
Technological University Dublin Technological University Dublin

ARROW@TU Dublin ARROW@TU Dublin

Other Applied Social Computing Network

1992

Applying metrics to rule-based systems Applying metrics to rule-based systems

Paul Doyle
Technological University Dublin, paul.doyle@tudublin.ie

Renaat Verbruggen
Dublin City University

Follow this and additional works at: https://arrow.tudublin.ie/ascnetoth

 Part of the Programming Languages and Compilers Commons, and the Software Engineering

Commons

Recommended Citation Recommended Citation
P. Doyle and R. Verbruggen, "Applying metrics to rule-based systems," Proceedings Fourth International
Conference on Software Engineering and Knowledge Engineering, 1992, pp. 123-130, doi: 10.1109/
SEKE.1992.227938.

This Conference Paper is brought to you for free and open access by the Applied Social Computing Network at
ARROW@TU Dublin. It has been accepted for inclusion in Other by an authorized administrator of ARROW@TU
Dublin. For more information, please contact arrow.admin@tudublin.ie, aisling.coyne@tudublin.ie,
vera.kilshaw@tudublin.ie.

https://arrow.tudublin.ie/
https://arrow.tudublin.ie/ascnetoth
https://arrow.tudublin.ie/ascnet
https://arrow.tudublin.ie/ascnetoth?utm_source=arrow.tudublin.ie%2Fascnetoth%2F7&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/148?utm_source=arrow.tudublin.ie%2Fascnetoth%2F7&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/150?utm_source=arrow.tudublin.ie%2Fascnetoth%2F7&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/150?utm_source=arrow.tudublin.ie%2Fascnetoth%2F7&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:arrow.admin@tudublin.ie,%20aisling.coyne@tudublin.ie,%20vera.kilshaw@tudublin.ie
mailto:arrow.admin@tudublin.ie,%20aisling.coyne@tudublin.ie,%20vera.kilshaw@tudublin.ie

Applying metrics to rule-based systems

Paul Doyle & Renaat Verbruggen
School of Computer Applications

Dublin City University
Dublin 9, Ireland.

u0700406@dcu.ie VerbruggenR@dcu.ie

Abstract

Since the introduction of software measurement theoy
in the early seventies it has been accepted that in order
to control sofware it must first be measured.
Unambiguous and reproducible measurements are
considered to be the most useful in controlling sofmare
productivity, costs and quality, and diverse sets of
measurements are required to cover all aspects of
software. This paper focuses on measures for rule-based
language systems and also describes a process for
developing measures for other non-standard 3GL
development tools. This paper uses “KEL” as an example
and the method allows the re-use of existing measures
and indicates if and where new measures are required.
As software engineering continues to generate more
diverse methods of system deve lopment, it is important to
continually update our methods of measurement and
control.

1. Introduction

Control within software development has been
acknowledged as one of the key requirements for
establishing predictive procedures and processes.
DeMarco summed up this fundamental which underlies
the importance of software measurement when he
wrote
“You cannot control what you cannot measure”. [11

This however leaves us with the difficult task of
specifying methods of measurement which are
unambiguous, precise, and reproducible. Fenton
recently detailed a proposal for implementing such a
system after providing the following definition of
measurement, which attempts to clarify its limitations.
‘measurement is the process by which numbers or
symbols are assigned to attributes of entities in the real
world in such a way as to describe them according to
clearly defined rules”. [2]

Now our goal is to measure attributes of entities
which we have identified as ‘interesting’. Software

metrics/measures have attempted to perform these
measures in a scientific and reliable way. However
measurements for attributes are not always easily
defined for entities (eg. Useability of a system).
Indeed there tends to be a substantial amount of
confusion regarding ‘software metria’ within the
software industry. DeMarco attempted to clarify the
objectives of measurement within the field of Software
Metrics by identifying a common objective: Metr ia
attempt to measure attributes of software products in
order to control its productivity, costs, and quality.
This control is achieved by producing models of
system behaviour based on historical data with which
to compare our current system.

For all aspects of software to be controlled a diverse
range of measurements are required. With an ever
expanding set of development paradigms it has
become necessary to develop measures which
incorporate the properties of these new paradigms.
Our approach focuses on measures that can be
applied to rule-based languages systems and also on a
process through which measures for other 4GL
development tools my be defined. Using this process
we have defined a set of measures for a rule based
language which we will refer to as KEL.

2. Quality modelling

Within software development there are two
identifiable entities which may be measured.
Processes (eg. methods of development etc.) and
products (deliverables such as source code or
documentation of a product). We can subdivide
these characteristics even further by distinguishing
between internal and external attributes. The former
refers to those attributes which can be measured
purely in terms of the product and process (Lines of
Code, modularity, coupling, structuredness etc.), while
the latter refers to measurement with respect to how
the product or process relates to its environment.
IS0 9126 [3] is a proposed European standard which
provides a list of nine external attributes which are of

123
0-8186-2830-8/92 303.00 0 1992 IEEE

interest to the majority of software developers and
customers (Useability, Maintainability, Security etc.).

Managers and users of systems are more interested
in these external attributes of entities (managers are
concerned with the maintainability of a product
whereas users are interested in useability). These
external attributes are not directly measurable as
definitions tend to be ambiguous. They can however,
be measured by defining them in terms of measurable
internal attributes. A simple example would be to
define reliability as the number of bugs per 100 lines
of code. It can generally be said that we use internal
attributes to support external ones because we cannot
measure external attributes directly.The remaining
sections of this paper will focus on the development of
measures for product attributes in rule based
languages. Quality modelling [4], which involves
relating metria, internal attributes and external
attributes to some theoretical framework, will be used
to associate external product attributes (sometimes
referred to as the factor) to internal attributes (known
as the criteria) which in turn are evaluated by using
proposed sets of measures.

The use of software engineering methods leads to
construction of products with certain structural
properties. These properties are characterised by
internal attributes such as modularity, re-useability,
coupling, cohesiveness, redundancy, hierarchy, and
structuredness etc. Some may even state that the
verification of the correct implementation of these
methods will ensure ‘satisfactory’ levels of external
attributes thus the assumption that ‘good’ internal
structure leads to good’ external quality is part of most
software quality models.

Although there is an ‘intuitive feel’ regarding the
connection between the internal structure of software
products and external product attributes, there is very
little scientific evidence to establish specific
relationships. This is perhaps the result of difficulties
in setting up relevant experiments and a lack of
understanding of how to measure important internal
product attributes properly.

Defining models of quality aids in the development
of a structured process through which attributes of
software may be measured, recorded, and re-used in
future projects. By providing reliable data, based on
historical and measured values, prediction and
assessment techniques may be used to control
productivity, cost and quality. Measurable targets may
be set within software projects which will increase
confidence in the producers claims to specified
external attributes. Without these attributes being
made quantifiable little weight can be associated with
claims of a products level of quality.

USE FACTOR CR I TERl A

M
E
T
R

Figure 1 A typical Quality Model

3. Defining measures for rule based
languages

The development of measures for languages has
been based around third generation languages. The
COCOMO model [SI which is perhaps one of the
better known cost estimation models provides data for
its three models, however this only includes machine
languages and 3GLs. Little additional data regarding
object oriented, knowledge engineering or relational
database languages has been published, although
Verner & Tate proposed a process involving Function
Point analysis [5], which would provide collection data
for COCOMO applicable to 4GLs [6], and a
proposal for a suite of metr ia for object oriented
languages has recently been published by Chidamber
and Kemerer [7]. Rule based and relational languages
however, have been slower to attract the interest of
researchers in the field of metria. This paper
proposes an approach for the development of metr ia
for a rule based language which will be referred to as
KEL.

Below are the steps from which a list of measures
for KEL have been developed. This processes is
based on approaches commonly used within the
existing 3GL framework for measure selection.
Necessary alterations were required however to take
the presence of rules into a m u n t . This was
accomplished by producing a generic process that
accommodates for systems which are outside the areas
of traditional measurement techniques. Each of these
steps will be expanded upon as they are related to our

124

KEL.

3.1 Measurement definition process for software
development languages

Step 1.

Step 2.

Step 3.

Step 4.

Step 5.

Step 6.

Analyse the language: Identify its
components.

Decide what components can be measured by
existing techniques.

Investigate how (if possible) all other
components can be measured.

Define a model under which these measures
make sense.

Measure these attributes. Collect data and
correlate results obtained with software
performance in an attempt to validate the
theoretical model.

Re-iterate/ modify.

3.2 Implementation of measurement definition process

Step 1. Analyse the language: Identify its
components.

The object of this step is to decompose the language
into its various development tools and determine what
strategy has been employed for each component. If
we take a commercial 4GL language, typical
components would be a Forms Management System,
Report generator, Query language, Database etc. Each
of these components employ diverse implementation
strategies. For example a query language would be
procedural containing textual elements and relations,
whereas a forms manager would have a non-
procedural nature.

KEL runs on the VAX under VMS. It use the
V W M S Record Management System (RMS), and
its own Dictionary Management System (DMS). The
DMS is the core of the system where data is described.
Data types, fields and files are described in the DMS.
KEL also consists of On-line, menu, and report
program generators, as well as a forms management
system.

Component Details

RMS Part of VMS so its not within the scope of
our proposed measures.

DMS

Modules

Step 2.

Relationships exist between the files, field
and
data types (see figure 4). These
relationships are similar to those expected
to be foundwithin a database system.
Knowledge in the form of rules which
directly relate to these entities can also be
stored. These rules are textual.

Modules are a combination of procedural
textual elements in the form of rules and
relationship definitions between other
modules and files which are non-procedural
ie. form driven.

Decide what components can be measured
by existiRg techniques.

This would usually involve an extensive search of
publications for articles etc. relating to measurable
attributes of software. An attempt has been made to
summarise this information to give some indication of
the range of measures currently available.

a) De Marco's "Bang" Metric
Based on the specification documentation
Functional measure. Implementation independent
indicating system size.

Decompose each part of the specification model down
to its primitive level. Data elements, objects and
relationships are produced from the data dictionary
and object diagrams. [I]
This is the earliest predictor of effort which drives the
cost model and hence it is only a very rough
estimator.

b) Design

Design weight
Based on design documentation
Measure of effort implied in the design ie cost.

Projections of effort are more accurate than those
obtained from Bang. Primitive measures obtained and
weighted.

DW = c modules weight/ no. modules [l]

COCOMO & Function Point analysis
Based on design documentation
Measure the size, effort, and schedule estimation

FP analysis [5] is a measure of system functionality.
It measures the size of data processing systems by

125

using a weighted sum of the number of inputs,
outputs, master files, and enquiries. FPs are converted
to lines of code (LOC) using an expansion factor for
language. eg. COBOL FP = 110 LOC.

Constructive C o s t Model (COCOMO) [8] uses 3
algorithmic cost estimation models (basic, intermediate,
and detailed). Data for these models is available
applications written in COBOL, Fortran, PL/1 and
assembly.

Effort = a (size) x product of cost drivers

Values for "a" and "b" are based on the mode of
development; cost drivers are provided for each mode.

c) Textual Complexity Measures

Based on lexical elements of source code
Measure of program size (eg: LOC)

There have been various contributors to this area of
measurement and although it is often difficult to find
a comprehensive source, frequently referenced books
are by Halstead 191, a n t e [lo], and a recently publish
book by Fenton [2].

d) Structural Complexity Measures

Based on the control structure of procedural

Measures complexity of modules/programs.
source code.

A set of possible control structures are defined and
from these flowgraphs and decomposition trees can be
automatically generated. Measures are then applied to
these graphs [2].

e) Architectural Measures of complexity

Based on the calling relationship between modules,
extracted from source code.
Measures program complexity

Call graphs, which graphically represent the calling
relationship between modules may be generated
automatically from the source code of a language.
Measures associated with the nodes and arcs have been
defined by many researchers [2].

f) Dynamic Measures

Based on the test coverage of source code
Measures the Percentage of code executed after a
number of test runs.

Dynamic measures are tool based with a selection of
metria proposed. Descriptions of such metr ia are to
be found in the documentation for such tools [l l]

g) Rules / Integrity Measures
Little documented research available.

h) DatdDatabase complexity Measures
Little documented research available.

Figure 2 indicates which of the measures defined
above are applicable to E L , and which need to be
developed. The first set of measures identified were
for the earliest period in the software life cycle.
Specification documents are implementation
independent and thus may be measured regardless of
the application development methodology, hence they
exist for KEL. Design documentation measures are
more dependent on the implementation strategy and
thus DeMarco identified two models for measuring
design documents (synchronous and asynchronous) ,
this however is sufficient to cover traditional design
methods which can be used for KEL. Textual
elements were identified and all measures for
traditional software should apply. Modules have a
calling structure which is enforced by the menu
program generator so architectural measures may be
applied, and similarly procedural sections of modules
contain common structural components which may be
characterised under existing measures.
Other components which are not part of traditional
3GL methodologies have also been identified.
However we have indicated that few existing measures
for these properties exist. They are: data/database
measures of relationships, dynamic measures for non-
procedural elements and measures for knowledge
stored as rules. These measures needed to be defined.

Step 3. Investigate how (if possible) all other
components can be measured.

KEL is a rule based language for developing
software for business applications. Projects are
developed by first using standard structured analysis
and design (eg. SSADM), then identified file
structures are implemented within its database.
Program development consists of using a forms
management system and procedural rule based code.
The principle modules within KEL are:

Data Dictionary System
On-Line program generator
Report program generator
Menu program generator
Chain program generator

126

0 Batch program generator . Automatic program documentation . Utilities . Run-time environment

Categories of Software Metrics
Injicates p i b l e additlorn

(3:

Figure 2 Areas were metrics are applicable to
KEL

KEL can be considered to contain four layers of
rules. All operations identified can be applied to the
three entities identified within the DMS which we can
view as three layers and the rules associated with
modules.

Type operations
0 Field operations . File/record operations
0 Module/program operations

NESTING LAYERS OF RULES

Integrity Rules

c
L l

Figure 3 Relationship of rules within
specified layers

Exanples of possible charactwistics fw rules
on each level

Cev iat t offi rev i a t i oils Cev i a t i om
/L 3 -

Figure 4 Possible graphically represented
characterisation of measures on each level

The first three layers are the dictionary integrity
rules contained within the DMS. The differences
between all four layers is mainly associated with the
complexity of the rules allowed. Most measures
defined for rules can be applied to each level. Figure
3 illustrates the relationship between each layer of
rules.

The results from metrics applied to each of the four
layers may be plotted in an attempt to characterise
the relationship between these layers. Figure 6
graphically represents the possible tolerance values for
our proposed measures. An average result of the
measure is obtained over the four levels. Deviations
from this average are plotted to identify differences in
these measures for each layer.

(i) Metrics associated with rules

From discussions with language designers and
application programmers it was felt that rules were
the core KEL resource. Rules consist of one or more
statements which differ on each layer by the number
of primary and subordinate statements possible. The
following are simplified source rules from KEL.

Example 1: Type rule:
Used to define customised data types.

Assert cwt-no eq 0 or cust-no in all customer.Cust-no

End Assert:
Else Print “Invalid Customer Number”;

127

Example 2: Field rule:

1 - 0 0 1

Used to control values of record fields.

Derive totval = valml + va12 + va13;
assert totval < 1500
Else

End assert;
Print "Total value exceeds 1500:.

Example 3: Record/file rule:

Integrity rules which are not logically associated with
just one field can be specified at the record (ie. file)
level in the Dictionary rather than the field level.
Field rules are active when data is input. Record rules
are only activated when the record is committed.

If deleting order
Assert no-shipments eq 0
Else

Print "Cannot delete order, shipments exist";
Reject;

End assert;

Example 4: Module rule:

Derive exch-rate-to = currto.exch-rateql;
Derive value-ir-to using
if cumcode-to = 1

else

end if;.
end derive;

value-ir-to = value-cum-to;

value-ir-to = value-curr-to/exch-rate-to;

(ii) Defining measures

a) Rule / Data relationship
Data items can be identified along with the rules

which manipulate them. A data item is a variable
named in the module/ record/ field/ type, which
appears only once on the R D (rule/data) relationship
diagram. Rules are conditional statements within the
module/ record/ field/ type. In example 4, the second
compound rule (Derive..Using) provides the following
relationships (figure 7). The data item value-ir-to is
connected to Rule 2, and also to the two rules
connected to this (IF and ELSE). The data item
within the IF statement currcode-to is usually implied
as the false condition for the corresponding ELSE
statement hence its connection to both rules. We
derive a graph of the relationship of rules to data
items and the following measures may then be defined

associated with these relationships.
Average number of rules per data item.
Mar nuniber of rules per data item.
Average number of data items per rule.
Mar number of data items per rule.

These metria can be applied to all four layers of the
software.

Rulelkta relationship dtagam

Va lue- Ir .To

Else. ,/ V a l x - T o p

k ive

Figure 5 This is a R D relationship diagram for
a module rule

We can use the example in figure 5 to calculate the
number of connections from each data item to rules
and the number of connections from each rule to data
items. A measure of coupling can also be defined (ie.
the interconnectivity of the graph). Using graph
theory we can define an adjacency matrix for the first
level of connections as shown in figure 8. Further
levels of coupling are obtained by multiplying the
matrix by itself.

' 1 2 3 4 Ru I es
I I I I

Figure 6 Adjacency matrix for first level
connectivity of rules

128

	Applying metrics to rule-based systems
	Recommended Citation

	Applying metrics to rule-based systems - Software Engineering and Knowledge Engineering, 1992. Proceedings., Fourth International Conferenc

