D 5 B LIN Technological University Dub.lin
- ARROW@TU Dublin

Conference Papers School of Science and Computing (Former ITT)

2012-10

An Investigation of Distributed Schema Free Tabular Data Storage
Technologies on Google App Engine and Microsoft Azure

Conor McGrath
Technological University Dublin

Gary Clynch
Technological University Dublin

Follow this and additional works at: https://arrow.tudublin.ie/ittscicon

b Part of the Computer and Systems Architecture Commons, and the Hardware Systems Commons

Recommended Citation

McGrath, C., Clynch, G.: An Investigation of Distributed Schema Free Tabular Data Storage Technologies
on Google App Engine and Microsoft Azure. 11th Information Technology and Telecommunications
(IT&T) Conference, Cork Institute of Technology, 2012.

This Conference Paper is brought to you for free and open access by the School of Science and Computing (Former
ITT) at ARROW@TU Dublin. It has been accepted for inclusion in Conference Papers by an authorized administrator
of ARROW@TU Dublin. For more information, please contact arrow.admin@tudublin.ie, aisling.coyne@tudublin.ie,
vera.kilshaw@tudublin.ie.

https://arrow.tudublin.ie/
https://arrow.tudublin.ie/ittscicon
https://arrow.tudublin.ie/ittsci
https://arrow.tudublin.ie/ittscicon?utm_source=arrow.tudublin.ie%2Fittscicon%2F6&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/259?utm_source=arrow.tudublin.ie%2Fittscicon%2F6&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/263?utm_source=arrow.tudublin.ie%2Fittscicon%2F6&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:arrow.admin@tudublin.ie,%20aisling.coyne@tudublin.ie,%20vera.kilshaw@tudublin.ie
mailto:arrow.admin@tudublin.ie,%20aisling.coyne@tudublin.ie,%20vera.kilshaw@tudublin.ie

An investigation of distributed schema freetabular data
stor age technologies on Google App Engine and Microsoft
Azure

Conor McGrath 1, Gary Clynch 2

LITT Dublin, Institute of Technology Tallaght, Tallaght, Biin 24, Ireland
cmcgrath@itnet.ie

2|TT Dublin, Institute of Technology Tallaght, Tallaght, Biin 24, Ireland
gary.clynch@ittdublin.ie

Abstract

This paper examines schema free non-relational tabulaagstcfor two important emerging Plat-
form as a Service (PaaS) environments, where Google ApmEragiplications persist data to the
Google Datastore, and Microsoft Azure applications st@i ih Azure Tables. A simple mobile
web application was initially developed for both platforrtts understand how an application could
be developed and deployed. Java Data Objects (JDO) wageskliee Google App Engine and
Windows Communication Foundation (WCF) in C# for MicrosAfture. Many applications have
a requirement to store complex data that is organised itigekin the order ofOne to One, One

to Many and Many to Many that are often implemented in a relational database. AzQke &d
Google Cloud SQL are RDBMS technologies implemented oreti@sud platforms but are more
costly to use. A testbed was developed to investigate imgtgation of these relations using au-
tomatic management features and developer managed teelsrig each platform using JDO and
WCF. An evaluation on primitive operations was carried auboth environments indicating each
provided adequate operations to create, update, deletdigpldy data. Due to design differences
App Engine JDO scored better. An evaluation of how relatmmdd be implemented was also con-
ducted. Google App Engine JDO provides automatic manageofi@ne to One andOne to Many
relations while Microsoft Azure does not provide any rela management features. Google App
Engine JDO permits storage of non-primitive types suclaga.util.List objects which allows for
tracking of child entity keys with ease, but this is not azhie in Azure Tables. Attempting to de-
velopJoin semantics in application code proved to be error prone dfiduti with Azure Tables. A
number of alternative proposals are made to implemenioakbn Azure Tables.

Keywords: Cloud Storage, PaaS, App Engine, Azure, Table Storage

1 Introduction

In these current uncertain economic times, businessestadeskp costs down, by investing in IT ap-
plications and systems that can clearly be shown to comgritaubusiness results [1]. Cloud Computing
promises to supply computing resources to match applicatmrkload demand, helping to reduce costs
where workload is low and satisfy customer demand duringg peasonal periods [2].

The purpose of this work was to examine new emerging stoeg®blogies that could be used in-
stead of relational database technology solutions, on [Bdggp Engine and Microsoft Azure platforms.
These new services are generally classified as NoSQL typiess(3].

Microsoft Azure is an operating system for the cloud thasruithin Microsoft datacenters spread
across multiple servers and networks. It provides compait#age, automated service management

facilities, a relational database called SQL Azure, distied access control and the service bus providing
a mechanism to integrate customer onsite data with the ¢#jud

Google App Engine provides an operating environment runratfiably under heavy workloads, can
serve dynamic web pages content, implement data storagesuriting, provide transactions and query
features, load balancing and scaling running JVMs and gtoszaling that is automatic and a local
development environment providing facilities to test siolos before deployment. Additionally, task
gueues allow for work to be executed outside of web requestgime based scheduled tasks can be
run [5].

The remainder of the paper continues with details on exggrisncarried out in Section 2. A short
evaluation of the development environment is conductecenti®n 3. An evaluation of primitive opera-
tions is carried out in Section 4, and an evaluation of dd&diom experiments is examined in Section 5.
Finally, in Section 6 conclusions are made with future wankined.

2 Implementation of Experiments

This study aimed to examine both Azure Tables and App Endd@ By porting a simple web ap-
plication to each environment, providing an understanadgihgnplementation semantics and working
environment. Each testbed created data relationship®iorters of 1-1, 1-m and m-n. Further exami-
nation of primitive tabular storage APIs, features andttnions were examined via these test projects.
Each component examined was reviewed and scored accoadiiaple 1. The scale was selected to dis-
tinguish between the quality of implemented features alwdvalfor direct comparison between features
that are deemed equivalent. No emerging standard has bewtifietl to determine correct implemen-
tation criteria of schema free storage or PaaS environmehite expectation is that an experienced
software developer or system administrator would comedas#me conclusions.

Microsoft Azure Tables provide tabular structured storapgata where an entity class is mapped to
table storage and is persisted to a table. Each row of dattalni@is represented by an entity class that
inherits from the abstract clagableServiceEntity. All storage entities contaiRartitionKey, RowKey
and TimeStamp data fields. The key fields must be set and dictate preferdocekata partitioning. A
storage operation context must be derived from super Gi$sServiceContext, which itself is derived
from DataServiceContext defined in WCF Data Services [6]. Itis recommended to deva@ataSource
class that instantiates the context where high level basingthods can be developed for consumption
by application codeEntity Group Transactions allow for batch transactions to execute over elements in
the same partition, identified by tiRartitionKey. Azure Tables does not suppddin operations natively
where LINQ operations are not implemented to do so [7]. Nodaational facility is provided across
tables which is commonly implemented in RDBMS environmeilistails on how replication between
datacenters are limited but 3 table replicas are kept adatssenters [4].

Datanucleus provided Google with a base implementatioavd Data Objects (JDO) and Java Per-
sistence Framework (JPA) [8]. A low level entity frameworlasvalso exposed allowing developers
implement solutions directly or port new frameworks suctOégectify-App Engine [9]. JDO was se-
lected for this examination where data members of a clasararaetated to define an entity class, which
is mapped to the Datastore. PersistenceManager Singleton object executes query, update and delete
operations on entities in the Datastore. A Data Access OE¥0) object may be implemented in the
application to provide high level data operations.

The Datastore initially was deployed on Google Bigtablechihwas designed to scale to petabytes of
data across thousands of machines in a reliable mannerl®009 it was announced that the datastore
would be migrated to MegaStore [11] to provide data reduaglaicross datacenters. ACID transactions
execute withinEntity Groups where stored objects are mapped to an inteDathtore element called a
Kind with looser consistency for operations across data groag$ [

The testbed code implementation was developed on GoogleEAgme (Java) and Azure (C#) to
understand how relations may be modeled on Azure Tablesdii@]on Google App Engine Dataser-
vice [5].

| Score | Explanation \
0 (Poor) Does not achieve objectives
1 (Good) Achieves most objectives
2 (Very Good) | Achieves objectives

Table 1: Scoring Rules for Examinations

2.1 Data Redations Testbed

The Google App Engine Testbégp EngineTestBed examines relationships in two different scenarios,
where relationships are managed by the code known am@mmed relationship, and cases where au-
tomatic management features are used to maintain theoreaip between objects known asned
relationships. The latter case should remove some burden from the develdpened relationships
exist only for 1-1 and 1-m cardinality. For m-n relationshiihe relationship needs to be managed by
code. All code was developed in JDO [14] and executed frormalsi test servlet. Tests were executed
on the local development environment and within the CloudchEtest case implementéeasertData,
updateDate, displayData anddeleteData operations.

Test cases executed cover@de to One Owned Relationship, One to One Unowned Relationship,
Embedded Entity Relationship where an internal static class may be defined in an entitys ol to
Many Owned Relationship, Oneto Many Unowned Relationship andMany to Many Relationship without
automatic relationship management.

The Microsoft Azure Testbed code was implementedieBedLib C# library that is used by a
simple test harness provided as an Azwebrole. Each test case defin&=lete, Update, Insert and
Display operations.

Oneto One Relationship, Oneto Many Relationship andMany to Many Relationship test cases were
created. Azure Tables does not provide any automatic methothnage data relations.

3 Development Environment Evaluation

Results from the examination of the operating environmeatshown in Table 2. Both Azure and App
Engine provided introductory material, covering concepith accompanying examples but substantial
effort was needed to understand and make example code warlkadghe lifetime of this project efforts
were made by both organisations to improve these resouiaedocumentation, and web resources
published at Google I/O and Microsoft PDC. As these are nekn@logies resources were limited
initially, but there has been substantial improvement ianegles and documentation. A rating of 1 has
been set for learning for both technologies.

Both provided facilities to test locally before deploymewhere each technology deployed appli-
cations to an emulated environment on the workstation. \&4ith build iteration released there were
improvements in performance. Both environments were rhtied testing applications.

Deployment is possible from each development environmienthe case of Google App Engine a
small application will deploy in 2 to 3 minutes. This took nmuonger, often taking 15 minutes for a
small application to be deployed on Microsoft Azure. Adutitally a command line to@lppcfg, provided
by Google, may be used to deploy an application. It may beilplest® integrate this into a company’s
build and deploy process. Google App Engine is rated 2 anddgaft Azure rated 1.

Maintenance tasks can be carried out on applications teateployed. In both environments it is
possible to deploy to a testing area and then activate agdaigion release quickly when needed. Both
technologies are rated at 2.

\ | Azure Tables| App Engine JDO|

Learning 1 1
Testing 1 1
Deployment || 1 2
Maintenance|| 2 2
| Total | 5 | 6

Table 2: Scoring of PaaS environment review

4 Evaluation of Primitive Operations

Within each environment is an obvious requirement that datebe queried, updated and deleted. From
general use, experiments and examination of these teajiasla number of primitive operations and
attributes were examined. In line with grading method inld@ab these operations were examined.
Results are summarised in Table 3.

In the case of both environments a class is defined which ipath storage. It is not possible to
create a subclass of this object in Azure Tables and in AppriengDO polymorphic relationships are
not supported [15]. Both technologies are rated 1.

Both environments support the easy creation and storaga obgct. With Microsoft Azure Ta-
bles the ADO.Net Entity Framework is used to create the objeack the object and save changes to
storage. App Engine JDO creates an entity object which isquhto themakePeristent method of the
PeristenceManager object. Both environments are scored 2.

Multiple objects may be added successfully to both enviremis In the case of Microsoft Azure
Tables ADO.Net objects are created one at a time, each abjweicked and data persisted via a batch
save operation. App Engine JDO objects are added to a dohestich agava.util.List, and the collection
may be persisted directly to storage or the elements maytbeved from the collection one at a time
and persisted to storage. In both cases the score awarded is 2

A single object may be deleted from storage from both enwrents. The Microsoft ADO.Net Entity
Framework provides a limited LINQ implementation where bjeot may be queried using indexed table
keysPartitionKey andRowKey. A strong implementation feature is that it is possible tecsfy one object
or a collection of objects to be returned. There are no s on using any other data member but
a full scan of the Azure Table will occur if non-indexed datamber fields are used in queries. In App
Engine JDO théersistenceManager has a method to return an object by key or return a single bbjec
collection by a JDO Select query. Single Object Deletiorated as 2 for both technologies.

For cases that require batch deletion both environmenfgosuthis. Microsoft Azure Tables must
mark each entity for deletion and issue batch save opertti@xecute the request. App Engine JDO
provides a facility to delete all entities in a collectiontmaut the need to iterate over that collection.
Azure Tables is awarded 1 while App Engine JDO is awarded 2.

Both environments support the updating of a single entitgnetine entity is retrieved, updated and
persisted to storage. The retrieval method has been aditimeady. An Azure Table entity is tracked,
the values updated and changes are saved. Each App Enginebj&is explicitly persisted or will be
persisted when the persistence manager closes. Bothdsate scored 2.

In tests updating by batch was not possible on Azure TableseweplaceOnUpdate save option
needs to be used to persist updates one entity at a time &mstoipp Engine JDO allows for collections
of updated objects to be saved to storage in their collectimectly. In this instance Azure Tables are
scored 0 and App Engine JDO scored 2.

When creating queries Azure Tables is limited to just 2 irdiexalues if efficient lookup is expected.
The PartitionKey will group data on one storage node provided it can fit. In teovhere the partition
continues on another storage node, or 1000 entities, or 4rdata is transferred, a continuation token
is issued in the response header [13]. The I&teudTableQuery implementation will process a contin-

uation token automatically. App Engine JDO allows for indexby primary key, allows for naming of
additional indexed or indexing on all stored data membetsraatically. Azure Tables is scored 1 and
App Engine JDO scored 2.

An interesting case is where a query must be created at rengymamically. App Engine JDO allows
a query, very similar to simple SQL language, be construased string and executed. Azure Tables did
not have this feature where dynamic LINQ [7] is needed. AZiakles was scored 1 and App Engine
JDO scored 2.

Both environments provide data pagination solutions witenere Tables may use LINQ Take and
Skip operations and App Engine uses a paging cursor thaid@e®w link to the next result in the query.
Both technologies are scored 2.

Multitenancy can be achieved in each environment. Azuréeadan be achieved by the application
to select the names of tables, for instance by adding a pafoustomer account. App Engine JDO pro-
vides a namespace API that simply controls the visibilityapplication queries by adding a namespace
prefix to all primary keys. Both environments are scored 2.

| Operation || Azure Tables| App Engine JDO|
Object Declaration 1 1
Add Object 2 2
Add Multiple Objects 2 2
Delete Single Object 2 2
Delete by Batch 1 2
Update Single Object 2 2
Update by Batch 0 2
Query by Index 1 2
Runtime Query Creation| 1 2
Pagination 2 2
Multitenancy 2 2
| Total | 16 | 21 |

Table 3: Scoring of primitive storage operations and aitgb

5 Data Relations Evaluation

Table 4 shows evaluation scores awarded. In the case of [atlorships App Engine JDO provides an
automatic relationship mapping. Queries on the parentcoljads the child object data automatically,
which can be accessed without need to query separatelystinget was required explicitly to return the
child object from the parent and then to delete the childrgndhe parent. The feature is scored 1 due
to this limitation. The unmanaged mode can also be used. dtfauand that a string representation of
the child object key could be stored as an attribute in thergawbject. This allowed easy construction
of a query key for the child entity. Automatic managed relasi allow JDO transactions to be applied
to the updates, insertions and deletions. This is not plessilihe unmanaged scenario. An interesting
option is the embedded class in App Engine JDO where a statis,cannotated @& mbeddedOnly may

be added to the entity to be stored. The entity stored canthm data members of both classes as one
entity. This feature is scored 2.

Azure Tables does not provide a method to implement autermekationship management. An
unmanaged relationship can be implemented by storing d ehtity’s Partition Key or Row Key. This
does mean that 2 trips are needed to obtain the parent obgtthen the child object. This is scored 1.

For the 1-m case App Engine JDO supports automatic managerhparent and children relation-
ships, which works well, where an index is created autorallyiéor child objects. In code gva.util.List
object holds the list of children in the parent object. Thaattire is scored 2. An alternative is the un-
managed 1-m relationship where the developer must loadaitempand then children initially, and then

Relationship | Azure Tables| App Engine JDO|

One to One Owned N/A 1
One to One Unowned || 1 2
One to One Embedded, N/A 2
One to Many Owned || 1 2
One to Many Unowned| 1 1
Many to Many 1 1
| Total | 4 | 9

Table 4: Scoring of Relations

\ | Chain| Composite| Range| Complex| Sparse]

One to One X X
Oneto Many || X X X X
Many to Many || X X X X

Table 5: Techniques to implement relation storage

handle all updates, insertions and deletions. This wagdchr

Azure Tables requires that developers provide their owardhgn to implement 1-m relations. The
simplest idea is to store attributes in a parent table, whrehkeys to child entities and can be used to
query those separate tables. This is scored 1.

In both Azure Tables and App Engine JDO m-n relationshipsl tede managed by the developer.
It is possible in App Engine to develop a 1-m relation in batiections. In the case where the Datastore
assigned and managed keys, those values were not knowrthentibject was stored. To provide the
key of a child to a parent to persist in as a collection it reggiithe child object be written and then
read to discover it's automatic key value. This extra trigtorage is not efficient. Alternatively, each
child could create it's key based on a scheme such as parjeut skring with an element position value,
where these values could be stored in the parent. App EnBi@eidrated 1.

For Azure Tables storing a collection directly is not poksis primitive storage values, such as nu-
merical and string types, are only permitted. Joins oneatttibutes are not possible either. Developing
a solution was possible but slow and error prone.

App Engine JDO transactions are not possible for unmanagsescwhere entities are not in the
sameEntity Group [12]. Higher consistency is inferred on local indexes, witan Entity Group, but this
to lesser degree on global indexes betweetity Groups. Two-phase commit between Entity groups
is possible for for 1-1 and 1-m managed relations, referoealstowned relations. All communication
between datacenters are synchronous and consistent, @nsetondary indexes are available on all
Entity properties, which is implemented in App Engine JD@][Data is mapped and stored in BigTable
underMultiversion Concurrency Control management [16].

Table 5 outlines a number of techniques that could be appi¢gde management of these relations,
in Azure Tables in particular. Within Azure Tables the ladlkadacility to join tables on an attribute is
problematic. The simplest technique is to take a 1-1 redadind store all data members in just one class.
In the case of Azure Tables itis not required that all field§ilesl and where fields are empty null values
are placed in the table which lowers storage requiremeitiis. Cein not apply to 1-m or m-n.

A further proposal is that the common idea of a horizontah jsould be replaced by a vertical
join, which is introduced as @hain Relation. Instead of modeling a class that has fixed attributes the
PartitionKey andRowKey can be used. For example, in the case of an entity class mgdefierson the
PartitionKey identifies a person and tiRewKey identifies the type of data that is stored, where previously
this would have been modeled in another entity and tables dtknowledged that the application code

needs to be aware of what type of data is stored in the vargblage fields. It may be possible to
develop a soft schema that could be stored in a table, thaaget when the program starts or store
textual data as a tuple containing type identifier and daté dould be applied to all three cases. In the
1-m and m-n cases it is proposed to implemeNegRecord attribute linking to theRowKey and a final
End value when the list is exhausted.

A further amendment to the previous technique, caRadge Relation, is to implementirstKey and
LastKey fields in the entity. The key for each entity is stored in RwvKey except for the parent which
has a data type identifier. The parent can detect and actessdien.

Another derivative is the&€omplex Relation, where just ondescription key replaces thé&irstKey
and LastKey fields. All new elements added &owKeys are written to theDescription delimited by a
colon or some other agreed delimiter.

Soarse Relation could be implemented where a new field is dynamically addettheéostored en-
tity. The DataServiceContext methodsWritingEntity and ReadingEntity have been suggested to add and
remove these data fields [17].

6 Conclusions and Future Work

The work carried out shows that developers familiar withhithie Eclipse and Visual Studio 2010 in-
tegrated development environments can be productive wackly. Each environment provides a local
test server to execute test cases prior to deployment inlthelCwith no need to make changes within
the application code. An effort has been made to ensure,engassible, that well known APIs are im-
plemented natively or are mapped to the new infrastructhes improving developer productivity and
encouraging early investigation by developers. Overallrdview scored App Engine JDO as the better
environment by a narrow margin, where deployment time wastsumtially slower on Azure deploying
code packages, where storage had been already allocated.

Effort was made to implement adequate primitive data omsraiton App Engine JDO and Azure
Tables. One limiting feature with Azure Tables is the resitsh to just two indexed keys for queries,
which means that storage needs to be arranged to supporesjoarefully. In the case of App Engine
JDO additional indexes can be added allowing for new queddse developed during the life of the
application with greater ease. Both environments useiegigtPls that are strong, but are limited only
by the underlying storage architecture. Currently, greastrictions are seen within the Azure Tables
environment where a developer must be aware of both a tablesitities stored in this table. This
differs in App Engine JDO where entities and their access lag important. With a simpler usage
model, by Google, it could be argued that there is more flltxifor architecture to be refined further.
The evaluation outcome indicates App Engine JDO is stronger

From the examination of the relations test cases it is pesgibimplement solutions that represent
information in 1-1, 1-m and m-n relations. App Engine JDO liempents techniques that are managed
automatically by the environment for 1-1 and 1-m relatiohkese are very much welcomed, reducing
the burden on the developer, and could also help ensurectmess of solutions. For m-n relations
on App Engine JDO, and also for 1-1, 1-m and m-n relations oardZables, these features must
be implemented by the developer. The approach taken foreAzables test case relations was done
in a relational database design mindset. A number of issues$) as the inability to join Azure Table
objects via LINQ and the lack of transactions across tabledenuseful implementation difficult. It was
proposed to implement relations in outlin€tain, Composite, Range, Complex andSparse methods. In
this evaluation App Engine JDO was more successful.

Further investigation by implementing a multitenant aggtiion that uses these proposed techniques,
measuring performance and accuracy under various workloadld prove enlightening. Whether a
transaction log should be created by writing actions to acaéed transaction table or Blob asyn-
chronously, could be considered. In Azure Tables, therddcbe a case where queries on data that
does not appear in the partition key, or partition and row; keyld be added as a key to a new table
providing indexes to other data.

References

[1] Gartner Inc. Top Technology Predictions for 2011 and Beyond. 2011.
http://www.gartner.com/technology/innovation/it-gietions.jsp [May 2011].

[2] Michael Armbrust, Armando Fox, Rean Griffith, Anthony Doseph, Randy H. Katz, Andrew
Konwinski, Gunho Lee, David A. Patterson, Ariel Rabkin, I18toica, and Matei ZahariaAbove
the Clouds: A Berkeley View of Cloud Computing. (UCB EECS-2009-28), Feb 2009.

[3] NoSQL. NoSQL - Your Ultimate Guide to the Non-Relational Universe. 2011. http://nosql-
database.org/ [May 2011].

[4] Microsoft Inc. Introducing the Windows Azure Platform. 2011.
http://ww.microsoft.com/windowsazure/Whitepapersajv?011].

[5] Google Inc.Google AppEngine, 2011. http://code.google.com/appengine/docs/whatigigappengine.html

[Jan 2011].

[6] Microsoft Inc. WCF Data Services. 2011. http://msdn.microsoft.com/en-us/data/bb93 1My
2011].

[7] Microsoft Inc. Windows Azure Platform - LINQ Query Operators. 2011.

http://msdn.microsoft.com/en-us/library/windowsazdd135725.aspx [Nov 2011].

[8] DatanucleusDatanucleus Access Platform, 2011. http://www.datanucleus.org/products/acceepra/
[May 2011].

[9] Objectify. objectify-appengine - The simplest convenient interface to the Google App Engine data-
store. 2011. http://code.google.com/p/objectify-appengidahn 2011].

[10] Fay Chang, Jeffrey Dean, Sanjay Ghemawat, Wilson Galj$deborah A. Wallach, Mike Burrows,
Tushar Chandra, Andrew Fikes, and Robert E. GruBegtable: a distributed storage system for
structured data. In OSDI *06: Proceedings of the 7th USENIX Symposium on Operating Systems
Design and Implementation, pages 15-15, Berkeley, CA, USA, 2006. USENIX Association.

[11] Google Inc. Migration to a Better Datastore. 2011.
http://googleappengine.blogspot.com/2009/09/migratd-better-datastore.html [May 2011].

[12] Jason Baker, Chris Bondg, James C. Corbett, J. J. FyrAradrey Khorlin, James Larson, Jean M.
Leon, Yawei Li, Alexander Lloyd, and Vadim YushprakNlegastore: Providing Scalable, Highly
Available Storage for Interactive Services. In In Conference on Innovative Data Systems Research
(CIDR), pages 223-234, Jan 2011.

[13] Jai Haridas, Niranjan Nilakantan, and Brad Caldé&indows Azure Table - Programming Table
Sorage. 2009. http://www.microsoft.com/windowsazure/whitppes [Feb 2011].

[14] Java Community Process (JCP). JSR-000243 Java Data Objects 2.0. 2010.
http://jcp.org/aboutJava/communityprocess/final48/hdex.html [Oct 2010].

[15] Google IncEntity Relationshipsin JDO. 2011. http://code.google.com/appengine/docs/jatastiare/jdo
[May 2011].

[16] Philip A. Bernstein and Nathan Goodmadoncurrency Control in Distributed Database Systems.
13:185-221, June 1981.

[17] Neil MacKenzie Entitiesin Azure Tables. 2011. http://convective.wordpress.com/2009/12/3iies-
in-azure-tables/ [May 2011].

	An Investigation of Distributed Schema Free Tabular Data Storage Technologies on Google App Engine and Microsoft Azure
	Recommended Citation

	paper_cmcgrath.dvi

