
Technological University Dublin Technological University Dublin 

ARROW@TU Dublin ARROW@TU Dublin 

Books/Book Chapters School of Computer Science 

2012 

Trust and Reputation for Successful Software Self-Organisation Trust and Reputation for Successful Software Self-Organisation 

Pierpaolo Dondio 
Technological University Dublin, pierpaolo.dondio@tudublin.ie 

Jean Marc Seigneur 
University of Geneva 

Follow this and additional works at: https://arrow.tudublin.ie/scschcombk 

 Part of the Artificial Intelligence and Robotics Commons, Computational Engineering Commons, and 

the Databases and Information Systems Commons 

Recommended Citation Recommended Citation 
Seigneur,J, M. & Dondio, P. (2011). Trust and Reputation for Successful Software Self-Organisation, in Di 
Marzo Serugendo, Giovanna, Marie-Pierre Gleizes, and Anthony Karageorgos.(eds) Self-organising 
Software: From Natural to Artificial Adaptation. Springer. doi:10.1007/978-3-642-17348-6_8 

This Book Chapter is brought to you for free and open access by the School of Computer Science at ARROW@TU 
Dublin. It has been accepted for inclusion in Books/Book Chapters by an authorized administrator of ARROW@TU 
Dublin. For more information, please contact arrow.admin@tudublin.ie, aisling.coyne@tudublin.ie, 
vera.kilshaw@tudublin.ie. 

https://arrow.tudublin.ie/
https://arrow.tudublin.ie/scschcombk
https://arrow.tudublin.ie/scschcom
https://arrow.tudublin.ie/scschcombk?utm_source=arrow.tudublin.ie%2Fscschcombk%2F2&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/143?utm_source=arrow.tudublin.ie%2Fscschcombk%2F2&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/311?utm_source=arrow.tudublin.ie%2Fscschcombk%2F2&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/145?utm_source=arrow.tudublin.ie%2Fscschcombk%2F2&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:arrow.admin@tudublin.ie,%20aisling.coyne@tudublin.ie,%20vera.kilshaw@tudublin.ie
mailto:arrow.admin@tudublin.ie,%20aisling.coyne@tudublin.ie,%20vera.kilshaw@tudublin.ie


Chapter 8
Trust and Reputation for Successful Software
Self-Organisation

Jean-Marc Seigneur and Pierpaolo Dondio

More and more software is reused, mixed and mingled. How to
obtain a trustworthy software mix?

Abstract An increasing number of dynamic software evolution approaches is com-
monly based on integrating or utilising new pieces of software. This requires reso-
lution of issues such as ensuring awareness of newly available software pieces and
selection of most appropriate software pieces to use. Other chapters in this book dis-
cuss dynamic software evolution focusing primarily on awareness, integration and
utilisation of new software pieces, paying less attention on how selection among
different software pieces is made. The selection issue is quite important since in
the increasingly dynamic software world quite a few new software pieces occur
over time, some of which being of lower utility, lower quality or even potentially
harmful and malicious (for example, a new piece of software may contain hidden
spyware or it may be a virus). In this chapter, we describe how computational trust
and reputation can be used to avoid choosing new pieces of software that may be
malicious or of lower quality. We start by describing computational models of trust
and reputation and subsequently we apply them in two application domains. Firstly,
in quality assessment of open source software, discussing the case where different
trustors have different understandings of trust and trust estimation methods. Sec-
ondly, in protection of open collaborative software, such as Wikipedia.

Objectives After reading this chapter the reader will:

• understand what computational trust and reputation are;

Jean-Marc Seigneur
University of Geneva, Geneva, Switzerland e-mail: Jean-Marc.Seigneur@trustcomp.
org

Pierpaolo Dondio
Trinity College Dublin, Dublin, Ireland e-mail: dondiop@cs.tcd.ie

155



156 Jean-Marc Seigneur and Pierpaolo Dondio

• know how computational trust and reputation can be used for new software
piece selection, even when trustors have different prespectives regarding
trust definition and estimation methods;

• understand the practical issues of applying computational trust and reputa-
tion, especially in two major applications domains: open-source software
quality assessment and open collaborative authoring software protection.

8.1 Background Context

In the human world, trust can exist between two interacting entities and it can be
very useful when there is uncertainty involved with the interaction result. The re-
quested entity uses the level of trust it has developed for the requesting entity as a
means to cope with uncertainty, for example to engage in actions that involve risks
of a harmful outcome. There are numerous definitions of the human notion trust in
a wide range of domains, with different approaches and methodologies such as so-
ciology, psychology, economics, and pedagogy. These definitions may even change
when the application domain changes. However, it has been convincingly argued
that these divergent trust definitions can fit together[371]. Romano’s recent defini-
tion [445] tries to encompass the previous work in all domains:

. . .trust is a subjective assessment of another’s influence in terms of the extent of one’s
perceptions about the quality and significance of another’s impact over one’s outcomes in
a given situation, such that one’s expectation of, openness to, and inclination toward such
influence provide a sense of control over the potential outcomes of the situation.

Interactions with uncertain result between entities also happen in the online world.
For example if one provides open Wi-Fi network access to passing by strangers
there is a possibility that they will use the Wi-Fi connection maliciously. There-
fore it can be useful to take decisions based on trust in the online world as well.
However, the terms “trust”, “trusted”, “trustworthy” and the like, which appear in
the traditional computer science literature, have rarely been based on comprehen-
sive multi-disciplinary trust models and they often correspond to an implicit trust
concept, a limited view of the facetted human notion of trust. [69] coined the term
decentralised trust management because their approach separates trust management
from application: their PolicyMaker model introduced the fundamental concepts of
policy, credential, and trust relationship. [493] argued that decentralised trust man-
agement still relies on an implicit notion of trust because it only describes:

. . .a way of exploiting established trust relationships for distributed security policy manage-
ment without determining how these relationships are formed.



8 Trust and Reputation for Successful Software Self-Organisation 157

8.2 Theoretical Notions

A computational model of trust based on social research was first proposed in [356].
Usually, a trustor is the user who considers trusting another user, a trustee. A third-
user may recommend the trustee to the trustor based on a recommendation previ-
ously received from elsewhere. Sometimes it may not be known who have made
recommendations about a trustee. In such cases, where the identity of the recom-
menders is not exactly known, the resulting overall recommendation that can be
taken into account by a trustor is refered to as the reputation of the trustee. In so-
cial research, there are three main types of trust: interpersonal trust, based on past
interactions with the trustee; dispositional trust, provided by the trustor’s general
disposition towards trust, independently of the trustee; and system trust, provided
by external means such as insurance or laws [371, 432]. Trust concerning a partic-
ular situation or context is termed trust context. Each trust context is assigned an
importance value in the range [0,1] and utility value in the range [-1,1]. The utility
is the utility of the action to be allowed if the trustor chooses to trust the trustee
and allow her to carry out the action. Any trust value is in the range [-1,1). In ad-
dition, each virtual identity is assigned a general trust value, which is based on all
the trust values with this virtual identity in all the trust contexts. Dispositional trust
appears in the model as the basic trust value: it is the total trust values in all contexts
in all virtual identities with whom the trustor has interacted so far. Risk is used in
calculating a threshold for trusting decision making.

Generally, a computed trust value of an entity can be seen as the digital repre-
sentation of the trustworthiness or level of trust of that entity. The trustcomp online
community (“Trustcomp”) [9] defines entiTrust (to emphasise that it cannot corre-
spond exactly to real-world trust and avoid that users abstract it to their real-world
expectation of trust) as a non-enforceable estimate of the entity’s future behaviour
in a given context based on past evidence. The EU-funded (SECURE) [466] project
represents an example of a trust engine that uses evidence to compute trust values in
entities and corresponds to evidence-based trust management systems (see Fig. 8.1
below). Evidence encompasses outcome observations, recommendations and rep-
utation. A trust metric consists of the different computations and communications
which are carried out by the trustor (and his/her network) to compute a trust value
in the trustee. Furthermore, [288] remark that:

. . .direct experiences and witness information are the “traditional” information sources used
by computational trust and reputation models.

Depending on the application domain, particular types of evidence may be more
weighted in trust computation than others. For example, in a scenario where all po-
tential recommenders are known by the user in advance, such as when friends in
a social network have been manually specified by the user, recommendations can
be weighted based on the user’s direct observations. When recommendations are
processed, the social network can be reconstructed. Along this line, [221] studied
the problem of propagating trust value in social networks and proposed an exten-



158 Jean-Marc Seigneur and Pierpaolo Dondio

sion to the FOAF vocabulary1 together with suitable algorithms for propagating
user-estimated trust values instead of only computer-calculated ones. A more effi-
cient algorithm for trust and recommendations propagation in peer-to-peer networks
has later been proposed in [146]. Recent approaches base trust value computation
on new types of evidence. For example, [561] have discovered an interesting cor-
relation between similarity and trust between social network users, indicating that
similarity may be evidence of trust. However, as is the case for trust values that are
manually set, it is difficult to accurately estimate user similarity based on a spe-
cific and generally applicable set of pieces of evidence. Therefore, trust values are
quite often computed from evidence of different types depending on the application
domain. Although most work in this direction has so far focused on counting inter-
action outcomes, other types of evidence may also be found. This approach does not
contradict the high level view of the trust engine depicted in Fig. 8.1 because any
type of evidence can be stored in the evidence store for future trust calculation.

Fig. 8.1 High-level View of a Trust Engine

8.2.1 Evidence-based Trust Engine

In Fig. 8.1, the decision-making component can be invoked when a trusting decision
has to be made. The most common scenario considered in the relevant research
works includes a requested entity having to decide the next action to be taken after
a request made by another entity, the requesting entity. For this reason a specific
module termed Entity Recognition (ER) [466] is required to recognise any entities
and their associated virtual identities, and to handle their requests. The decision-
making component comprises two sub-components:

• a trust module that can dynamically assess the trustworthiness of the requesting
entity based on the trust evidence of any type stored in the evidence store;

1 FOAF (Friend of a Friend) is a project devoted to linking people and information using the Web.
The FOAF vocabulary is a machine-readable ontology describing persons, their activities and their
relations to other people and objects, which is defined using RDF and OWL technologies.



8 Trust and Reputation for Successful Software Self-Organisation 159

• a risk module that can dynamically evaluate the risk involved in the interaction,
again based on the available evidence in the evidence store.

A common decision-making policy is to select (or recommend to the user) an ac-
tion that would maintain an appropriate cost/benefit ratio. The Evidence Manager
component is responsible for gathering evidence, such as recommendations, com-
parisons between expected outcomes of the chosen actions and real outcomes. This
evidence is used to update risk and trust evidence. Thus, trust and risk follow a
managed life-cycle. Given that new types of trust evidence may still be found, it is
challenging to go beyond this high-level view of a trust engine, that is, to propose
a generic implementation of a trust engine that would work for any application do-
main. The SECURE trust engine has been an attempt in this direction but evidence
such as similarity between users or manually defined user trust values without a
clear count of evidence have not been considered yet.

Other trust engines have been designed for specific application domains. For ex-
ample, the TriQL.P Trust Architecture [68] aims at supporting users in their deci-
sion whether to trust or to distrust information found on the Semantic Web. The
main types of evidence are the context, which includes who and when, and content,
which is related to similarity, such as the inferred main topic of two Web pages.
An additional example is Jøsang’s computational trust approach termed “subjective
logic” [289]. That approach integrates the elements of ignorance and uncertainty,
which cannot be reflected by mere probabilities and are part of the human aspect of
trust. To represent imperfect knowledge, an opinion is modelled as a triplet whose
elements are: belie f (b), disbelie f (d) and uncertainty(u).

The subjective logic provides more than ten operators to combine opinions. For
example, the recommendation operator adjusts the recommended opinion based on
the recommending trustworthiness (RT) parameter. Jøsang’s approach can be used
in many applications since the trust context is open. However, it is still limited to few
trust evidence types, such as direct observations of outcomes or recommendations.
In addition, there is no risk component. [99] argue for a trust engine based on cog-
nitive science where the main trust evidence types originate from the entity’s belief
and goals structure instead of probabilistic quantitative views, economics or game
theory. Furthermore, [231] claim to have built a generic open rating system, which
means that anybody is allowed to rate anything in the system, including the rat-
ings of contents. In addition, [323] highlighted the impact of trust in expert systems
advice. Subsequently, [36] proposed an expert system containing knowledge about
the factors taken into account to compute trust in certification authorities participat-
ing in in public key infrastructures. In that case, the trust engine is merely mapped
to a generic expert system where emphasis is on the knowledge of the particular
application domain incorporated in the system by human experts.



160 Jean-Marc Seigneur and Pierpaolo Dondio

8.2.2 Computational Trust Methodology Overview

Based on the previous work surveyed above, the informal methodology that has
generally been used to apply computational trust is as follows:

1. a model of trust from previous multi-disciplinary work on the human notion of
trust is reused or refined to be turned into a computational model;

2. the main types of trust evidence relevant to the application domain are given
more weight;

3. a computational version of the trust model is deployed and evidence is collected
and fed in the model using the calculated trust to handle uncertainty.

The first of the above steps has sucessfuly been applied in specific application
domains such as peer-to-peer file sharing, and the basic types of trust evidence con-
sidered, such as positive and negative downloads count, provided satisfactory results
for simple cases. As [288] underlined:

. . .game theoretical models have given good results in simple scenarios, but may be too
limited for more complex scenarios.

Further to the above mentioned informal methodology for computational trust,
[225] have proposed a formal methodology for computational trust development
which is limited to the business application domain. [402] has been working on a
clearer engineering methodology for building systems that use trust as a component
in decision making. Furthermore, [487] proposes a trust engineering methodology
which provides design guidance on where and how developers can incorporate trust
models into decentralised applications. However, that methodology is too focused
on the peer-to-peer application domain and it does not leave room for the multi-
disciplinary aspect of trust models and their future extensions. To sum up this sec-
tion, there are still types of trust evidence and application domains that have not
been considered in computational trust engines. For example, the relation between
similarity and trust still requires further research [561].

8.2.3 The Problem of Trust Transferability and its Solutions

Self-organising software can be described as a network of autonomous components
that cooperate with each other sharing information, and providing and using ser-
vices. During the life and evolution of such systems the problem of selecting trust-
worthy components among the ones available is crucial. End-users experience sim-
ilar problems when needing to select a trustworthy open software of suffciently
high-quality. As we mentioned above, computational trust offers a technique to sup-
port this decision making process. Techniques such as recommendation systems and
social networks could be effective even in open software domains. For example, the
reputation of software authors, the feedback shared by users community or rating



8 Trust and Reputation for Successful Software Self-Organisation 161

values interchanged between autonomic software components are all important fac-
tors for identifying reliable services. A basic requirement of such systems is the abil-
ity of its components to effectively communicate with others, receiving and sending
evaluation’s messages that can be interpreted correctly. Unfortunately, in open sys-
tems it is not possible to postulate a common agreement about the representation of
a rating, its semantic meaning, the cognitive and computational mechanisms behind
a rating formation. It may be the case that agents (end-users or autonomic software
components) may have different evaluation metric for software quality. Rating soft-
ware that can be a function of many factors such as programming language used,
clarity of the comments, number of bugs reported, tests performed (and by who),
number of versions, efficacy and so forth. Differences in evaluation method may
invalidate ratings shared by the agents’ community. Therefore, the problem is to
understand if the parties involved in the exchange of information can actually be
considered compatible. In this section we analyse this central problem that affects
all the trust-based systems based on the sharing of information. The analysis of this
crucial and well-studied problem and its proposed solution is a useful and compre-
hensive way to describe in depth a generic trust solution. We propose a practical
study case on an eBay-like scenario, leaving in the exercise section the study of a
parallel situation within an open-software scenario. We will see how the need for
a common evaluation language and a correct translation mechanism is the key for
making effective use of such trust systems.

8.2.3.1 Trust is Subjective, but Worth to be Shared

Before asking how we can effectively transfer trust, a first question is whether trust
has a degree of objectivity. Studies in social science seem to agree about the subjec-
tive nature of trust. In the classical definition by Gambetta [195], this is represented
by the subjective probability that the trustor assigns to the trustee, that varies ac-
cording to the trustee, the situation and the level of perceived risk. Any attempt at
objective measurement can dangerously mislead agents into thinking that the value
is transferable and be used by another trustor, which is not true for trust. In other
words, trust is not transitive, which has also been formally shown in [112]. As Luh-
mann wrote [338]:

Trust is not transferable to other objects or to other people who trust.

To say that one trusts another without further qualification of that statement is mean-
ingless. But, on the contrary, the success and the diffusion of systems like Social
Networks or Ratings Systems make the problem worth to be investigated. There-
fore, the problem is to qualify correctly trust judgements, and build a mechanism to
translate values produced by two different systems to allow meaningful communi-
cations. Jøsang and Pope [289], investigated the transferability of trust by analysing
under which formal condition trust may be considered transitive. Their conditional
transitivity construct adds conditions for considering trust values, propagated by



162 Jean-Marc Seigneur and Pierpaolo Dondio

transitivity, more plausible. The concept is present also in Abdul-Rahman and Hailes
distributed trust model [17]. The conditional transitivity (simplified) requires that:

• A has direct knowledge of B
• B has direct knowledge of C
• A has knowledge of B as a recommender
• A can use B’s trust value in C

Using Jøsang words: a transitive trust path therefore stops ... when there are no
more outgoing referral trust, where referral trust is the trust in an agent as a recom-
mender. These works clearly show that trust transferability is not a valid concept,
but a plausible one that deserves to be investigated. Still, however, transferred trust
values can be useful in the decision making process if additional conditions are
properly respected and appropriate semantic annotations are added.

Fig. 8.2 Trust interoperability problem scenario

8.2.3.2 A Generic Model of a Trust-Based System

In Fig. 8.2 we provide a high-level view of a trust interoperability problem scenario
where agents have to select trustworthy open software components. The scenario
involves two trust-based reasoning systems with parts arranged at conceptual levels
based on their primary functionality and purpose. At each level, possible differences
between the respective parts of the two systems may cause lack of trust transferabil-
ity.



8 Trust and Reputation for Successful Software Self-Organisation 163

Each system is depicted as a multilayer pile with the following components:

• Domain Perception. It includes all information an agent has acquired about its
domain of interaction. It generally consists of a domain ontology and a facts
database (or evidence DB).

– Domain Ontology: agent’s representation and understanding of the domain it
is interacting in. We model it as an ontology that describes terminology and
relationships related to the domain under analysis (the open software domain
in the scenario under discussion).

– Evidence DB: the facts collected based on the agent experience which are
used to ground trust-based decisions. For example, a factual representation of
a piece of evidence can have the form: The component 1 by developer XYZ
crashed twice in the last two weeks.

• Trust System. It contains the agent notion of trust (referred to as “trust ontology”
or “trust model”), its computational model representation by a trust metric, a trust
value, a decision making process and a satisfaction function.

– Trust Value: the quantification of the trust judgement.
– Trust Ontology (model of trust): the definition of trust in the application con-

text. It defines the elements composing the notion of trust for the particular
domain. We can represent a trust model as an ontology. An example descrip-
tion of such a trust model for open software component selection could be:
trust is a combination of software component stability, programming tech-
niques used and programmer experience or, in absence of past evidence, the
overall recommendation received from other users. The trust metric specifies
how these elements are converted into numerical values and how each of them
concurs to the final aggregated trust value.

– Trust Metric: the actual computation performed over the available inputs to
generate a trust value. Each concept described in the trust ontology has a com-
putational representation in the trust metric, which quantifies and aggregates
all concepts in the trust ontology to produce an overall trust value.

– Satisfaction Function: a mechanism used by trustor agents to evaluate the
quality of interactions carried out with trustee agents. This mechanism can
be modelled with a function such as the following:

S : O→ [0,1] (8.1)

Function S maps the set O of possible outcomes to [0,1] assigning a numerical
value representing the agent’s satisfaction level to each outcome. A satisfac-
tion function models an essential concept in trust computation: the trustor
should have a mechanism to understand if the trustee fulfilled its expecta-
tions. Using function S, a trustee’s trust value can be automatically updated
according to the trustor’s level of satisfaction. For example, an agent may be
satisfied if a piece of software code has clear comments and it does not crash
in the first two months. Therefore, the agent can decide to assign to that piece
of software a high trust rating.



164 Jean-Marc Seigneur and Pierpaolo Dondio

– Decision Making Process: this component, also referred to as “trust manage-
ment”, describes how the agent exploits the computed trust values to support
its decision making process. Generally, based on the agent status and the situa-
tion context a threshold T is defined, which specifies the minimum trust value
required to start an interaction. The decision making process can be further ar-
ticulated, and is commonly represented by a set of policies (see the SECURE
policy language [82] for instance) or a set of (fuzzy) rules as is the case in the
REGRET trust model proposed by Sabater [288].

8.2.3.3 Source of Trust Differences

In any conceptual level of the trust model described above, differences between the
respective parts of trust-based systems may reduce the transferability of trust. These
differences include:

• Trust value differences. Trust-based systems may have different trust value rep-
resentations. For example, a system may represent trust values with real numbers
in the range [0..1], while another may classify trust at discrete levels represented
with integer numbers, for example with numbers ranging from 0 to 4 for the case
of five trust levels. An additional problem in this respect is the identification of
the owner of each representation. This is generally not a trivial problem since dif-
ferent systems may use different names or labels for the same concept or entity
respectively.

• Trust metric differences. Even when two entities utilise the same trust representa-
tion, that is they have adopted the same trust terminology, they may use different
trust computation methods. For example, an entity may base 90% of its calcu-
lated trust value on the number of bugs reported (for instance assigning it with a
weight of 0.9 in a weighted average calculation), while another one may consider
number of bugs as a trivial trust parameter.

• Trust model differences. Different systems may have different understandings
of what trust is. For example, an agent may perceive trust as a prediction of
software quality based on the quality of software previously produced by the
same developers (a past experience-based prediction), while another agent may
consider other factors as well, such as developer popularity and software stability
and percistence.

• Threshold differences. An agent A can be more optimistic, for example about util-
ising new software components, and it may therefore have a lower trust threshold
than another agent B which may have stricter cooperation requirements. This im-
plies that an exchanged trust value from agent A to agent B could be sufficient
for A to start an interaction, even if that would not be the case for B, making thus
hard to transfer trust between these two agents.

• Satisfaction function differences. Agents can make different assessments of inter-
actions between each other, for instance because of different goals and expecta-
tions. For example, in the open software component domain an agent may assess
component quality based only on non faulty operation, without taking clarity of



8 Trust and Reputation for Successful Software Self-Organisation 165

code and number of comments into account. In contrast, another agent may con-
sider confusing source code and lack of comments as significant negative factors
affecting trust assessment.

• Domain representation differences. Different entities may have different knowl-
edge of the domain structure in which they interact. This can be expressed as
differences in domain concept representation, in definition of domain element re-
lationships and in representation of domain element aggregations, resulting thus
in differences in evidence descriptions in the domain ontologies of system enti-
ties.

• Evidence database differences. System entities maintain evidence databases
which are dynamically evolvable based on entity interactions, knowledge and
recommendations received. In a distributed scenario this is a common situation:
each entity has a limited set of experiences and a partial vision of the world. In
such cases entities judge trust differently based on different evidence sets and
previous experiences.

8.2.3.4 Designing a Solution: Mechanisms to Exchange Trust Values

Without loosing generality, we can assume that a solution to the trust interoperabil-
ity problem would require entities to partially disclose their trust models to enable
trust similarity comparisons between different systems. The degree of similarity
produced as a result of such comparisons can be used to weight exchange of trust
judgements. For example, if the compared trust-based systems differ significantly,
the transmitted trust values can be ignored.

Trust Value Translation

To enable comparisons, mechanisms for translating trust values to a language un-
derstandable by the entities receiving trust recommendations are needed. Referring
again to Fig. 8.1, a comparison between two systems can be performed at three
levels, the trust value level, the trust model level, and the evidence level:

Trust Value Matching. At the level of trust value representation, translations are
performed to convert trust values to a common representation. An important as-
pect of such translations is the estimation of information loss during the trust value
conversion process. Pinyol et al. [421] classify trust value representations in four
common categories:

1. Boolean Representation, where trust values belong to the set {0,1}
2. Bounded Real Representation, typically a real number in the interval [0,1]
3. Discrete Representation, where the trust value belongs to a set containing discrete

elements, such as {VeryBad,Bad,Neutral,Good,VeryGood}
4. Probabilistic Representation, where trust values are modelled using discrete or

continuous probability distributions instead of only crisp numerical values.



166 Jean-Marc Seigneur and Pierpaolo Dondio

Pinyol et al. further proposed a method to convert values between these representa-
tions which takes into account the uncertainty involved in the conversion outcomes.
For example, to convert a boolean representation to a bounded real representation a
boolean value of “false” could corespond to any real number less than or equal to
0.5 while a boolean value of “true” could be represented as any value greater than
0.5. An entity using a real number representation would not be able to accurately
treat the converted value, and this would represent the uncertainty involved in the
conversion process. Pinyol et al. propose to estimate this uncertainty based on the
entropy of trust values when considered as random variables. Generally, conver-
sions to richer trust value representations incur higher levels of uncertainty, while
no uncertainty is associated with the opposite conversions.

Trust Model Matching. El Messery [375] proposes to enhance trust values by
declaring the expectations a trustee has. In this way if two agents share the same
expectations it is likely that they will judge situations in similar ways, and conse-
quently trust values can be transferred. The proposed approach requires that trust
systems of both agents be able to understand the terminology and the semantics
of each trust model. A radical solution implies the matching of the two ontologies
describing the trust model, a problem that has not been so far investigated in trust
studies. Another possible solution is the definition of a generic ontology for trust
representation which will be the starting point for application-specific trust ontolo-
gies.

In trust systems research the trust model matching problem has so far been stud-
ied using high-level concepts which are compared in taking trust-based decisions.
The European project eRep [12] defines a set of terms to represent reputation con-
cepts. The aim of that effort was to define a reputation ontology that all project
partners can use as a consensual starting point. That ontology describes in detail all
the elements participating in social evaluations, as well as the processes of trans-
mitting them. It also defines the main decisions concerning reputation that agents
may take. That ontology is based on the cognitive theory of reputation defined in
the book by Conte and Paolucci [122]. Furthermore, Punyol and al. propose a com-
mon ontology as a possible common base for mapping different trust models. They
describe a generic belief about an entity as a combination of SimpleBelief, a belief
that a holding agent acknowledges as true, and MetaBelief, a belief about others’
belief.

Finally, an interesting problem concerning trust management in open software
is the definition of a common ontology for describing software quality, which gen-
erally has the form of a common dictionary for expressing software component
ratings. Elements of that ontology may include various software quality parameters
such software stability (represented by variables such as number of crashes, and
numbers of modifications, patches and versions), age, clarity of comments, com-
plexity of the code, reliability of the developing language used, portability, reputa-
tion of the authors, tests passed and reliability of the testers.

Evidence Matching and Unsupervised Similarity Learning. If agents act in the
same or similar domains, it is likely to encounter similar situations. A degree of sim-



8 Trust and Reputation for Successful Software Self-Organisation 167

ilarity can be deduced by simply matching evidence and their corresponding trust
values. This could be performed in several ways, but the common idea is that inter-
acting agents disclose sufficient information to compute a degree of compatibility
based on common data or behaviours in specific situations. This class of solutions
does not consider the elements of the trust model, but instead it focuses on the com-
parison of common data aiming to understand the similarity between different trust
systems. Therefore, this approach limits the need for a common ontology. However,
it still requires that interacting agents communicate using a commonly understand-
able language.

A representative example of this solution approach is the collaborative filtering
paradigm. Collaborative filtering assumes that ratings originating from agents with
similar preferences are the most accurate. The main aspects of collaborative filter-
ing mechanisms concern storing and exchange of user profile and recommendations.
Upon entering the system new users provide information about their profile and a
number of trust recommendations. All new user input is stored in a central database.
Subsequently, when a user requests for a recommendation, the system will compare
the requesting user’s profile with those stored in the database, and it will suggest
trust recommendations from similar users. The efficiency of such systems depends
on the number of recommendations they receive, the number of users in the system
and the level of detail of each user profile. Collaborative filtering systems are typi-
cally centralised, commonly based on a central database that stores user profiles and
past user recommendations, and therefore they are not always a feasible solution.

Alternative solutions usually extend the basic idea of collaborative filtering,
namely searching for similarities among user related information, in a dynamic and
distributed fashion. For example Wang in [527] proposes a recommendation system
where idle agents “gossip” periodically with each other, exchanging information
about their assessment of interactions they had previously held with other agents.
Interaction assessment is commonly done using probability functions which reflect
agent opinions about interaction participants. The result is a similarity factor in the
range [0,1] used to weight agent recommendations.

Trust-based System Comparisons

In general, automatic comparison and matching of trust-based systems can be per-
formed based on the satisfaction function S, the trust value T and the evidence
database DB. In all cases the aim is to provide each agent with an estimate of either
the trust metric T or the satisfaction function S of the agents with which it inter-
acts. T and S are generally, but not always, correlated. In particular, the values of
T are commonly calculated based on past values of S, except in rare cases, for in-
stance when no information about relevant past interactions is available. Therefore,
knowing T does not generally guarantee the expected S. For example, the fact that
a person has been reliable in interactions with a specific person does not guarantee
the same reliability in interactions with other persons. Similarly, a high satisfaction



168 Jean-Marc Seigneur and Pierpaolo Dondio

value S does not generally guarantee the quality of a recommended trust value, since
in the computation of T the role of S is unknown.

Trust comparison approaches are generally based on sharing trust values, on shar-
ing past interaction evidence, on directly comparing satisfaction function S and trust
metric T values using an agreed common domain ontology, and on approximating
function S and metric T values based on stereotype scenarios. More specifically:

• Sharing Trust Values: In this approach agents share trust values concerning
other agents which they have calculated previously. The idea is that interact-
ing agents check for common acquaintances and they use the respective trust
values to to compute a compatibility degree, which they subsequently use to
weight trust-based decisions. In calculating compatibility, statistical indicators
such as correlation can be used, and supplemental information such as number
of accepted/rejected interactions with an agent can make the computation more
plausible. Furthermore, it is assummed that agents have universally known IDs,
although this hypothesis is not always valid. In addition, if agents have different
trust value representations, a conversion may be performed, for example using
the method described in [421]. That method predicts trust metric T without re-
quiring any knowledge of the agent trust model, and for sufficient number of
acquaintance agents it can be a quite accurate indicator. However, it suffers from
poor privacy and communication overload due to the high amount of information
exchanged.

• Sharing Interaction Evidence: This approach is also based on information shar-
ing but here sharing concerns assessments of single interactions instead of over-
all trust values. In other words, the goal is to predict function S instead of metric
T . In this approach, communication overload is even higher, but no significant
privacy issues are involved since the exchanged information concern scenario
snapshots instead of agent private data.

• Direct Comparison of Function S: When there is a common ontology describing
system facts, each agent can easily map its function S over that common ontol-
ogy and directly compare it with others. The simplest case is when the function
S of all interacting agents has the same basic form (for example a linear combi-
nation of factors). An example of such an ontology is the recent evolution of the
eBay feedback system (see Fig. 8.3), where four fixed criteria have been intro-
duced to assess the validity of an item sold, representing a first common base for
comparing feedback. By directly comparing the two functions, the agents com-
pute an accurate degree of compatibility, without disclosing sensible information
about other agents or personal experience, and with low communication overload
unlike the previous two approaches.

• Predicting S and T using Stereotype Situations: When there is no common ontol-
ogy, but the agents at least partially can understand each other, a solution can be
build by using stereotype situations. Here we describe the prediction of function
S, but the method can be applied to the prediction of trust metric T using trust
values instead of values of satisfaction, and stereotype agents instead of stereo-
type situations. The aim of this approach is to accurately predict the function S
using the least number of messages. In the general case function S is assumed to



8 Trust and Reputation for Successful Software Self-Organisation 169

be defined from a set of domain concepts, represented by multiple variables, to a
value.

S1 : f (X1,X2, ...,Xn) (8.2)

S2 : f (Y 1,Y 2, ...,Y m) (8.3)

We assume that, if agents use different value representations, they translate them
using the technique described in [421]. Agents send stereotype situations, which
they consider meaningful, to other agents and waits for them to evaluate the the
situation. For instance, an agent considering the low shipping time essential for
being a good eBay seller may propose two situations where this factor varies
drastically. Agents can propose situations where only one key-factor changes,
in order to understand the importance of that specific factor, with the drawback
of not understanding the mutual dependence of the factors in the formula. In
general, agents need a strategy to generate the appropriate next situation after
having received feedback from other agents. The strategy should indicate when
the process should stop, that is when enough information has been collected to
understand other agent model. In general, agents may employ an unsupervised
learning system or adopt statistical tools such as regression and correlation to
understand the reasoning model of other agents, performing an on-the-fly nego-
tiation of their preferences. This solution appears to be a good trade-off over the
previous ones: using stereotype situations sensible data are not disclosed, com-
munication overload is relatively small, varying from the perfect situation of the
evidence sharing approach to the case where a large number of messages will
have to be exchanged to understand other agents. The required number of mes-
sages will generally depend on how close the interacting agent representations
are and on the number of situations proposed that are relevant and fully under-
stood.

8.2.3.5 Privacy Issues

The disclosure of extra information instead of a trust value raises an issue of privacy.
Interacting parties may not want to share information about their trust judgements
or reasoning models, even in open software evaluation. The problem was described
by Seigneur [468] as the trade-off between trust and security:

There is an inherent conflict between trust and privacy: the more knowledge a first entity
knows about a second entity, the more accurate should be the trustworthiness assessment;
the more knowledge is known about this second entity, the less privacy is left to this entity.
. . .A solution should allow the benefit of adjunct trust when entities interact without too
much privacy loss.

Referring to the proposed solution, it becomes evident that a matching performed
at trust model level discloses less information than the explicit sharing of evidence
and the comparison of trust values of common acquaintances. Several systems have



170 Jean-Marc Seigneur and Pierpaolo Dondio

been implemented to add an extra-layer of security based on trusted computing and
encryption key policies to guarantee the confidentiality of the shared information.
A recent work done by Cissee and Albayrak [114] described an approach based
on multi-agent systems for preserving privacy in information systems, where all
communication takes place in a trusted environment and a third entity is elected as
referee, collecting all required encrypted information, performing the matching and
sending the results to the entity involved.

8.2.3.6 Practical Case Study: Enhancing the eBay Feedback System

In this section we briefly describe the eBay feedback system, whose evolution rep-
resents an excellent case-study for the above discussion.

eBay provides a feedback system aiming to provide buyers with an additional
decision support tool for selecting the most reliable sellers. Introduced in 1998,
feedback systems evolved adding interesting features from the perspective of the
above discussion. The eBay feedback system has a boolean representation for each
feedback, where +1 is the value of a positive feedback and -1 of a negative one. The
feedback score is simply computed by summarising all feedback messages received.
In addition, a buyer may add a comment in natural language.

eBay has introduced several new features to support a better decision-making
process and add more semantic value to the original unqualified value. Fig. 8.3 de-
picts the information displayed to a single user. Since March 2007, eBay introduced
detailed ratings, where users rate the buyer according to four categories: item as
described, communication, dispatch time, postage and packaging charges. These
subcategories disclose more information to support a more accurate trust value se-
mantic, resulting in a type of common ontology for representing buyers/sellers rat-
ings. For each criterion a discrete level feedback is proposed with 5 possible levels
ranging from very accurate to very inaccurate. Other interesting information used
to define trust values includes the number of ratings of each category, the temporal
distribution of the feedback, the number of feedback messages, the feedback score
of the rating entities and the number of feedback removed.

We see the eBay feedback system evolution as an answer to the problem of un-
qualified ratings, a way for defining a common ontology based on which different
ratings can have a clearer and more objective meaning for the buyers. It is therefore
a good template that many other recommendation-based systems, including the ones
used for self-organising software, could refer to.

Fig. 8.3 Ebay feedback system



8 Trust and Reputation for Successful Software Self-Organisation 171

8.3 Applications

This section applies the above approach to trust computation and transferability in
two application domains: the selection of open source software components, for
example, to be used at the time of software self-organisation, and in development of
open collaborative software such as Wikipedia.

8.3.1 Selection of Open Source Software Pieces based on their
Trustworthiness and Reputation

A major asset of OSS projects derives from their collaborative and community val-
ues [484]. On one hand it has been argued that the more OSS actors participate, the
higher software quality is reached. In this respect Raymond argued that “. . .given
enough eyeballs, all bugs are shallow. . .” [440]. On the other hand, recent investiga-
tions have argued that few actors review OSS code and that this practice may not be
enough to sustain high quality in OSS projects: “. . .the vast majority of ’eyeballs’
apparently do not exist. . .” [460]. As the collaborative and community values are
deeply anchored in the OSS ecosystem [484], the root of the problem is related to
a lack of enabling technical mechanisms. The OSS community is present and will-
ing to contribute but the tools needed to contribute are missing or too cumbersome
to use. A few repositories aggregating OSS datasets and dashboards, such as Web
portals presenting the information, have recently emerged but there is a lack of au-
tomated exchange and interoperability: the first workshop trying to harmonise them
was run in June 2006 [224].

Fortunately, with the advances in Web technologies, often termed Web 2.0, it be-
comes increasingly easier to build tools for networking the OSS community. The
EU-funded EDOS project [467] has built a formal information model, termed the
Project Management Interface (PMI), [412] which describes OSS artefacts, such
as Actor and Platform or Maintainer, and OSS activities for example SubmitPatch
activity and SubmitTestReport activity. In EDOS, a number of tools have been
deployed to gather and distribute information about OSS projects in a peer-to-
peer manner, by reusing Web 2.0 building blocks such as XML, RSS feeds and
REST/Web services [179]. For example, a Quality Assessment (QA) Web portal,
termed the EDOS dashboard, has been put in place to easily inform OSS actors of
the quality of OSS projects. The quality of these projects is estimated based on in-
formation reported by other OSS actors who can deploy user-friendly tools on their
platform when needed to easily evaluate specific OSS projects. Therefore, such ac-
tors and their platforms play an important role in the EDOS-powered community
process with collaborative OSS quality assessment and improvement. However, re-
lying on external information submitted from an open ecosystem, decentralised by
nature and populated by possibly competing actors, introduces a number of trust
issues, for example competing actors, including actors outside the OSS community,



172 Jean-Marc Seigneur and Pierpaolo Dondio

may try to submit false reports about the quality of projects of their competitors. Fur-
thermore, cheating is facilitated when actors can enter and leave the system without
any control from a centralised authentication service; and in the QA application
domain, “trust in the accuracy of any test data . . .depends on . . .trust in the provi-
dence of the testers” [172]. It seems fair to assume that in small projects all OSS
QA team actors may know face-to-face all the involved testers. However, this may
not be possible in larger projects because the OSS ecosystem is an open environ-
ment where actors and their digital identities can come and go. Nevertheless, due
to the need of more actors carrying out test tasks, as long as testers are trustworthy,
even not personally known testers are welcome to contribute to the project quality
improvement process. It is especially relevant in the EDOS project that relies on a
peer-to-peer storage layer for OSS information. There is the need for security/trust
metrics to select the most trustworthy peers for efficient and safe distribution of QA
information.

If we assume that there are is a sufficient number of trustworthy testers, tests and
platforms, the correlation of all test reports and defects should allow us to detect
untrustworthy tests and platforms. For example, tests that always fail despite that
the software as such would work or compromised platforms sending false defect
reports. More precisely, if one out of fifty platforms with the same hardware and
software configuration reports that numerous different tests crashed the platform
whereas all other platforms report that all these tests passed, there is a chance that
the platform itself is buggy and therefore it should be considered as untrustworthy.
Another reason for deviant reports may be that testers are untrustworthy, for ex-
ample, because they are involved in competing projects or lack necessary testing
skills.

Recent work on test quality has emphasised the importance of tester quality:
“your trust in the accuracy of any test data will depend on your trust in the provi-
dence of the testers/quality of the testers” [172]. Although that related work is a first
step towards taking the importance of tester quality into account, it uses only fixed,
manually configured, subjective trust levels to characterise tester quality. An exam-
ple is the the average testing quality which is estimated by the QA manager. The
EDOS QA information model and approach allow us to easily collect and distribute
tester quality and trust objective evidence. There are different aspects that can be
considered regarding tester quality and trustworthiness. To start with, there are dif-
ferences between end-user actors that are only willing to run specific tests on their
platforms and tester actors who have designed tests in the first place. Secondly, a
tester should be rewarded when a test carried out before the software release detects
bugs, especially critical bugs. Furthermore, if the released software contains many
critical bugs, the testing quality should be questioned. Since there are chances that
testers make mistakes on purpose due to their participation in competing projects,
we use the term tester “trustworthiness” instead of tester “quality”. Fig. 8.4 depicts
our initial decomposition of the testing trust contexts of testers. We assume that each
rectangular trust contexts in Fig. 8.4 is associated with a counter counting the num-
ber of times a tester has achieved a positive outcome and a negative outcome in this
trust context. We use the term “test report trustworthiness” to refer to the number of



8 Trust and Reputation for Successful Software Self-Organisation 173

Fig. 8.4 Example of the Trust Contexts of a Tester

times a tester has reported the same test outcome with the majority of testers with
similar platform configuration. The context test contribution captures the number
of times the tester has contributed and spent time for the OSS community on QA
tasks. The activity diagram below depicts an approach to to update these counters.
Depending on the criticality of the bug found by an end-user actor when using the

Fig. 8.5 Example Update of Tester Trust

software, we can modulate the trustworthiness counters of test quality based on bug
criticality. For example, given:

• a tester u;
• N independent tests carried out by u;
• crit, the criticality of a bug found to be linked to a specific test that ranges within

[0,1]



174 Jean-Marc Seigneur and Pierpaolo Dondio

an estimation of test quality trustworthiness of tester u, denoted by tqt(u), can have
the form:

tqt(u) =
Sum o f (1− crit) f or all tests carried out by u

N
(8.4)

8.3.2 Trust in Open Collaborative Authoring Applications such as
Wikipedia

The emerging self-organising nature of the Web 2.0 shows similarities with the pro-
duction process of an open-software component. With the proliferation of new tools
such as wikis and blogs, that simplify and democratise publications, the Internet ap-
pears today as the collaborative work result of an open community. The Wikipedia
project, under analysis in this section, represents one of the most successful and dis-
cussed examples of this trend, with more than 1.2 million registered users (English
version) and more than 2 million articles [2]. In a smaller scale, a self-organising
open software is also the product resulting from cooperation of a community of de-
velopers, where the code added by each member represents a contribution. There-
fore, it is not absurd to presume that the two domains may partially share problems
and solutions. In this section, we analyse how computational trust techniques have
been applied to wiki-based applications to provide users with a tool for supporting
more effective decisions. We describe an autonomic trust model that was originally
designed for the Wikipedia project, and has lately been generalised for collaborative
self-organising information systems. We envisage the possible application of such a
computation in open collaborative software.

8.3.2.1 Wikipedia internal quality mechanism

The Wikipedia project represents the most successful and discussed self-organising
information system. It is regarded as one of the best examples of collective knowl-
edge, a concept that is often lauded as the next step towards truth in on line media.
The problem of article trustworthiness is central to Wikipedia future development
as a recent extraordinary case has brought to attention. Nevertheless, the growing
interest and utilisation of such types of source remains unquestionable. In 2006, a
study by the magazine Nature showed how, for a subset of scientific-related articles,
Wikipedia was actually of comparable quality than Encyclopedia Britannica, with
an average of 4 inaccuracies in Wikipedia against 3 in Britannica [211]. To address
this concern, Wikipedia has defined an internal rating mechanism to classify arti-
cle quality. The mechanism is an articulated centralised recommendation system,
where any decision is taken based on collected ratings and opinions of Wikipedia
users. Using this system each Wikipedia article may receive a quality classification
or a review. In particular, therer are two highest quality article classification levels,



8 Trust and Reputation for Successful Software Self-Organisation 175

The first one concerns is the “featured article” status, which means that an article
has been identified as one of the best articles produced by the Wikipedia community,
and it is particularly well-written and complete. Only 0.1% of articles are featured
articles. The second one is the “good article” status: the article contains excellent
content but it is unlikely to become featured in its current state. For example it may
be too short, or involving a too specific topic, or a topic on which there is a shortage
of information.

The Wikipedia internal mechanism is a robust tool that proves how an efficient
recommendation-based approach can increase the quality of the information shared.
Anyway, it is not the ultimate tool and it is not free from drawbacks. The rating sys-
tem can be slow to react in comparison to the fast-changing nature of Wikipedia,
making its suggestions out-of-date. New strategies could be coupled to this ap-
proach. An interesting Wikipedia feature makes it possible to define complementary
strategies to compute articles trustworthiness. Wikipedia has been designed so that
it keeps a completely transparent database of all the past contributions. The history
of each page is accessible, providing information regarding authors and differences
with previous versions. The accessibility of this information provides a valuable
base that, if properly processed, can ground a solid decision making process, as
shown in the next section.

8.3.2.2 Alternative Approach: Computing Trust using Domain Elements,
from Heuristics to Generic Trust Patterns

Wikipedia has been the target of computational trust experiments only recently. A
common factor of such efforts was the idea of defining strategies for trust value
computation further to the recommendation approach. The common idea was to
extract evidence of trust presence directly from application elements. This presumes
that the majority of trust information is represented, even implicitly, in elements
and dynamics of the particular application. For trust computation to be effective,
the identification of these elements and their trust meaning should be plausible and
justified in the particular application context. This approach to trust computation is
a subclass of evidence-based trust where the evidence used are internal application
elements or dynamics. Such computation results are application-contained and thus
non invasive, not requiring any infrastructure added to the application for assessing
trust, unlike recommendation systems.

A first limited experimentation was performed by McGuiness [369]. To assess
the trustworthiness of a Wikipedia article, the author applied heuristics based on a
version of the famous PageRank citation-based algorithm. Many authors, notably
Massa [359], identified in Google PageRank all the elements of an application-
contained trust metric. In that specific case, the application is the whole Web, seen
as an interconnection of mutually linked web sites. PageRank considers the outgo-
ing and ingoing links of a web page as trust evidence. In Wikipedia, the authors
considered the relative number of times the name of an articleappears as a link in
the whole encyclopaedia. The formula proposed is the following:



176 Jean-Marc Seigneur and Pierpaolo Dondio

Trust doc(d) =
occurrences[[d]]

(occurrences([[d]])+occurrences(d))
(8.5)

where d is an occurrence of an article name as a plain text and [[d]] an occurrence
of the article name as a link. In other words, in that approach the fact of being
a link was selected as evidence for the trustworthiness of an article. However, its
applicability in that context may be severally argued: an expert Wikipedia user may
argue that in Wikipedia there are automatic procedures that link articles, or that
an author may link articles independently from their quality, for example for the
sake of completeness. This example, similar to many others, shows several concerns
regarding how to perform a selection of evidence directly from domain elements:
the selected heuristics cannot be directly applied without critical analysis of their
plausibility and trust-related meaning in the application context. The McGuiness
experiment does not go beyond definition of ad-hoc heuristics, lacking objectivity
and systematicity. Its lack of plausibility for expert-users decreases drastically the
meaning of trust computation. In the next section we will describe a trust model
developed to address these issues.

8.3.2.3 DANTE: a Trust Model for Collaborative Self-Organising Information
Systems

An open and collaborative self-organising system follows an evolution from start-up
to a mature status, where the system auto-corrects its errors and changes in response
to external stimuli in order to survive and continue to provide its service. During this
evolution, some internal dynamics and elements emerging from system interactions
reveal information about the health status of the system. This status information is an
indicator of the ability of the system to cooperate as expected, its reliability and the
probability for it to fulfill other expectations. Therefore the correct identification and
quantification of this information is a valuable and relevant source about system’s
trustworthiness. This is the idea that grounds the trust model for collaborative self-
organising information systems described in this section. The trust model, termed
DANTE (Domain Analysis and Trust Extraction) [158], defines a set of trust factors
which are indicators of the health status of the system. Their presence is evidence
of system reliability and trustworthiness, while their absence is a warning for the
agent taking a trust-based decision. That trust model was originally designed for an
experiment in the context of the Wikipedia project, but it was later generalised by
the authors to cover any collaborative self-organising information system emerging
from the collaboration of different authors. Anyway, the model is not regarded as a
completely domain-independent solution.

The DANTE model consists of a set of guidelines that can be used to design
a trust-based solution, where domain-specific expertise plays a limited supportive
role. Each trust factor can be described as a generic trust pattern which elements
of the application can match. The selection of an element is therefore justified by
the corresponded trust factor. Trust factors are grounded on social science theory



8 Trust and Reputation for Successful Software Self-Organisation 177

of trust which guarantees that the computation performed has a meaning for trust,
while the fact that the mechanisms are generic provides a valid basis for keeping the
computation less domain dependent. Trust factors should therefore limit the space
for unsystematic and unjustified heuristics.

Among the benefits of this approach lies the fact that it does not require any addi-
tional explicit data to be added to the application and, by performing computations
over system elements, it is a feasible non-invasive solution. Moreover, that approach
can be used to enhance the decision making process of an autonomic system.

It is essential to specify the meaning of trust factors. Trust factors are not in-
tended as definitive evidence of system trustworthiness, and their absence is not
intended as a definitive proof of system unreliability. On the contrary, trust factors
are considered as plausible trust indications. The core of the computation of the
proposed model aims to quantify the plausibility of the selected system elements
and the uncertainty of the respective conclusions. Each factor used requires a num-
ber of critical questions assessing its plausibility when applied in a specific context.
These critical questions require an investigation of the specific situation context to
be answered, and they are not dependent on the overall trust domain.

8.3.2.4 Trust Factors for a Self-Organising System

The trust factors identified are divided in the following categories: pluralism, tem-
poral factors, stability, activity degree, similarity and categorisation. Each category
interacts with the others to strengthen or weaken their conclusions. In the rest of this
section we further describe each trust factor while in the next section we show how
they were applied in the context of the Wikipedia project.

• Pluralism: A collaborative self-organising system is characterised by contribu-
tions of many actors whose input affects system dynamics. According to the fun-
damental trust pluralism principle, in a purely open collaborative environment
there should be an appropriate balance between actor contributions. In particu-
lar, the cases where the system depends on contributions from only too few or
too many actors should be avoided. The former case has the disadvantage that
the resulting system can be highly biased, while the latter can lead to a frag-
mented system with increased complexity and low coherence and consistency
among its parts. This is clearly demonstrated in the collaborative document au-
thoring approach that is followed in Wikipedia. In the Wikipedia approach the
authoring status of an article can range from having been edited by only one or
a very limited number of contributors leading to a lack of pluralism, to being
the collaborative authoring result of a large number of authors, each providing
a small contribution, resulting in highly fragmented information. Fragmentation
may lead to inconsistent editing or even conflicting ideas, while lack of plural-
ism may lead to biased information. Therefore, an article is considered as highly
trustworthy only if it has been edited by a sufficient number of authors, who have
each contributed significantly resulting in high article pluralism. Of course, it
may be the case that an article written by a single author be of exceptionally high



178 Jean-Marc Seigneur and Pierpaolo Dondio

quality, but this case is less plausible and more risky because if that single author
is fallacious, the article will not be trustworthy. On the other hand, if an article
has sufficient pluralism, it is more plausible that a solid checking mechanism has
been used.
For pluralism to be properly assessed, contributions should come from recognis-
able authors. More specifically, it is only required to distringuish between dif-
ferent contributors and not necessarily characterise them based on their identity
or trustworthiness. Furthermore, the pluralism principle is more plausible when
the total number n of contributors is relatively high, the contributors can be con-
sidered as independed or not explicitly related, and the number m of contributors
with a non-negligible contribution is significant. Finally, contributions should oc-
cur with a relatively high frequency to enable for sufficient contributions to be
made in any period of observation.

• Stability: Self-organising systems take auto-corrective actions to improve their
offered services when they perceive themselves as not exhibiting the behaviour
intended for their surrounding environment. During such state transitions system
components may reach states where their integration and functionality had not
previously adequately evaluated. On the other hand, self-organising systems that
have reached a high degree of maturity have less reasons to radically change their
core behaviour apart from perhaps adding some new functionalities. Therefore,
they are considered as stable. Stability implies that system components are well-
established and reliable, and that their evolution has reached a mature stage. In
contrast, instability indicates the existence of components that still need to evolve
to correct their behaviour and abilities.
The role of stability in trust evaluation has been widely examined in the liter-
ature. Frewer and Miles in [193] show that temporal stability is directly linked
to perceived trustworthiness. Different bodies (public and private) were asked to
release the same information concerning a number of food hazards. The sample
of people involved in the test tended to consider the provided information more
trustworthy if they had been released by a body with higher temporal stability.
For example, hospitals had a higher trustworthiness characterisation than gov-
ernmental bodies. The Standford Persuasive Lab Guidelines [1] attributes to the
permanence and stability of the information on the Web one of the main five
sources of credibility and trust. In the context of Wikipedia, an article stability is
considered as evidence that the article contains information with a high degree
of completeness and acceptance, without being the source of contentions and
editing revisions.

• Activity: This trust factor concerns the use of system activity as an indicator of
system trustworthiness. In this view, inactive systems should be trusted only after
detailed further investigations. In contrast, the trustworthiness of active systems
should be considered as plausible and its degree should be further analysed using
appropriate plausibility tests. Examples of parameters that should be included in
such plausibility tests include the quality of system activities, the number of com-
petitors providing similar system services, and the number of requests for each
provided system service. In Wikipedia, the numbers of edits and visits received



8 Trust and Reputation for Successful Software Self-Organisation 179

were considered as article activity indicators. In particular, it was considered that
stable articles with high numbers of edits and visits received could be charac-
terised as trustworthy. This assertion can be further strengthened by considering
article importance. In Wikipedia, the number of links pointing to an article were
used as an indicator of its importance and that value was further used to nor-
malise the expected activity of that article. For example, based on the number of
existing links an article such as “Garda Lake” would be expected to demonstrate
less activity than an article such as “USA”.

• Temporal Factors: Temporal factors [334] are deduced exclusively by processing
the time distribution of the activity of the actors/components that participate in
a self-organising system. Therefore, a number of them partially overlaps with
the activity and stability factors described above. Temporal factors are defined as
follows:

– Regularity - Persistency. This factor examines whether system activity is per-
sistent over time. It is considered to have a positive value if for a given time
interval p at least one interaction takes place within the system for each inter-
val p over the selected observation period.

– Frequency. The factor checks the average period between two interactions and
the variance of this interval.

– Presence. This factor examines the amount of time the system has been in
operation, that is the difference between the first and last system activity.

Temporal factors consider the constant system operation as evidence of the sys-
tem ability to fulfil user expectations. For example, if a system is relatively new
or it has experienced long periods of inactivity, frequent service interruptions,
high service provision variance and low interaction frequency, then its trustwor-
thiness would be characterised as low and it would require further investigation.
Temporal factors do not examine the overall system stability, but only the tem-
poral stability of system activities. This means that the system may change its
properties and functionality as needed, but if the system activity remains sta-
ble over time temporal factors contribute positively to system trustworthiness. In
Wikipedia, the activity whose temporal factors are taken into account in trust-
worthiness estimation is the action ’edit’ carried out by article authors.

• Similarity and Categorisation: This trust factor has a statistical nature with clear
human related meaning. The assumption is that entities showing properties sig-
nificantly different from the average of their category, that is they are ’outliers’,
should not be granted trust without further investigation. For example, if a sys-
tem does not comply to standards, this would be an indicator that the system was
produced by non-experts in an unsystematic manner and without proper testing
and taking state-of-the-art into account.
Tversky [503] have extensively studied similarity and categorisation as cogni-
tive mechanisms used to make judgements under uncertainty. Furthermore, in
the context of computational trust similarity has been investigated by several au-
thors, such as Ziegler and Goldbeck [561], while Castelfranci and Falcone [99]
in their cognitive trust model consider categorisation as a first form of trust-based



180 Jean-Marc Seigneur and Pierpaolo Dondio

reasoning. The plausibility of the trust factor increases if the category set has rela-
tively large cardinality and low variance. Moreover, plausibility further increases
if the categories used are well defined, the system entities have comparable life-
time in the environment and the population is stable, meaning that it is not in the
process of evolving.
In Wikipedia, this approach has been applied based on the Wikipedia article cat-
egorisation mechanism. Articles of comparable topics and importance are ex-
pected to comply to the standards emerged by the collaborative system dynamics.
If an article is not compliant to such a standard, this implies that the article would
require extra editing work, or that it was not edited by expert authors aware of
Wikipedia emerging trends and guidelines.

Examples of trust factor computation in Wikipedia context are depicted in Ta-
ble 8.1. To identify the distribution properties of the calculated variables, statistical
quantities such as average and standard deviation were used.

Trust factors Comments

Pluralism
Number of reverted edits.
A reverted editing is a roll back to a previous
version of an article, rejecting any intermediate modifications

Activity Number of links to the article
Activity Number of visits
Activity Number of edits

Temporal Factors: regularity Average and standard deviation of the
time intervals between consequtive edits

Temporal Factors: persistency Number of intervals in which
there has been at least one interaction

Temporal Factors: presence % Time between last and first edit

Stability Percentage of article edits from time t
to present time

Stability Percentage of text differences between article versions
at time t and current article versions

Pluralism Average number of article edits
per user

Pluralism Standard deviation of article edits
per user

Pluralism % of edits produced by the n most
active article users

Pluralism % of edits produced by users with
more than n edits for a given article

Pluralism Number of discussions (talk edit)

Categorisation

Computed by relying on Wikipedia categorisation
of articles. Among the elements considered to
evaluate similarity: length of the text,
images, variance of sections, references.

Table 8.1 Trust Factors in Wikipedia context



8 Trust and Reputation for Successful Software Self-Organisation 181

8.3.2.5 The Wikipedia Experiment

In this section we present the results of computing the above described trust factors
in Wikipedia. The experiment was conducted on 7718 Wikipedia articles. These
articles included all 846 featured articles, namely special articles considered by
Wikipedia as having the best quality, and the most visited pages having at least 25
edits. These articles represent the 65% of the editing activity of Wikipedia and the
high majority of its access, thus they can be considered as a significant set. The re-
sults are summarised in Fig. 8.6. The graph represents the article distribution based
on their trust values. We have isolated the featured articles (grey line) from standard
articles (black line) and the hypothesis was that featured articles should show higher
trust values than standard articles. The results obtained clearly showed a trust value
difference between featured and standard articles, which had trust values of around
45-50% and 75% respectively. Furthermore, 77.8% of featured articles is distributed
in the region having trust values greater than 70%. In addition, 42.3% of standard
articles are distributed in the region having trust values less than 50%, which does
not include any featured articles. Only 23 standard articles are in the region > 85%,
where there are 93 featured ones. The experiment, covering articles from different
categories, was conducted on an absolute scale, and it shows a minimal imprecision
if compared with a previous experiment conducted on a set of 200 articles, all taken
from the same category “nations” [158], where we could rely on relative compar-
isons of similar articles. This shows that the method has a general validity.

Fig. 8.6 Trust calculation results in Wikipedia context

8.4 Conclusion

There are different computational trust models and metrics. Instead of forcing all the
trustors to change their trust model and metric to one yet-to-be-found-and-adopted



182 Jean-Marc Seigneur and Pierpaolo Dondio

trust model, it seems more feasible to provide means for trustors to obtain an under-
standing of trust models used by others, and to translate the trust values and received
recommendations to their own trust model. Finally, another use of trust models in
self-organising software is to take trust into account when characterising software
testers and developers.

Problems - Exercises

8.1. How would you design a system that would automatically select the most trust-
worthy open-source software building blocks needed for a particular application?

8.2. Consider an eBay-like decentralised database. Agents have different trust mod-
els applied to the available system data, but they have the same domain represen-
tation, that is they understand each other regarding eBay related issues. Since the
environment is decentralised, agents have knowledge only about their past interac-
tions. In the above context, provide examples of all possible differences between
two agent systems. Consider all trust system layers.

8.3. For the scenario context described in Prob. 8.2 consider that each buyer utilises
the same domain representation described by the eBay database structure. Morevover,
each agent has a different trust model represented by an ontology that is unknown to
others. The outcome of an interaction is based on a 4-tuple f1, f2, f3, f4 representing
the four eBay criteria:

• f1: Item as described
• f2: Communication
• f3: Dispatch time
• f4: Posting and packaging charges

Furthermore, each agent has the following capabilities:

• A trust value representation by a real number in the range [0,1]
• A trust metric to produce trust values which has the form T = a·A +(a− 1)·B

where A is the trust value derived from past interactions that are saved in the agent
database and B is the value collected from received recommendations. In absence
of interactions, the trust value A is set at the half of the scale (equal to 0.5). After
each interaction the value of A is updated using the function S to evaluate the
quality of the interaction. The value a is a coefficient that determines the relative
importance of received recommendations versus previous agent interactions. If
a = 0 then only recommendations are taken into account in trust calculation. The
value of A after an interaction is given from the formula A = (b·A +(1− b)·S)
where b represents the importance of past agent history in comparison to the last
interaction. The value b is a coefficient that describes how the trust value changes
after a new interaction. If b is close to 1 the impact of new interactions over the
stored trust value is negligible, and if b is close to 0 newest interactions strongly
affect calculation of new trust values.



8 Trust and Reputation for Successful Software Self-Organisation 183

• A set of evidence derived from agent past interactions. Evidence can be stored as
tuples of the form:
buyerID, f1, f2, f3, f4, date_o f _transaction, price

• a database with the trust values for each buyer stored as tuples of the form:
buyerID, trust_value, number_o f _interactions

• A trust threshold T used by agents to drive purchasing decisions based on the
respective buyer trust values

• A satisfaction function S, defined as:
S(item) = c1· f1 + c2· f2 + c3· f3 + c4· f4
where S is a value in the range [0,1]

The values a,b,cn and T are random for each agent to model the differences between
trust systems of different agents.
Consider a group of N sellers and M buyers. To decide whether to buy an item
from a particular seller, an agent A can use the respective trust value stored in its
internal database, if such a value had been previously stored, or ask an agent B for
a recommendation. After a purchasing interaction has taken place, the satisfaction
function S is used to assess the quality of the purchasing outcome and characterise
the trust quality of the respective buyer.
(a) How can a buyer evaluate if it would be preferable to act in isolation or to share
the trust values calculated from previous interactions?
(b) Design an automatic strategy to translate trust values from one trust system to
another so that the overall quality of interactions is improved. How can this strategy
be evaluated?
(c) Can you think of a similar scenario in a self-organising software system? Which
trust metric and which satisfaction function S would you suggest to assess software
quality? Which are the possible differences between these two metrics? Can you
define a common ontology to describe both software quality and trustworthiness?

8.4. Identify critical questions that can be asked regarding the stability trust factor.
Do you consider open software stability as plausible evidence of its trustworthiness?

8.5. What is the meaning of the trust factor “pluralism” in a self-organising open-
software scenario?

Key Points

• Computational trust and reputation can assist in improving safety and qual-
ity of a self-organising software ecosystem;

• there is a need to consider trustworthiness of testers and developpers as
well as the approaches followed by trustors to model and estimate trust
and reputation.



184 Jean-Marc Seigneur and Pierpaolo Dondio

Further Reading

Reputation Management Services. A book chapter in the “Computer And Informa-
tion Security Handbook”, edited by John Vacca, which goes into details of reputa-
tion management services. The other chapters of that book will remind the reader
of other security aspects for successful software self-organisation (J.-M. Seigneur,
2009, Elsevier, ISBN:9780131426436.)

Collaborative Computer Security and Trust Management. A book that covers the
social engineering aspects of collaborative software (J.-M. Seigneur and A. Slagell,
2009, Information Science Publishing, ISBN:978-1605664156.)


	Trust and Reputation for Successful Software Self-Organisation
	Recommended Citation

	tmp.1391423305.pdf.QgtC1

