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Abstract 
Convergence of acoustic/prosodic (a/p) features between two 
speakers is a well-known property of human dialogue. It has 
been suggested that this particular aspect of human 
interaction should be implemented in spoken dialogue 
systems, so that they can be perceived as more “human-
like”. This paper presents a quantitative analysis method that 
can provide information required for modeling the 
phenomenon of convergence. The analysis is a combination 
of TAMA, a previously introduced data extraction method, 
and bivariate time series analysis. Results show significant 
correlation of a/p features between speaker dyads in the 
recorded dialogues analyzed, and indicate a significant 
amount of feedback, which a statistical verification of bi-
directional convergence.  

1. Introduction 
Current advances in spoken dialogue systems [1, 2] point 

towards a direction of more “human-like” interfaces. For 
certain applications, it is desired that users can perceive a 
system through the human metaphor, i.e. as if they were 
talking to a human being, rather than a machine. This is 
pursued by identifying properties of human dialogue speech 
and building them into the system. One such property is 
convergence of acoustic/prosodic (a/p) features between two 
(human) speakers. Therefore, a practical model for 
convergence would provide the means to realize a more 
realistic “human-like” behaviour. 

The approach presented in this paper describes the 
phenomenon in a quantitative way, by combining the TAMA 
method [3] with time-series analysis. 

1.1. Convergence  

Convergence is defined as a situation where “the 
observed behaviors of two interactants, although dissimilar 
at the start of the interaction, are moving towards behavioral 
matching” [4]. In plain terms, convergence refers to 
speakers’ adaptation of their interactive behaviour (including 
properties of speech) to that of their dialogue partners. 

The phenomenon has been studied in various fields of 
research, including psycholinguistics, behavioral sciences, 
and communication science. The majority of these studies 
attribute one or more functions to convergence. There is a 
range of such functions, from autonomous, non-intended 
behaviour to habitual behaviour and even to intentional 
communicative strategies [4-8]. However, there is general 
agreement that convergence is a sign of positive evaluation 
towards the partner and that it is also positively evaluated by 
the partner [7]. Therefore, spoken dialogue systems that can 

simulate this behaviour are likely to be more “appealing” to 
the user. 

Convergence between two speakers A and B can be both 
unidirectional (A → B) as well as bidirectional (A ↔ B). 
Also, convergence can be unimodal or multimodal. This 
refers to the number – one or many – of different dimensions 
(properties of speech communication) along which the 
speakers can converge simultaneously [6]. Such dimensions 
can be the choice of words, syntax, pronunciation, 
regional/ethnic accent, tone, rhythm, loudness, facial 
gestures and body posture. The analysis presented here 
focuses on convergence of a/p features, namely pitch, 
intensity, speech rate, and pitch range.  

1.2. Convergence in human-machine interaction 

Studies in human computer interaction have shown that 
human users adapt linguistically to interfaces even when 
using only text input [9]. For speech, it has been reported in 
[10] and [11] that users were found to adapt to prosodic and 
temporal characteristics of a ‘talking’ system. This has been 
utilized in [12], where the users unknowingly adapted their 
speech rate to that of the spoken dialogue system, which was 
designed to “keep” their speech rate within limits where 
automatic speech recognition (ASR) performance was 
higher. Further, it was reported in [13]  that users showed 
preference towards  an interactive voice response system that 
adapted its own speech rate according to their own, which is 
a strong indication that convergence of machines towards 
users is  positively evaluated.  

Therefore, convergence can already be utilized to make 
dialogue systems more appealing, as well as improve their 
performance. However, a well-developed quantitative model 
for convergence does not exist yet. Such a model is essential 
for unlocking the full potential of utilizing convergence in 
order to design more “human-like” dialogue systems.  

1.3. Towards “human-like” convergence 

Following the evaluation framework described in [1], 
implementing convergence in spoken dialogue systems 
requires prior knowledge of the process in human dialogues. 
By definition (see section 1.1), convergence is a continuous 
and bidirectional process that evolves over time. These 
properties of the natural process, point directly towards time 
series analysis. This holds true, whether the objective of the 
analysis is a description, a model, forecasting, or the 
application of monitoring and control on the process [14]. 

The mode of convergence depends heavily on speaker 
personality, gender, and context (application). Therefore, a 
spoken dialogue system will have to adapt its control 
strategy on-line, according to observed user behaviour. As a 
result, the methodology presented here focuses on 



unsupervised methods for extracting a/p features and other 
information from the audio signal.  

2. Speech corpus acquisition 
Dialogues between adult native English speakers were 

recorded for this study. The subjects were communicating 
through microphones and headphones, while sitting in 
soundproof isolation booths equipped with monitors. There 
was no visual contact between the interactants during the 
dialogues. 

2.1. Experimental scenarios   

Three experimental scenarios were presented, in which 
the subjects were required to (verbally) cooperate in order to 
survive in a hypothetical adventurous situation (see Figure 
1). A collection of 15 items (identical for both subjects) was 
displayed on the monitors, and the subjects were asked to 
freely discuss and reach an agreement on the order of 
importance; the item considered to be the most important 
and essential to survive the hypothetical hazard was given 
rank 1, the next most important was given rank2, and so on 
until all 15 items had been ranked. 
 

 

Figure 1- "shipwrecked" scenario 

The three scenarios involved the two subjects being 
shipwrecked, stranded in space in a pod, or lost from their 
group in the snowy Himalayas. In all three situations, the 
subjects had to “survive” long enough until rescued (a time 
limit of 10 minutes applied). In addition, the subjects were 
provided only with pictures of the items and were instructed 
to decide themselves on the name/description of an unknown 
item. 

Due to the low difficulty of the task and the general lack 
of constraints in the experimental design, the speech corpus 
contains a substantial share of spontaneous speech and 
dialogue acts, a significant amount of laughter and other 
non-speech elements, and many occurrences of overlapping 
speech.   

The entire sessions were recorded in separate audio 
channels for each speaker (from the microphones in each 
booth), with very high audio quality (192KHz/24-bit).  

2.2. Segmentation and feature extraction 

The recorded files were down-sampled to 44.1 KHz/16-
bit prior to analysis with the freely available software Praat 

[15]. For each audio file (that contains the entire speech 
stream from one of the two speakers), the following actions 
were performed: first, pauses were detected by use of an 
intensity and duration threshold. This process is automatic, 
but manual corrections were required in order to eliminate 
noise classified as speech. In addition, non-speech elements 
such as laughter and breath noises were manually annotated.  

The two resulting timelines (one for each speaker) 
contain marked boundaries for speech, non-speech elements, 
and pauses. Combined, they produce a chronograph [16] of 
the dialogue, i.e. a schematic of turn switching and overlap 
between the two speakers (see Figure 2).  

The a/p features extracted for each marked speech 
interval were average pitch, pitch range, average intensity 
and vowel detection. The latter is used as an estimate of 
speech rate (number of vowels per minute) [17]. Pitch range 
is defined here as equal to two standard deviations 
(computed together with average pitch). 

 
 
  
 
 

 
 

Figure 2 - Chronograph of part of dialogue 

2.3. The TAMA method 

Points for the time-series analysis were acquired by 
implementation of the TAMA method, which calculates 
average values of a/p features for a series of overlapping 
frames of fixed length (see Figure 3). The process is 
equivalent to a simple moving average filter, hence the name 
(time-aligned moving average).  

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3 - Schematic of TAMA frame 

The average value of each feature is calculated using 
equation (1) below: 
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where µ is the average, i is the interval index, N is the total 
number of intervals, fi is the value of the feature for interval 
i, and di is the duration of the interval i.  

If the average of a feature for the entire dialogue is being 
calculated, then i runs through all the speech intervals. If a 
frame average is being calculated, then i runs through all 
intervals that exist in the frame. For intervals that cross 
frame boundaries, the value of di is set to the duration of the 
interval within the frame. Equation (1) is essentially a 
weighted mean, where the interval durations di are the (un-
normalized) weights. The normalized weights are defined as 
wi = di / D, where D = Σdi, with Σwi = 1, in which case the 
standard error (S.E.) is given by 
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2
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where σι is the standard deviation of feature fi (obviously not 
defined for pitch range and number of vowels). 

The resulting averages of the frames are divided by the 
speaker’s overall average (for the whole dialogue), giving a 
“normalized” feature value. This is deemed essential in order 
to make meaningful comparisons between speakers with 
largely different inherent speech characteristics (such as 
male vs female speakers). Effectively, the normalization 
changes the random variable from an a/p feature to a 
dimensionless variable with mean equal to one.  The 
deviation of each point from the mean is equivalent to a 
proportional increase or decrease relative to the mean, e.g. a 
value of 1.2 for pitch represents a frame were the average 
pitch is 20 percent higher than the overall average pitch of 
the speaker in the dialogue..  

2.4. Time series analysis 

As suggested in many statistics textbooks on time series 
analysis (for example [14]), the first step in the analysis of a 
process is to illustrate its time plot (see Figure 4(a) and 
4(b)).A TAMA frame with a length of 20 seconds and a time 
step of 10 seconds has been used, in order to provide the data 
points for these plots. This results in a 50% overlap (the first 
half of each TAMA frame is the second half of previous 
frame), thus the points are equally spaced at ten seconds 
apart.  

The process of frame length selection is equivalent to 
applying an appropriate moving average filter to a time 
series in order to reduce the variance and provide a smoother 
curve, where trends or other features may be more easily 
identifiable [3]. There are two constraints that can be helpful 
to estimate an appropriate frame length. First, a short length 
may yield empty frames (where one speaker holds the turn 
and the other is silent), resulting in a time series with 
missing values. Although these can be dealt with, either by 
using the most recent value (from previous frame) or by 
linear interpolation, it is desirable to avoid them. The second 
constraint is that overly large frame lengths tend to “over-
smooth” the series.  

The plot in Figure 4(a) indicates that the two series are 
converging to a certain degree, as expected. Also, each series  
(individually) appears to have an autoregressive structure, as 
it can be seen from the plot that consecutive values are likely 
to be close to each other. This indicates that a/p features of 
speakers change smoothly over time, unless an event occurs 

(such as a topic change) that changes the flow of the 
dialogue.  

However, if convergence occurs, any value of series A 
will also depend on contemporaneous and previous values of 
series B, and vice versa. In other words, feedback is expected 
to occur between the two series.  

 

 
(a) 

 

(b) 

Figure 4 - Time plots of (a) pitch and (b) intensity for 
two speakers (A,B). Feature averages of 20 second 

frames with 50% overlap (normalized values) 

 

Figure 5 - Correlograms of the two individual series 
(speakers A and B) shown in Figure 4a 

Information for each individual series can be extracted 
by use of the sample autocorrelation function (ac.f). A good 



estimate of the ac.f is the correlogram (see Figure 5). The 
sample autocorrelation coefficient rk at lag k is given by 
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where xt are the series values and µ is the sample mean 
calculated with equation (1). 

The correlograms of both individual series in Figure 5 
quickly drop to zero (with 95% confidence limits at ±2/√n), 
an indication that the processes are stationary. This is not 
always the case; in Figure 4(b), the plot of average intensity 
shows a global decreasing trend for both speakers. The 
correlogram in Figure 6 shows that the two series are not 
stationary. Stationarity can be achieved by differencing, i.e. 
subtracting the previous value from the current value in the 
series. The process can be repeated several times, until the 
resulting series is stationary. If d repetitions are required, the 
series is said to be integrated of order d, and denoted by 
I(d). The significance of this is explained in section 2.5.  
 

 

Figure 6 - Correlograms of the two individual series 
shown in Figure 4b (speakers A and B), and their 

difference, (A-B)  

2.5. Bivariate time series 

In order to evaluate whether two time series are causally 
related, one has to turn to bivariate time series analysis. This 
type of analysis considers two time series as components of 
a linear system, where one of the series can be regarded as 
the input and the other as the output. However, if the input 
series is also affected by the output series, then feedback is 
present. In such cases, the results have to be considered 
carefully, as they may be misleading.  

The relationship between two series can be explored by 
use of the cross-correlation function (cc.f), which measures 
dependence between values of one series to past values of 
the other series. The cc.f can be estimated by use of the 
cross-correlogram, which is a plot of cross-correlation 
coefficients at different lags (Figure 7). 

The sample cross-correlation coefficient rxy(k) at lag k is 
given by 
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where xt , yt  are the values of the two series, and µx , µy are 
the overall averages for those series, calculated by equation 
(1). 

As suggested in [14], spuriously large coefficients may 
appear in the cross-correlogram if the two individual series 
have not been previously “pre-whitened”, i.e. converted into 
white noise. This can be achieved by fitting an appropriate 
model to each series. In the correlogram of Figure 5, for 
example, both series of average normalized pitch have only 
one significant coefficient at lag 1, with a value around 0.4. 
This can be used as an alpha value for an autoregressive 
(AR) model of order 1, which is fitted to each series. The 
resulting residual series are then tested for cross-correlation 
(Figure 7). 

 

 
Figure 7 - Sample cross-correlation (pitch) between 
two (speakers A, B). (95% confidence limits at ±2/√n) 

There two positive coefficients that are significantly 
different from zero, at lags 0 and 1. A large coefficient at lag 
zero is an indication of the presence of feedback. In the 
context of convergence analysis, feedback is a result of both 
speakers converging towards each other (bi-directional 
convergence). Positive or negative lags represent 
unidirectional convergence (A→B and B→A respectively). 
However, in the presence of feedback, interpretation of the 
cross-correlogram can be misleading (see discussion). The 
bivariate process can be described by a vector autoregressive 
(VAR) model of the form 

 
X
t
= !X

t"1 + #
t
,

X
t
=

x
1

x
2

$
%&

'
()
,#

t
=

#
1

#
2

$
%&

'
()
,! =

*
11

*
12

*
21

+
22

$
%&

'
()

’ (5) 

 
where x1,x2 are the values of the two series and εt is the error 
vector.  



Table 1- Results of feature extraction and time series analysis. Average pitch (AvP), average intensity (AvI), speech 
rate (SR), pitch range (PR), total fluent speech (TFS), total turn share (TTS), total overlap (TO), total pauses(TP) and 
total dialogue duration (TDD) are shown.( F) or (M) denote a female or a male speaker, respectively. The numbers at 
the four rightmost columns indicate the lags at which a significant positive correlation is found.  

 If the parameter matrix Φ is triangular, then the system 
is said to be open-loop and can be modeled by a linear 
equation between the two variables. If both φ12 and φ21 are 
large, then the system demonstrates feedback and is said to 
be closed-loop.   

The estimation of matrix Φ can be rather complex if 
feedback is present. The case in Figure 6 is yet more 
complicated: the individual series are non-stationary and 
I(1), but their difference (x1 – x2), which is a linear 
combination of the two variables, is I(0) and stationary. 
Therefore, the two series are co-integrated, a fact that can 
perhaps be helpful in identifying a more appropriate model, 
that includes the co-integration vector aT = (1,-1). 
Appropriate models for convergence will be considered in 
the future.  

3. Results and discussion 
Results are shown in Table 1. Positive correlations at lag 

zero were expected, as they are the result of bi-directional 
convergence. In the five different dialogues analyzed here, 
significant coefficients at lag zero were found for all features 
studied. This was more evident for pitch and intensity (a 
large coefficient at lag zero was found for all dialogues 
studied). Similar, but less conclusive results were found for 
average pitch range and speech rate (significant coefficients 
in some of the dialogues). Significant coefficients were also 
found at lags -1 and 1. Theoretically, this indicates 
unidirectional convergence, either from (speaker) A to B or 
vice versa, with a lag of 10 seconds (determined by the 
chosen frame length). However, such an interpretation would 
be naïve, especially in case a large coefficient at lag zero is 
also present. As a result of the TAMA process, some of the 
autoregressive properties of convergence are “included” in 
lag zero, as it represents a time frame. At best, the presence 
of large coefficients at lags -1 or 1 can only be interpreted as 
an indication that convergence does have autoregressive 
properties.  

The importance of these results is that convergence of 
a/p features over time can be statistically evaluated. 
Although the cross-correlation analysis cannot be directly 
relied upon for parameter estimation, it does so for model 
identification. The autoregressive structure of the individual 
series points towards a VAR model with large feedback 
terms. In addition, the co-integration vector (1, -1) suggests 

that the difference, (x1 – x2), or in other words the distance 
between the speakers is important. These are only initial 
hypotheses and further work is required before a model can 
be formulated. Assuming that a VAR or similar model (from 
the VARMAX family) is the most appropriate, the summary 
statistics can be used to design adaptive control of 
convergence in a dialogue system. Systems of this type will 
be able to employ “strategies”, such as leaving the initiative 
to the users and converge to their style, monitoring if the 
user is converging and taking action to encourage 
convergence, or a mixture of both. However, a single 
model/strategy is unlikely to be appropriate for an entire 
dialogue, because the a/p features of any given utterance are 
not a function of convergence, but rather of many exogenous 
factors (type of utterance, topic changes, errors). A 
combination with other dialogue monitoring functions of 
dialogue systems, such as state-space dialogue modeling 
(e.g. [18]) may allow deployment of more appropriate 
convergence strategies/models for different dialogue states. 

The justification of the TAMA method, i.e. using frames 
rather than utterances as units, merits discussion. The 
convenience for analysis introduced by the transformation of 
the data is not negligible, (analysis of series with points at 
irregular intervals is less straightforward), but there are also 
additional advantages. In an (assumed) adaptive system that 
uses TAMA frames in order to monitor and control 
convergence, the frame length can be used as a trade-off 
variable. Longer frames ensure smooth changes in a/p 
features and more stability, but shorter frames enable quicker 
response to sudden changes. In an utterance-based system, 
this can only be achieved by taking several preceding 
utterances into the calculation, probably weighing them to 
promote more recent ones, as was done in [19].  However, 
due to the complex structure of spontaneous speech, the 
most recent utterance may not be the most relevant. This 
problem can be partially overcome by utterance/dialog act 
classification [20]. However, employment of such 
techniques in real-time environments may increase 
computational load and introduce latencies. TAMA is a more 
crude method, but is also less demanding in resources. In 
addition, the TAMA method is virtually independent from 
the ASR component (although it would be desirable for 
some stages of feature extraction to be shared for economy). 

Furthermore, it should be considered whether analysis of 
spontaneous (or unconstrained) human dialogues is the best 

Significant coefficients (lags) Dialog AvP  
(Hz) 

AvI 
(dB) 

PR 
(Hz) 

SR 
(v/m)  

TFS 
(sec) 

TTS 
(%) 

TO 
(%) 

TP 
(%) 

TDD 
(sec) 

AvP AvI PR SR 
191 54 64 241 74 20.5 1  F 

M 138 59 46 173 181 43.9 
17.2 18.3 428 0,1 0,1 1 -1 

117 62 27 226 169 35.5 2 M 
M 146 61 49 178 146 32.9 

15.4 16.31 492 0 0 0 - 

141 54 51 210 145 38.4 3 M 
F 222 54 120 192 99 26.7 

44.5 23.5 390 1 0 - 1 

203 56 128 240 124 28.7 4 F 
F 212 54 90 225 103 21.5 

11.9 37.9 516.9 0 0 0 - 

140 63 41 183 125 36.3 5 M 
M 163 52 57 177 108 30.7 

50 19.1 360.3 0 0 - 0 



way to model convergence for dialogue systems. The latter, 
in their majority, have specific applications and limited 
responses, so perhaps application-specific training is more 
appropriate; but this point of view is not compatible to the 
human metaphor paradigm described in [1, 2]. According to 
the framework proposed in [1], a system can only be 
evaluated against a human dialogue. Besides, it is difficult to 
train a system on an application environment that is not yet 
developed. Wizard-of-oz scenarios can be employed to 
overcome this problem [10], but care should be taken that 
design constraints do not bias analysis of convergence. A 
combination of analyses on human dialogues and wizard-of-
oz scenarios is worthy of investigation.  

After a suitable model has been identified, “human-like” 
convergence will be feasible to implement in existing or 
newly developed dialogue system architectures. Such 
systems will be able to employ unsupervised adaptive 
control, in order to simultaneously monitor as well as 
simulate convergence along multiple possible dimensions 
(different a/p features).  Control theory is key here, mainly 
because of its wide repertoire of techniques for dealing with 
closed-loop systems that demonstrate feedback. 

4. Conclusions and further work 
Time series analysis can provide useful insights into the 

process of a/p convergence in human dialogues. This will be 
useful in developing spoken dialogue systems that can 
display similar behaviour, in order to help the user visualize 
the human metaphor. 

Accumulation of results from analysis of dialogue 
recordings is required before sufficient knowledge of the 
process is gained. In the future, different recording 
experiments, either of human dialogues, or wizard-of-oz 
scenarios, that simulate real application environments, will 
be considered.  

The analysis method presented here is feature 
independent, and can thus be readily modified in order to 
analyze convergence of other properties of speech, e.g. pause 
duration, intonation, or even lexical and/or gesture features. 
This will enable investigation of redundancy among different 
“convergence channels”, by correlating several distinct 
features simultaneously. Careful consideration will then be 
required to deal with the complexity of the resulting n-
variate time series analysis.  
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