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Abstract  
Photopolymers are increasingly interesting as new materials for the fabrication of 

electro optical liquid crystal devices. Photoinduced surface relief gratings in dry, self 

developing acrylamide based photopolymers can be used to align liquid crystals (LCs) 

as an alternative to the rubbing technique. These optically recorded surface relief 

patterns can be used to fabricate electro-optical switchable LC Bragg gratings.  

 

An investigation of the dependence of photoinduced surface relief gratings on 

recording intensity and thickness of the photopolymer layer is reported. The surface 

relief gratings were filled with E7 LCs and a switchable LC diffraction grating was 

fabricated.  

 

Keywords: Acrylamide based photopolymer, surface relief gratings, switchable LC 

diffraction grating.  

 

1. Introduction  

Photoinduced surface relief gratings in photopolymer are attractive for their 

applications in diffractive optical elements [1, 2], optical data storage [3], and to align 

liquid crystals [4]. Photopolymers are becoming attractive candidates for holographic 

techniques including fabrication of diffractive optical elements due to their self 

development capability when exposed to a light pattern [5]. In the last two decades 

there have been a number of applications of liquid crystals such as liquid crystal 

displays and other photonic components. Uniform alignment of LCs is essential for 

the fabrication of LC opto electronic devices. Recently, non-rubbing techniques were 

investigated to align LCs [6]. These methods have advantages over the common 

rubbing method as there is no electrostatic charge and dust on the surface which is not 

desirable.  

 

A switchable diffraction grating is a key component for the realization of several 

devices used in the chain of optical communication networks, such as switches, Add-

and-Drop filters, beam deflectors and routers [7]. This can be realized by allowing 

liquid crystals to fill a surface relief grating recorded in a photopolymer. An 

acrylamide based photopolymer developed at the Centre for Industrial and 

Engineering Optics, Dublin Institute of Technology is used in this work. E7 LC (4-

pentyl-4 ’ cyano biphenyl and 4- heptyl-4 ’ -cyano biphenyl) from Merck Company 

was used in this study. This E7 LC was chosen as its ordinary refractive index n o 

matches the refractive index of acrylamide based photopolymer. This LC shows 

positive dielectric anisotropy, has a clear point at 58◦C and birefringence is 0.225 with 

1.7472 and 1.5217.  

 



 370 

In this paper, investigation of the dependence of photoinduced surface relief gratings 

on intensity at different exposures and thicknesses of the photosensitive layer is 

reported. The capability of photoinduced surface relief effect in this material for the 

fabrication of liquid crystal devices is demonstrated.  

 

2. Theory  

2.1 Optical recording in photopolymers  
Optical recording in this material is based on the photopolymerization reactions 

caused at the bright areas. Generally, photo polymerization is divided into three steps: 

initiation, propagation and termination. The general composition of the photopolymer 

layer consists of monomers, electron donor or initiator, photosensitizer and a polymer 

binder as a matrix. The dry photopolymer layer is illuminated with non-uniform 

monochromatic light at a wavelength at which the photo sensitizer absorbs a photon. 

The photosensitizer reacts with the electron donor, creating free radicals and then 

initiating the polymerisation process. Due to polymerization there is a change in the 

molecular polarizability and the density, which in turn changes the local 

photopolymer refractive index and a grating is recorded. There are different 

theoretical models explaining the formation of holograms in photopolymer material 

[8, 9] due to mass transport from dark to bright regions. From the diffusion studies in 

acrylamide based dry photopolymer [10], it has been observed that the initial mass 

transport from dark to bright regions is faster than in other photopolymer systems [11, 

12].  

 

2.2 Electro optical studies:  

The effect of applying electric field to LC cells is studied with linearly polarized light 

by measuring diffraction efficiency (DE). When linearly polarized light passes 

through an LC cell, light is diffracted due to difference of the refractive indices of 

photopolymer and LCs and hence diffraction grating is in ‘ ON ’ state. With the 

application of electric field (AC or DC), LCs try to align such that the refractive index 

of LCs matches the refractive index of photopolymer. In this state there is no 

diffraction orders and is called ‘ OFF ’ state. LCs are useful for fabrication of electro 

optical devices as the DE can be controlled by varying applied electric field [13].  

 

3. Experimental  

3 .1 Sample preparation  

Self developing acrylamide based dry photopolymer is the material used to prepare 

samples [14, 15]. The general composition of this material is acrylamide and N, N’ - 

methylenebisacrylamide monomers, triethanolamine initiator, polyvinyl alcohol 

binder and Erythrosin B sensitising dye. The above components were mixed well by 

using a magnetic stirrer and the dye was added finally.  

 

To study photoinduced surface relief gratings, good optical quality samples were 

prepared by the gravity settling method. The photopolymer solution was diluted with 

deionised water and spread on a glass plate of 5x5 cm 2 size. The thickness of the 

sample depended on the amount of the solution spread on the glass plate. After a 

sample was dried, by making a cut on the sample, thickness was measured by using 

the white light interferometer. 

 

To fabricate LC device, ITO coated glass plates were cut into small pieces 3x2.5 cm². 

Electrical contacts were made on the corners of the plates with silver loaded epoxy 



 371 

resin and allowed to dry. These glass plates were treated with NaOH solution for 30 

min in an ultrasonic bath. The photopolymer layer of 10 µm thick was coated on the 

ITO coated glass plate. After drying for 3 hours, they were exposed to an interference 

pattern to record gratings. These exposed layers were post exposed to uniform UV 

light intensity in order to polymerize remaining monomer. Spacers of thickness 6 µm 

were placed at the four corners on the exposed layers. An ITO coated glass plate 

without photopolymer layer was placed on these spacers. Two sides were glued 

keeping other two sides open for inlet of LC. The glue was allowed to dry for 15 min. 

The cell was filled with E7 LCs by using the technique of capillary flow. After filling 

these cells were heated to clear point of LCs and cooled to room temperature to settle 

LC properly in the grating grooves. Figure.1 shows the diagram of fabricated LC cell.  

 
 

3.2 Optical Set-ups  

Surface relief gratings (SRG) were optically recorded in dry, self-developing 

acrylamide based photopolymer at different spatial frequencies. The optical setup 

used to record surface relief transmission diffraction gratings is shown in figure 2. A 

laser with wavelength 532nm was used to record transmission diffraction gratings. 

The laser beam Spacers ITO coated glass plates Epoxy resin Photopolymer layer with 

surface relief grating Liquid crystals was spatially filtered and collimated. By 

adjusting the geometry of the optical set up, gratings at different spatial frequencies 

can be recorded.  

 

The spatial frequency of the recording SRG was calculated by using the Bragg 

equation  

 

2Λsinθ = λ…………………… (1) 

 

where Λ= fringe spacing, θ = half of inter beam angle and λ = probe beam 

wavelength.  

 

The surface relief gratings were recorded on the photopolymer samples of different 

thickness, at different intensities and exposures, at 100 lines/mm spatial frequency to 

study the properties of the photoinduced surface relief gratings. For LC devices, 

samples were exposed at 70 lines/mm spatial frequency. SRGs at 70lines/mm are 

recorded as the amplitude modulation is larger compared to 100 lines/mm and the 

probability of aligning LCs is more. After recording the amplitude modulation was 

measured using a white light interferometer (WLI) MicroXAM S/N 8038.  
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Figure 2 Experimental set up used to record surface relief gratings. 

 

The experimental set up shown in figure.3 was used to characterise the electro-optical 

behaviour of the fabricated LC cell. A linearly polarised He-Ne red laser at 633nm 

was used to probe the fabricated cells. The laser beam was spatially filtered and 

collimated. The polarizer was adjusted such that the transmission axis was vertical. 

The diffraction efficiency (DE) was measured by measuring intensity in first order for 

different voltages.  

 
Figure 3 Experimental set up used to study electro optical studies of LC.  

 

4. Results and discussions 4.1 Dependence of amplitude modulation on intensity and 

exposure The dependence of the amplitude modulation of the surface relief gratings 

on the intensity of recording is shown in figure.4. Photopolymer layers of thickness 

17µm were illuminated by sinusoidal light pattern of different intensities at spatial 

frequency 100 lines/ mm. 
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Figure 4 Dependence of surface relief amplitude on the intensity of recording in the 

samples of thickness 17µm at spatial frequency 100 lines/mm. 

 

Intensities of 5, 10 and 20 mW/cm 2 were used. It is seen from the figure.3 that at 

constant intensity with increase in exposure time, amplitude modulation increases. It 

is observed that there is not much change in amplitude modulation for intensities 5 

and 10mW/cm 2 with increase in exposure time. There is a significant difference in 

the amplitude modulation between the intensities 10 and 20 mW/ cm 2. When the 

intensity was increased to 20mW/cm 2, the observed surface relief modulation was 

smaller. This could be due to fast polymerisation and reaches termination.  

 

The reason for higher amplitude modulations at lower intensities could be that at low 

intensities fewer photons are absorbed by the photopolymer layer and so the 

polymerization process is slower in the illuminated regions. The monomer which 

diffuses into bright region to contribute to surface relief amplitude has more time to 

diffuse which increases amplitude modulation. Therefore one would observe higher 

amplitude modulation at low intensity. As the intensity increases the number of 

photons absorbed by the photosensitive layer will be higher and so the polymerization 

process will be faster. When polymerisation is fast, the rate of consumption of 

diffused monomer is higher which should increase the amplitude modulation. 

However, at high intensities there is a possibility of forming short polymer chains 

which could easily diffuse into dark regions resulting in decrease in the amplitude 

modulation. 

 

Figure.5 shows an example of the surface relief profiles recorded at 100 lines/mm and 

exposure 350 mJ/cm 2 in the layers of thickness 17  m. These profiles were taken 

with WLI. The grating grooves shown in the figure filled with LC molecules to 

fabricate the switchable diffraction grating.  



 374 

 
Figure 5 Photoinduced surface relief grating inscribed in photopolymer layer at 

spatial frequency 100lines/mm. Recording intensity is 10mW/cm 2 and the recording 

time is 35sec. 

 

4.2 Dependence of amplitude modulation on thickness of sample:  

Photopolymer layers of different thicknesses were exposed to an interference pattern 

at constant exposure 350 mJ/cm 2 (intensity 5mW/cm 2 and time 70 sec) and spatial 

frequency 100 lines/mm. The dependence of the surface relief gratings on the 

thickness of photopolymer layer is shown in figure.6. As the thickness of the 

photopolymer layer increases there is an increase in the amplitude modulation up to 

certain point and after that, there is a not much change. Similar thickness dependence 

was observed at 10lines/mm.  
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Figure 6 Thickness dependence of surface relief amplitude modulation at constant 

exposure of 350 mJcm²  

 

When the sample is exposed to light pattern, polymerization starts in bright regions. 

As monomer diffuses into the polymerization region from dark regions this in turn 

increases amplitude modulation. Below a given thickness there may be some surface 

interaction forces acting between the substrate and photopolymer layer [2] which 

decreases diffusion of the monomer and this effect can be seen when the layers are 

thin. When the sample is thick the role of these interactions is not influenced by the 

substrate, and so the diffusion process proceeds normally. This could be the reason for 

larger amplitude modulation in thicker layers than in the thin layers. Since the 

polymerized area extends through the depth of the layer, so thicker layers would be 

expected to produce a greater modulation depth. But after a certain thickness of the 

sample there is not much additional increase in the amplitude modulation maybe due 

to opposition to diffusion of the monomer. The reason for oppose to diffusion of 

monomer could be viscosity of the material in bright regions due to polymerisation 

which one would expect to slow down the diffusion. When diffusion is slow there is 

not much change in the amplitude modulation.  

 

From these studies, we have determined the thickness of the photopolymer layer for 

the fabrication of LC device. Surface relief gratings were fabricated on the 

photopolymer layer of thickness 10  m. This is the thickness above which not much 

change of the amplitude modulation was observed. However, for the fabrication of LC 

devices the thickness of the alignment layer should be small so as to minimise the 

potential drop required across cell. From the intensity dependence studies, for the 

fabrication of surface relief gratings on photopolymer layer of thickness 10  m, the 

intensity of recording is chosen to be 10mW/cm 2 and time of exposure to be 35 sec. 

 

 

4.3 Dependence of intensity in the first order diffracted beam on applying electric 

field to the cell containing a surface relief grating filled with LC.  
Surface relief grating was fabricated on photopolymer layer at 70lines/mm at 

exposure 350mJ/cm 2 . The amplitude modulation was 110nm after exposing to 

uniform UV light intensity. The DE% of the cell without LCs was 7%. After filling 
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with LCs the DE% was found to be 0.50%. The electrical contacts were made to the 

cell by using silver loaded epoxy resin.  

 

When linearly polarised light is passed through an LC cell elliptically polarised light 

is generated. The state of polarisation of the light is changed to elliptical due to the 

linear birefringence nature of LCs. By measuring ellipticity of generated light from 

the fabricated cell, the birefringence of LC was determined. It was found to be 0.016. 

This shows a degree of the initial alignment of LCs. It was also observed that with 

applied voltage birefringence decreases. Such behaviour is expected as the LC 

molecules change their orientation in order to align parallel to the electric field. In this 

case their long axis is perpendicular to the grating surface and so refractive index n 0 

is almost matching the photopolymer refractive index and birefringence decreases. To 

observe switching behaviour of the cell we studied dependence of the intensity in the 

first order on applied external electric field. The experimental setup shown in figure.3 

was used to study this dependence.  

 
Figure 7 Graphs showing variation of intensity in diffracted first order of LC cell 

with applied DC voltage 

 

The intensity of the laser beam diffracted in the first order (I 1 ) was measured by 

varying voltage applied to LC cell. It was observed that the intensity in the first order 

decreased with an increase in the applied voltage up to a certain point and then 

disappeared. This might be the point where the refractive index of polymer and LC 

matches. However, from figure.7 it is seen that the intensity does not go to zero. This 

could be due to scattering of the light as seen from figure 8. The diffracted order 

disappeared at 2.6V. With further increase in voltage did not increase the intensity in 

the diffracted first order significantly. The variation of intensity in first order 

diffracted beam was very small but a switching behaviour in the diffraction orders 

was clearly observed. It was observed that time taken to switch from ON state that is 

with DE%, 0.50% to OFF state that is with DE% 0.08% was around 10 sec. Time 

taken to switch back to ON was around 1 min, demonstrating the process is slow. It 

was also observed that there is significant scattering. This could be due to large size of 

LC molecules compared to wavelength of incident light.  
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Figure 8: Switchable liquid crystal diffraction grating.  

 

The same type of behaviour was observed in most of the LC diffraction gratings. 

However, sometimes along with the disappearing of orders there was ring formation.  

 

 
 

Figure 9: Switchable liquid crystal diffraction grating with rings  

 

Figure.9 shows that behaviour. In some papers the formation of rings in LC cells is 

explained as due non-linear behaviour of LCs [16, 17].  

 

Some experiments were done to see the formation of rings with varying the intensity 

of probe beam. It was observed that there were no rings with variation of intensity 

from 0- 60mW. Further investigations are in progress to study this ring formation.  

 

 

5. Conclusions:  

Photoinduced surface relief gratings in acrylamide based photopolymer were 

investigated. The amplitude modulation can be controlled by changing the intensity of 

recording and the thickness of photopolymer layer. Surface relief gratings were filled 

with LCs so that diffraction gratings were fabricated. The variation of DE with 



 378 

applied voltage was studied. Though there is not large variation in DE, switching 

behaviour of these gratings was demonstrated by applying voltage. Further 

investigations are in progress to improve DE for application purposes.  
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