Evaluation of Refraction Skills and Competencies of Ophthalmic Technicians: Providers of Refractive Services in Mozambique

Kajal Shah
Technological University Dublin, kajshah@aol.com

James Loughman
Technological University Dublin, james.loughman@tudublin.ie

Follow this and additional works at: https://arrow.tudublin.ie/otpomcon

Part of the Optometry Commons

Recommended Citation

This Conference Paper is brought to you for free and open access by ARROW@TU Dublin. It has been accepted for inclusion in Conference Papers by an authorized administrator of ARROW@TU Dublin. For more information, please contact yvonne.desmond@tudublin.ie, arrow.admin@tudublin.ie, brian.widdis@tudublin.ie.

This work is licensed under a Creative Commons Attribution-Noncommercial-Share Alike 3.0 License.
Evaluation of Refraction Skills and Competencies of Ophthalmic Technicians - providers of refractive services in Mozambique

Shah, K.1, Naidoo, K. 2,3, Chagunda, M. 4, Loughman, J. 1,2.

1 Optometry Department, Dublin Institute of Technology, 1 International Centre for Eye Care Education, Durban, 1 African Vision Research Institute, Durban, 1 Ophthalmology Department Hospital Central Beira.

Introduction

314 million people worldwide live with low vision and blindness. 145 million people's low vision is due to uncorrected refractive errors (URE). This does not include presbyopia. Mozambique has an estimated 720,000 people with visual defects (excluding presbyopia). Visual impairment and blindness from URE is estimated at 156,000. In 2010 Mozambique had 17 ophthalmologists and 60 Ophthalmic Technicians (OTs) for a population of about 21 million. These are the only personnel in the local health system trained in refraction. In order to meet recommendations from WHO (Vision 2020) for the ratio of eyecare personnel who can refract to head of population, the country would require about 420 refraction competent personnel by 2020.

Aim

This research aims to evaluate knowledge, refraction skills and competencies of OTs. The knowledge and level of refraction skills of the existing OT’s is unknown because the location and specifications of their training is varied. By identifying strengths and weaknesses of the OT’s refraction knowledge and skills, a programme of mentoring, upskilling and continuing education can be tailored accordingly to further develop their practice and career path.

Methods

16 OT’s were evaluated in 4 provinces at the Central Hospitals in Nampula (HCN), Beira (HBC), Chimoio (HCC) and Inhambane (HPI) using a variety of approaches: i.Background questionnaire to determine OT’s levels of training, amount of experience and workload. ii.Investigative tools for OTs: a.Questionnaire on perceived confidence in refracting b.Oral quiz about theoretical knowledge of refraction c.Observations of OT's in practise (with the equipment available) to grade refraction competencies.

Results

Background questionnaire

The OT’s have all trained at different institutions. 7 studied in Cuba on a 3-year training program, 2 in Malawi on a 1-year training program, and 7 in Mozambique. Of these trained in Mozambique, 2 took an 18 month course (graduated 2010), and 5 studied for 2 years. The refraction component varied in all from theory only (Malawi and Mozambique 18 month course) to three years of theory and practice in Cuba. Most of the OT’s ranged in age from 37 to 49. Their clinical experience averaged at 13 years with a standard deviation (s.d) of 6.5. They refracted an average of 12 patients per day (with a s.d of 5) from an average daily total of 25 patients seen in an eye clinic (with a s.d of 8).

Confidence skills survey

This was designed to find out how the OT’s rated their own skills. On the 0-16 scale:

• None were always confident in performing retinoscopy on spherical or astigmatic eyes
• None were always confident in binocular balancing and +1.00 blur test
• 8 were always confident with performing spherocylindrical refraction
• 6 were always confident in determining the power of a spectacle lens through focimeter, and 9 were always confident in determining the power by hand neutralisation (spheres only).

Oral quiz

Table: showing results of oral quiz

<table>
<thead>
<tr>
<th>Subject Area</th>
<th>Pass (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Case History</td>
<td>100</td>
</tr>
<tr>
<td>Refractive Errors</td>
<td>100</td>
</tr>
<tr>
<td>Visual Acuity (VA) and Pupil Distance (PD) Measurements</td>
<td>100</td>
</tr>
<tr>
<td>Retinoscopy</td>
<td>43.75 56.25</td>
</tr>
<tr>
<td>Subjective Refraction and Spectacle Prescription</td>
<td>75 25</td>
</tr>
</tbody>
</table>

Figure 2: Table showing results of oral quiz

Refractive components

<table>
<thead>
<tr>
<th>Location</th>
<th>VA chart</th>
<th>Trial case & frame</th>
<th>Retinoscope</th>
<th>Autorefractor</th>
<th>Cross-cylinder</th>
<th>Lens-meter</th>
</tr>
</thead>
<tbody>
<tr>
<td>HCN</td>
<td>6</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HCB</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HCC</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HPI</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

Figure 3: Bar chart showing OT's competencies in performing refractions

Refraction skills competency

Figure 4: Table of equipment available at various hospitals

Figure 5a and b: Assessing the OT’s performing retinoscopy

Recommendations and Conclusions

Refraction is almost half of the OT’s daily workload but at present only phoropters are being correctly used with any accuracy. There is huge potential for the OTs to be proficient at refraction. The key recommendations are:

• Training Upskilling: The different levels of training of the OT’s means that any upskilling will depend on where they qualified. The newly qualified OT’s (Mozambique 2010) and the OT’s qualified in Malawi need more intensive upskilling as they have no prior knowledge of objective and subjective refraction skills. The ones who qualified from Cuba or have had extra training already have prior knowledge and practice so they will need less time to upskill.

Training should consist of courses in objective refraction in the use of a retinoscope, subjective refraction with cross cylinders for correcting astigmatism and binocular balancing.

Refraction training programs should be standardized in OT courses.

• Equipment provision and training in their use: All OT’s should be trained in the use, maintenance and calibration of already available retinoscopes, autorefractors and focimeters. Cross-cylinders need to be sourced for all refraction units.

• Monitoring and Evaluation (M & E) framework for continuing training and education would encourage reflective practice, raise awareness of their knowledge limitations and encourage peer-review thus raising standards of care for their patients.

Literature cited

6. The Mozambican National Census 2007, more information on this and related projects can be obtained at www.mozeyecare.org.