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Burkholderia cenocepacia is an important human pathogen in patients with cystic fibrosis (CF).

Non-clinical reservoirs may play a role in the acquisition of infection, so it is important to evaluate

the pathogenic potential of environmental B. cenocepacia isolates. In this study, we investigated

the interactions of two environmental B. cenocepacia strains (Mex1 and MCII-168) with two

bronchial epithelial cell lines, 16HBE14o” and CFBE41o”, which have a non-CF and a CF

phenotype, respectively. The environmental strains showed a significantly lower level of invasion

into both CF and non-CF cells in comparison with the clinical B. cenocepacia LMG16656T strain.

Exposure of polarized CFBE41o” or 16HBE14o” cells to the environmental strains resulted in a

significant reduction in transepithelial resistance (TER), comparable with that observed following

exposure to the clinical strain. A different mechanism of tight junction disruption in CF versus non-

CF epithelia was found. In the 16HBE41o” cells, the environmental strains resulted in a drop in

TER without any apparent effect on tight junction proteins such as zonula occludens-1 (ZO-1). In

contrast, in CF cells, the amount of ZO-1 and its localization were clearly altered by the presence

of both the environmental strains, comparable with the effect of LMG16656. This study

demonstrates that even if the environmental strains are significantly less invasive than the clinical

strain, they have an effect on epithelial integrity comparable with that of the clinical strain. Finally,

the tight junction regulatory protein ZO-1 appears to be more susceptible to the presence of

environmental strains in CF cells than in cells which express a functional cystic fibrosis

transmembrane regulator (CFTR).

INTRODUCTION

Burkholderia cenocepacia belongs to the Burkholderia
cepacia complex (BCC), which includes at least 17
phenotypically similar species (Vandamme et al., 1997;
Mahenthiralingam et al., 2005; Vanlaere et al., 2008, 2009).

B. cenocepacia is widely distributed in the natural envir-
onment, especially in the rhizosphere of crop plants
(Vandamme et al., 2003; Chiarini et al., 2006), and it is
also an important opportunistic pathogen, causing severe
respiratory infections in individuals with cystic fibrosis (CF)
(Mahenthiralingam & Vandamme, 2005; Reik et al., 2005).
Once acquired, B. cenocepacia is rarely eradicated by antibiotic
therapy due to its intrinsic antibiotic resistance (Magalhães
et al., 2002), and it can be responsible for transmissible
infections in individuals with CF (Govan & Deretic, 1996).
Infection with B. cenocepacia leads to unpredictable out-
comes, ranging from asymptomatic carriage to a fulminant

3These authors contributed equally to this work.

Abbreviations: BCC, Burkholderia cepacia complex; CF, cystic fibrosis;
CFTR, cystic fibrosis transmembrane regulator; GAPDH, glyceraldehyde-
3-phosphate dehydrogenase; HRP, horseradish peroxidase; JAM-A,
junctional adhesion molecule A; TER, transepithelial resistance; ZO-1,
zonula occludens-1.
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and fatal pneumonia and sepsis, the so-called ‘cepacia
syndrome’ (Govan & Deretic, 1996; Mahenthiralingam
et al., 2002). B. cenocepacia adopts versatile lifestyles while
infecting the host (Vial et al., 2011). Several virulence
determinants that may play a role in the ability of B.
cenocepacia to infect and persist in human lung have been
proposed (Mahenthiralingam et al., 2005; Loutet & Valvano,
2010), even if no definite role for any of them in human
disease has been established (Scordilis et al., 1987; Schwab
et al., 2002; Speert, 2001). Elucidating the exact role of viru-
lence factors and pathogenic mechanisms in the progression
of lung disease will help to establish whether B. cenocepacia
isolates behave as innocent colonizers or become invasive
pathogens. The severity of infection has been related to the
ability of B. cenocepacia bacteria to invade and survive within
respiratory epithelial cells in vitro and cause sepsis, as proven
by the correlation between intracellular invasion by B.
cenocepacia and infection in an in vivo mouse model (Cieri
et al., 2002). Survival and persistence within host cells are
also believed to play a key role in pathogenesis (Valvano,
2006). B. cenocepacia forms microcolonies in close proximity
to the apical cell surface, followed by invasion and des-
truction of epithelial cells, which also involves disruption of
the glycocalyx and rearrangements of the actin cytoskeleton
(Schwab et al., 2002, 2003). Unlike most other pathogens in
CF, which typically remain confined to the endobronchial
spaces, B. cenocepacia can traverse polarized respiratory
epithelium to cause bacteraemia and sepsis, showing its
potential to disrupt tight junctions (Duff et al., 2006; Kim
et al., 2005). These studies suggest that B. cenocepacia bac-
teria can employ several strategies to breach the epithelial
layer in the airways, and this may explain, at least in part, the
different clinical outcomes of B. cenocepacia infection in
patients with CF (McClean & Callaghan, 2009).

Potentially pathogenic strains are present in the envir-
onment, as proven by the genetic identity between
environmental and clinical isolates. In fact, an isolate of
B. cenocepacia which was indistinguishable from the PHDC
epidemic clonal lineage, using standard typing methods,
was detected in an agricultural soil sample (LiPuma et al.,
2002; Baldwin et al., 2007). Subsequently, MLST revealed
the existence of three distinct genotypes shared by clinical
and environmental B. cenocepacia isolates (Baldwin et al.,
2007). Infection control measures, including patient
segregation, have reduced but not eliminated new infec-
tions, and CF patients may occasionally become infected by
isolates that show novel fingerprint types (Speert et al.,
2002; Mahenthiralingam et al., 2008). The appearance of
unique clones in individual patients suggests that acquisi-
tion of pathogenic strains likely occurs directly from
the natural environment, especially the rhizosphere (Berg
et al., 2005). Currently, there is no clear distinction be-
tween isolates from environmental or clinical origins, and
it is widely accepted that the natural environment is a
potential source of BCC acquisition in patients with CF
(Mahenthiralingam et al., 2008). It has been found that
some phenotypic traits (i.e. biofilm formation, antibiotic

susceptibility, exopolysaccharide production) and genetic
markers associated with virulence, persistence and trans-
missibility are also spread among environmental B.
cenocepacia isolates (Bevivino et al., 2002; Chiarini et al.,
2002, 2004; Baldwin et al., 2004; Pirone et al., 2008), as is
the ability to colonize murine lung tissue, by persisting in
the lungs of infected mice (Pirone et al., 2008). It has been
speculated that B. cenocepacia can colonize both human
lung epithelial and plant root cells through similar
mechanisms responsible for recognition and adherence to
host cells (Cao et al., 2001; Vial et al., 2011). Indeed,
environmental B. cenocepacia strains, as well as envir-
onmental strains belonging to other BCC species, display
an attenuated ability to invade or replicate in cellular
models, in comparison with their clinical counterparts
(Martin & Mohr, 2000; Keig et al., 2002; Pirone et al., 2008;
Zelazny et al., 2009; Vial et al., 2010), but to date, the
relationships between environmental bacteria and CF host
cells have not been addressed. As suggested by Vial et al.
(2011), interactions with abnormal cells may trigger the
pathogenic behaviour of B. cenocepacia strains in patients
with genetic or immune deficiencies, and this could explain
why opportunistic pathogens such as certain B. cenocepacia
strains become pathogens in CF disease.

In the present study, we aimed at elucidating the ways by
which environmental B. cenocepacia strains express their
pathogenic potential by addressing the following questions.
Are environmental B. cenocepacia strains able to invade CF
bronchial epithelial cells? Can these strains penetrate
through the CF epithelium? Do they utilize distinct
mechanisms of internalization into host cells in compar-
ison with clinical strains? To address these objectives,
we focused our attention on two well-characterized B.
cenocepacia strains, isolated from the maize rhizosphere,
that have already shown pathogenic potential in both in
vitro and in vivo models (Pirone et al., 2008) and which are
capable of forming strong biofilms at a level comparable
with the clinical B. cenocepacia strain LMG16656 (our
unpublished results).

METHODS

Bacterial strains. Two B. cenocepacia strains of environmental origin

and the clinical B. cenocepacia strain LMG16656 were used in this

study. The environmental strain Mex1, belonging to B. cenocepacia

IIIA, kindly supplied by Jesús Caballero-Mellado (Universidad

Nacional Autonoma de Mexico, Cuernavaca), was collected from

the rhizosphere of maize cultivated in a field in Mexico (Pirone et al.,

2008). The environmental strain MCII-168, belonging to recA lineage

IIIB, was isolated from the rhizosphere of maize plants cultivated in

an experimental field located at S. Maria di Galeria, Rome, Italy (Di

Cello et al., 1997). A B. cenocepacia strain of clinical origin [the

epidemic strain LMG 16656T (recA lineage IIIA)], obtained from the

Laboratorium voor Microbiologie collection (LMG, Ghent) and
Escherichia coli DH5a were used as positive and negative controls,

respectively. All strains were cryopreserved at 280 uC in 30 % (v/v)

glycerol. Prior to any assay, bacteria were streaked from frozen stock

preparations onto Nutrient Agar (NA; Difco) plates and incubated at

30 uC for 24–48 h.
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Reagents. All cell cultures and electrophoresis materials were
purchased from Sigma, with the following exceptions: Ultroser G
(Invitrogen), Vitrogen (Nutacon). Mouse anti zonula occludens-1
(ZO-1) was purchased from Invitrogen, while rabbit anti-claudin-1,
rabbit anti-occludin, and rabbit anti-junctional adhesion molecule A
(JAM-A) antibodies were purchased from Zymed Laboratories.
Mouse anti-glyceraldehyde-3-phosphate dehydrogenase (GAPDH)
was obtained from Millipore. Horseradish peroxidase (HRP)-
conjugated anti-mouse antibody was purchased from Pierce (Fisher
Scientific). HRP-conjugated anti-rabbit antibody was purchased from
BD Pharmingen. FITC-conjugated goat anti-mouse and anti-rabbit
antibodies were purchased from Jackson ImmunoResearch.

Cell culture. The non-CF human bronchial epithelial cell line
16HBE14o2 (Cozens et al., 1994), and a CF line, CFBE41o2, derived
from a CF patient homozygous for the cystic fibrosis transmembrane
regulator (CFTR) DF508 mutation (Goncz et al., 1999), were a
generous gift from Dr Dieter Gruenert, University of California, San
Francisco. The 16HBE14o2 cells (passage 2.85 to approx. 2.105) were
maintained on Vitrogen/fibronectin-coated flasks in minimum
essential medium (MEM) supplemented with 1 % L-glutamine, 1 %
penicillin/streptomycin and 10 % FBS (Cozens et al., 1994).
CFBE41o2 cells (passage 4.85 to 4.105) were also maintained on
coated flasks in the same medium, supplemented with 1 % non-
essential amino acids (Gruenert et al., 2004).

Invasion of epithelial cells. Analysis of the B. cenocepacia–host cell
interaction was performed by evaluating the ability of the bacterial
cells to invade non-CF and CF epithelial cells. In vitro invasion assays
were carried out on the bronchial epithelial cell lines using a
ceftazidime–amikacin protection assay with minor modifications
(Duff et al., 2006). The 16HBE14o2 or CFBE41o2 cells were plated
on 24-well coated plates (46105 cells per well), cultured for 24 h at
37 uC, 5 % CO2, in medium containing 10 % FBS without antibiotics.
All bacterial strains were grown to OD600 0.6 in Luria–Bertani (LB)
broth and resuspended at the appropriate dilution, as determined by
growth curves, in tissue culture medium without antibiotics. The B.
cenocepacia strains were applied at an m.o.i. of 10 bacterial cells per
epithelial cell (m.o.i. 10 : 1) for 2 h. The monolayers were then washed
three times with PBS, and a combination of ceftazidime and amikacin
(both 1 mg ml21) was added. The combination of ceftazidime (1 mg
ml21) and amikacin (1 mg ml21) incubated with each B. cenocepacia
strain for 2 h resulted in greater than 99.99 % killing (less than 5 and
10 c.f.u. were recovered from environmental and clinical strains,
respectively, with an initial inoculum of 1–26107 c.f.u.). After 2 h of
incubation, the cell monolayers were washed and intracellular bacteria
were released by lysis with 0.5 % Triton X-100, 50 mM EDTA.
Invasion was quantified by plating serial dilutions of the lysates on
NA (Difco) plates.

Bacterial infection of polarized lung epithelial cells. Polarized
monolayers were also prepared by seeding Transwell-Clear poly-
carbonate filters (0.4 mm pore size) at a density of 16105 cells cm–2

(16HBE14o2 cells) or 76105 cells cm–2 (CFBE41o2 cells). The cells
were incubated overnight before removal of the apical medium,
grown for 6 days with an air–liquid interface and fed basolaterally on
alternate days, with medium in which the FBS was replaced with 2 %
Ultroser G (Kunzelmann et al., 1993). Bacterial cultures were grown
in LB broth to OD600 0.6 and were applied at an m.o.i. of 50 : 1
apically to the monolayers as described previously (Duff et al., 2006).
The epithelial cells were then infected with the above three bacterial
strains, and a control well was included (medium alone) and
incubated for 4 h at 37 uC, 5 % CO2. Transepithelial resistance (TER)
was monitored at 0, 2 and 4 h.

Western blotting. Four hours after exposure to the bacterial strains
or to medium alone (control), the polarized epithelial cell monolayers

were washed and harvested using 100 ml radioimmunoprecipitaton

assay (RIPA) buffer plus protease inhibitors in each Transwell filter.

Protein quantification was carried out using a Nanodrop spectro-

photometer at 280 nm, and proteins were applied to SDS-PAGE gels

(6 % gels for ZO-1, 8 % gels for the other proteins) prior to

electrophoresis at 140 V, 250 mA for 1.5–2 h. For ZO-1 analysis, the

proteins were subsequently transferred to nitrocellulose at 20 V,

250 mA overnight at 4 uC. Alternatively, for the other lower-

molecular-mass proteins, a semi-dry transfer system was used for

90 min. Membranes were blocked in Tris-buffered saline with 5 %

non-fat dried milk, 0.1 % BSA and 0.1 % Tween 20 (claudin-1); 5 %

BSA and 0.1 % Tween 20 (JAM-A, ZO-1); 10 % non-fat dried milk,

0.1 % BSA and 0.1 % Tween 20 (occludin); or 5 % non-fat dried milk

and 0.1 % Tween 20 (GAPDH). Blots were incubated with primary

antibody (1 : 500–5000) overnight at 4 uC. Membranes were washed

and incubated with goat anti-mouse or anti-rabbit conjugated to

HRP for 1 h at room temperature. Proteins were detected by

chemiluminescence (Millipore). The density of each individual band

was compared with the corresponding control band and normalized

against GAPDH (loading control protein) by densitometry using

ImageJ (http://rsb.info.nih.gov/ij/). The results were expressed as a

change relative to the untreated control.

Immunofluorescence. Monolayers on Transwell inserts were

washed with PBS for 5 min prior to permeabilization with cold

methanol (220 uC) for 30 min, and blocked with PBS containing

1 %, w/v, BSA for 10 min. The cells were then immunoprobed with

10 mg ml21 mouse anti ZO-1 antibody for 1 h and subsequently

washed three times with PBS/1 % BSA for 5 min. The cells were

incubated with FITC-conjugated goat anti-mouse antibody (20 mg

ml21) for 1 h at room temperature, protected from light. The

monolayers were washed five times with PBS containing 1 % BSA for

5 min, and post-fixed in PBS containing 4 %, w/v, paraformaldehyde

for 10 min. Filters were then removed from the plastic support,

mounted on slides with Vectashield containing DAPI, and examined

by confocal microscopy.

Statistical analysis. All quantitative infection assays were performed

in triplicate, on three different occasions. Dunn’s multiple compar-

ison method was used to compare the invasiveness of individual

strains with that of the negative control. A P value of ,0.05 was

deemed to be significant in each case. Student’s t tests (two-tailed)

were carried out on the TER values of bacteria-treated monolayers

relative to the control at individual time points. Differences were

considered to be statistically significant if the P value was ,0.05.

RESULTS AND DISCUSSION

Invasion of B. cenocepacia strains into
16HBE14o” cells and CFBE41o” cells

The two environmental B. cenocepacia strains MCII-168
and Mex1 were internalized by the bronchial epithelial cell
lines 16HBE14o2 and CFBE41o2 at a level lower than that
of the invasive clinical B. cenocepacia LMG16656 strain
(Fig. 1). They were more invasive than the negative control
(the non-invasive E. coli strain NCIB9415) but less invasive
than the positive control (B. cenocepacia LMG16656)
(P,0.05). The internalization of the environmental Mex1
strain was 0.167 and 0.23 % by 16HBE14o2 and CFBE41o2

cells, respectively, while internalization of the other en-
vironmental strain, MCII-168, was 0.23 and 0.08 % into
16HBE14o2 and CFBE41o2 cells, respectively. Although

Environmental B. cenocepacia interaction with CF host
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environmental strains were significantly less invasive than
the clinical strain LMG16656, their invasiveness was
independent of the CFTR status of the host cell, as found
for the invasive clinical B. cenocepacia strain LMG16656
(Taylor et al., 2010). Indeed, no statistically significant
difference between the internalization of either strain by
16HBE14o2 relative to CFBE41o2 cells (P50.42 for Mex1
and P50.32 for MCII-168, respectively) was observed.

Effect of environmental strains on TER

Bacterial host cell interactions can involve the disruption of
epithelial integrity; this strategy can be used by the bacteria
to invade the tissues beneath the epithelial cells. B.
cenocepacia strains can disrupt epithelial integrity and
open tight junctions of lung epithelial cells, as determined
by a drop in TER (Kim et al., 2005; Duff et al., 2006). To
investigate whether the environmental strains could also
disrupt tight junction integrity, we exposed polarized
CFBE41o2 and 16HBE14o2 cells to the B. cenocepacia
environmental strains or the B. cenocepacia clinical strain
for 4 h and measured TER. The mean TER at the start of
the experiments was 306±16 V?cm2 for CFBE41o2 and
434±13 V?cm2 for 16HBE14o2. Exposure of both
environmental strains (MCII-168 and Mex1) resulted in a
significant reduction in TER (P,0.01) over the 4 h period,
which was comparable with that observed following
exposure to the clinical strain LMG16656 in both cell lines
(Fig. 2). The finding that all clinical and environmental B.
cenocepacia strains examined reduced the TER of both CF
and non-CF cell lines suggests that B. cenocepacia strains,
irrespective of their origin, can disrupt the integrity of
airway epithelia, and that this effect is also CFTR-
independent. These findings are in agreement with several
studies in which clinical B. cenocepacia strains have been

shown to alter epithelial permeability by the alteration of
tight junction organization (Sajjan et al., 2004; Kim et al.,
2005; Duff et al., 2006).

Effect on ZO-1 levels of exposure of lung
epithelial cells to environmental B. cenocepacia
strains

Tight junctions include a complex of many different
proteins, such as ZO-1, JAM-A, occludin and claudins. We
have previously shown that some BCC strains have the ability
to disrupt tight junctions in CFTR-expressing cells and show
a reduction in expression of ZO-1 when cells are exposed to
the B. cenocepacia strain BC-7 (Duff et al., 2006). To examine
whether the drop in TER following exposure to envir-
onmental strains was due to an alteration in tight junction
proteins, we extracted the proteins from individual cell
monolayers after exposure to the environmental or clinical
strains and examined the expression of the individual tight
junction proteins by Western blotting. The level of ZO-1 was
consistently diminished following exposure of 16HBE14o2

cells to the clinical strain LMG16656 (Fig. 3a, c). In contrast,
despite a strong alteration in TER following exposure to
Mex1, no clear alteration in the amount of ZO-1 was detected
on Western blots from 16HBE14o2 cells exposed to this
environmental strain. There was also no apparent alteration
in the level of ZO-1 in 16HBE14o2 cells when exposed to the
other environmental strain, MCII-168 (Fig. 3a).

Constitutive expression of ZO-1 in CFBE41o2 cells was
considerably weaker than that in 16HBE14o2 cells, taking
longer exposure times for development of blots, in agree-
ment with earlier studies on CFBE41o2 cells (LeSimple
et al., 2010) and on DF5082/2 primary cultures (Coyne
et al., 2002), and considerable cleavage of the protein was
evident, with prominent immunoreactive bands at 110 and
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Fig. 1. Invasion by environmental B. cenocepa-
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cells. Two independent lung epithelial cell lines,
16HBE14o” and CFBE41o”, were used. Inva-
sion of environmental strains was compared
with the positive control (clinical B. cenocepacia
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centage invasion (c.f.u. obtained after cell lysis as
a percentage of c.f.u. applied) of three inde-
pendent experiments. An asterisk indicates a
significant difference between the clinical strain
and environmental strains (P,0.05) in Dunn’s
multiple comparison test.
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85 kDa (Fig. 3b). When CFBE41o2 cells were exposed to
each of the three B. cenocepacia strains, a clear reduction in
the detectable ZO-1 level was observed (P,0.05), suggesting
that the environmental bacterial strains have a stronger
effect on ZO-1 in CFBE41o2 cells relative to 16HBE14o2

cells (Fig. 3b, c).

Immunofluorescence analysis confirmed that the two
environmental strains had a slight effect on ZO-1 following
4 h exposure of 16HBE14o2 cells, in contrast to the
dramatic loss of ZO-1 from the tight junctions of
16HBE14o2cells when exposed to the clinical strain
LMG16656 (Fig. 4a–d). Immunostaining of CFBE41o2

cells showed a different pattern of expression of ZO-1
relative to the CFTR-expressing cell line. Overall, in control

CFBE41o2 cells, ZO-1 staining was present in the tight
junctions, but it was also diffusely expressed throughout
the cell cytoplasm rather than forming contiguous rings,
solely at the tight junctions (Fig. 4e). When CFBE41o2

cells were exposed to either of the two environmen-
tal strains (Mex1 or MCII-168) or to the clinical strain
LMG16656, ZO-1-associated immunofluorescence was
lost completely from the tight junctions (Fig. 4f–h).
Furthermore, the ZO-1 expression and localization in the
DF508-expressing CFBE41o2 cells was more susceptible to
the effects of environmental B. cenocepacia strains than the
wild-type CFTR-expressing cells, when compared with
16HBE14o2 cells.

Effect of environmental B. cenocepacia strains
on claudin-1, JAM-A and occludin

To examine whether the increased susceptibility to altera-
tions in ZO-1 following B. cenocepacia infection observed
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cells over the course of B. cenocepacia infection. (a) Western blot
analysis of ZO-1 expression in 16HBE14o” cells; (b) Western blot
analysis of ZO-1 expression in CFBE41o” cells. Cells were treated
with medium alone (control, lane 1), B. cenocepacia strain
LMG16656T (lane 2), Mex1 (lane 3) and MCII-168 (lane 4) for
4 h. (c) Densitometric analysis of ZO-1 expression. Band
intensities for ZO-1 determined from two independent experiments
were normalized against GAPDH values and are expressed as
mean±SEM percentage change relative to control uninfected cells.
*P,0.05 by Student’s t test.
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in CFBE41o2 cells was an effect which was common
among tight junction proteins in these cells, additional
Western blotting analysis was carried out on JAM-A,
claudin-1 and occludin. Neither of the environmental B.
cenocepacia strains nor the clinical strain had any effect on
claudin-1, JAM-A or occludin in the 16HBE14o2 cells (Fig.
5a). In contrast, a 40 % reduction in claudin-1 protein was
observed in CFBE41o2 cells in response to LMG16656
exposure. This effect was not observed in cells exposed to
either of the two environmental strains, Mex1 or MCII-168
(Fig. 5a–b). ZO-1 plays an important role in claudin
trafficking to the tight junction (Umeda et al., 2006), and
therefore the dramatic loss of ZO-1 in the CFBE41o2 cells,

which have relatively low basal expression of ZO-1, most
likely resulted in this concomitant loss in claudin-1 level.
The lack of alteration in occludin in both 16HBE14o2 and
CFBE41o2 cells in this study in response to any of the B.
cenocepacia strains was unexpected and in contrast with
data shown by Kim et al. (2005), who carried out their
study for longer time periods (8 and 24 h). In our
experience, continuing bacterial growth to these longer

Fig. 4. Effect of exposure to environmental B. cenocepacia strains
on expression and distribution of ZO-1 in polarized CF and non-
CF bronchial epithelial cells. Immunofluorescent staining for ZO-1
in 16HBE14o” cells (a–d) and CFBE41o” cells (e–h). Clinical B.

cenocepacia strain LMG16656T (b, f) and environmental B.

cenocepacia strain Mex1 (c, g) or MCII-168 (d, h) were applied
for 4 h and compared with control cells treated with LB alone (a,
e). The cells were immunostained with anti-ZO-1 antibody,
counterstained with DAPI and examined by immunofluorescence
microscopy. Magnification, �400; scale bar, 12 mm.
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Fig. 5. Effect of environmental B. cenocepacia strains on JAM-A,
claudin-1 and occludin expression. (a) Western blot analysis of
JAM-A, claudin-1 and occludin in 16HBE14o” and CFBE41o”

cells. Cells were treated with medium alone (control, lane 1), and
B. cenocepacia strains LMG16656T (lane 2), Mex1 (lane 3) or
MCII-168 (lane 4) for 4 h. (b) Densitometric analysis of claudin-1
expression. Band intensities for claudin-1 were determined in two
independent experiments. Data were normalized to GAPDH values
and are expressed as mean±SEM percentage change relative to
control uninfected cells. Black bars, 16HBE14o” cells; grey bars,
CFBE41o” cells. *P,0.05, compared with the control.
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time points may result in competition between the bacteria
and the polarized human cells for nutrients, and can con-
tribute to non-specific effects.

In the 16HBE14o2 cells, the environmental strains, Mex1
and MCII-168, resulted in a drop in TER without any
apparent effect on ZO-1 or any other tight junction
protein, whilst a significant drop in expression of ZO-1 and
a dramatic alteration in its localization were observed
following infection with either of the environmental strains
in the CFBE41o2 cells, suggesting that the mechanisms of
tight junction disruption are different in CFTR-expressing
epithelia versus CFTR-deficient epithelia. This is in
agreement with the finding that defects in CFTR traffick-
ing, such as those documented in DF508CFTR-expressing
cells, cause alterations of the cytoskeleton (Favia et al.,
2010), plasma membrane, or membrane-interacting pro-
teins (Guerra et al., 2005) and tight junctions (LeSimple
et al., 2010; Nilsson et al., 2010). To date, trafficking of
DF508CFTR has been related to some CF defects such as
alteration of ceramide metabolism (Becker et al., 2010) and
NAPDH oxidase activation (Zhang et al., 2008). Herein we
suggest that the observed alteration of tight junctions in CF
epithelial cells may be responsible for the differential
susceptibility to infection by B. cenocepacia strains. ZO-1
regulates tight junction function indirectly because of its
anchoring to the cytoskeleton, and it has previously been
shown to be altered in CFTR-expressing lung epithelial
monolayers after infection with clinical B. cenocepacia
strains (Duff et al., 2006). In contrast, Kim et al. (2005) did
not show any alteration in ZO-1 expression in 16HBE14o2

monolayers infected with a different subset of B. cenoce-
pacia strains. Taking these data together with our previous
(Duff et al., 2006) and present results, it can be suggested
that ZO-1 expression may be more robust in these CFTR-
expressing cells and that its disruption may sometimes be
strain-dependent. It is significant that both B. cenocepacia
strains that have been associated with altering ZO-1
expression in CFTR-expressing cells, i.e. LMG 16656 and
BC-7 (Duff et al., 2006), are clones of strain ET-12
(Mahenthiralingam et al., 2000), which is known to be
particularly virulent (Drevinek & Mahenthiralingam,
2010). The exact means by which the bacteria alter the
epithelial barrier remain to be elucidated.

Conclusion

Overall, the environmental strains Mex1 and MCII-168
showed less intracellular invasion than the clinical B.
cenocepacia strain LMG16656. In spite of this, the
environmental strains do appear to have an effect on
epithelial integrity similar to that of the clinical strain in
both CF and non-CF cells, although the mechanism of
tight junction disruption is different. A significant finding
is that the tight junction regulatory protein ZO-1 is more
susceptible to the presence of environmental strains in CF
epithelial cells than in cells which express functional CFTR.
The dramatic effect of the two environmental strains on

tight junction integrity, and on the presence and
distribution of the tight junction protein ZO-1 in CF
epithelial monolayers, has important implications for the
pathogenicity of these environmental strains in patients
with CF. Since the acquisition of clinical strains likely
occurs directly from the natural environment, a knowledge
of the molecular mechanisms employed by environmental
B. cenocepacia bacteria in virulence and pathogenesis is of
crucial importance to identify new targets for the rational
design of novel molecular strategies to fight the devastating
and currently difficult-to-treat infections caused by B.
cenocepacia strains.
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