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Abstract

This paper examines schema free non-relational tabular storage for two important emerging Plat-
form as a Service (PaaS) environments, where Google App Engine applications persist data to the
Google Datastore, and Microsoft Azure applications store data in Azure Tables. A simple mobile
web application was initially developed for both platforms, to understand how an application could
be developed and deployed. Java Data Objects (JDO) was selected for Google App Engine and
Windows Communication Foundation (WCF) in C# for MicrosoftAzure. Many applications have
a requirement to store complex data that is organised in relations in the order ofOne to One, One
to Many andMany to Many that are often implemented in a relational database. Azure SQL and
Google Cloud SQL are RDBMS technologies implemented on these Cloud platforms but are more
costly to use. A testbed was developed to investigate implementation of these relations using au-
tomatic management features and developer managed techniques on each platform using JDO and
WCF. An evaluation on primitive operations was carried out on both environments indicating each
provided adequate operations to create, update, delete anddisplay data. Due to design differences
App Engine JDO scored better. An evaluation of how relationscould be implemented was also con-
ducted. Google App Engine JDO provides automatic management of One to One andOne to Many
relations while Microsoft Azure does not provide any relations management features. Google App
Engine JDO permits storage of non-primitive types such asjava.util.List objects which allows for
tracking of child entity keys with ease, but this is not available in Azure Tables. Attempting to de-
velopJoin semantics in application code proved to be error prone and difficult with Azure Tables. A
number of alternative proposals are made to implement relations on Azure Tables.

Keywords: Cloud Storage, PaaS, App Engine, Azure, Table Storage

1 Introduction

In these current uncertain economic times, businesses needto keep costs down, by investing in IT ap-
plications and systems that can clearly be shown to contribute to business results [1]. Cloud Computing
promises to supply computing resources to match application workload demand, helping to reduce costs
where workload is low and satisfy customer demand during peak seasonal periods [2].

The purpose of this work was to examine new emerging storage technologies that could be used in-
stead of relational database technology solutions, on Google App Engine and Microsoft Azure platforms.
These new services are generally classified as NoSQL type services [3].

Microsoft Azure is an operating system for the cloud that runs within Microsoft datacenters spread
across multiple servers and networks. It provides compute,storage, automated service management



facilities, a relational database called SQL Azure, distributed access control and the service bus providing
a mechanism to integrate customer onsite data with the cloud[4].

Google App Engine provides an operating environment running reliably under heavy workloads, can
serve dynamic web pages content, implement data storage with sorting, provide transactions and query
features, load balancing and scaling running JVMs and storage scaling that is automatic and a local
development environment providing facilities to test solutions before deployment. Additionally, task
queues allow for work to be executed outside of web requests and time based scheduled tasks can be
run [5].

The remainder of the paper continues with details on experiments carried out in Section 2. A short
evaluation of the development environment is conducted in Section 3. An evaluation of primitive opera-
tions is carried out in Section 4, and an evaluation of data relation experiments is examined in Section 5.
Finally, in Section 6 conclusions are made with future work outlined.

2 Implementation of Experiments

This study aimed to examine both Azure Tables and App Engine JDO by porting a simple web ap-
plication to each environment, providing an understandingof implementation semantics and working
environment. Each testbed created data relationships in the orders of 1-1, 1-m and m-n. Further exami-
nation of primitive tabular storage APIs, features and limitations were examined via these test projects.
Each component examined was reviewed and scored according to Table 1. The scale was selected to dis-
tinguish between the quality of implemented features and allows for direct comparison between features
that are deemed equivalent. No emerging standard has been identified to determine correct implemen-
tation criteria of schema free storage or PaaS environments. The expectation is that an experienced
software developer or system administrator would come to the same conclusions.

Microsoft Azure Tables provide tabular structured storageof data where an entity class is mapped to
table storage and is persisted to a table. Each row of data in atable is represented by an entity class that
inherits from the abstract classTableServiceEntity. All storage entities containPartitionKey, RowKey
andTimeStamp data fields. The key fields must be set and dictate preferencesfor data partitioning. A
storage operation context must be derived from super classTableServiceContext, which itself is derived
from DataServiceContext defined in WCF Data Services [6]. It is recommended to developaDataSource
class that instantiates the context where high level business methods can be developed for consumption
by application code.Entity Group Transactions allow for batch transactions to execute over elements in
the same partition, identified by thePartitionKey. Azure Tables does not supportJoin operations natively
where LINQ operations are not implemented to do so [7]. No transactional facility is provided across
tables which is commonly implemented in RDBMS environments. Details on how replication between
datacenters are limited but 3 table replicas are kept acrossdatacenters [4].

Datanucleus provided Google with a base implementation of Java Data Objects (JDO) and Java Per-
sistence Framework (JPA) [8]. A low level entity framework was also exposed allowing developers
implement solutions directly or port new frameworks such asObjectify-App Engine [9]. JDO was se-
lected for this examination where data members of a class areannotated to define an entity class, which
is mapped to the Datastore. APersistenceManager Singleton object executes query, update and delete
operations on entities in the Datastore. A Data Access Object (DAO) object may be implemented in the
application to provide high level data operations.

The Datastore initially was deployed on Google Bigtable which was designed to scale to petabytes of
data across thousands of machines in a reliable manner [10].In 2009 it was announced that the datastore
would be migrated to MegaStore [11] to provide data redundancy across datacenters. ACID transactions
execute withinEntity Groups where stored objects are mapped to an internalDatatore element called a
Kind with looser consistency for operations across data groups [12]

The testbed code implementation was developed on Google AppEngine (Java) and Azure (C#) to
understand how relations may be modeled on Azure Tables [13]and on Google App Engine Dataser-
vice [5].



Score Explanation

0 (Poor) Does not achieve objectives
1 (Good) Achieves most objectives
2 (Very Good) Achieves objectives

Table 1: Scoring Rules for Examinations

2.1 Data Relations Testbed

The Google App Engine TestbedApp EngineTestBed examines relationships in two different scenarios,
where relationships are managed by the code known as anunowned relationship, and cases where au-
tomatic management features are used to maintain the relationship between objects known asowned
relationships. The latter case should remove some burden from the developer. Owned relationships
exist only for 1-1 and 1-m cardinality. For m-n relationships the relationship needs to be managed by
code. All code was developed in JDO [14] and executed from a simple test servlet. Tests were executed
on the local development environment and within the Cloud. Each test case implementedinsertData,
updateDate, displayData anddeleteData operations.

Test cases executed coveredOne to One Owned Relationship, One to One Unowned Relationship,
Embedded Entity Relationship where an internal static class may be defined in an entity class, One to
Many Owned Relationship, One to Many Unowned Relationship andMany to Many Relationship without
automatic relationship management.

The Microsoft Azure Testbed code was implemented asTestBedLib C# library that is used by a
simple test harness provided as an Azurewebrole. Each test case definesDelete, Update, Insert and
Display operations.

One to One Relationship, One to Many Relationship andMany to Many Relationship test cases were
created. Azure Tables does not provide any automatic methodto manage data relations.

3 Development Environment Evaluation

Results from the examination of the operating environment are shown in Table 2. Both Azure and App
Engine provided introductory material, covering conceptswith accompanying examples but substantial
effort was needed to understand and make example code work. During the lifetime of this project efforts
were made by both organisations to improve these resources via documentation, and web resources
published at Google I/O and Microsoft PDC. As these are new technologies resources were limited
initially, but there has been substantial improvement in examples and documentation. A rating of 1 has
been set for learning for both technologies.

Both provided facilities to test locally before deployment, where each technology deployed appli-
cations to an emulated environment on the workstation. Witheach build iteration released there were
improvements in performance. Both environments were rated1 for testing applications.

Deployment is possible from each development environment.In the case of Google App Engine a
small application will deploy in 2 to 3 minutes. This took much longer, often taking 15 minutes for a
small application to be deployed on Microsoft Azure. Additionally a command line toolappcfg, provided
by Google, may be used to deploy an application. It may be possible to integrate this into a company’s
build and deploy process. Google App Engine is rated 2 and Microsoft Azure rated 1.

Maintenance tasks can be carried out on applications that are deployed. In both environments it is
possible to deploy to a testing area and then activate as a production release quickly when needed. Both
technologies are rated at 2.



Azure Tables App Engine JDO

Learning 1 1
Testing 1 1
Deployment 1 2
Maintenance 2 2

Total 5 6

Table 2: Scoring of PaaS environment review

4 Evaluation of Primitive Operations

Within each environment is an obvious requirement that datacan be queried, updated and deleted. From
general use, experiments and examination of these technologies a number of primitive operations and
attributes were examined. In line with grading method in Table 1 these operations were examined.
Results are summarised in Table 3.

In the case of both environments a class is defined which is mapped to storage. It is not possible to
create a subclass of this object in Azure Tables and in App Engine JDO polymorphic relationships are
not supported [15]. Both technologies are rated 1.

Both environments support the easy creation and storage of an object. With Microsoft Azure Ta-
bles the ADO.Net Entity Framework is used to create the object, track the object and save changes to
storage. App Engine JDO creates an entity object which is passed to themakePeristent method of the
PeristenceManager object. Both environments are scored 2.

Multiple objects may be added successfully to both environments. In the case of Microsoft Azure
Tables ADO.Net objects are created one at a time, each objectis tracked and data persisted via a batch
save operation. App Engine JDO objects are added to a collection such asjava.util.List, and the collection
may be persisted directly to storage or the elements may be retrieved from the collection one at a time
and persisted to storage. In both cases the score awarded is 2.

A single object may be deleted from storage from both environments. The Microsoft ADO.Net Entity
Framework provides a limited LINQ implementation where an object may be queried using indexed table
keysPartitionKey andRowKey. A strong implementation feature is that it is possible to specify one object
or a collection of objects to be returned. There are no restrictions on using any other data member but
a full scan of the Azure Table will occur if non-indexed data member fields are used in queries. In App
Engine JDO thePersistenceManager has a method to return an object by key or return a single object or
collection by a JDO Select query. Single Object Deletion is rated as 2 for both technologies.

For cases that require batch deletion both environments support this. Microsoft Azure Tables must
mark each entity for deletion and issue batch save operationto execute the request. App Engine JDO
provides a facility to delete all entities in a collection without the need to iterate over that collection.
Azure Tables is awarded 1 while App Engine JDO is awarded 2.

Both environments support the updating of a single entity where the entity is retrieved, updated and
persisted to storage. The retrieval method has been outlined already. An Azure Table entity is tracked,
the values updated and changes are saved. Each App Engine JDOobject is explicitly persisted or will be
persisted when the persistence manager closes. Both features are scored 2.

In tests updating by batch was not possible on Azure Tables whereReplaceOnUpdate save option
needs to be used to persist updates one entity at a time to storage. App Engine JDO allows for collections
of updated objects to be saved to storage in their collectiondirectly. In this instance Azure Tables are
scored 0 and App Engine JDO scored 2.

When creating queries Azure Tables is limited to just 2 indexed values if efficient lookup is expected.
ThePartitionKey will group data on one storage node provided it can fit. In the case where the partition
continues on another storage node, or 1000 entities, or 4mb of data is transferred, a continuation token
is issued in the response header [13]. The laterCloudTableQuery implementation will process a contin-



uation token automatically. App Engine JDO allows for indexing by primary key, allows for naming of
additional indexed or indexing on all stored data members automatically. Azure Tables is scored 1 and
App Engine JDO scored 2.

An interesting case is where a query must be created at runtime dynamically. App Engine JDO allows
a query, very similar to simple SQL language, be constructedas a string and executed. Azure Tables did
not have this feature where dynamic LINQ [7] is needed. AzureTables was scored 1 and App Engine
JDO scored 2.

Both environments provide data pagination solutions whereAzure Tables may use LINQ Take and
Skip operations and App Engine uses a paging cursor that provides a link to the next result in the query.
Both technologies are scored 2.

Multitenancy can be achieved in each environment. Azure Tables can be achieved by the application
to select the names of tables, for instance by adding a prefix for customer account. App Engine JDO pro-
vides a namespace API that simply controls the visibility ofapplication queries by adding a namespace
prefix to all primary keys. Both environments are scored 2.

Operation Azure Tables App Engine JDO

Object Declaration 1 1
Add Object 2 2
Add Multiple Objects 2 2
Delete Single Object 2 2
Delete by Batch 1 2
Update Single Object 2 2
Update by Batch 0 2
Query by Index 1 2
Runtime Query Creation 1 2
Pagination 2 2
Multitenancy 2 2

Total 16 21

Table 3: Scoring of primitive storage operations and attributes

5 Data Relations Evaluation

Table 4 shows evaluation scores awarded. In the case of 1-1 relationships App Engine JDO provides an
automatic relationship mapping. Queries on the parent object loads the child object data automatically,
which can be accessed without need to query separately. In testing it was required explicitly to return the
child object from the parent and then to delete the child prior to the parent. The feature is scored 1 due
to this limitation. The unmanaged mode can also be used. It was found that a string representation of
the child object key could be stored as an attribute in the parent object. This allowed easy construction
of a query key for the child entity. Automatic managed relations allow JDO transactions to be applied
to the updates, insertions and deletions. This is not possible in the unmanaged scenario. An interesting
option is the embedded class in App Engine JDO where a static class, annotated asEmbeddedOnly may
be added to the entity to be stored. The entity stored contains the data members of both classes as one
entity. This feature is scored 2.

Azure Tables does not provide a method to implement automatic relationship management. An
unmanaged relationship can be implemented by storing a child entity’s Partition Key or Row Key. This
does mean that 2 trips are needed to obtain the parent object and then the child object. This is scored 1.

For the 1-m case App Engine JDO supports automatic management of parent and children relation-
ships, which works well, where an index is created automatically for child objects. In code ajava.util.List
object holds the list of children in the parent object. This feature is scored 2. An alternative is the un-
managed 1-m relationship where the developer must load the parent and then children initially, and then



Relationship Azure Tables App Engine JDO

One to One Owned N/A 1
One to One Unowned 1 2
One to One Embedded N/A 2
One to Many Owned 1 2
One to Many Unowned 1 1
Many to Many 1 1

Total 4 9

Table 4: Scoring of Relations

Chain Composite Range Complex Sparse

One to One X X
One to Many X X X X
Many to Many X X X X

Table 5: Techniques to implement relation storage

handle all updates, insertions and deletions. This was scored 1.
Azure Tables requires that developers provide their own algorithm to implement 1-m relations. The

simplest idea is to store attributes in a parent table, whichare keys to child entities and can be used to
query those separate tables. This is scored 1.

In both Azure Tables and App Engine JDO m-n relationships need to be managed by the developer.
It is possible in App Engine to develop a 1-m relation in both directions. In the case where the Datastore
assigned and managed keys, those values were not known untilthe object was stored. To provide the
key of a child to a parent to persist in as a collection it required the child object be written and then
read to discover it’s automatic key value. This extra trip tostorage is not efficient. Alternatively, each
child could create it’s key based on a scheme such as parent object string with an element position value,
where these values could be stored in the parent. App Engine JDO is rated 1.

For Azure Tables storing a collection directly is not possible as primitive storage values, such as nu-
merical and string types, are only permitted. Joins on entity attributes are not possible either. Developing
a solution was possible but slow and error prone.

App Engine JDO transactions are not possible for unmanaged cases where entities are not in the
sameEntity Group [12]. Higher consistency is inferred on local indexes, within anEntity Group, but this
to lesser degree on global indexes betweenEntity Groups. Two-phase commit between Entity groups
is possible for for 1-1 and 1-m managed relations, referred to as owned relations. All communication
between datacenters are synchronous and consistent, and that secondary indexes are available on all
Entity properties, which is implemented in App Engine JDO [12]. Data is mapped and stored in BigTable
underMultiversion Concurrency Control management [16].

Table 5 outlines a number of techniques that could be appliedto the management of these relations,
in Azure Tables in particular. Within Azure Tables the lack of a facility to join tables on an attribute is
problematic. The simplest technique is to take a 1-1 relation and store all data members in just one class.
In the case of Azure Tables it is not required that all fields befilled and where fields are empty null values
are placed in the table which lowers storage requirements. This can not apply to 1-m or m-n.

A further proposal is that the common idea of a horizontal join should be replaced by a vertical
join, which is introduced as aChain Relation. Instead of modeling a class that has fixed attributes the
PartitionKey andRowKey can be used. For example, in the case of an entity class modeling a person the
PartitionKey identifies a person and theRowKey identifies the type of data that is stored, where previously
this would have been modeled in another entity and table. It is acknowledged that the application code



needs to be aware of what type of data is stored in the variablestorage fields. It may be possible to
develop a soft schema that could be stored in a table, that is loaded when the program starts or store
textual data as a tuple containing type identifier and data. This could be applied to all three cases. In the
1-m and m-n cases it is proposed to implement aNextRecord attribute linking to theRowKey and a final
End value when the list is exhausted.

A further amendment to the previous technique, calledRange Relation, is to implementFirstKey and
LastKey fields in the entity. The key for each entity is stored in theRowKey except for the parent which
has a data type identifier. The parent can detect and access all children.

Another derivative is theComplex Relation, where just oneDescription key replaces theFirstKey
andLastKey fields. All new elements added asRowKeys are written to theDescription delimited by a
colon or some other agreed delimiter.

Sparse Relation could be implemented where a new field is dynamically added tothe stored en-
tity. TheDataServiceContext methodsWritingEntity andReadingEntity have been suggested to add and
remove these data fields [17].

6 Conclusions and Future Work

The work carried out shows that developers familiar with both the Eclipse and Visual Studio 2010 in-
tegrated development environments can be productive very quickly. Each environment provides a local
test server to execute test cases prior to deployment in the Cloud, with no need to make changes within
the application code. An effort has been made to ensure, where possible, that well known APIs are im-
plemented natively or are mapped to the new infrastructure,thus improving developer productivity and
encouraging early investigation by developers. Overall the review scored App Engine JDO as the better
environment by a narrow margin, where deployment time was substantially slower on Azure deploying
code packages, where storage had been already allocated.

Effort was made to implement adequate primitive data operations on App Engine JDO and Azure
Tables. One limiting feature with Azure Tables is the restriction to just two indexed keys for queries,
which means that storage needs to be arranged to support queries carefully. In the case of App Engine
JDO additional indexes can be added allowing for new queriesto be developed during the life of the
application with greater ease. Both environments use existing APIs that are strong, but are limited only
by the underlying storage architecture. Currently, greater restrictions are seen within the Azure Tables
environment where a developer must be aware of both a table and entities stored in this table. This
differs in App Engine JDO where entities and their access keys are important. With a simpler usage
model, by Google, it could be argued that there is more flexibility for architecture to be refined further.
The evaluation outcome indicates App Engine JDO is stronger.

From the examination of the relations test cases it is possible to implement solutions that represent
information in 1-1, 1-m and m-n relations. App Engine JDO implements techniques that are managed
automatically by the environment for 1-1 and 1-m relations.These are very much welcomed, reducing
the burden on the developer, and could also help ensure correctness of solutions. For m-n relations
on App Engine JDO, and also for 1-1, 1-m and m-n relations on Azure Tables, these features must
be implemented by the developer. The approach taken for Azure Tables test case relations was done
in a relational database design mindset. A number of issues,such as the inability to join Azure Table
objects via LINQ and the lack of transactions across tables made useful implementation difficult. It was
proposed to implement relations in outlinedChain, Composite, Range, Complex andSparse methods. In
this evaluation App Engine JDO was more successful.

Further investigation by implementing a multitenant application that uses these proposed techniques,
measuring performance and accuracy under various workloads could prove enlightening. Whether a
transaction log should be created by writing actions to a dedicated transaction table or Blob asyn-
chronously, could be considered. In Azure Tables, there could be a case where queries on data that
does not appear in the partition key, or partition and row key, could be added as a key to a new table
providing indexes to other data.
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