
Technological University Dublin Technological University Dublin

ARROW@TU Dublin ARROW@TU Dublin

Instructional Guides School of Multidisciplinary Technologies
(Former DIT)

2013

A MATLAB Primer in Four Hours with Practical Examples A MATLAB Primer in Four Hours with Practical Examples

Jerome Casey
jerome.casey@tudubln.ie

Follow this and additional works at: https://arrow.tudublin.ie/schmuldissoft

 Part of the Computer Sciences Commons, and the Engineering Commons

Recommended Citation Recommended Citation
Casey, J. (2013). A MATLAB primer in four hours with practical examples. Software guide for
undergraduate students. Technological University Dublin

This Other is brought to you for free and open access by the School of Multidisciplinary Technologies (Former DIT)
at ARROW@TU Dublin. It has been accepted for inclusion in Instructional Guides by an authorized administrator of
ARROW@TU Dublin. For more information, please contact arrow.admin@tudublin.ie, aisling.coyne@tudublin.ie,
vera.kilshaw@tudublin.ie.

https://arrow.tudublin.ie/
https://arrow.tudublin.ie/schmuldissoft
https://arrow.tudublin.ie/schmuldist
https://arrow.tudublin.ie/schmuldist
https://arrow.tudublin.ie/schmuldissoft?utm_source=arrow.tudublin.ie%2Fschmuldissoft%2F1&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/142?utm_source=arrow.tudublin.ie%2Fschmuldissoft%2F1&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/217?utm_source=arrow.tudublin.ie%2Fschmuldissoft%2F1&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:arrow.admin@tudublin.ie,%20aisling.coyne@tudublin.ie,%20vera.kilshaw@tudublin.ie
mailto:arrow.admin@tudublin.ie,%20aisling.coyne@tudublin.ie,%20vera.kilshaw@tudublin.ie

 i

A MATLAB Primer in 4 Hours with Practical Examples

Engineering Computing

DT023-1, DT025-1

Jerome Casey

DT023-1 & DT025-1 Engineering Computing

JEROME CASEY MATLAB EXERCISES ii

Table Of Contents

MATLAB EXERCISE 1 ... 1

INTRODUCTION TO THE MATLAB INTERFACE ... 1

MATLAB EXERCISE 2 ... 2

NUMERICAL METHODS: WORKING WITH MATRICES .. 2

MATLAB EXERCISE 3 ... 7

ENTERING & PROCESSING DATA IN MATLAB, SAVING DATA TO EXTERNAL FILES .. 7

MATLAB EXERCISE 4 ... 10

READING FROM EXTERNAL FILES / WORKING WITH PLOTS: LINE COLORS & STYLES, TITLES 10

MATLAB EXERCISE 5 ... 13

WORKING WITH SUBPLOTS ... 13

MATLAB EXERCISE 6 ... 14

LOADING AND WRITING RESULTS TO EXTERNAL FILES: LOAD & SAVE COMMANDS, VARIABLE EDITOR ... 14

MATLAB EXERCISE 7 ... 16

WRITING SCRIPTS & FUNCTIONS .. 16

DT023-1 & DT025-1 Engineering Computing

JEROME CASEY MATLAB EXERCISES 1

Matlab Exercise 1

Introduction to the Matlab Interface – Setting the Current Folder
“MATLAB” stands for “Matrix Laboratory.” It is an interactive software program for performing

numerical computations. It was initially designed by Cleve Moler in the 1970s for use as a teaching tool,

but it has since become a very successful commercial package produced by The MathWorks Ltd. 1 One

of MATLAB’s best features, from the point of view of the computational scientist, is its large built-in

library of numerical routines and graphical visualisation tools.

Click on the desktop shortcut to open MatlabR2013a. The main window is the MATLAB Command

Window, where you write your instructions.

In the MATLAB Command Window, Matlab will execute the instructions after the Command prompt

 » when you press ‘Enter’ on your keyboard. You can also use the arrow key ↑ to cycle back through

previously entered commands.

Set the desktop layout to the default setting by selecting Desktop > Desktop Layout > Default.

Note: Create a Matlab folder in your Computing folder of your Home folder and set the

Current Folder (in 3. above) to where you will save your files such as: z:\Computing\Matlab

In these exercises you will cover:

 The MATLAB Desktop and Desktop Tools including the Command Window, the Launch Pad, the

Help Browser, the Current Folder Browser and the Editor/Debugger.

 Matrices in MATLAB: Generating Matrices, Sum, Transpose, Subscripts, concatenation, deleting

rows and columns and the Colon Operator. Expressions: Variables, Numbers, Operators.

 Scripts & Functions, the Load command, M-Files.

 Demonstration of Numerical methods.

1 see www.mathworks.com for more examples and help on code.

2.

1.

4.

5.

3.

http://www.mathworks.com/

DT023-1 & DT025-1 Engineering Computing

JEROME CASEY MATLAB EXERCISES 2

Matlab Exercise 2

Numerical Methods: Working with Matrices
Creating Matrices:

Informally, the terms matrix and array are often used interchangeably. More precisely, a matrix is a two-

dimensional rectangular array of real or complex numbers that represents a linear transformation. The

linear algebraic operations defined on matrices have found applications in a wide variety of technical

fields.

MATLAB has dozens of functions that create different kinds of matrices. Two of them can be used to

create a pair of 3-by-3 example matrices. The first example matrix is symmetric:

>> A = pascal(3)

A =

 1 1 1

 1 2 3

 1 3 6

The second example is not symmetric:

>> B = magic(3)

B =

 8 1 6

 3 5 7

 4 9 2

The command >> sum(B) sums the elements in each column to produce:

15 15 15

The command >> sum(B')' transposes the matrix, sums the columns of the transpose, and then transposes

the results to produce the row sums:

15

15

15

The command >> sum(diag(B)) sums the main diagonal of B, which runs from the upper left element

to the lower right element, to produce 15

An m x n matrix is a rectangular array of numbers having m rows and n columns. A column vector is an

m-by-1 matrix, a row vector is a 1-by-n matrix and a scalar is a 1-by-1 matrix. Enter the following

statements:

>> col = [3; 1; 4]

produces a column vector,

>> col = 3

 1

 4

>> row = [2 0 -1]

produces a row vector,

>> row = 2 0 -1

>> s = 7

produces a scalar:

>> s =

 7

Note the square brackets create a matrix; rows are delineated by a semi-colon and columns by a space.

Accessing Matrix Elements:

A 2D matrix is specified first by rows and then by columns.

>> col1 = A(: , 1) % select all row entries for column 1

col1 =

 1

 1

 1

>> elem1 = A(2 , 2) % select element at row 2 and column 2

elem1 =

 2

Note the : operator denotes ‘all’.

Info:

An nxn matrix that has the same number of

rows and columns is called a square matrix.

A matrix is said to be symmetric if it is equal

to its transpose (i.e. it is unchanged by

transposition).

DT023-1 & DT025-1 Engineering Computing

JEROME CASEY MATLAB EXERCISES 3

Adding and Subtracting Matrices:

Addition and subtraction of matrices is defined just as it is for arrays, element-by-element. To add 2

matrices together they must have the same dimensions:

>> C = A + B

C =

 9 2 7

 4 7 10

 5 12 8

Addition and subtraction require both matrices to have the same dimension, or one of them to be a

scalar. If the dimensions are incompatible you will get an error. Add a scalar to each element of a

matrix:

>> D = C + 1

D =

 10 3 8

 5 8 11

 6 13 9

Vector Products and Transpose:

For real matrices, the transpose operation interchanges ai j and aj i. In other words, transposing a vector

changes it from a row to a column vector and vice versa. The extension of this idea to matrices is that

transposing interchanges rows with the corresponding columns: the 1st row becomes the 1st column, and

so on. MATLAB uses the apostrophe operator (') to perform a complex conjugate transpose, and the dot-

apostrophe operator (.') to transpose without conjugation. For matrices containing all real elements, the

two operators return the same result.

>> Z = B'

Z =

 8 3 4

 1 5 9

 6 7 2

Deleting Matrix Rows and Columns:

>> F = magic(5) % create this 5 x 5 matrix

F =

 17 24 1 8 15

 23 5 7 14 16

 4 6 13 20 22

 10 12 19 21 3

 11 18 25 2 9

>> F(3,:)=[]; % delete row 3

>> F(:, 5)=[]; % delete column 5
% F is now a 4x4 matrix

Matrix Concatenation:

>> Z = ones(4,1) % create this 4x1 matrix of ones

>> F= [F Z] % concatenate the 4x1 matrix to the end of the 4x4 matrix

Matrix Multiplication:

MATLAB uses a single asterisk to denote matrix multiplication. The next two examples illustrate the

fact that matrix multiplication is not commutative; AB is usually not equal to BA:

>> X = A*B, Y = B*A

X =

 15 15 15

 26 38 26

 41 70 3

Y =

 15 28 47

 15 34 60

 15 28 43

Tip:

The semi-colon suppresses the output to the

Command Window.

Double-click on the variable F when it

appears in the Workspace to open it in the

Variable Editor and watch the values

update as you enter the commands.

DT023-1 & DT025-1 Engineering Computing

JEROME CASEY MATLAB EXERCISES 4

Dot-Product of Matrices:

Instead of doing a matrix multiply, we can multiply the corresponding elements of two matrices or

vectors using the .* operator. The dot-product is also known as element-wise multiplication. The dot

product works as for vectors: corresponding elements are multiplied together, thus the matrices involved

must have the same size:

>> Dot = A .* B

Dot =

 8 1 6

 3 10 21

 4 27 12

Sparse Matrices:

Sparse matrices are usually large matrices that have only a very small proportion of non-zero entries.

Create a sparse 5x4 matrix S having only 3 non-zero values: S1,2 = 10, S3,3 = 11 and S5,4 = 12.

First create 3 vectors containing the ith index, the jth index and the corresponding values of each term and

then use the sparse command.

>>i = [1, 3, 5]; j = [2, 3, 4];

>>v = [10 11 12];

>>S = sparse(i,j,v)

S =

 (1,2) 10

 (3,3) 11

 (5,4) 12

>> Sfull = full(S)

Sfull =

 0 10 0 0

 0 0 0 0

 0 0 11 0

 0 0 0 0

 0 0 0 12

The matrix Sfull is a "full" version of the sparse matrix S.

DT023-1 & DT025-1 Engineering Computing

JEROME CASEY MATLAB EXERCISES 5

Solving Simultaneous Equations:

A general system of linear equations can be expressed in terms of a co-efficient matrix A, a right-

handside (column) vector b and an unknown (column) vector x as follows:

A * x = b

or, component wise, as:

a1,1x1 + a1,2x2 + a1,nxn = b1

a2,1x1 + a2,2x2 + a2,nxn = b2

...

an,1x1 + an,2x2 + an,nxn = bn

The solution is obtained by x = A-1 * b

Given

3v -3w +6x -2y +z = 14
3v -6w +x -y +z = 25
2v -4w +4x -4y +3z = 5
3v -6w +5x -y +2z = 30
2v -4w +9x +y +z = 30

Solve for v, w, x, y and z using the matrix functions

Enter the following in the Command Editor:

>> A = [3 -3 6 -2 1; 3 -6 1 -1 1; 2 -4 4 -4 3; 3 -6 5 -1 2; 2 -4 9 1 1];

>> b = [14; 25; 5; 30; 30];

>> x = inv(A)*b (Though formally correct >> x = A \ b is generally used in Matlab)

x =

 6.3333

 -1.3333

 0

 7.0000

 5.0000

The inverse looks better if it is displayed with a rational format.

>> format rat

>> x

x =

 19/3

 -4/3

 0

 7

 5

The following statement restores the output format to its default.

>> format short

Diagonal Matrices:

A diagonal matrix contains non zero diagonal entries with zeros everywhere else. D is a 3x3 diagonal

matrix. To construct this in Matlab, we could type it in directly as follows:

>> D = [-3 0 0; 0 4 0; 0 0 2]

D =

 -3 0 0

 0 4 0

 0 0 2

However this becomes impractical when the dimension is large (e.g. a 100 x100 diagonal matrix). We

then use the diag function. Create a row vector d, say, containing the values of the diagonal entries (in

order) then diag(d) gives the required matrix:

>> d = [-3 4 2], D = diag(d)

DT023-1 & DT025-1 Engineering Computing

JEROME CASEY MATLAB EXERCISES 6

On the other hand, if A is any matrix, the command diag(A) extracts its diagonal entries:

>> H= diag(A)

H =

 3

 -6

 4

 -1

 1

Initialising Matrices:

The functions ones and zeros are typically used to initialise a matrix - the size of which you may already

know, but the values which may change during processing. Pre-allocation of memory by initialising a

matrix allows for more efficient programs.

>> P= ones(2,3)

P=

 1 1 1

 1 1 1

>> Q= zeros(3,2)

Q =

 0 0

 0 0

 0 0

>> R= ones(size(C))

R =

 1

 1

 1

 1

 1

This example shows how we can construct a matrix based on the size of an existing one.

The Identity Matrix:

The n x n identity matrix is a matrix of zeros except for having ones along its leading diagonal (top left to

bottom right).

>> I = eye(3)

I =

 1 0 0

 0 1 0

 0 0 1

This is called eye(n) in Matlab since mathematically it is usually denoted by I.

Using Nested For Loops in 2 Dimensional Matrices:

A nested for loop is typically used to cycle through the entries of a 2 dimensional (m x n) matrix in so

called raster order. The outer for loop controls the movement along the rows, beginning at the first row,

whilst the inner loop controls the movement along the columns. The following code uses the matrix A

created previously:

% update the diagonal elements to 10
[numRows,numCols] = size(A); % A was created above
for i = 1: numRows
 for j = 1: numCols
 if i==j
 A(i , j) =10;
 end
 end
end

Other important quantities in computational linear algebra that have functions in Matlab are matrix

norms, trace, rank, condition number, eigenvalues and singular values.

DT023-1 & DT025-1 Engineering Computing

JEROME CASEY MATLAB EXERCISES 7

Matlab Exercise 3

Entering & Processing Data in Matlab, Saving Data to External Files

The basic arithmetic operators are + - * / ^ and these are used in conjunction with

brackets ().

Entering Data:

This task is to enter Temperature data 2 for the first 10 days of the Month of April for

various locations in the country and carry out some processing of the data. First create

the variables:

>>colHeaders={'April' 'Dublin' 'Kilkenny'};
>> Temp =[1,12,13];

The variables appear in the Workspace window:

Method 1: - Entering Data via the Variable Editor

The Variable Editor allows you to view array contents in a table format and edit the

values. Open the Temp variable that you just created in the Variable Editor by

double clicking on it in the Workspace pane and continue entering the following data:

1 12 13

2 15 14

3 22 20

4 22 20

5 23 21

6 22 22

7 21 21

8 20 19

9 15 16

10 12 14

Method 2 - Entering Data by importing from an External file:

Delete the Temp variable from the workspace.

Create an Excel file with the same data above laid out in 3 columns. Search the help to

see how to import the numerical data into MATLAB from Excel and assign it to the

Temp variable.

Processing Data in Matlab:

Calculate the following:

(i) the average temperature over the 10 days for a location

(ii) the average temperature on each day for both locations

You can process data in Matlab by calling on a myriad of built-in functions. Later you

will also create your own functions.

2 Met Éireann use Matlab to process data, see http://www.met.ie/climate-ireland/rainfall.asp and the R

package http://www.met.ie/climate/dataproducts/Estimation-of-Point-Rainfall-Frequencies_TN61.pdf

http://www.met.ie/climate-ireland/rainfall.asp
http://www.met.ie/climate/dataproducts/Estimation-of-Point-Rainfall-Frequencies_TN61.pdf

DT023-1 & DT025-1 Engineering Computing

JEROME CASEY MATLAB EXERCISES 8

Enter the following at the Command prompt:

>> avgTempLocation1 = mean(Temp(:,2))

avgTempLocation1 =

 18.4000

>> avgTempLocation2 = mean(Temp(:,3))

avgTempLocation2 =

 18

>> avgTemp = mean(Temp(:,2:3),2)

avgTemp =

 12.5000

 14.5000

 21.0000

 21.0000

 22.0000

 22.0000

 21.0000

 19.5000

 15.5000

 13.0000

Help Browser:

For Help on Matlab functions enter the following after the command prompt and it will

print within the pane:

>>help mean

Alternatively select Help/Product Help and type in the query in the Search for box.

e.g. type in mean and hit return. The help returns info on the mean function.

Take time to explore the Help. You can teach yourself Matlab from all the

examples shown in the various sections. In particular have a look at the sections:

Getting Started, Examples, Mathematics, Data Analysis, Programming, Graphics,

Functions.

Notes:

 The built in mean function was called to calculate the average

(mean).

 Temp is actually an array variable, similar to a matrix with 10

rows and 3 columns.

 A matrix is referenced by specifying the row reference followed

by the column reference, separated by a comma. e.g. Temp(: , 2)

accesses all the rows of column 2, i.e. column 2. The colon
operator : is shorthand for all.

 The various calls to mean here calculate the average of a column

or the average across a row. Can you see which is which? Check
the help to see the various forms of the mean function.

DT023-1 & DT025-1 Engineering Computing

JEROME CASEY MATLAB EXERCISES 9

Saving Data Variables to External files:

Method 1: - Saving to a .mat file

All the variables can be saved to a Matlab .mat file with the numerical values in matrix

form and the text values in cell array form using the following command:

>> save temp Temp colHeaders avgTemp

The first value is the filename and all the other values are the variables you wish to

save in the .mat file.

Method 2: - Saving to a Text File

All the variables can be saved to a text file using a space to delimit the data in column

form as follows:

fName = 'Apr2013_test';

 firstLine = '% Temperature Data in Celsius';
 secondLine ='% Column Headers: ';

 for j = 1:length(colHeaders)
 secondLine =[secondLine,colHeaders{1,j},' ']; % add a space between column headers
 end

 dlmwrite(fName,firstLine,'delimiter','');
 dlmwrite(fName,secondLine,'-append','delimiter','');
 dlmwrite(fName,Temp,'-append','delimiter',' ','precision',15); % use a space as the delimiter

The code here is adaptable. The output file name fName could be adapted in code if you

decide to process a number of different months separately and then save them as different

files.

Check that the text file 'Apr2013_test' has been created in your current folder.

Now clear all variables from the Workspace:

>> clear

Clear the screen of your Command Window:

>> clc

The next time you load the .mat file in Matlab all saved variables will load into the

workspace. See how this is done in the next exercise.

The Editor Window:
Select the lines of code in the Command History. Right-click and select

Create Script. The selected lines of code are transferred to the Editor window where

you can edit the code and save it as an .m file (a file containing MATLAB statements).

You can also reuse commands from the Command History by dragging them from the

Command History and dropping them in the Command Window.

You will use the Editor window again to write Scripts and Functions.

DT023-1 & DT025-1 Engineering Computing

JEROME CASEY MATLAB EXERCISES 10

Matlab Exercise 4

Reading from External Files / Working with Plots: Line Colors & Styles, Titles

Create a bar chart plot of the temperatures at both locations from the previous exercise

and add a line overlay of the average temperature. The following tables will be useful

when creating and formatting the plots:

plot(x,y,'r:') Will plot x,y in a red dotted line

plot(x,y,'r', x,z,'gx') Will plot y in a red solid line (the default) and z in a green

line with crosses as marker points

axis([0, 1, 0, 30]) Defines the x and y axis to [0,1] for x and [0, 30] for y

Graph Annotation

grid Adds dotted gridlines to the chart

text Adds Text annotation at a location on the plot area

title Adds the Graph title

xlabel Adds x-axis label

ylabel Adds y-axis label

legend Adds a legend

The different colours and styles are:

Colours Styles

y yellow . Dotted line d diamond

m magenta o Circled line v triangle (down)

c cyan x X Crosses line ^ triangle (up)

r red + + Crosses line < triangle (left)

g green - Solid > triangle (right)

b blue * Stars line p pentagram

w white : Dotted h hexagram

k black -. Dash - Dot s Square

 -- Dashed line

Specifying the Color and Size of Markers:
You can also specify other line characteristics using graphics properties:

LineWidth — Specifies the width (in points) of the line.

MarkerEdgeColor — Specifies the color of the marker or the edge color for filled markers

(circle, square, diamond, pentagram, hexagram, and the four triangles).

MarkerFaceColor — Specifies the color of the face of filled markers.

MarkerSize — Specifies the size of the marker in units of points.

DT023-1 & DT025-1 Engineering Computing

JEROME CASEY MATLAB EXERCISES 11

To do this exercise you will need to have the variables used in the previous exercise

Temp, avgTemp and colHeaders (stored in file temp.mat) is loaded in the

Workspace.

Loading Files and Variables:

MATLAB can only access files that are in its working path or in the “current Folder.” Ensure your

Working Directory is set to where the file temp.mat is located, if not browse to where it is located.

Enter the following at the Command prompt:

>> load temp.mat

The Workspace should now contain the 3 variables.

Enter the following code at the Command prompt:

x = Temp(:,1);
y = Temp(:,2:end);

bar(x,y,'grouped');
grid;

title(['Temperatures for the month of ', colHeaders{1,1}, ' for various locations'])
xlabel('Day')
ylabel('ºC')
hold on % holds the current picture -> used to achieve the overlay
plot(x,avgTemp,'--rs','LineWidth',2,... % red dashed line, square markers
 'MarkerEdgeColor','k',...
 'MarkerFaceColor','g',...
 'MarkerSize',5)
legend('Dublin','Kilkenny','Average');
text(x,avgTemp,num2str(avgTemp),'FontSize',10,'Color','m');% places value at marker

The code above is designed to be adaptable for input files of the same layout being loaded

with additional columns appended if necessary. The only line that needs to be recoded is

that containing the legend. Update the file containing the April data by adding

temperature data for another location. Edit the code and Run it again.

DT023-1 & DT025-1 Engineering Computing

JEROME CASEY MATLAB EXERCISES 12

Notes:

 y = Temp(:,2:end); sets the y variable to be the entire block of data in Temp,

excluding column 1. The value end allows flexibility in the code, if the user

decides to add another column of temperature data in the previous data processing;

this line will still be valid.

 bar(x,y,'grouped'); This command creates a bar chart with each data series side by

side or grouped. There are other formats of this function such as a stacked bar

chart, changing its orientation to horizontal instead of vertical. See the Help for

more info.

 grid This command plots gridlines on the chart. This is useful in identifying the

value of a data point.

 the title function adds the chart title to the chart. In this example you want to use a

mixture of text and the value from a variable. This is achieved by adding the square

brackets within the function. title (['Temperatures This line also gives us

flexibility to set these lines up as a function where the month can be passed as a

parameter if we want to process the months individually.

 hold on This command holds the current figure in place with the bar chart allowing

the subsequent line chart to be plotted on the same window figure rather than in a

new window.

 the plot function creates the chart. See the help for the many forms for this function.

 the text function is used to annotate the graph. Here the first 2 parameters identify

the x and y location on the plot where you want the annotated text to be placed.

Masking Plots:
Enter the following:

>>x = 0:0.05:6; y = sin(pi*x);

>>Y = (y>=0).*y; % see section on dot-product and element-wise multiplication

>>plot(x,y,'r:',x,Y,'g-')

Numeric Variables

You can specify numeric variables in text strings using the num2str (number to string) function. For example,

if you type on the command line

>>x = 21;

>> ['Today is the ',num2str(x),'st day.']

MATLAB concatenates the three separate strings into one.

>>Today is the 21st day.

See the Help on annotating

DT023-1 & DT025-1 Engineering Computing

JEROME CASEY MATLAB EXERCISES 13

Keyboard-Accelerators:
You can recall previous Matlab commands by using the ↑ and ↓

cursor keys. Repeatedly pressing ↑ will review the previous

commands (most recent first) and, if you want to re-execute the

command, simply press the return key.To recall the most recent

command starting with p, say,type p at the prompt followed by ↑.

Similarly, typing pr followed by↑will recall the most recent

command starting with pr. Once a command has been recalled, it

may be edited (changed). You can use  and to move

backwards and forwards through the line, characters may be inserted

by typing at the current cursor position or deleted using the Del key.

This is most commonly used when long command lines have been

mistyped or when you want to re-execute a command that is very

similar to one used previously as above for the subplot
command.

Matlab Exercise 5

Working with Subplots

The subplot command divides the current figure (such as a graph plot) into rectangular

panes that are numbered row-wise. Each pane contains an axes object. Subsequent plots

are output to the current pane. For example, enter the following code that creates a

figure with 8 subplots of 4 rows and 2 columns.

x = -1:.05:1;

for n = 1:2:8
 subplot(4,2,n), plot(x,sin(n*pi*x)),title(['sin',num2str(n),'*pi*x'])

 subplot(4,2,n+1), plot(x,cos(n*pi*x)),title(['cos',num2str(n),'*pi*x'])

end

Save the file as subplots.m

The following combinations produce asymmetrical arrangements of subplots.
subplot(2,2,1) % this subplot uses pane 1
subplot(2,2,3) % this subplot uses pane 3

subplot(2,2,[2 4]) % this subplot uses panes 2 and 4

Enter the following code in the Command window:
unitsmoved = [2500 4000 3500 490];
hourlyrate = 30;
hoursworked = [3.2 4.1 5.0 5.6];
basic = hoursworked*hourlyrate;
commission = unitsmoved*0.01;
wages = basic + commission;

subplot(2,2,1); plot(unitsmoved)
title('Sales','color','b')
ylabel('Units Moved','color','r')

subplot(2,2,3); plot(commission)
title('Commission','color','b')
ylabel('Euros','color','r')

subplot(2,2,[2 4]); plot(wages)
title('Wages','color','b')
ylabel('Euros','color','r')

DT023-1 & DT025-1 Engineering Computing

JEROME CASEY MATLAB EXERCISES 14

Matlab Exercise 6

Loading and Writing Results to External Files: Load & Save Commands, Variable Editor

Files required: TempAnalysis.m and annual_temps.mat. Download these files to your current folder.

File Importing and Exporting within MATLAB

 MATLAB formatted data has the file extension .mat. These files are imported using the load

command and exported using the save command as shown previously. Variables from the MATLAB

workspace are saved.

 Text files are imported using the load command and exported using the save –ascii command.

For more see http://www.mathworks.es/academia/student_center/tutorials/ps_solve/player.html

Loading Files

MATLAB can only access files that are in its working path or in the “Current Folder unless you specify

the full filepath”. Ensure your Current Folder is where the files annual_temps.mat and TempAnalysis.m

are located, if not browse to where they are located.

>> load annual_temps.mat

The Workspace should now contain the 2 variables as follows:

Double-click on both variables. The Variable Editor will open. To view the data as shown select the

Top/Bottom Tile icon:

Saving Files and Variables

Run the script TempAnalysis.m by typing its name in the command prompt and hitting return.

The data annual_avg were calculated using this script as were other variables. To save only this variable

in an external file type the following:

>> save output annual_avg

where output is the name of a new .mat file and annual_avg is the

variable name of the data.

To check the file contents clear the Workspace and then double-click

on the output file within the current Folder: annual_avg should be the

only variable in the Workspace.

http://www.mathworks.es/academia/student_center/tutorials/ps_solve/player.html

DT023-1 & DT025-1 Engineering Computing

JEROME CASEY MATLAB EXERCISES 15

Preloaded .mat files and Image Processing:

Matlab comes preloaded with many .mat files that can be called using the load command without the file

existing in the current folder.

Enter the following:

>>load durer % loads the file which contains the variables X, caption, map

>>image(X)

>>colormap(map)

This image command displays matrix X as an image within a figure

window. In this example X is a 2-dimensional m x n matrix and each

element of the matrix specifies the colour of a rectilinear patch in the

image. Each ‘pixel’ is actually an index into a colormap called map

which contains the actual value of the colour specified by an index. In

this example there are 128 index values representing 128 different

colours:

e.g. the color [0 0 0] represents black and [1 1 1] represents white. [1 0 0] is pure red, [.5 .5 .5] is gray.

The 3 values represent the color intensities of Red, Green, and Blue light.

If all 3 values of R, G and B are the same you have a grayscale value such as in the durer image.

If however you see a value in a colormap with differing values for RGB you have a color value:

e.g. [127/255 1 212/255] is aquamarine.

Identify the magic square we met previously. To focus in on it in more detail load

the following .mat:

>>load detail

Now run the image and colormap commands again to visualise the data.

There are a number of built-in colormaps which you can use.

For more info type:

>>help colormap or search the help to see some sample images.

The demos directory contains a CAT scan image of a human spine to which

you can apply the built-in bone colormap. To view the image, type the

following commands:

>>load spine

>>image(X)

>>colormap bone

Another preloaded example is the .mat file of the coastline around Cape Cod:

>>load cape

>>image(X)

>>colormap(map)

We will use this file again within a script in the next exercise. It does a real-time prediction of the rising

sea levels over time and updates the image on screen.

DT023-1 & DT025-1 Engineering Computing

JEROME CASEY MATLAB EXERCISES 16

Matlab Exercise 7

Writing Scripts & Functions

For a more efficient workflow such as repeating common tasks you can write your own

scripts and functions. A script is a series of commands whereas a function is a series of

commands that may accept arguments and return values.

 You can enter commands one at a time at the MATLAB command line, or you can

write a series of commands to a file that you then execute as you would any MATLAB

function. Use the Editor or any other text editor to create your own function files. Call

these functions as you would any other MATLAB function or command.

There are two kinds of program files:

1. Scripts, which do not accept input arguments or return output arguments. They

operate on data in the workspace.

2. Functions, which can accept input arguments and return output arguments. Internal

variables are local to the function.

If you are a new MATLAB programmer, just create the program files that you want to

try out in the current folder. As you develop more of your own files, you will want to

organize them into other folders and personal toolboxes that you can add to your

MATLAB search path.

Scripts

When you invoke a script, MATLAB simply executes the commands found in the file.

Scripts can operate on existing data in the workspace, or they can create new data on

which to operate. Although scripts do not return output arguments, any variables that

they create remain in the workspace, to be used in subsequent computations. In

addition, scripts can produce graphical output using functions like plot.

For example, open the Editor and create a file called graph1.m that contains these

MATLAB commands or download the file from webcourses:

Example1 - Plots Using a Varying Number of Points (Graph Smoothing)
% Script file graph1.m
% see page 21 of tutorial2.pdf

% Graph of the rational function y = x/(1+x^2).
for n=1:1:5
 n10 = 10*n;
 x = linspace(-2,2,n10);
 y = x./(1+x.^2);
 %plot(x,y,'r') % experiment with Graphs with different colors
 %plot(x,y,'g') % and comment out the ones you won’t use
 plot(x,y,'b')

 title(sprintf('Graph %g. Plot based upon n = %g points.' ...
 ,n, n10))
 axis([-2,2,-.8,.8])
 xlabel('x')
 ylabel('y')
 grid
 pause(5)
end

Make sure the script is in your Current Folder and execute the script by typing the

command:
>> graph1

DT023-1 & DT025-1 Engineering Computing

JEROME CASEY MATLAB EXERCISES 17

The script demos the use of:

(i) a for loop, (ii) the linspace function, (iii) element wise division (iv) the sprint

function, (v) the use of format specifiers (vi) adding gridlines, (vii) the pause function.

See the Product help for more information on each.

Notes:

 This script will loop 5 times. On the first iteration the number of points n10 = 10,

and a plot of y = x/(1+x^2) is created.

 The linspace function generates linearly spaced vectors. It is similar to the colon

operator ":", but gives direct control over the number of points.

 x = linspace(-2,2,n10) generates a row vector x of n10 points linearly spaced

between and including -2 and 2.

 The number of points used and the graph number will appear in the title.

 The sprintf function formats data into a string.

 On subsequent loops more points are used over the same x-axis range. This has the

effect of the plot appearing to smooth on subsequent iterations.

Example 2 - Receding Coastline Animation (For Loops)

Place the Matlab script file animationWithForLoops.m in your current folder and execute it

by entering its name at the command prompt as follows:

>> animationWithForLoops

This is a good example of real-time image processing with the rising sea level

prediction being shown in real-time.

Figure: shows Before and After images of sea-level elevation.

The script also contains some ‘bonus’ commands that carry out a real-time plot

animation:

DT023-1 & DT025-1 Engineering Computing

JEROME CASEY MATLAB EXERCISES 18

Functions:

Functions are files that can accept input arguments and return output arguments. The

name of the file and of the function should be the same. Functions operate on variables

within their own workspace, separate from the workspace you access at the MATLAB

command prompt.

A good example is provided by isTriangle. The file is shown below.

function [isTri,typeTri,areaTri] = isTriangle(L1, L2, L3)

% ISTRIANGLE determines if the three lengths provided can form a triangle.

% isTri = isTriangle(L1,L2,L3) returns 1 if the three lengths can form a triangle

The first line of a function starts with the keyword function. It gives the function name

and order of arguments. In this case, there are 3 input arguments and 3 output

arguments.

The next several lines, up to the first blank or executable line, are comment lines that

provide the help text. These lines are printed when you type:

>> help isTriangle

The first line of the help text is the H1 line, which MATLAB displays when you use

the command:

>>lookfor isTriangle or request help on a folder.

The rest of the file is the executable MATLAB code defining the function. The

variables s and p introduced in the body of the function are all local to the function;

they are separate from any variables in the MATLAB workspace.

It is always good programming practice to include an example of how the function is

called within the function comment.

>> [isTri,typeTri,areaTri] = isTriangle(3,4,5)

Copy the function file to your current folder and execute the following examples:
>> [isTri,typeTri,areaTri] = isTriangle(2,3,2)

>> [isTri,typeTri,areaTri] = isTriangle(3,4,5)

>> [isTri,typeTri,areaTri] = isTriangle(25,4,5)

Exercise:

Create a function to process some data such as the monthly temperature data shown

previously. An input parameter is the month’s title, this is parsed and used in both the

plot title and in the subsequent jpg of the plot saved.

DT023-1 & DT025-1 Engineering Computing

JEROME CASEY MATLAB EXERCISES 19

function [isTri,typeTri,areaTri] = isTriangle(L1, L2, L3)

% ISTRIANGLE determines if the three lengths provided can form a triangle.

% isTri = isTriangle(L1,L2,L3) returns 1 if the three lengths can form a

% triangle and 0 otherwise.

%

% [isTri,typeTri,areaTri] = isTriangle(L1,L2,L3) also returns the type of

% triangle: (Regular, Equilateral, or Isosceles), as well as the area enclosed.

%

% Example:

% [isTri,typeTri,areaTri] = isTriangle(2,3,2)

%

% isTri =

% 1

% typeTri =

% Isosceles

% areaTri =

% 1.9843

% Author: Jerome Casey

% Initialize outputs

isTri = false;

typeTri = '';

areaTri = NaN;

% Create a sorted array of the inputs lengths

s = sort([L1 L2 L3]);

 if (s(1)+s(2)) > s(3)

% If the sum of the two shortest sides is greater than the longest side, the

% lengths can form a triangle.

 isTri = true;

 typeTri = 'Scalene';

 if s(1) == s(3)

 % If the shortest and longest lengths are equal, it implies that all three

 % lengths are equal, and that the three sides form an equilateral triangle.

 typeTri = 'Equilateral';

 elseif s(1)==s(2) || s(2)==s(3)

 % If middle length is equal to either the longest or shortest length,

 % the lengths form an isosceles triangle.

 typeTri = 'Isosceles';

 end

 % Calculate the area of the triangle using Heron's Formula

 p = sum(s)/2;

 areaTri = sqrt(p*(p-s(1))*(p-s(2))*(p-s(3)));

end

DT023-1 & DT025-1 Engineering Computing

JEROME CASEY MATLAB EXERCISES 20

References:

Griffiths, David F. (2005) An Introduction to Matlab, Department of Mathematics, The University of

Dundee.

www.maths.dundee.ac.uk/~ftp/na-reports/MatlabNotes.pdf

Love, Tim (2004) Matlab Databook, University of Cambridge

http://www-h.eng.cam.ac.uk/help/tpl/programs/Matlab/matlabDatabook

Moler, Cleve (2011) Experiments with MATLAB

http://www.mathworks.co.uk/moler/exm/chapters.html

Moler, Cleve (2004) Numerical Computing with MATLAB

A traditional textbook print edition, published by the Society for Industrial and Applied Mathematics, is

available from the SIAM Web site.

http://www.mathworks.co.uk/moler/chapters.html

Matlab Video Tutorials

1. MATLAB Tutorials from Mathworks

http://www.mathworks.es/academia/student_center/tutorials/mltutorial_launchpad.html#

2. Various Math Subjects: http://mathworld.wolfram.com

3. Importing Files into Matlab - Excel and other http://www.mathworks.co.uk/help/techdoc/ref/f16-5702.html

4. Matlab Scripts and Functions http://www.mathworks.co.uk/help/techdoc/learn_matlab/f4-2525.html

http://www.maths.dundee.ac.uk/~ftp/na-reports/MatlabNotes.pdf
http://www-h.eng.cam.ac.uk/help/tpl/programs/Matlab/matlabDatabook
http://www.mathworks.co.uk/moler/exm/chapters.html
http://www.mathworks.co.uk/moler/chapters.html
http://www.mathworks.es/academia/student_center/tutorials/mltutorial_launchpad.html
http://mathworld.wolfram.com/
http://www.mathworks.co.uk/help/techdoc/ref/f16-5702.html
http://www.mathworks.co.uk/help/techdoc/learn_matlab/f4-2525.html

	A MATLAB Primer in Four Hours with Practical Examples
	Recommended Citation

	zmw57dd0e7614

