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 2 

 

The electrochemical deposition of Zn˗Mn coating from choline 

chloride˗urea deep eutectic solvent 

Electrochemical and microscopic techniques were used for characterization of 

Zn˗Mn coatings electrodeposited from choline chloride˗urea deep eutectic 

solvent. Cyclic voltammograms show that there was no discernible Mn reduction 

peak when only Mn
2+ 

was present in DES solution. The distinct Mn peak 

developed only upon addition of Zn
2+

 to the solution, probably due to previous Zn 

nucleation on the steel substrate. It was found that 22-27 wt.% Mn, was deposited 

at current densities of 3-8 mA cm
-2

, amounts significantly higher than in aqueous 

electrolytes. Since higher deposition current densities resulted in the formation of 

a porous surface consisting of clusters of nodular crystallites, the optimal 

deposition c.d was determined to be 3 mA cm
˗2

.  

Keywords: Zn˗Mn coating; electrodeposition; deep eutectic solvent; choline 

chloride; urea; ionic liquid; cyclic voltammetry; alloy 

 

1. Introduction 

There is a growing interest in electroplated Zn˗Mn coatings for sacrificial corrosion 

protection of steel substrates, owing to the fact that Zn˗Mn alloys of a certain chemical 

and phase composition, exhibit the highest corrosion resistance in an aggressive media, 

among all Zn alloy coatings.
1
 Electrodeposition of Zn˗Mn coating has mainly been 

performed in aqueous electrolytes, containing metal chlorides or sulphates, which may 

be acidic (boric acid)
2
 or alkaline (potassium pyrophosphate).

3
 In addition, in order to 

bring reduction potentials of Zn
2+

 and Mn
2+

 closer, various complexing agents have 

been utilized in water electrolytes, eg. EDTA,
4
 sodium citrate,

5
 or pyrophosphate ion.

3
 

Unfortunately, aqueous electrolytes can suffer from bath instability, low current 
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efficiency or poor deposit morphology due to the intensive water reduction at high 

plating current densities.
6
   

The avoidance of such disadvantages and attainment of higher electrodeposition 

current efficiency may be achieved by utilising aprotic ionic liquids as electroplating 

solutions. However this type of electrolyte has usually involved high production costs.
7
 

Since 2002, affordable, simple and stable ionic liquids, based on choline chloride 

(ChCl) type deep eutectic solvents (DES), have been developed for industrial 

application. Some important benefits of these ionic liquids include good solvation of 

many metal salts, low vapour pressure, good ionic conductivity, environmental 

friendliness (green solvents) and good thermal stability.
8
 The electroplating of pure Zn

9
 

and its various alloys, for instance Zn˗Ni,
10

 Zn˗Co
11

 or Zn˗Sn
12

 in DES has been 

extensively investigated. Similarly, the electrodeposition of pure Mn
13

 and Ni–Mn 

alloy
14

 in DES has been achieved.  

As regards the Zn–Mn coating, there are only few reports on its 

electrodeposition in DES, and the reported processes were performed on Cu and Pt 

substrates.
15,16

 We are not aware of any reports of Zn–Mn electrodeposition on steel 

electrodes. Furthermore it is known that in ChCl based DES, the substrate significantly 

influences the overpotential for metal ions reduction, as well as the electrochemical 

degradation of supporting electrolyte.
17

 Therefore, this work presents the electroplating 

of Zn–Mn coating on steel electrodes from DES, since Zn alloy coatings are widely 

used for corrosion protection of steel.
1
  

2. Experimental methods 

Electrolyte preparation 
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Deep eutectic solvents were obtained by combining urea with ChCl in a 2:1 molar ratio 

and heating to a temperature of 70 ºC, with continuous magnetic stirring, until a 

colourless liquid was formed.
18

 Both ZnCl2 and MnCl2∙H2O, at concentrations of 0.1 

mol dm
˗3

, were then added to the mixture. The transformation of hydrated MnCl2∙4H2O 

into its mono hydrated state MnCl2∙H2O was achieved by heating at 200 ºC under 

vacuum for 2 hours in a vacuum furnace, i.e. by using a method described in literature.
15

 

The prepared DES solutions were dried in vacuum chamber at 80 °C for 3 h, at p< 10 

mbar, and then stored in a dessicator. All electrochemical experiments were performed 

in open atmosphere.    

Electrochemical analysis and coating characterization  

Electrochemical measurements (cyclic voltammetry, CV, and galvanostatic deposition) 

were carried out using a ZRA Reference 600 Potentiostat/Galvanostat, from Gamry 

Instruments. A laboratory sand bath was used to maintain the temperature of the bulk 

electrolyte at 70 ºC for all electrochemical measurements in the DES. 

A three-electrode electrochemical cell was employed with a working electrode 

of steel plate, with a surface area of 0.25 cm
2
. The electrode was mechanically prepared 

using abrasive emery papers down to 2000 grit, degreased in a saturated solution of 

NaOH in ethanol, pickled with 2 mol dm
–3

HCl for 30 s, and finally rinsed with distilled 

water, acetone and dried in air by a fan. The counter electrode was a high purity Zn 

panel. In the experiments where Zn
2+

 was not present in the solution (CV of metal-free 

DES and of DES with only Mn
2+

 ions),  the counter electrode was Pt wire placed in a 

separate compartment, in order to reduce the likelihood of working electrolyte 

contamination with the oxidation products. The reference electrode was a saturated 

calomel electrode (SCE), connected to the cell through a Luggin capillary tip. Although 

conventionally used in aqueous electrolytes, this reference electrode has also been 
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successfully used in deep eutectic solvent, without any special treatment.
19

 After 

deposition at 70 ºC the electrodeposited coatings on steel were thoroughly cleaned with 

acetone. 

The surface morphology and composition of the samples were analyzed by a 

JEOL JSM 5800 scanning electron microscope (SEM), operated at 20 keV, equipped 

with an Oxford Instruments energy dispersive X-ray spectrometer (EDS). For 

SEM/EDS measurements, each Zn-Mn sample was deposited by the same charge 

density of 20 C cm
-2

, at 70 ºC.  

3. Results and Discussion 

Voltammetric measurements 

The reduction of Zn
2+

 and Mn
2+

 ions on a steel cathode, when either one or both species 

were present in DES, was studied by cyclic voltammetry in the potential range between 

˗1900 and ˗600 mV (vs SCE), at a scan rate of 100 mV s
˗1

.  

Voltammetry of DES with Mn
2+

 

The voltammetric responses of a pure DES and a DES with 0.1 mol dm
˗3

 MnCl2 are 

shown in Fig. 1. Upon scanning from the open circuit potential of the steel electrode to 

negative potential in the blank DES, it can be noted that, prior to the sharp current 

increase related to the bulk electrolyte decomposition at around ˗1450 mV, there are two 

reduction peaks. The first cathodic current increase commenced at about ˗660 mV, 

giving the peak C1 at ˗880 mV and the second wave begins at about ˗990 mV, with the 

peak C2 at ˗1170 mV. The processes responsible for these waves were described in 

detail in,
17

 where it was concluded that the peak C1 was related to the Cl
˗
 ion reductive 

desorption. The intensity of the peak C2 was enhanced upon water addition in ChCl–
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urea DES, thus proving that C2 probably represents the hydrogen evolution process from 

water impurity or other hydrogen bond donors, i.e. urea.
17

 Although the prepared DES 

solutions were dried and stored in a desiccator before use, it is well known that some 

moisture may be easily absorbed into the deep eutectic solvent electrolyte during 

manipulation and experiments, or incorporated via hydrated salts,
20,21

 so the peak C2 

response is accounted for in this work.  

Concerning the CV of DES with Mn
2+

 ions, it is seen that apart from the broad 

peaks already identified in the blank DES, there is no other cathodic current peak which 

could be related to the Mn
2+

/Mn reduction, nor the corresponding anodic stripping peak. 

However, the current increase related to the Mn deposition was reported in literature 

concerning voltammetric analysis of Mn
2+

 reduction in DES on Au
13

 and Cu electrode.
15

 

This strongly suggests that Mn
2+

 species are not reduced in ChCl˗urea DES on steel 

substrate at potentials more positive to the potential of the electrochemical degradation 

of the bulk DES solution.  

Voltammetry of DES with Zn
2+

 and Mn
2+

 

Cyclic voltammograms of 0.1 mol dm
–3

 ZnCl2 + 0.1 mol dm
–3

 MnCl2 in DES recorded 

on steel at different potential scan limits are presented in Fig. 2. Four current peaks are 

clearly evident, and may be ascribed, from positive towards negative potential to the 

processes in the blank electrolyte, Zn
2+

 reduction and finally Mn
2+

 reduction, 

respectively.  

When the CVs of metal free DES (Fig. 1) are compared to the voltammograms 

of DES with metal ions (Figs. 1 and 2) it is clear that the bulk electrolyte 

decomposition, indicated by the sharp current increase, is shifted to more negative 

potentials when Zn
2+

 and/or Mn
2+

 ions are present in the solution. Similar behaviour 

was reported for example in sulphuric acid,
22

 when it was shown that the addition of 
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Zn
2+

, Mn
2+

 or Cd
2+

 to the sulphuric acid inhibited hydrogen evolution reaction on steel. 

This was used in order to inhibit iron corrosion in sulphuric acid, although the 

mechanism describing how the metal ions having more electronegative reversible 

potential than that of hydrogen evolution process, actually may influence this process, is 

still not completely understood.
23

 Some of suggested mechanisms involve specific 

adsorption, underpotential deposition, or the effect on the potential at the outer 

Helmholtz plane of the double layer.
22,23

 

Further analysis of the voltammograms reveals that, although the reduction of 

bulk Mn on the steel substrate was not observed in cyclic voltammogram of ChCl–urea 

DES containing MnCl2 (in Fig. 1), when Zn
2+

 ions are present in DES along with Mn
2+

, 

a clear reduction peak appears at ~−1770 mV (in Fig. 2), which is due to the reduction 

of Mn
2+ 

ions. Therefore the Mn co-deposition occurs at a more positive potential than 

that for bulk Mn deposition. Based on literature data on the electroreduction in ChCl–

urea deep eutectic solvents,
10,17

 it may be suggested that the peak at −1770 mV, results 

from the reduction of Mn on the Zn nuclei that were freshly deposited at more positive 

potentials (the peak C3Zn
2+

/Zn in Fig. 2). Similarly to this suggestion, Birbilis et. al 

have shown that the peak related to Zn
2+

 reduction on Cu substrate was shifted to a 

more positive potential if Ni
2+

 ions were previously reduced on Cu,
10

 while Gomez and 

Valles have shown that ChCl–urea DES decomposition occurred at a much more 

positive potential when fresh Pt nuclei were formed on vitreous carbon during the same 

voltammetric scan.
17

 

Chemical composition of Zn−Mn deposits 

In order to determine the influence of deposition current density on the chemical 

composition and the surface morphology of Zn−Mn deposits, the coatings were 

galvanostatically deposited at current densities (c.d.s) in the range from 2 to 8 mA cm
−2

. 
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The variation of Mn content in the coating as a function of deposition c.d., determined 

by EDS analysis, is shown in Fig. 3, as an average result of 3-5 measurements at three 

samples of each deposit. The sample deposited at 2 mA cm
−2 

was Mn free, denoting that 

the working potential of the electrode has not reached the value for Mn
2+

 reduction. By 

increasing c.d. to 3 mA cm
−2

, the Mn content sharply increases to around 25 wt.%, and 

then, between 3 and 8 mA cm
−2

, it reaches a plateau in the narrow range of 22 − 27 

wt.%. Bearing in mind that the ratio of two metals in the alloy is proportional to their 

partial deposition current densities, i.e. to the rates of their reduction, the dependence 

shown in Fig. 3 is quite intriguing, in comparison to the studies of the chemical 

composition of Mn alloys deposited from aqueous solutions. Numerous literature 

reports suggest that the electrodeposition of Mn alloys with more noble metals (Zn, Sn, 

Ni) in aqueous electrolytes belongs to the regular codeposition type,
2,4,6,24

 characterized 

by a steady increase in Mn percentage in the deposit, as the deposition c.d. increases or 

the deposition potential shifts to more negative values. This is due to the fact that in the 

regular codeposition the alloy is deposited under diffusion control conditions. A nobler 

metal, in this case Zn, is reduced preferentially, but at a certain deposition c.d. value, a 

diffusion limiting current density is exceeded for this metal, so only the content of the 

less noble metal (Mn) increases with further increase in current density.
25

  

As regards the deposition of Zn˗Mn coating from deep eutectic solvent in this 

work, this is also, undoubtedly, a regular codeposition, because Mn content increases 

with deposition c.d. and Mn reduction occurs at a more negative potential than Zn 

reduction. However, contrary to the continuous growth in Mn percent, typically seen in 

water solutions, in this case one may observe a sharp increase in Mn content at 3 mA 

cm
˗2

 in DES, which is quite a low deposition c.d., and the further increase to 8 mA 

cm
−2

, does not bring a significant change in Mn content, as Fig. 3 depicts. A similar 



 9 

pattern was reported for potentiostatic electrodeposition of Zn˗Mn in ChCl˗urea DES 

in,
15

 although the authors did not further discuss this issue.  

The most reasonable explanation for such Zn-Mn ratio in the deposit obtained 

from DES, would be that, unlike in water-based electrolyte, where after reaching a 

certain cd., Zn deposition is under diffusion control, this is not the case in DES. In other 

words, in the range of c.d.s studied (3 ˗ 8 mA cm
˗2

), for both metal species, the rate of 

their reduction may be enhanced by shifting the deposition potential to more negative 

values, which would not be the case for a diffusion limiting step. To examine this 

suggestion, the cyclic voltammograms were recorded on a steel substrate from DES at 

different hydrodynamic conditions during deposition, provided by magnetic stirrer. 

They were compared with the one in stagnant electrolyte, as illustrated in Fig. 4. When 

the stirring rate is changed from 0 to 300 rpm, the intensity of all four cathodic peaks 

slightly increases. However, for several rates from 300 to 1500 rpm, all peaks for Zn
2+

 

reduction are of similar intensity, and the same stands for Mn. This suggests that, 

contrary to the results from water-based solution, the diffusion of Zn or Mn ions to the 

cathode is not the rate determining step in their electrodeposition. Such an assumption is 

consistent with the very recently proposed mechanism of Zn electrodeposition in 

DES.
26,27

 Briefly, it is known that the main zinc species in choline chloride based 

eutectic solvents is tetrachlorozincate ion [ZnCl4]
2˗

, having the rather negative reduction 

potential. So, it has been proposed
26,27

 that instead of direct reduction of [ZnCl4]
2˗ 

species, the Zn deposition occurs through the formation of an intermediate species 

[Zn(RO)xCl4˗x]
2–

 and its subsequent reduction to Zn. The species [Zn(RO)xCl4˗x]
2–

 is 

formed in the diffusion layer by replacement of one or more chloride ligands in the 

[ZnCl4]
2−

 ion. Its formation has slow chemical kinetics and this may be a rate 

determining step for Zn deposition, instead of diffusion of Zn
2+

 ions to the cathode.
26,27
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From the practical point of view, it appears that the change in deposition c.d. 

may not be a parameter which significantly alters the chemical composition of Zn˗Mn 

electrodeposits from ChCl˗urea DES, as is usually the case in water-based 

electrolytes.
1,4,6

 However, the positive result is certainly the fact that in DES, as shown 

in Fig. 3, a quite high Mn content (22 ˗ 27%) may be achieved at low deposition c.d., 

which is usually not feasible in water solutions.
2,3,6

 

Deposit’s surface morphology 

Figure 5 shows the morphological characteristics of several samples obtained from 

SEM investigation. These SEM micrographs indicate that the coatings deposited at 2, 3 

and 4 mA cm
˗2

 consist of closely packed and randomly oriented platelets, producing at 

low magnifications visibly smooth and light surfaces, which is typical for Zn coatings 

deposited at low overpotentials.
28

 However, it can be seen that an increase in c.d. to 5 

mA cm
˗2 

resulted in the formation of a porous surface consisting of clusters of nodular 

crystallites. Furthermore, the deposition at 8 mA cm
˗2

 led to a surface with pyramidal 

shaped dendrites and with evidence of gas evolution. Gaseous products formed as a 

result of ChCl˗urea DES electrochemical decomposition, have been proven to be 

hydrogen and triethylamine.
17,26,29

 Therefore, it may be inferred that the optimal 

deposition c.d would be 3 mA cm
˗2

, since at a higher c.d. there is a negligible increase 

in Mn content. However the surface morphology and appearance become less 

acceptable for protective coating applications. 

4. Conclusions 

Cyclic voltammograms recorded in choline chloride˗urea deep eutectic solvent, show 

that there was no observable Mn reduction peak when only Mn
2+

was present in DES 

solution. The distinct Mn peak developed only upon addition of Zn
2+

to the solution, 
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probably due to previous Zn nucleation on the steel substrate. The EDS analysis of the 

Zn−Mn deposits obtained with current densities of 3 – 8 mA cm
−2

, reveals that Mn 

content is in the range of 22 – 27 wt.%, and it does not increase significantly with 

increased deposition current density. The possible explanation for such an interesting 

observation could be the slow formation of [Zn(RO)xCl4˗x]
2–

, as an intermediate species 

in Zn reduction. At 3 mA cm
−2

, a Zn−Mn coating of dense and homogeneous 

appearance may be formed, having around 25 wt.% Mn, which is considerably higher 

than typical Mn content in Zn-Mn coatings deposited from aqueous electrolytes.  
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Figure Captions: 

Figure 1. Cyclic voltammograms of blank 2:1 urea - ChCl electrolyte and 2:1 urea - 

ChCl electrolyte + 0.1 mol dm
˗3

 MnCl2, on steel substrate, at 70 ºC. Scan rate 100 mV 

s
˗1

.  

Figure 2. Cyclic voltammograms of 2:1 urea - ChCl + 0.1 mol dm
˗3

 MnCl2 + 0.1 mol 

dm
˗3

 ZnCl2 electrolyte on steel substrate, at 70 ºC, for three potential scan limits. Scan 

rate 100 mV s
˗1

. 

Figure 3. Variation of Mn content, determined by EDS, in Zn˗Mn coatings deposited at 

70 ºC, with electrodeposition current density. 

Figure 4. Cyclic voltammograms of 2:1 urea - ChCl + 0.1 mol dm
˗3

 MnCl2 + 0.1 mol 

dm
˗3

 ZnCl2 electrolyte on steel substrate, at 70 ºC, at different stirring rates. Scan rate 

100 mV s
˗1

. 

Figure 5. SEM micrographs of Zn–Mn coatings deposited on steel substrate, at 70 ºC, 

from 2:1 urea - ChCl + 0.1 mol dm
˗3

 MnCl2 + 0.1 mol dm
˗3

 ZnCl2 electrolyte at (a) 2 

mA cm
−2

, (b) 3 mA cm
−2

, (c) 4 mA cm
−2

, (d) 5 mA cm
−2

 and (e) 8 mA cm
−2

. All 

deposits were obtained with the same charge density of 20 C cm
-2

. 
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