ and ‘out’ subscripts.

Wpump, in, ideal = muv (pout = Pin)

(8-5)
where
Wpump’ in, ideal = net rate of work input of an
ideal frictionless pump W
v = specific volume of
incompressible fluid (water) m3/kg
p = pressure Pa

That is, for an ideal feed pump the power input equals the product of

the mass flow rate, the specific volume and the pressure rise.

Calculation of Heat Transfer Rates in a Boiler
In a boiler, or boiler and superheater, a steady rate of heat transfer
occurs to a steady flow stream of water substance and causes an

increase in specific enthalpy from inlet to outlet. Within the boiler,
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liquid water changes to steam. Within the superheater, further heat
transfer occurs to the steam in the absence of liquid water. The general
heat transfer rate equation for a boiler (or boiler and superheater) has

the form of Equation (5-4), which is written here as Equation (8-6).

Q boiler — Q in =M (hout - hin)'

(8-6)

where
O boiler = rate of heat transfer that occurs into the

system in a boiler w
0, = rate of heat transfer into the system Y
m = mass flow rate of the water substance kg/s
howe = specific enthalpy of the water substance

coming out of the system J/kg
hi, = specific enthalpy of the water substance

going into the system Jikg

Equation (8-6) can be applied to the economizer, boiler and superheater
taken as a whole, or to part of this flow system, e.g. to the superheater

alone.

Example 8-2 Boiler and Superheater Heat Transfer Rate

In a Rankine steam cycle, water leaves the feed pump at 40 °C and 8
MPa. Steam leaves the superheater at 400 °C at the same pressure. If
the mass flow rate of the steam is 98.3 kg/s, calculate the rate of heat

transfer to the water substance in the integrated boiler and superheater.

Solution

Find h;, at 40 °C and 8 MPa:

h; at 40 °C

167.5 Kl/kg

ps at 40 °C 0.00738 MPa
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vy at 40 °C = 0.001008 m3/kg
Therefore
kJ 3 m3
h;, = 167.5 @ + (8 —0.00738) x 10° [kPa] x 0.001008 k_g

= (167.5+8.1) K _ 1756 K
kg kg

Find h, at 400 °C and 8 MPa:

hoy = 3139.4 Kl/kg

Therefore
Q in=m (hout - hin)

k
=98.3l £

S

X (3139.3 — 175.6) lgl
kg
=291.3x 10> kW = 291.3 MW

Turbine Work or Power

For the turbine, the steady flow energy equation can be written as

Wiyrb, in T Grurb, in = hout - hin

where
h = specific enthalpy Jkg
Wiyrb, in = turbine net work input

per unit mass J/kg
Gturb, in = turbine net heat input

per unit mass Jikg

8 Steam Power Plant

As net energy transfer as work is from the fluid during expansion, and

as heat transfer is normally negligible in steam turbines, the equation

can also be written as
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Wurb, out = hin - hout

(8-7)
where
Wiurb, out = turbine net work output
per unit mass J/kg
h = specific enthalpy Jikg

Thus Equation (8-7) can be used to calculate the net work output per

unit mass if the specific enthalpy values at inlet and outlet are known.

With reference to Figure 8-5 it can be noted that for an ideal turbine
(assumed adiabatic and without fluid friction) the specific entropy of
the steam at exit would be the same as that of the steam at entry. In
actual turbines (which are approximately adiabatic) there is always an
increase in the specific entropy, which is caused by fluid friction.
Equation (8-7) still applies, but the specific enthalpy at exit will be
higher than for the ideal case.

The rate of work output, or the power, of the turbine is given by

Wturb, out = M (hin — hout)

(8-8)
where
W b, out = net rate of work output w
m = mass flow rate kg/s

Calculation of Heat Transfer Rate in a
Condenser

In a condenser, Figure 8-6, a steady rate of heat transfer occurs from a
steady flow stream of water substance and causes a decrease in specific
enthalpy from inlet to outlet. The water substance condenses from
steam to liquid water. The steady flow energy equation for a condenser

can be written as
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Q condenser — Q out = m (hin - hout)'

(8-9)

where
O condenser rate of heat transfer that occurs out

of the system in a condenser W
O out = rate of heat transfer out of the system '

Turbine
4
Condenser

Feed pump
< 1

Figure 8-6 Condenser within a steam power plant

Figure 8-6 shows a condenser, situated between the turbine and the feed
pump in a steam power plant. The condenser is cooled by ambient air
or water and thereby rejects heat to the surroundings. As ambient
temperature is well below 100 °C (the condensing temperature of water
vapour at atmospheric pressure), the condenser normally operates at a
pressure below atmospheric pressure. This ensures that the pressure
drop across the turbine is as large as possible. The exact saturation
pressure within the condenser is determined by the temperature of the
surroundings and the effectiveness of heat rejection. Once the steam

has been condensed to liquid water, it is returned to the boiler via a feed

pump.

Why is a Condenser Required?

Modern steam power plants normally operate on a closed cycle, i.e.
water substance is recirculated continuously through the plant. The
water substance that leaves the turbine as steam will be required to pass

through the boiler and superheater where energy will be added to it. It
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might therefore seem like a good idea to let the water substance, as
steam, pass directly from the turbine outlet to the boiler. However, the
turbine exhaust steam is at a very low pressure (perhaps about 4 kPa),
while the pressure in the boiler is high (perhaps 8 MPa) and a
compressor would be needed to bring about the required flow. The work
to drive the compressor would have to come from the turbine. In fact,
if there was no heat rejection from the steam before it was compressed,
and allowing for inefficiency in both the turbine and compressor, it
would take more work to compress the steam than the work produced
in the turbine. Rejecting heat from the water substance in the condenser
has the effect of reducing its volume to a tiny fraction of what it has at
the turbine outlet. When the water substance is fully condensed to liquid
water, at near ambient temperature, very little work is required to pump

it into the boiler.

From a practical perspective, the condenser allows the water substance
to be recirculated for the expenditure of relatively very little pumping
power. From another perspective there is a law called the second law of
thermodynamics that states that heat transfer cannot be converted
completely to work at the macroscopic level. A machine that accepts
heat transfer and produces a net work output without undergoing any
net change in its own state must also reject heat. The condenser of a

steam power plant allows for such heat rejection.

Example 8-3 Condenser

Wet steam, dryness fraction 0.95, is fed into a condenser at 0.2 bar

absolute. Determine:
(a) the temperature of the steam,

(b) the amount of latent heat per unit mass given up by the

condensing steam.
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Solution

(a) At 0.2 bar (0.02 MPa) absolute the saturation temperature is found

from the water substance tables to be 60.1 °C.

(b) hy =251.4 kl/kg and hy, = 2357.5 k] /kg. The amount of latent heat
given up by the condensing steam per unit mass is
deond = Min = houe = (Ae+ thg) —hy= thg

= 0.95x2357.5 kﬁ = 2239.6 X

g kg
Example 8-4 Condenser Heat Transfer Rate

Steam with a vapour fraction of 98.1% enters a condenser at a pressure
of 0.0040 MPa absolute. If the flow rate of the steam is 13.9 kg/s and if
it leaves the condenser as saturated liquid, calculate the rate of heat
rejection in the condenser. Also calculate the volume flow rate of the
steam at entry to the condenser and the volume flow rate of the

condensate leaving the condenser.

Solution

At 0.004 MPa
he = 121.4 Kl/kg
hyy = 2432.3 Kl/kg
vp = 0.001004 m3 /kg
vy = 34.790 m* /kg
vy = 34791 m*/kg
hin = houwe = hy + x heg — hy = x hyg
kJ kJ

= 0.981 x 2432.3 — =2386.1 —
kg kg

Therefore
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Q out — m (hin - hout)

X 2386.1 [kgl = 33,167 kW = 33.17 MW

g

kg

S

=139

To find the volume flow rate at inlet:
Ujy =+ X Utg

3
= (0.001004 + 0.981 x 34.790) r}?—g

3

m
=34.13 —
kg

Hence the volume flow rate at entry to the condenser is given by
m’
S

kg

v ., = v, =139 -

3
X 34.13 [m—l = 4744
kg

Also

3

: _ kg m s m?
V out = MUy = 13.9 5 % 0.001004 e =13.96 x 10

3 m

Safety and Environmental Aspects

8 Steam Power Plant

Persons working within steam power plants, or responsible for them,

require training relating to the safe use and operation of the equipment.

Safety topics to be aware of include the presence of water and steam at

high temperatures and pressures, rotating machinery, noisy equipment,

combustion of fuels and combustion products, safe fuel storage,

movement of heavy loads, and risk of electric shock.

Environmental issues associated with power production in steam power

plant installations include emissions from combustion, environmental

impact of condenser heat rejection, radiation issues associated with

nuclear-fuelled steam power plants, and safe disposal or storage

waste, whether ash from combustion or radioactive waste.
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Problems

8-1 Inasteam power plant operating with a thermal efficiency of 39%
the net electric power production is 105 MW. Calculate the rate
of heat transfer in the boiler and superheater, stating any

assumptions made.

8-2 Feed water enters a boiler at 3 MPa and 150 °C. It leaves as
superheated steam at a temperature of 450 °C. Determine the heat
transfer per unit mass of steam and the rate of heat transfer if the
mass flow rate is 23.2 kg/s. The formula below can be used in

calculating the specific enthalpy of the feed water.

Psubcooled liquid = e 7+ P —Pse D Vre T
8-3 Wet steam, with a quality of 0.985 condenses at 0.045 MPa

absolute. Determine:
(a) the absolute temperature of the steam,

(b) the rate of heat rejection in the condenser if the mass flow

rate of the condensate is 4.23 tonne/hour.

8-4 Dry saturated steam enters a superheater at 3 MPa at the rate of
22.1 kg/s and leaves as superheated steam at 500 °C. Determine

the rate of heat transfer to the steam in the superheater.

8-5 Liquid water enters a boiler at a pressure of 9 MPa and a
temperature of 200 °C. Steam leaves the boiler and flows through
a superheater, leaving with a temperature of 550 °C. Calculate the
specific enthalpy of the liquid water that enters the boiler and that
of the superheated steam that leaves the superheater. The
following expression may be used to find the specific enthalpy of

subcooled liquid water:

Rgubeooled tiquid = e+ (P —Pse 1) Ure T
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If the rate of heat transfer in the boiler and superheater is 47.3
MW, calculate the mass flow rate of the water substance. State

any assumptions made.

8-6 Water enters a boiler at ground level at a rate of 3.1 kg/s, with a
velocity of 4 m/s. The boiler operates at a pressure of 4 MPa and
the inlet temperature is 30 °C. The boiler is followed by a
superheater and then by an adiabatic device that has no input or
output of shaft work. The elevation of the outlet from the
adiabatic device is 75 m relative to the boiler inlet and the exit
velocity at this position is 394 m/s, while the exit specific
enthalpy is 2883.9 kJ/kg. Calculate the rate of heat transfer to the
water substance in the boiler and superheater. Comment on the
significance of the changes in the kinetic energy per unit mass and

the potential energy per unit mass in this case.

8-7 Using a spreadsheet application prepare a diagram, like Figure
6-3, showing only the saturated liquid line and the dry saturated
vapour line as a graph of temperature versus specific entropy. Use
data values from Table E-1, Appendix E. Plot only sufficient
points to obtain a reasonably smooth outline. Use a temperature

scale with a range from 0 °C to 400 °C.

8-8 Write a paragraph to synopsize potential environmental impact
issues of a large coal-fired steam power plant that uses sea water

for condenser cooling.
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Chapter 9 The Refrigeration Plant

Block Diagram of a Refrigeration Plant

Qcond f

Condenser
Compressor

Expansion
valve

Evaporator

X 0o

Figure 9-1 Block diagram of a refrigeration plant

Figure 9-1 shows the main components of a typical refrigeration plant.
The working fluid, which is known as a refrigerant, is a substance that
can exist as a liquid, as a vapour or as a mixture of the two: refrigerant
134a (C,H,F,) and ammonia (NH;) are two examples. The refrigerant
undergoes evaporation in the evaporator and condensation in the
condenser. Water substance is not suitable as a refrigerant for
evaporating temperatures at or below ambient because its saturation
pressure is too low at such temperatures. R134a has a saturation
pressure of 1 bar absolute at about —25 °C, while ammonia has a

saturation pressure of 1 bar absolute at about —34 °C.

The compressor maintains a sufficiently low pressure in the evaporator
so that evaporation can take place at a desired temperature level below
ambient temperature. The compressor also maintains a sufficiently high
pressure in the condenser so that condensation can take place with heat
rejection to the surroundings at a temperature above ambient
temperature. For a given flow rate of the refrigerant, a corresponding
rate of work input as mechanical power is required to drive the

compressor. This power is commonly provided by an electric motor.
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At state 1 in Figure 9-1 the refrigerant enters the compressor at the
evaporating pressure. Usually, the refrigerant is superheated by perhaps
5K to 10K, e.g. its temperature might be 7 K higher than the
evaporating or saturation temperature. The refrigerant leaves the
compressor at the condensing pressure with an even greater amount of
superheat, e.g. for R134a the temperature might be 25 K higher than the

saturation temperature corresponding to the discharge pressure.

In the condenser, the refrigerant is first de-superheated and then
condensed at essentially a constant pressure. Refrigeration condensers
are usually cooled by ambient air, often blown by a fan, and are
sometimes cooled by water. The refrigerant leaves the condenser as a

saturated liquid, or there may be a small amount of subcooling.

The expansion valve allows the condensed refrigerant to pass from the
condenser, where the pressure is relatively high, to the evaporator,
where the pressure is relatively low. At the expansion valve there is no
mechanical shaft work input or output and there is negligible heat
transfer. As the refrigerant passes through the expansion valve, part of
the liquid ‘flashes’ to vapour and so the refrigerant enters the evaporator

as a two-phase mixture with a dryness fraction of perhaps 30%.

In the evaporator the refrigerant evaporates at low temperature and
accepts heat transfer from the region that is being cooled or refrigerated,
e.g. a cold store. The refrigerant leaves the evaporator in a slightly

superheated state close to the dry saturated condition.

Flow Restrictions and Throttling

In general, when a fluid passes through a flow restriction (such as an
orifice plate, a partially open valve or a porous plug), the fluid is said
to undergo a ‘throttling’ process. In such a process there is a significant
pressure drop, but no input or output of shaft work. In many cases there
is no significant heat transfer at the throttling device and the flow
process within it can be considered adiabatic, Figure 9-2. It follows

from the steady flow energy equation, Equation (5-6), that the specific
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enthalpy of a fluid is unchanged when it passes through a flow
restriction of this type. Other properties, e.g. pressure, specific volume
and specific entropy, are changed. Downstream of an adiabatic
throttling device the pressure is reduced, the specific volume is

increased and the specific entropy is increased.

0=0

==X
® ©,

P, hy P1> D2 D2, hy =hy

Figure 9-2 Flow through an adiabatic flow restriction

The Reversed Rankine Cycle

The vapour compression refrigeration cycle is like the Rankine steam
cycle, but with the flow direction reversed. For this reason it is often
called the reversed Rankine cycle. The ideal reversed Rankine cycle is
represented on a 7-s diagram in Figure 9-3. As shown, there is no

superheat at point 1 and no subcooling at point 3.

T Critical p = const.
point
2
p = const.
Ligq. 3
Vap.
Liq. + vap.
)

Figure 9-3 The ideal reversed Rankine cycle on a T-s diagram

for the refrigerant

The processes undergone by the refrigerant are as follows:
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1 — 2 Compression of the vapour with negligible heat transfer and,
ideally, without any friction effects. The specific entropy, s,
remains unchanged.

2 — 3 De-superheating followed by condensation at constant
pressure. This involves heat output.

3 — 4 The refrigerant undergoes a throttling process. Friction
effects are significant and there is no work input or output.
Heat transfer is negligible. The specific enthalpy of the
refrigerant is unchanged after this process. Fluid friction
effects cause the specific entropy to increase even though
there is no heat transfer.

4 — 1 The refrigerant is evaporated at constant pressure in the

evaporator. This involves heat input.

The Pressure versus Specific Enthalpy Diagram

Critical

p point
§ = const.

3 < 2
Liq. %
Vap.
/e |
Lig. + vap.

Figure 9-4 The ideal reversed Rankine cycle on a p-h diagram

Whereas Figure 9-3 allows the reversed Rankine refrigeration cycle to
be compared to the Rankine steam cycle, it is much more usual to make
use of a pressure versus specific enthalpy diagram for refrigeration
calculations. This is shown in Figure 9-4 for a refrigeration cycle
without vapour superheat at the evaporator exit or liquid subcooling at

the condenser exit.
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s = const.
)
3f— 2
//“ A

Figure 9-5 The reversed Rankine cycle on a p-h diagram with

h

suction vapour superheat and liquid subcooling.

Figure 9-5 shows how the refrigeration cycle appears if there is some
vapour superheating at the evaporator exit and some liquid subcooling

at the condenser exit.

With assumed isentropic (s = const.) compression, isenthalpic (h =
const.) expansion and constant pressure evaporation and condensation,

the following information is required to define the cycle:

the refrigerant, e.g. R134a

the evaporating pressure or temperature

the condensing pressure or temperature

the amount of superheat at entry to the compressor

the amount of subcooling at entry to the expansion valve.

The Thermostatic Expansion Valve

One primary function of a thermostatic expansion valve (TEV), Figure
9-6, is to allow saturated liquid refrigerant at the condenser pressure to
expand to the evaporating pressure and thereby undergo a drop in
temperature so that it can provide a cooling effect by accepting latent

heat transfer at the reduced temperature in the evaporator.
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Orifice

TEV

Diaphragm

/Valve stem
’ )
I«

Liquid

in C( Evaporator

5 )
_ )

Superheated vapour out

Capillary
tube

Figure 9-6 Schematic diagram of a thermostatic expansion

valve and an evaporator

A second primary function of a thermostatic expansion valve is to
control the flow of refrigerant into the evaporator so that the full heat
transfer surface of the evaporator is used effectively. If too much liquid
is supplied to the evaporator then the refrigerant leaving the evaporator
is likely to be wet and unsuitable for compression in the compressor. If
too little liquid is provided to the evaporator then much of the surface
of the evaporator will not be exposed to wet refrigerant and so will not
serve to cause evaporation: the refrigerant will leave the evaporator in
a superheated state. The thermostatic expansion valve is designed to
maintain a pre-determined small amount of superheat at the evaporator
exit, e.g. 4 Kor 7 K.

The sensor bulb shown in Figure 9-6 contains liquid and vapour
refrigerant and is attached to the outside of the exit pipe from the
evaporator so that it can sense the refrigerant temperature at that

position on the pipe. When the temperature of the sensor bulb is higher
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than the saturation temperature in the evaporator by a pre-set amount,
the pressure acting on the top of the diaphragm in the thermostatic
expansion valve can overcome the pressure acting on the bottom of the
diaphragm and the force of a pre-set spring to allow liquid refrigerant
to pass through the valve. The refrigerant leaves the valve as a mixture

of liquid and vapour at the pressure in the evaporator.

Response of a Thermostatic Expansion Valve to an
Increase in Refrigeration Load

An increase in refrigeration load can occur, for example, if food
products at ambient temperature are brought into a cold store. Being at
arelatively high temperature, the products cause an increase in the rate
of heat transfer to the evaporator and this will result in an increase in
the amount of superheat at the position where the refrigerant leaves the
evaporator. The increased exit temperature will cause an increase in the
pressure within the sensor bulb of the thermostatic expansion valve.
This higher pressure will act on the top of the diaphragm in the TEV,
Figure 9-6, which will depress the valve stem to allow more liquid to

enter the evaporator through the TEV.

The Capillary Tube

In some cases the expansion valve can be replaced by a capillary tube.
This might typically have a length of about two metres and an inside
diameter of less than a millimetre. The main advantages of a capillary
tube as an expansion device are its simplicity and its low cost. For this
reason capillary tubes are commonly used in mass-produced
refrigeration systems such as domestic fridges or deep freezers. Where
operating conditions vary widely, a thermostatic expansion valve is

likely to be more satisfactory.

Environmental, Societal and Safety Aspects of
Refrigeration

Modern refrigeration makes a very significant contribution to health

and welfare. Refrigeration and freezing of food significantly extends its
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storage life and reduces the likelihood of food poisoning through eating
food that has ‘gone-off’. In many parts of the world, air-conditioning
involving refrigeration allows people to live and work in an
environment that is more comfortable and in which they can work more

effectively.

Some of the original chlorofluorocarbon (CFC) refrigerants, while most
were excellent in terms of low toxicity and safe with regard to possible
combustion or explosion, were found to damage the ozone layer in the
Earth’s upper atmosphere, allowing harmful solar radiation to reach
ground level. Considerable progress is being made in addressing this
problem, through the development of replacement refrigerants that have
a much lower effect on the ozone layer and also through ensuring that

refrigerants are not released into the atmosphere.

Some refrigerants contribute to the greenhouse effect and therefore to
global warming when released into the atmosphere. Here too progress
is being made by reducing emissions and developing replacement

refrigerants that have much less effect in this regard.

Refrigerants exist as liquid and vapour under pressure within
refrigeration, air-conditioning or heat pump equipment. All the normal
precautions for liquids and vapours under pressure apply. Some
refrigerants such as ammonia (NH3) are toxic and injurious if inhaled
and are combustible or explosive if mixed with air or oxygen in certain

concentrations. Appropriate precautions must be taken.

Problems

9-1 At what position in a refrigeration circuit would the highest

refrigerant temperature be measured?

9-2 Is condensation the only process that takes place within the

condenser of a refrigeration plant? Explain your answer.

9-3 Think about faults that could cause a thermostatic valve to

malfunction and provide a brief explanation for two of them.
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9-4 Using a spreadsheet application prepare a diagram, like Figure
9-4, showing only the saturated liquid line and the dry saturated
vapour line as a graph of pressure versus specific enthalpy. Use
data values from Table F-1, Appendix F. Plot only sufficient
points to obtain a reasonably smooth outline. Use a logarithmic

axis for pressure, with a range from 0.1 MPa to 10 MPa.
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Chapter 10 Use of Refrigerant Tables

Just as tables are used to look up the properties of water substance,
refrigerant tables are commonly used to find values of the properties of
refrigerants for engineering calculations. A table of thermodynamic
properties for refrigerant 134a is provided in Appendix F. This table is
more compact than the water substance tables. It contains saturation

properties and superheat properties.

One notable difference between the table for R134a and the water
substance tables is that the refrigerant table does not show actual
superheat temperatures, but rather tabulates properties for an ‘amount
of superheat’. The latter term describes the difference between the
superheat temperature and the saturation temperature. For example, if
the saturation temperature is 26 °C and the amount of superheat is 30 K
then the superheat temperature is (26 + 30) °C = 56 °C.

Saturation Properties

The tabulated saturation properties are p, t,, Ay, s, Uy, hg, Sg and Vg.

Example 10-1 Saturation Properties of R134a

Find each of the following saturation properties in the table for R134a:

Solution
Saturation pressure at 25 °C 0.665 MPa
Saturation temperature at 0.10 MPa -26.4°C
Specific volume of dry saturated vapour
at —20 °C 0.1474 m>/kg
Specific enthalpy of saturated liquid at
35°C 100.9 kJ/kg
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Solution

(Values for specific internal energy are
not listed as they are not usually required
for refrigeration calculations—they could

be found by using u = h — pv)

Specific enthalpy of dry saturated vapour
at —15 °C 241.5 kJ/kg

(Note that specific enthalpy differences

hg,

using hy, = hy — hy.)

are not included—they can be found

Specific entropy of dry saturated vapour
at 0.75 MPa 0.919 kl/kgK

Properties of Saturated Mixtures or Wet Vapour
The procedures used are exactly the same as for steam, e.g.
h = h; + x hg,
(repeated) (7-1)
and also,

h— h;
hig

X =

(repeated) (7-2)

Properties of Subcooled Liquid or Superheated
Vapour

Properties of Subcooled Liquid Refrigerant

For refrigeration calculations it is usually a reasonable approximation
to use the properties of saturated liquid refrigerant at the same

temperature.
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Example 10-2 Specific Enthalpy of Subcooled Refrigerant

Find the specific enthalpy and the specific volume of liquid R134a at
62 °C and 1.45 MPa.

Solution

From the R134a table at 62 °C,
h =~ hy =142.6 kl/kg
v ~ vp = 0.000960 m>kg.

Properties of Superheated Refrigerant

The properties of superheated refrigerant are found in the superheat part
of the table at a given pressure. The amount of superheat is calculated
by subtracting the saturation temperature from the temperature of the
vapour. If the required amount of superheat is not directly tabulated,

linear interpolation can be used.

Example 10-3 Specific Enthalpy of Superheated Refrigerant
Find the specific enthalpy of R134a at 1.45 MPa and 62 °C.

Solution

From the R134a table at 1.45 MPa,
T, =53.8°C
hg = 276.6 kl/kg

Therefore 62 °C corresponds to (62 —53.8) K = 8.2 K of superheat,
while 53.8 °C corresponds to 0 K of superheat.

With 10 K of superheat,

hiox = 288.9 kl/kg

Therefore with 8.2 K of superheat

8.2
hgrx = hok +E(h101< —hox)
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= [276.6 + %(288.9 —276.6)| ki/ke

= 286.7 kl/kg

The Steady Flow Energy Equation for the
Refrigeration Plant

The steady flow energy equation, Equation (5-6), can be applied to each
of the main components of the refrigeration plant (compressor,
condenser, expansion valve, evaporator). Changes in kinetic energy and
potential energy between positions 1, 2, 3 and 4 in Figure 9-1 are

usually negligible and so do not feature.

Compressor

For the compressor, the steady flow energy equation can be written as

Weomp, in + Acomp, in = hout - hin
(10-1)
where
h = specific enthalpy J/kg
Weomp, in = compressor net work input
per unit mass J/kg
dcomp, in = compressor net heat input

per unit mass J/kg

As any net heat transfer is normally from the refrigerant during

compression, the equation can also be written as

Weomp, in = hou — Pin + 4comp, out

(10-2)
where

dcomp, out = compressor net heat output

per unit mass J/kg
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Thus Equation (10-2) can be used to calculate the net work input per
unit mass if the specific enthalpy values at inlet and outlet and the net

heat rejection per unit mass are known.

For an adiabatic compressor, or one where the net heat transfer is

negligible, the steady flow energy equation can be written as

Weomp, in, adiab = hout - hin

(10-3)

For a given mass flow rate m of refrigerant around the circuit the net

rate of energy transfer to the refrigerant as work in the compressor is

given by
Wcomp, in = 1 (hoy — hyp) +m dcomp, out
(10-4)
or
Wcomp, in = M (Ao — M) + 0 comp, out
(10-5)
where
W comp. in = net rate of work input w
0 comp, out net rate of heat output W

If the compressor is adiabatic, the rate of work input is given by

Wcomp, in, adiab = m (hout - hin)'
(10-6)

Condenser

The steady flow energy equation for the condenser can be written as

9cond, out = hin — hout

(10-7)
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where

9cond, out = heat rejection at the

condenser per unit mass J/kg

For a given mass flow rate m of refrigerant through the condenser the

rate of energy transfer from the refrigerant is given by:

Q cond, out — mrefr(hin - hout)

(10-8)
where
0 cond, out = rate of heat transfer out
of the condenser W
M efy = mass flow rate of
the refrigerant kg/s

Expansion Valve

The rate of heat transfer to or from the refrigerant as it passes through
the expansion valve can normally be neglected. It can also be noted that
there is no work done on or by the refrigerant and that changes in kinetic
energy or potential energy are normally negligible. Hence, the steady

flow energy equation for the expansion valve can be written as

hout = hyy.
(10-9)

Evaporator

The steady flow energy equation for the evaporator can be written as

Qevap, in = hout - hin'

(10-10)

With regard to the state points identified in Figure 9-1 it can be noted

that the specific enthalpy entering the evaporator at state 4 is the same
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as the specific enthalpy entering the expansion valve at state 3.

Therefore, for the evaporator h;, = hy = h;.

For a given mass flow rate m of refrigerant through the evaporator the

rate of energy transfer to the refrigerant is given by:

) evap,in — mrefr(hout - hin)

(10-11)
where
o evap, in = rate of heat transfer
into the evaporator W
Refrigeration Effect

The refrigeration effect of a refrigeration plant is the amount of heat
transfer to the refrigerant in the evaporator per unit mass of the
refrigerant, 1.€. qeyap in 10 Equation (10-10). The SI units for

refrigeration effect are J/kg .

Example 10-4 Rate of Heat Transfer in a Refrigeration
Condenser

Refrigerant 134a enters the condenser of a refrigeration plant at a
pressure of 0.95 MPa and with 20 K of superheat. It leaves the
condenser as saturated liquid and its mass flow rate is 3.27 x 1072 kg/s.

Calculate the rate of heat rejection in the condenser.

Solution

Q cond, out = i (h2 - h3)
From the table for R134a at a pressure of 0.95 MPa

kJ
hy = hy =104.5 —.
3 f kg
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4
.

h
At the same pressure, with 30 K of superheat
h =302.0 X
kg
and with 10 K of superheat
h =281.1 E
kg
Therefore, with 20 K of superheat
kJ
h, =[281.1 +0.5(302.0 — 281.1)] .
g
=291.6 E
kg

Hence,
: k
O cond. out = 327 X 1072 [_g] (291.6 — 104.5) [Hl
, S ke
=6.12 kW.

Example 10-5 Rate of Heat Transfer in a Refrigeration

Evaporator

10 Refrigerant Tables

Refrigerant R134a leaves the condenser of a refrigeration plant as

subcooled liquid at a temperature of 28 °C and passes through an

expansion valve into the evaporator, in which the saturation

temperature is —20 °C. The refrigerant leaves the evaporator as dry

saturated vapour. Calculate the rate of heat transfer to the refrigerant in
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the evaporator if the mass flow rate of the refrigerant is 1.893 x 1072
kg/s.

Solution
)
/ / 1

/ 4

The specific enthalpy of subcooled liquid refrigerant can be taken to be

h

approximately the same as that of saturated liquid refrigerant at the

same temperature. From the R134a table at a saturation temperature of
28 °C

kJ
hy =90.7 —
f kg

and hence
hy = hy = 90.7 klkg.
From the table for R134a at a saturation temperature of —20 °C

hy = hy = 2384 11:J_g

Hence,
Q evap, in — m (hl - h4)
k
— 1.893 x 1072 [—g] (238.4 — 90.7) lﬁl
S kg

= 2.80 kW.

132



Applied Energy Systems — Rudimentary Thermodynamics 10 Refrigerant Tables

Example 10-6 Refrigeration Cycle Properties and Flow Rates

In an ideal refrigeration cycle without evaporator superheat and without
condenser subcooling, R134a evaporates at —25 °C and condenses at
30 °C.

a) Determine the pressures in the evaporator and the condenser.

b) Find the specific enthalpy of the refrigerant as it leaves the
evaporator and the specific enthalpy of the refrigerant as it

leaves the condenser.

c) Calculate the mass flow rate of refrigerant if the rate of heat

transfer in the evaporator is 17.29 kW.

d) Calculate the volume flow rate of the refrigerant as it leaves

the evaporator.

e) Calculate the dryness fraction of the refrigerant mixture that

enters the evaporator.

Solution

4
.

a) From the table for R134a at —25 °C

Pevap = Ps = 0.1064 MPa.

At 30 °C
pcond = ps = 0770 MPa

133



Applied Energy Systems — Rudimentary Thermodynamics 10 Refrigerant Tables

b) From the table at the evaporating pressure
hy = hg = 235.3 kl/kg
From the table at the condensing pressure
hy = hy = 93.6 kl/kg.

c) As the specific enthalpy leaving the expansion valve is the

same as the value entering the valve

hy = hy = 93.6 kl/kg

Q evap,in — m(hl - h4)

Hence
. Q evap, in . 17.29 kW
(hy —hy) (235.3-93.6) klkg~!
k
=0.1220 -2
S
d) The volume flow rate at position 1 is given by the product of

the mass flow rate and the specific volume
%1 =m Uy

From the table at the evaporating pressure

3
m
=v, =0.1816 —.
V] = U kg
Hence
: k 3
7, =0.122 l—g] x 0.1816 lﬁl
S kg
3
=00222 =
S
e) At the evaporating pressure
he =19.0 kJ kg™
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hy =2353kIkg™".

Hence

hgy = hy — hy = (2353 - 19.0) ki kg™

=216.3 kIkg™!

Since hy = hg + x4hg,, the dryness fraction at position 4 is given by

hy — hg
X4 =
h,
93.6 —19.0
=————=0.345

216.3
Problems
10-1 Find the specific volume and the specific entropy of dry saturated

10-2

10-3

10-4

10-5

10-6

R134a at a saturation pressure of 1.5 MPa.

Find hy, for refrigerant 134a at a saturation temperature of —26

°C.

Find the specific enthalpy of refrigerant 134a at a pressure of 14

bar and a temperature of 50 °C.

Find the specific enthalpy of refrigerant 134a if the saturation

temperature is —15 °C and the dryness fraction is 0.313.

R134a enters the condenser of a refrigeration plant at a
temperature of 65 °C and condenses at a temperature of 35 °C.
The mass flow rate is 23.8 x 107> kg/s and the refrigerant leaves
the condenser with 5 K of subcooling. Calculate the rate of heat

rejection in the condenser.

R134a leaves the condenser of a refrigeration plant as saturated
liquid at a temperature of 37 °C and passes through an expansion

valve into the evaporator, in which the saturation temperature is
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—15 °C. The refrigerant leaves the evaporator as dry saturated
vapour. Calculate the rate of heat transfer to the refrigerant in the
evaporator if the mass flow rate of the refrigerant is 278.3 X 1073

kg/s.
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Chapter 11 Refrigeration and Heat
Pump Performance

Liquid Line Subcooling and Suction Superheat

With reference to Figure 9-5 (repeated below), some superheating is
desirable at position 1, entry to the compressor, to ensure that no
droplets or slugs of liquid are present. If a volume of liquid similar to
or greater than the clearance volume enters the cylinder of a
reciprocating compressor it is likely to cause damage, as the liquid is

incompressible.

p

A,

Figure 9-5 (repeated) The reversed Rankine cycle on a p-h diagram

with suction vapour superheat and liquid subcooling.

The setting of the thermostatic expansion valve normally ensures a
small amount of superheat at the position where the sensor bulb is
attached to the suction line (or pipe) that leads to the compressor.
Further superheating can result from heat pick-up from the
surroundings or from within the shell of a hermetically sealed
compressor (as used in domestic refrigerators). In some cases, a heat
exchanger is provided between the liquid line coming from the

condenser and the compressor suction line. This has the effect of
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increasing the amount of liquid line subcooling and increasing the

suction superheat.

At position 3 in Figure 9-5 it is important that only liquid is present, as
expansion devices are sized for liquid only. Any vapour that reached
the expansion device would pass through only very slowly and the
evaporator would be starved of refrigerant. A small amount of
subcooling is therefore desirable to ensure that no vapour is present.
This can be achieved by heat loss to the surroundings or by the use of a
liquid-line to suction-line heat exchanger. It can also be seen from
Figure 9-5 that, as hy = h;, subcooling reduces the value of h, and

therefore increases the refrigeration effect in the evaporator.

In practice, the compression process will not be perfectly isentropic.
Friction and heat-gain can cause the specific enthalpy and temperature
at state 2 to be higher than for the isentropic case. Also, heat loss can
cause the specific enthalpy and temperature at exit from the compressor
to be lower. Therefore, the exact exit state depends on friction and heat

transfer effects within the particular compressor.

Compressor Volumetric Efficiency

For a refrigeration compressor, the volumetric efficiency, Equation
(4-1), is the ratio of the actual volume of suction vapour at the suction
state that is taken in per revolution to the swept volume (see Figure 4-2).
As with air compressors, this varies as the ratio of the discharge
pressure to the suction pressure changes. The volumetric efficiency is
highest at low pressure ratios, Equation (4-2). For a given suction state
and compressor speed, the mass flow rate will decrease as the discharge
pressure is increased. Some of the reasons why the volumetric
efficiency of a reciprocating compressor is usually considerably less

than unity are:

1. The mass of refrigerant in the clearance volume is re-expanded

before fresh vapour is taken in during the intake stroke.
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2. As the refrigerant enters the cylinder of the compressor it
undergoes a pressure drop and when the inlet valve of the
compressor closes the pressure within the cylinder may be
lower than the pressure in the suction line, thus causing the
density of the refrigerant within the cylinder at the start of the

compression process to be less than that in the suction line.

3. As the compressor is normally at a higher temperature than the
suction vapour, some heat transfer can take place to the
refrigerant as it flows into the cylinder, which reduces its

density and hence the volumetric efficiency.

Example 11-1 Refrigeration Cycle
A refrigeration machine charged with R134a delivers 100 kW of

cooling when operating under the following conditions:
evaporating temperature 5°C
condensing temperature 39°C
compressor volumetric efficiency 0.75

Determine the refrigerant mass flow rate and the compressor swept

volume rate in litres per second (L/s) assuming a simple saturated cycle.

Solution:
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From the table for R134a at 5 °C
h; = hy =253.3 kl/kg
he = 58.6 kJ/kg.
From the table at the condensing temperature of 39 °C

hy = h; = 106.8 kl/kg.

Also
h, = hy = 106.8 kJ/kg.
Since Q evap, in = M (hy — hy)
i = Qevap, in 100 kW
~ (hy—hy)  (253.3 —106.8) kJkg"!
k
— 0.6826 ?g.

The volume flow rate at entry to the compressor is given by
%1 = m Ul .

From the table at the evaporating temperature
m3

v) = v, = 0.0584 —.

kg

Hence the volume flow rate at inlet to the compressor is

3
% 0.0584 lm—l
kg

S

) kg
71 =0.6826

3
= 0.03986 —.
S
According to Equation (4-1) the volumetric efficiency is defined as
E . = 7ind _ 7
1= ==
Vo %'sw %SW
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Note that 7’ is the induced volume per unit time, while 7, is the
swept volume per unit time. Hence, the compressor swept volume rate

is given by

0.03986 [m%/s]
0.75

= 0.05315m%/s = 53.2 L/s.

Coefficient of Performance

A refrigeration machine and a heat pump are both heat engines
operating in reverse, i.e. each contains a working fluid that undergoes a
cycle in the course of which heat transfer is accepted from a heat source
at a low temperature and heat rejection occurs to a heat sink at high
temperature while a net work input is required. The adjectives ‘low’ and
‘high’ here simply mean that the temperature of the heat source is lower
than the temperature of the heat sink. Usually the low temperature is
below ambient temperature and the high temperature is above ambient.

Figure 11-1 can represent either a refrigeration machine or a heat pump.

T,>T,

Figure 11-1 Schematic diagram of a heat engine

operating in reverse

A refrigeration machine is intended to provide cooling at the low
temperature, while a heat pump is intended to provide heating at the

high temperature. The coefficients of performance (COP) are given by
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QH out
COP =—
heat pump I’Vn ot in
(11-1)
QL in
COP, 0 = .
refrig VVH et in
(11-2)
where
COP ot pump = heat pump coefficient of performance
COP oty = refrigeration coefficient of performance

Example 11-2 Heat Pump Cycle

A reversed Rankine cycle heat pump operates with the following

parameters:
Refrigerant: R134a
Condensing temperature 30 °C
Amount of subcooling at condenser exit negligible
Amount of superheat at compressor exit 15K

Compressor work input (electrical)

per unit mass of refrigerant 54.0 kl/kg

Calculate the amount of heat rejection in the condenser per unit mass of

refrigerant and determine the heat pump COP for the plant.

Solution

From the table for R134a at the condensing temperature, 30 °C,
ps = 0.770 MPa.

At this same pressure from the superheat columns in the table

h]OK s/h = 2771 kJ/kg
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/]

Therefore, with 15 K of superheat

(15 -10)

hz = hlSKS/h = l2771 + (30 — 10)

(297.3 - 277.1)] kl/kg

= 282.2 kJ/kg
Also, as there is negligible subcooling at state 3
h;y = hy = 93.6 kl/kg.
The amount of heat transfer out of the refrigerant per unit mass in the
condenser is
deond, out = M2 — 13
= (282.2 - 93.6) kl/kg

= 188.6 kl/kg

This is the amount of heat rejection in the condenser per unit mass. The
amount of work in per unit mass is given as

kJ

=540 —

wcomp, in — K g'

The heat pump COP is given by

QH, out qcond, out
w. w

1

COPyeq pump —
comp, in
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_188.6 [KI/kg]
~ 54.0 [k)/kg]

=3.49

The Air-to-Water Heat Pump

Condenser
Indoors § Outdoors

N

Evaporator
c —1—TEV
Water A Fan >
pump J
’ ' —
e >
)
Compressor

Figure 11-2 Diagram of an air-to-water heat pump

Figure 11-2 illustrates an air-to-water heat pump, as might be used for
domestic space heating. The air-source evaporator is located outside the
building. Heat transfer is provided to water that flows through the
condenser. When used for domestic space heating, the water flow
temperature might be about 50 °C, which is considerably cooler than
water from a central heating boiler (65 °C to 85 °C). Therefore larger
radiators are required. Alternatively, the heated water can be circulated
through pipes embedded in the floor with a layer of insulation

underneath.

Whereas an electrically powered flow boiler can heat water with an
efficiency of almost 100%, an air source heat pump can provide a
seasonal COP of up to about three. The seasonal COP is the total heat
supplied to the water divided by the total electricity consumed over a

heating season (both quantities expressed in energy units, e.g. MJ).

The rate of heat transfer in the condenser is given, as usual, by Equation

(10-8), which is repeated below.
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Q cond, out = mrefr(hZ - h3)
(repeated) (10-8)

where
O cond, out = rate of heat transfer

out of the condenser \
M ofy = mass flow rate of

the refrigerant kg/s
h, = specific enthalpy of refrigerant

entering the condenser J/kg
hy = specific enthalpy of refrigerant

leaving the condenser Jkg

On the water side of the condenser this same rate of heat transfer can

be expressed as

0 cond, out — My (hw, out — hw, in)'

(11-3)

where
0 cond, out = rate of heat transfer out

of the condenser \
M, = mass flow rate of water kg/s
hy. in = specific enthalpy of water

entering the condenser J/kg
Ry out = specific enthalpy of water

leaving the condenser Jkg

Rather than looking up the specific enthalpy values for the water, it is
often convenient to make use of the specific heat (as water is very nearly

incompressible ¢, = ¢, % ¢).

Q cond, out = My, Cy ATw
(11-4)
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where
Cy = specific heat capacity of water J/kgK
AT, = temperature increase of water

from inlet to outlet K

Note: ¢, = 4.18 kJ/kgK

Example 11-3 Water-heating Heat Pump

In a water-heating heat pump the volume flow rate of water through the
condenser is 14.5 litres per minute. The water enters at 36.1 °C and
leaves at 51.3 °C. If the total instantaneous electric power input to
operate the heat pump is 4.31 kW, calculate the rate of heat output and
the COP.

Solution:

As the density of water is 1000 kg/m?, each litre of volume corresponds

to 1 kg of mass. Hence

= % kg/s = 0.2417 kg/s

w
Q cond, out — My Cy ATw

kg

S

=0.2417 X (51.3 = 36.1)[K]

kJ
x4.18 | —
[kgK

= 15.36 kW

Q cond, out 15.36

P = =
o 4.31

= 3.56

in

Problems

11-1 A commercial heat pump plant operates with the following

parameters:

Refrigerant: R134a
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11-3

Condensing temperature
Amount of subcooling at condenser exit

Amount of superheat at entry to

the condenser (compressor exit)

Compressor work input (electrical)

per unit mass of refrigerant

65 °C

0K

26K

59.1 kl/kg

(a) Calculate the amount of heat rejection in the condenser per

unit mass of refrigerant.

(b) Determine the heat pump C.O.P. for the plant.

(c) What is the rate of heat output if the mass flow rate of

refrigerant is 0.306 kg/s?

R134a enters the condenser of a heat pump plant at a pressure of

1.6 MPa and with 30 K of superheat. It leaves the condenser as

liquid that is subcooled by 10 K. Determine the saturation

temperature in the condenser and calculate the mass flow rate of

the refrigerant if the rate of heat rejection in the condenser is 11.6

kW.

A heat pump plant operates with the following parameters:

Refrigerant:

Evaporating temperature

Amount of superheat at evaporator exit
Condensing temperature

Amount of superheat at condenser entry
Amount of subcooling at condenser exit

Refrigerant mass flow rate
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Compressor power input (electrical) 6.01 kW

Calculate the rate of heat rejection in the condenser, the rate of
heat acceptance in the evaporator and the heat pump C.O.P. for

the plant.

11-4 While running at 1000 r.p.m. an automotive air conditioner
provides 3.3 kW of cooling at the operating conditions listed
below. Calculate the volume flow rate at the compressor suction
condition and calculate the swept volume per revolution of the
compressor. Assume that the volumetric efficiency is equal to
90% of the ideal volumetric efficiency given by Equation (4-2),
repeated below. The clearance ratio for the compressor is 0.03

and the effective polytropic index for compression is 1.055.

p\""
Evol, ideal = 1- Fel [<_> - 1]
P

Fo= %cl
cl %SW
Refrigerant: R134a
Evaporating temperature 5°C
Amount of superheat at evaporator exit 5K
Condensing temperature 60 °C
Amount of subcooling at condenser exit 5K
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Appendix A Formulae

Adiabatic Process for an Ideal Gas

p7 " = const. = pl%ly = pz%z}'

where

p = absolute pressure Pa
v = volume m3
Y = adiabatic index

Amount of substance
mass
= ——— = —
molar mass m

where

n = amount of substance mol

m = mass kg

m = molar mass kg/mol

Area of a Circle

2
g =T
4
where
A = area m?2
d = diameter m

Boiler Heat Transfer Rate

Q boiler = Q in — m (hout - hin)'
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where
O voiler = rate of heat transfer that occurs

into the system in a boiler w
Q. = rate of heat transfer

into the system A\
1 = mass flow rate of the

water substance kg/s
howe = specific enthalpy of the water

substance coming out of the

system J/kg
h, = specific enthalpy of the water

substance going into the system Jkg

Closed System Heat Transfer at Constant Pressure

Qin,1—>2l = H, - H; =m(hy — hy)
p = const
where
Oin1-2 = heat transfer in for process
’ p = const
1 — 2 at constant pressure
= enthalpy

m = mass
h = specific enthalpy

Closed System Heat Transfer at Constant Volume

I
Oin,1-2| =Uy—Uy=m(uy —uy)

7" = const
where
Oin1-2 i = heat transfer in for process

’ 7" = const
1 — 2 at constant volume

U = internal energy
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mass kg

specific internal energy Jkg

Coefficient of Performance

where

COPheat pump

COP

refrig

QH, out
QL, in

Wi

QH, out

COPheat pump = 7
i
QL, in
COPrefrig =7

in

= heat pump coefficient of

performance

= refrigeration coefficient of

performance
= heat transfer out to heat sink J
= heat transfer in from heat source J
= work input J

Compressor Volumetric Efficiency

where

E

vol
C’.ind =

4 =

SW

E = %ind
vol —
v

SwW

volumetric efficiency
induced volume m

swept volume m

For an ideal reciprocating compressor:

Im
V2]
Evolzl_rcll<p_l> _1]

v
cl %

cl

Sw
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where

rq = clearance ratio

Vqg = clearance volume m?
Dq = suction pressure Pa
Dy = discharge pressure Pa
n = polytropic index

Condenser Heat Transfer Rate

Q cond — Q out = M (hin - hout)'

where
O cond = rate of heat transfer that occurs

out of the system in a condenser W
O = rate of heat transfer out of the system \
m = mass flow rate of the condensing

fluid kg/s
howe = specific enthalpy of the condensate

coming out of the system J/kg
h;, = specific enthalpy of the vapour that is

to be condensed going into the system J/kg

Condenser Heat Transfer Rate to Cooling Water

0 cond, out — Mw Cp w ATw

where
0 cond, out = rate of heat transfer out of the

condenser W
M, = mass flow rate of cooling water kg/s
Cpw = specific heat capacity of water

at constant pressure J/kgK
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AT, = temperature change of cooling

water from inlet to outlet K

Dryness Fraction or Vapour Fraction or Quality

For a two phase mixture of liquid and vapour the dryness fraction (or

vapour fraction or quality) x is defined as:

mass of vapour g

X = — =
total mass of liquid and vapour m

where
mg = mass of vapour kg
m = total mass of liquid and vapour kg

The specific enthalpy of a wet mixture of known dryness fraction is

given by
h = h¢+ x hg,
The dryness fraction of a wet mixture of known specific enthalpy is
given by
h — hy
X = i
where
= dryness fraction or vapour fraction
= specific enthalpy Jkg
hg¢ = specific enthalpy of saturated liquid J/kg
hg, = specific enthalpy difference, h, — A J/kg
hy = specific enthalpy of dry saturated vapour  J/kg
Enthalpy
H=U+p7
h=u+ pv
where
H = enthalpy J
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h = specific enthalpy Jkg
U = internal energy J

u = specific internal energy J/kg
D = pressure Pa

v = volume m?

v = specific volume m3/kg

Enthalpy Change at constant pressure

Ah| = hy =y = ¢, 4y AT
p = const

where
Ah = increase in specific enthalpy J/kg
¢y = specific heat at constant pressure J/kgK
AT = increase in temperature K
subscripts
const constant
avg average

Enthalpy Change for an Incompressible Substance

Ahincomp = h2 - hl = Cavg(T2 - Tl) + (P2 - pl)U

where

Ah = increase in specific enthalpy Jkg

c = specific heat J/kgK
v = specific volume m’/kg
T = temperature K
subscripts

incomp incompressible
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avg average

Enthalpy Change for an Ideal Gas
Ah = h2 - h’l =C AT

p.avg

where

¢ = specific heat at constant pressure J/kgK
AT = increase in temperature K

Evaporator Heat Transfer Rate

Q evap,in — Qin =m (hout - hin)

where
0 evap, in = rate of heat transfer that occurs

into a system in an evaporator W
O = rate of heat transfer into the

system A\
1 = mass flow rate of the fluid that

evaporates kg/s
Rt = specific enthalpy of fluid

leaving the evaporator J/kg
hi, = specific enthalpy of fluid

entering the evaporator Jkg
Feed Pump Work or Power

= hyy — N

Wpump, in out in t Gpump, out
Wpump, in = Mm (hout - hin) +m qpump, out
Wpump, in=m (hout - hin) + 0 pump, out

Wpump, in, ideal = muv (pout = Pin)
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where

h

w pump, in

/4

pump, in

/%4
9pump, out

o pump, out

m

p

pump, in, ideal —

specific enthalpy
pump net work input per unit mass
net rate of work input

net rate of work input of an ideal

frictionless pump

pump net heat output per unit mass
net rate of heat output

mass flow rate

specific volume of incompressible

fluid

pressure

Refrigeration Compressor Steady Flow Energy Equation

where
Wcomp, in
Q comp, out

h

m

Flow Restriction (Throttling) Energy Balance Equation

where

ho =

m

Wcomp, in = M (Ao — hip) + O comp, out

net rate of work input
net rate of heat output
specific enthalpy in or out

mass flow rate of the refrigerant

hout = hin

specific enthalpy upstream of

the flow restriction J/kg
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howe = specific enthalpy downstream

of the flow restriction J/kg

Flow Work per Unit Mass (Specific Flow Work)

Wilow = PU
where
Wiow = specific flow work J/kg
p = pressure Pa
v = specific volume m’/kg
Ideal Gas Equation

p?7 = mRT

pv = RT

p? =nRT
where
p = absolute pressure Pa
v = volume m’
v = specific volume m’kg™!
m = mass kg
R = specific gas constant J/kgK
T = absolute temperature K
n = amount of substance mol
R = molar or universal

gas constant J/molK
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Internal Energy

Internal Energy Change at Constant Volume

Aul = Uy — Uy =€y gy (Th —T1)
v = const

where
Au = increase in specific internal energy J/kg
c, = specific heat at constant volume J/kgK
T = temperature K
subscripts
incomp incompressible
avg average

Internal Energy Change for an Incompressible Substance

Altincomp = Uy — U = Cque(Th = T7)
where
Au = increase in specific internal energy J/kg
c = specific heat J/kgK
T = temperature K
subscripts
incomp incompressible
avg average

Internal Energy Change for an Ideal Gas
Au=u,—u =c AT

v, avg
where
c, = specific heat at constant volume J/kgK
AT = increase in temperature K
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Isothermal Process for an Ideal Gas
pv = const. = pjv; = pyby

p? =const. =p| 7| =p, 75

where
p = pressure Pa
v = specific volume m’kg™!
v = volume m’
Kinetic Energy
mv?
E =2
)
where
Ey = kinetic energy J
m = mass kg
V = velocity ms~!

Newton’s Second Law Applied to SI Units

F=ma
where
F = force N
m = mass kg
a = acceleration ms ™2
Hence,

IN=1kgms™2

Non-Flow Energy Equation
Qin + I/Vin = AU
where

0, = net heat transfer into system J
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W, = net work into system J
U = internal energy J
AU = increase in internal energy J

On a per-unit-mass basis,

Gin + Wy, = Au

where
Gin = net heat transfer into system per

unit mass J/kg
wi, = net work into system per unit mass J/kg
Au = increase in specific internal energy J/kg

Polytropic Relationships for Compression or Expansion
p?7 " =const. = p, V| = p, 7,
P1v} = pyv)

For ideal gases

where

D = absolute pressure Pa

v = volume m?

v = specific volume m3/kg
n = polytropic exponent

T = absolute temperature K
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Potential Energy
Ep =mgz
where
E, = potential energy J
m = mass kg
z = elevation m
g = acceleration due to gravity — ms™>
Pressure
_F
P=A
where
p = pressure Nm~2 or Pa
F = Force N
A = area m?
Pumping Power (ideal)
Win, ideal = 11 (hy = hy)
=muv(py — py)
=7 (py—py).
where
Win’ ideal = ideal pumping power W
m = mass flow rate kgs™?
h = specific enthalpy J/kg
v = specific volume m’kg~!
v = volume flow rate m’/s
p = pressure Pa
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The overall efficiency of a pump is defined as

Epump _ 1{1, ideal
Win
where
W, = actual power input W
Specific Enthalpy
h=u+ pv
where
h = specific enthalpy J/kg
u = specific internal energy J/kg
p = pressure Pa
v = specific volume m? kg_1

Specific Enthalpy of Subcooled Liquid
h=u+ pv

(If the liquid can be assumed incompressible then u and v depend only
on the temperature, so can be found for saturated liquid from the

saturation table at the given temperature.)

hsubcooled liquid = Yfe@T tPlter

or
hsubeooled liquid = M@ 7+ (P—Pse D Vrer

where
h = specific enthalpy Jkg
hsubcooled liquid = SpeCiﬁC enthalpy of

subcooled liquid Jkg
hia Tt = specific enthalpy of saturated

liquid at the given temperature J/kg
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Vr@T = specific volume of saturated

liquid at the given temperature m’/kg
PserT = saturation pressure at

the given temperature Pa
u = specific internal energy Jkg
U@t = specific internal energy of saturated

liquid at the given temperature J/kg
p = absolute pressure Pa
v = specific volume m’kg~!
T = temperature K
Specific Heat Capacity

Specific Heat of Incompressible Substances

avg

Au =

AT =

Subscripts

incomp

avg

o= Au
AT AT-0
Auincomp =Uy—up = cavg(TZ —Ty)
average specific heat JkgK
specific internal energy J/kg

increase in specific

internal energy J/kg
increase in temperature K
incompressible

average
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Specific Heat at Constant Pressure

L _An
P AT AT—0, p = const
AR | = hy =y = ¢y 0y Th = T))
p = const
For an ideal gas:
Ah = h2 - hl = Cp’ avg (T2 - Tl)
where
¢y = specific heat at constant
pressure J/kgK
h = specific enthalpy J/kg
Ah = increase in specific
enthalpy J/kg

Specific Heat at Constant Volume

Au
c, ==
AT AT—0, v = const
| _ _
Au| = Uy — U _Cv,avg(TZ_Tl)
v = const

For an ideal gas:

Au= uy—uy = Co, avg (T, =Ty

where
c, = specific heat at constant

volume J/kgK
u = specific internal energy Jkg
Au = increase in specific

internal energy J/kg
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Steady Flow Energy Equation

. 1 - : . 2
m h1+7+gzl +Qin+Win=m h2+7+g22

or, on a per unit mass basis,

2 2
1 Vi
hl +7+gzl + gin + Wi, = h2+7+g22
where
O, = net heat transfer rate into system W
g = acceleration due to gravity ms~2
W, = net shaft work rate into system '
h = specific enthalpy Jkg
vV = velocity ms~!
1 = mass flow rate kgs™!
Gin = net heat transfer into system per unit mass J/kg
wy, = net shaft work into system per unit mass Jkg
Turbine Steady Flow Energy Equation
Wiurb, out = hin = Ryt

Wturb, out — m (hin - hout)
where
Wirb, out = turbine net work output

per unit mass J/kg
W b, out = turbine net rate of work

output A\
h = specific enthalpy in or out  klJ/kg
m = mass flow rate kg/s
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Thermal Efficiency
E, = Wet, out _ %et, out
Ou. in OH.in
where
Ey, = thermal efficiency
Ou.in = heat input at Ty J
Wiet, out = net work output J
0 H.in = heat input rate at Ty W
W et out = net work output rate
(net power output) W

Volume Flow Rate

7 =mv
where
v = volume flow rate m>/s
v = specific volume m3/kg
m = mass flow rate kg/s
also

7 =VA
where
Vv = velocity ms~1
A = area m?
Work

W = Fscosf

where
w = work J
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F = force N
s = displacement m
0 = angle rad
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Appendix B Glossary of Terms

Absolute Pressure

Absolute pressure is the true pressure. This term is used when it is
necessary to emphasize that the pressure being referred to is not a
relative pressure, such as gauge pressure, or a differential pressure, such
as the pressure drop across a valve. The lowest possible value of

absolute pressure is zero (in any pressure units).

Absolute Temperature

Absolute temperature is temperature as measured on the absolute scale,

which has a zero at the level through which no substance can be cooled.

Adiabatic

Adiabatic means ‘without heat transfer’. For instance, an adiabatic
system is one that is insulated from its surroundings such that no heat
transfer can occur between them. In an adiabatic process being
undergone by a closed system or taking place within an open system

there is no heat transfer to or from the system.

Amount of Substance

‘Amount of substance’ is a measure and a property of a collection of
specified entities of a substance (or mixture of substances). The entities
would typically be atoms, molecules or ions. The SI unit for amount of

substance is the mole, which can be abbreviated to mol.

Amount of Superheat

This describes the difference between the temperature of superheated

vapour and the saturation temperature at the same pressure, i.e. f — 1.
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Atmospheric Pressure

This is the pressure of the atmosphere, which can be measured by a

barometer.

1 standard atmosphere = 1.01325 x 10° Pa

Boiling
This is evaporation accompanied by considerable vapour bubble

formation within the evaporating liquid.

Capillary Tube

A capillary tube is a tube having a very small diameter, e.g. 1 mm. If
the end of such a tube were placed in a liquid such as water or oil the
liquid would rise in the tube due to capillary action. In refrigeration a
capillary tube, having a length of perhaps a metre or so, is sometimes

used as an expansion device.

Clearance Volume

The clearance volume of a cylinder within a reciprocating compressor
is the volume within the cylinder when the piston is at the top-dead-

centre (minimum volume) position.

Coefficient of Performance of a Heat Pump

The coefficient of performance (COP) of a heat pump is the ratio of the
heat output (to a high temperature reservoir or region) to the net work

input of the plant.

Coefficient of Performance of a Refrigeration Plant

The coefficient of performance (COP) of a refrigeration plant is the
ratio of the heat input (from a low temperature reservoir or region) to

the net work input of the plant.

Conduction Heat Transfer

Conduction heat transfer is heat transfer that occurs by direct contact

within or between objects or systems, or regions of substance.
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Convection Heat Transfer

Convection heat transfer is heat transfer that occurs between a solid and
a fluid, or within a fluid, and is accompanied by relative movement
between the solid and fluid, or between regions within the fluid. The
relative movement can be due to buoyancy effects or the presence of an

agitator, pump or fan that induces flow.

Cycle

A cycle is a series of processes as a result of which a system or amount
of substance that starts off at a given state is brought through other states
and back to the initial state. A closed non-flow system can undergo a
cycle over a period of time. A cycle can also exist within a closed steady
flow system, wherein a fluid undergoes changes in its state as it moves

around a closed circuit of the system.

Displacement Work

Displacement work is work at the boundary of a system involving either

a displacement of the boundary or flow through the boundary.

Dryness Fraction

The dryness fraction (or vapour fraction or quality) of a saturated
mixture of liquid and vapour of a pure substance is the mass of vapour

divided by the total mass of the substance present.

Energy

Energy is a property that characterizes the capacity of a system or an
amount of matter to do work (irrespective of whether this is at the

macroscopic level or the molecular level).

Enthalpy

Enthalpy, with the symbol H (upper-case letter) and units of J, is a
thermodynamic property of a system or an amount of substance that is
defined in terms of three other properties (internal energy, pressure and
volume) as H = U + p7’. Specific enthalpy (enthalpy per unit mass)
has the symbol & (lower-case letter) and units of J/kg.
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Entropy

Entropy, with the symbol S (upper-case letter) and units of J/K, is a
thermodynamic property of a system or an amount of substance that
quantifies the thermodynamic disorder of the system or substance at the
atomic and molecular level. In a pure crystalline solid at absolute zero
temperature (0 K) there is no disorder: atoms retain their arrangement
and have no chaotic motion or vibrations. Specific entropy (entropy per

unit mass) has the symbol s (lower-case letter) and units of J/kgK.

Equilibrium

A system is said to be in equilibrium (or in an equilibrium state) if none
of its thermodynamic properties would change if the system were
instantly enclosed by a boundary that prevented all energy interactions

with the surroundings.

Equilibrium Process

An equilibrium process is a change of state that takes place in such a
manner that equilibrium is maintained throughout. There must be no
mechanical or fluid friction, finite temperature differences causing heat
transfer, or un-resisted expansion within the system. For a system

comprising a substance it is an ideal that can be approximated.

First Law of Thermodynamics

The first law of thermodynamics states that if a system has undergone
no net change after heat transfer and work interactions have taken place
then the sum of the net heat transfer into the system plus the net work
done on the system must be zero. It is a statement that recognizes that
work and heat transfer are both forms of energy transfer and that energy

is conserved.

Fluid

A fluid is a substance that cannot sustain a shear stress without

undergoing relative movement. Liquids, vapours and gases are fluids.
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Gas

A gas is matter in a state wherein molecules have sufficient molecular
level kinetic energy that they are not held together by attractive forces

and move with random chaotic motion due to collisions.

Gauge Pressure

Gauge pressure is a relative pressure: it is the amount by which the

pressure exceeds the pressure of the atmosphere.

Heat (Heat Transfer)

Heat (or heat transfer) is energy transfer due to temperature difference.

Heat Engine

A heat engine is a system that undergoes a cycle in the course of which
heat transfer is accepted from a heat source and heat rejection occurs to

a heat sink at lower temperature while a net work output is produced.

Heat Engine Operating in Reverse

A heat engine operating in reverse is a system that undergoes a cycle in
the course of which heat transfer is accepted from a heat source and heat
rejection occurs to a heat sink at higher temperature while a net work

input is required.

Ideal Adiabatic Process

This is a process (a change of state) during which there are no friction
effects and no heat transfer. The gas is assumed to be in equilibrium

throughout the process.

Ideal Adiabatic Process for an Ideal Gas

An ideal adiabatic process for an ideal gas is a change of state of the
ideal gas in which the pressure, volume and temperature of the gas
change without any friction effects being present and without any heat
transfer occurring to or from the gas. The gas is assumed to be in

equilibrium throughout the process.
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Ideal Gas

An ideal gas is a gas that is assumed to follow the ideal gas equation.
All gases can be represented by this equation as the pressure approaches

Z€10.

Incompressible

Matter is said to be incompressible if its volume does not change with
changes in pressure if the temperature is held constant. Gases are
compressible (i.e. they are not incompressible), as a moderate change
in pressure can cause a significant change in volume. However, liquids
and solids have very low compressibility and, as a simplification, can

be considered incompressible.

Internal Energy

Internal energy is the energy possessed by matter, or a substance, that
is associated with the translation, rotation or vibration of the molecules
or sub-molecular constituents that comprise the matter and with the
attractive and repulsive forces that bind the matter together or determine

its atomic and molecular level arrangement and configuration.

Isenthalpic Process

An isenthalpic process is a change during which enthalpy or specific
enthalpy remains constant. When a fluid passes through an adiabatic
flow restriction and undergoes a pressure drop, the process can be
regarded as isenthalpic for calculation purposes. Such processes
(known as throttling processes) are non-equilibrium processes wherein
the fluid has the same specific enthalpy downstream of the flow

restriction as it has upstream.

Isentropic Process

An isentropic process is a change during which the entropy or specific
entropy remains constant. Ideal adiabatic compression or expansion
processes that do not involve any fluid friction are examples of

isentropic processes.
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Isothermal Process

An isothermal process is a change during which the temperature

remains constant.

Kinetic Energy

Kinetic energy is the energy possessed by matter due to its velocity.

Liquid
A liquid is matter in a state wherein molecules are in close proximity
and are held together by attractive forces, but bulk relative sliding

movement will occur in any plane where there is a shear stress, no

matter how small the stress is.

Liquid Flashes to Vapour

A phenomenon whereby saturated or slightly subcooled liquid suddenly
evaporates in part, due to a sudden reduction in pressure, yielding

saturated vapour.

Mole

A mole (abbreviation: mol) is an amount of substance with the same
number of entities as there are atoms of carbon 121n 0.012 kg (i.e. 12 g)

of carbon 12. This is the SI unit for amount of substance.

Newton’s Second Law

Force equals mass times acceleration.

Polytropic Process

A polytropic process is a change in the state of a system or substance

that can be described by an equation of the form
p7' " = const.

Potential Energy (Gravitational)

Potential energy is the energy possessed by matter due to its elevation

within a gravitational field (usually the Earth’s).
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Power

Power is the rate of doing work. It has the SI units J/s or watt, W.

Pressure

Pressure is force exerted per unit area in a direction that is normal to

and towards the area. It is expressed as
_r
P=2

Principle of Conservation of Energy

The principle of conservation of energy states that energy is conserved.
Energy can be transformed from one form to another, but cannot be
created or destroyed. This is subject to the assumption that mass-to-

energy or energy-to-mass conversions do not occur.

Process

In thermodynamics a process is a change that occurs in the properties

of a system or substance.

Quality of Steam

The quality of wet steam (a saturated mixture of vapour and suspended
liquid droplets) is its dryness fraction, which is the mass of water vapour

divided by the total mass of liquid water and water vapour.

Quasi-equilibrium

Recognizing that considering a system to be in equilibrium during a
process or while heat transfer occurs to the system is usually an
idealization, the term quasi-equilibrium encompasses states that are
close to equilibrium states. If a system is in a quasi-equilibrium state,
its thermodynamic properties would change only slightly if the system
were instantly enclosed by a boundary that prevented all energy

interactions with the surroundings.
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Radiation Heat Transfer

Radiation heat transfer is heat transfer that occurs between objects that
share a line of sight. It is a form of electromagnetic radiation (that
includes infra-red radiation, ultraviolet radiation and visible light) and
requires a vacuum or a medium that is at least partially transparent to

electromagnetic radiation.

Refrigeration Effect

The refrigeration effect of a refrigeration plant is the amount of heat
transfer to the refrigerant in the evaporator per unit mass of the

refrigerant. The SI units for refrigeration effect are J/kg.

Saturated State

A saturated state of a pure substance is a state where two or more phases

co-exist in equilibrium.

Saturated Mixture

A saturated mixture is a mixture of two or more phases of the same
substance (most commonly liquid and vapour phases) that co-exist in

equilibrium.

Second Law of Thermodynamics

The second law of thermodynamics states that heat transfer cannot be
converted completely to work at the macroscopic level. A system or
machine that accepts heat transfer and produces a net work output

without undergoing any net change in its own state must also reject heat.

Shaft Work

Shaft work is work of the type that can be done by the rotation of a
shaft. In thermodynamics this term is often used to emphasize that the
work in question is not displacement work. The term ‘shaft work’ can
also include electrical work, which is equivalent in the thermodynamic

sense.

176



Applied Energy Systems — Rudimentary Thermodynamics Appendix B Glossary

Solid

A solid is matter in a state wherein molecules are held tightly together
by attractive forces and can only be made to slide over one another by
the imposition of shear stresses that are high enough to overcome the

attractive forces.

Specific Heat Capacity (Specific Heat)

Specific heat capacity is defined as the amount of heat transfer (or, more
generally, energy input) required to raise the temperature of a unit mass
of a substance through one temperature unit. The SI units for specific

heat capacity are J/kgK.

State of a System or Substance

The state of a system or substance is a condition or configuration of the
system or substance that can be described, for energy-related purposes,

by assigning values to a sufficient number of its properties.

Steady Flow

Flow is said to be steady if the velocities and other parameters, e.g.
density and pressure, to not vary with time. The velocity and other

parameters may vary from point to point within the flow.

Subcooled

A pure substance is subcooled if it is at a temperature below the

saturation temperature corresponding to its pressure.

Subcooled Liquid

A pure substance in the liquid state is subcooled if it is at a temperature

below the saturation temperature corresponding to its pressure.

Substance

Substance is matter of a particular chemical composition.
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Superheated

A pure substance is superheated if it is at a temperature above the

saturation temperature corresponding to its pressure.

Superheated Vapour

A pure substance in the vapour state is superheated if it is at a
temperature above the saturation temperature corresponding to its

pressure.

Swept Volume

The swept volume of a cylinder within a reciprocating compressor is
the volume through which the piston sweeps for each stroke from
bottom-dead-centre to top-dead-centre. It equals the length of the stroke

multiplied by the cross-sectional area of the cylinder.

System

A system is a region in space, or the content of a real or virtual

container. It is defined by a boundary that encloses volume.

Temperature

Temperature is the formal measure of the property that humans sense
as ‘hotness’ or ‘coldness’. Objects that are at higher temperatures will
lose energy to objects that are at lower temperatures if they are allowed
to interact by being brought into contact or by the removal of anything

that could block energy exchange by radiation between them.

Thermal Efficiency of a Heat Engine

The thermal efficiency of a heat engine is the ratio of the net work

output to the heat input.

Thermodynamic Properties

Thermodynamic properties of a substance or system are quantifiable
characteristics that relate to energy or energy interactions. Pressure,

temperature, mass and internal energy are examples.
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Throttling

Throttling is said to occur wherever a flow restriction causes a pressure

drop.

Vacuum and Vacuum Pressure

Vacuum pressure is the amount by which a pressure is less than
atmospheric pressure. In a perfect vacuum the absolute pressure would

be zero.

Vector

A vector is a quantity that has both a magnitude and a direction.
Examples of physical quantities that are vectors include force,

displacement (units: m) and velocity.

Vapour

A vapour is a gas at a temperature low enough that the substance could
also be a solid-gas mixture or a liquid-gas mixture at the same
temperature if the pressure were high enough. A vapour can be liquefied
by increasing the pressure while keeping the temperature constant.
Another definition is that a vapour is a gas where the temperature is
below the critical temperature. The tendency is to favour the term
‘vapour’ when the temperature is at, or above but fairly close to, the

saturation temperature.

Volumetric Efficiency of a Reciprocating Compressor

The volumetric efficiency of a reciprocating compressor is the ratio of
the induced volume (the volume of gas taken in at the suction pressure

and temperature) to the swept volume.

Wet Steam or Wet Vapour

Sometimes vapour can leave a boiler or evaporator and can flow in a
pipe in a state where tiny droplets of liquid are entrained and suspended
within it. Such steam or refrigerant vapour is called ‘wet steam’ or ‘wet

vapour’. Wet vapour is thus a mixture of vapour and a small proportion
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of liquid, with the liquid suspended as tiny particles. The dryness

fraction quantifies the proportion by mass of vapour in the mixture.

Work

Work is the product of the magnitude of a force vector acting on an
object, the magnitude of the displacement vector of the point of action
of the force and the cosine of the angle between the force vector and the
displacement vector. The SI unit for work is the newton metre, or the

joule.
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Appendix C Constants and
Multipliers

Table C-1 Constants and standard properties

Standard atmospheric pressure 101.325 kPa

(1 atm)

Triple point temperature 273.16 K, 0.01 °C
of water

Avogadro’s number’ 6.022 x 10?* mol~!
Standard acceleration due to 9.81 ms™2

gravity’, g

Universal gas constant’, R 8.3145 kJ/kmolK

Table C-2 Common SI prefixes

B micro 1076
m milli 0.001
c centi 0.01
h hecto 100
k kilo 1000
mega 10
G giga 10°

’ These constants are not shown to full precision.
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Appendix D Ideal Gas Data

Table D-1 Data for some ideal gases'

Gas m R p Cy Y

[kg/kmol]  [kJ/kgK]  [kI/kgK]  [kJ/kgK]

Dry air - 28.97 0.2871 1.0042 0.7171 1.400
Argon Ar 39.95 0.2081 0.5203 0.3122 1.667
Carbon CO, 44.01 0.1889 0.8334 0.6445 1.293
dioxide

Helium He 4.003 2.077 5.193 3.116 1.667
Hydrogen H, 2.016 4.124 14.265 10.141 1.407
Nitrogen N 28.01 0.2968 1.0395 0.7427 1.400
Oxygen 0O, 32.00 0.2598 0.9166 0.6568 1.396

These values are for use in calculations where ideal gas behaviour with
constant specific heats can be assumed. The values of ¢, are at 15 °C
and zero pressure. The values of R, ¢, and y are calculated from m,

R and c,-

* Principal data source: Lemmon, E.W., Huber, M.L., McLinden, M.O., NIST
Standard Reference Database 23: Reference Fluid Thermodynamic and Transport
Properties-REFPROP, Version 9.1, National Institute of Standards and Technology,
Standard Reference Data Program, Gaithersburg, 2013.
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Appendix E Properties of Water
Substance

As an approximation, if liquid water is regarded as incompressible at
temperatures and pressures close to 15 °C and 1 atm (0.101325 MPa) it

1S convenient to assume

specific volume, v = 0.00100 m*/kg

specific heat, c =4.18 kJ/kgK.
Table Title page
E-1 Saturation properties 184
E-2 Superheat properties 190
E-3 High and supercritical pressure properties 224

The thermodynamic properties in these tables were calculated using the
Excel add-in of the software FLUIDCAL, version ‘Water IAPWS-95)’
dated 11/3/2013 for the IAPWS-95 Formulation of the International

Association for the Properties of Water and Steam''.

While care has been taken in preparing the tables, no warranty of

accuracy or fitness for purpose is made for the data.

" Wagner, W., PruB, A.: The IAPWS formulation 1995 for the thermodynamic
properties of ordinary water substance for general and scientific use. J. Phys. Chem.
Ref. Data 31 (2002), 387 — 535.
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Appendix F Properties of Refrigerant
134a

The thermodynamic properties in these tables were calculated using the
Excel add-in of the REFPROP software'’, Version 9.1, 2013, National
Institute of Standards and Technology, Gaithersburg MD, 20899. The

underlying formulation has been described by Tillner-Roth and Baehr".

While care has been taken in preparing the tables, no warranty of

accuracy or fitness for purpose is made for the data.

" Lemmon, E.W., Huber, M.L., McLinden, M.O. NIST Standard Reference
Database 23: Reference Fluid Thermodynamic and Transport Properties-
REFPROP, Version 9.1, National Institute of Standards and Technology, Standard
Reference Data Program, Gaithersburg, 2013.

" Tillner-Roth, R. and Baehr, H.D., ‘An international standard formulation of the
thermodynamic properties of 1,1,1,2-tetrafluoroethane (HFC-134a) for temperatures
from 170 K to 455 K at pressures up to 70 MPa’, J. Phys. Chem. Ref. Data, 23:657-
729, 1994.
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Appendix G Further Theory

Polytropic Process in Terms of Volume or

Specific Volume
Equation (3-18) describes a polytropic process that takes place from
state 1 to state 2:

pl%]n = pz%zn.

As the same mass, m, is present throughout the process it is possible to
divide both sides of the equation by the mass raised to the power of n.

Hence, on a ‘per-unit-mass’ basis

D1 > =D >
P1 mh - Pz mh

7 \" B 75\"
D1 " =D m
P1”1n :l’zvé1

Thus the polytropic relationship can be written in terms of either the

volume or the specific volume.
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Volumetric Efficiency of an Ideal Reciprocating
Compressor

Pl A D
P21

p7™" = const.

P1

Ve

Figure 4-2 (repeated) p-7” diagram for a reciprocating compressor.

The volumetric efficiency and the clearance ratio of a reciprocating
compressor are defined by Equations (4-1) and (4-3) respectively. The
induced volume and the swept volume are identified in Figure 4-2. It is
assumed that the inlet and discharge valves are ideal and do not cause
any pressure drop as the gas passes through them. Therefore from D to
A 1in Figure 4-2 the pressure within the cylinder equals the pressure in
the discharge pipe. From B to C the pressure within the cylinder equals

the pressure in the inlet pipe.

E . = %ind
vol — %_
Sw
(repeated) (4-1)
_ Cycl
rCl - %
sSwW
(repeated) (4-3)
where
E, = volumetric efficiency
Vid = induced volume m?
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Vew = swept volume m

r = clearance ratio

cl
From Equation (4-1) and referring to Figure 4-2

CyC _%B

E, ==
vol %‘C_%A

From Equation (4-3) and referring to Figure 4-2

_ 7
rCl - %’C _ %A °
Hence,
N
%C - %A =
Fel
and
v
Ve="L4+7,.

rel

Applying the polytropic relationship to process AB:

Pz%X = p1%TBl

1
78 _ <&)ﬁ
VA P1

1
P2 \n
V=2 — .
B A<P1>

Therefore
E = Va/ra+ 7 p— %A(Pz/lh)]/n
| =
Yo %A/rcl
=1 +rcl _rcl( pz/pl)l/n .
Hence,

(repeated) (4-2)
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