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Abstract

Abstract

To date, much has been achieved in the areas of onset detection and music
transcription although both still remain unsolved problems, particularly in the case of
polyphonic music. This research focuses on detection of note onsets and pitches in
monophonic music of three of the more popular instruments used by traditional Irish
musicians. An attempt is also made at transcribing ornamentation, notes of extremely
short duration, at most a fifth the length of a regular note. Ornamentation is a very
important feature of this style of music, and its detection has not been previously

attempted.

A thorough review of current onset detectors and music transcription systems was
carried out., Various different approaches to solving the problem were encountered
and ecach was assessed for its suitability for use in the proposed system. These
techniques included the Short Time Fourier Transform, Autocorrelation and

Wavelets.

By combining elements used in previous onset detectors, a hybrid system that detects
note onsets and pitches in monophonic traditional Irish music has been implemented.
The notes detected also include the most common types of ornamentation played by

the fiddle, flute and tin whistle.

The proposed system used a Short Time Fourier Transform based sub-band technique,
combined with an automatic threshold approximation to detect the note and
ornamentation onsets. These onsets were then transcribed into the correct music
notation. This system has been tested on a database of real recorded fiddle, flute and
tin whistle tunes and good results have been achieved, particularly in the case of
regular note onsets and pitches. The results for ornament detection, while not as good
as those for regular onsets, is the first attempt at such detection and represents a good

starting point for future reseaich in ornament detection.
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Chapter 1: Introduction

1. Introduction

Instrumental music transcription is the process of converting a musical sound signhal
into music notation, which a musician is able to read and play. Completing this task
by hand is a long and tedious process, particularly in the case of polyphonic sounds
where more than one note is played simultaneously. An ideal solution would be a
software package, which converts a musical sound signal into a musical score at the
click of a mouse. Developing such a system is not as simple as it sounds and the
difficulty of transcribing music into notation depends on the complexity of the sounds
with which it is presented. Clearly, the simplest sound to process would be
electronically generated sinusoids whose starting and stopping times were controlled
by computer. Real world musical signals are far more complex however, with even
monophonic sounds presenting a range of challenges, whereas accurately transcribing

a full symphony would be extremely difficult.

Transcribing a passage of music involves determination of the pitch [Howard ‘00] of
each note that was played and the starting and stopping times associated with each of
these notes. When a note is played, the frequency that is heard is known as its pitch.
This note pitch typically consists of a fundamental frequency, also known as the first
harmonic, and a number of related harmonics, which make up the harmonic series of
the note. These harmonics occur at integer multiples of the fundamental. The second
harmonic is located at twice the frequency of the fundamental, i.e. exactly an octave
higher, the frequency of the third harmonic is three times the fundamental and so on.
An example of the frequency spectrum of a note and its harmonics is shown in Figure
1.1. The fundamental frequency, /0, of the note is on the left with its harmonics to

right.
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Figure 1.1: Note harmonics

The fundamental frequency is synonymous with the pitch of a note. Therefore pitch
detection is the process of identifying the fundamental frequency of a note. In the
above example, the fundamental is easy to spot since its amplitude is considerably
greater than those of the harmonics, however, this is not always the case. There also
exists a phenomenon known as the missing fundamental where only the second and
greater harmonics are present in the note spectrum. In the case of polyphonic signals,
when two notes are played simultaneously an octave apart, the fundamental of the
upper note has the same frequency as the second harmonic of the lower note.
[nharmonicities occur when the harmonic series of a note differs from the integral
relationship fo, 2fp, 3fp, etc. shown above in Figure 1.1, and individual harmonics
waver slightly from multiples of the fundamental. For example a piano is inharmonic
and its timbre is partly due to these inharmonicities. These examples give an

indication of why pitch detection is difficult.

A number of different ways of determining the pitch of a note are outlined in the
literature review. These techniques include both time and frequency domain
techniques with the latter proving the more popular. Examples are Zero-Crossings
[Cooper ‘94], Autocorrelation [Brown ‘91], [Bello “00], [Monti ‘00], Short Time
Fourier Transform [Martin ‘96a], [Klapurt *00, *01], [Goto ‘00], The Constant Q
Transform [Blankertz] and Wavelets [Chan ‘00]. Initial attempts at transcription
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systems include that by [Piszczalski “77] in the frequency domain, others [Brown ‘91]
have used time domain methods. [Martin ‘96a], [Klapuri ‘98] and [Goto ‘00] are
among those who have attempted polyphonic transcription. Developments in the area
of onset detection have been beneficial in determining the starting time of a note. The
first onset detectors considered the musical signal as a whole [Chafe ‘85], while
others [Scheirer ‘98], [Klapuri ‘99] expanded on this approach by dividing the signal

into a number of frequency bands.

The main objective of this project is to accurately transcribe monophonic traditional
Irish folk music. In addition to the problems of accurately describing the melody, a
major challenge will be the degree of accuracy to which the ornamentation can be
represented. Ornamentation consists of a note, or notes, of extremely short duration
used to embellish a passage of music. It is an essential feature of this style of music,

adding greatly to its character and charm and is discussed in detail in Chapter 2.

Traditional Irish tunes are generally played quite quickly and transcribing them
manually can be difficult. A tool that would carry out this task automatically would be
extremely beneficial, particularly as a learning aid for beginners. While a transcription
system would be useful to an established musician, they may not require a device that
detects ornamentation, as they would intuitively know when it is required. However
an average beginner would certainly not have this skill. Ornamentation detection is
not something that has been attempted previously and it would be advantageous for
musicians to be able to transcribe a tune played by one of their peers to learn how
ornamentation should be played. It would also be useful for a musician to transcribe
their own work and compare to the correct notation in order to see where mistakes are

being made.
The remainder of the thesis is comprised of the following chapters:

2. Traditional Irish Music.

This chapter provides an introduction into the history of traditional Irish music.
Ornamentation is described in detail and the different types are explained.
Classical music is used as an aid to do this. Each of the instruments that will be

used to test the system are introduced and their note ranges defined.
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3. Literature Review

This chapter gives an overview of existing techniques that are being used in an
attempt to solve the problems of onset detection and music transcription. It is
divided into two sections, music transcription and onset detection. The reason for
this is because onset detectors are used in other applications besides music
transcription, such as instrument separation and time scaling, and is an area of

research in its own right.

4. Proposed Approach

This chapter describes the proposed onset and ornament detection and music
transcription system for monophonic traditional Irish music. It goes through
various different techniques currently being used and explains why the proposed

method was chosen. Results for the system are also presented in this chapter.

5. Conclusions and Further Work
This chapter comprises of comments on the strengths and weaknesses of the

system. It also contains suggestions for additions and improvements to the system.

6. References

Contains the list of publications referenced in the text.

Appendix A

Contains an index of where to find each of the tunes used to test the system.
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2. Traditional Irish Music

Traditional Irish music is one of the richest treasuries of folk music in the world. It
belongs to an oral tradition; therefore, much of it has already been lost. It is now a
sophisticated listening music and no longer simply an accompaniment for dancing.
Since the late 1960s, there has been a radical change in the traditional Irish music
scene. The commercial life of this style of music has mushroomed, bringing with it a
huge growth in music tourism. Sony and JVC have invested in promoting the music
abroad and there are approximately one thousand specialised albums available. There
is considerable commercial interest in the native music of an island of approximately

five million people [McGettrick *997].

The significance of traditional Irish music is clear from a number of important studies
that have been done. One of these [Fleischmann ‘98] was begun by Professor Aloys
Fleischmann in 1950. It was finally completed at the Irish World Music Centre,
University of Limerick under the direction of Professor Micheal O Sailleabhain in
1998, It is a commented compilation of all traditional tunes recorded in Irish
manuscript and printed collections — including related material in Scottish, Engliéh
and Welsh collections, and in eighteenth-century ballad operas - from the very first c.
1583 up to George Petvie's Ancient Music of Ireland of 1855. It is the largest
publication of any kind on Irish traditional music and is the result of over forty years
of research. It contains almost seven thousand tunes, presented in chronological order,
with notes and an analysis of tonality and structure. There is a comprehensive set of
indexes, including an index of incipits. An incipit is the first part of a tune, encoded
into a series of letters or digits. An example is the do-re-mi format where do
represents the root of the major scale. Note lengths and sharps or flats are not
expressed. This vast corpus of folk music was largely inaccessible before this
publication since all but a few of the sources are out of print. Bringing the sources
together for the first time makes material available, which allows a mapping of
evolution and change in traditional music in Ireland up to the middle of the
Nineteenth Century and brings to light many traditional Irish airs that had fallen out of

use in the living tradition.
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Many traditional Irish tunes have been lost over the centuries, mainly because they
have not been written down or recorded. Often, many different versions of the one
tune can exist, depending on factors such as geographical location, and musicians can
add their own personal touches as they play. It is clear that the development of a
music transcription system capable of accurately transcribing monophonic traditional
Irish folk music would be a significant help in preserving this tradition. It would
enable session musicians to transcribe their recordings quickly and easily into musical

notation where they could be preserved indefinitely.

2.1 Ornamentation

Traditional Irish music contains a great deal of ornamentation. It is extremely
important to the character and style of the music since it is what gives the tunes their
depth and richness. Without it, the faster tunes tend to lose some of their distinct
liveliness; the quality that drives people to instinctively tap their foot as they listen;
and ballads become less melodic. These differences are particularly noticeable to the
trained ear. Ornamentation is not unique to traditional Irish music as it is present in
most types of folk music and is featured in Baroque music. The significance of

ornaments was summed up by [C.P.E. Bach 1753]:

“It is not likely that anybody could question the necessity of ornaments.
They are found everywhere in music, and are not only useful, but
indispensable. They connect the notes; they give them life. They
emphasise them, and besides giving accent and meaning, they render
them grateful; they illustrate the sentiments, be they sad or merry, and
take an important part in the general effect. They give to the player an
opportunity to show off his technical skill and powers of expression. A
mediocre composition can be made attractive by their aid, and the best

melody without them may seem obscure and meaningless.”

In other words, ornaments are used by folk and classical music to embellish a note or
passage of music. Although this is where the main similarities between the two genres
end, classical music will be used as a guide to help define the characteristics of
ornamentation in traditional Irish music. In classical music, an ornament is considered

a note or group of notes in their own right, whereas in traditional Irish music it is not
6
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considered a note; merely an alteration or embellishment belonging to a parent note.
These alterations and embellishments are created mainly through the use of special
articulations and inflections, not through the addition of extra, ornamental or grace

notes [Larsen ‘03],

The ornamentation present in traditional Irish music today originated from the Irish
bag piping tradition. The Uileann pipes are the modern Irish bagpipes; their closest
ancestor was most likely the pastoral pipes. Unlike the uileann pipes, it was not
possible to stop the flow of air through the pastoral pipes resulting in a constant
stream of sound. The only way a player had of breaking this sound was by moving
their fingers into different positions. Therefore, in order to separate notes of the same
pitch played in succession a finger articulation was used. Today, the fiddle is the most
widely used instrument in Irish traditional music. It is not a native instrument as it is
the same as a normal violin but the style of playing is distinctly Irish [Cranitch ‘01].
Another instrument regularly heard in traditional Irish music is the tin whistle. It
originated as far back as the third century A.D. [McCullough ‘87], although the
earliest evidence of its use in traditional Irish music appears to be at the beginning of
the 19" century [O° Farrell 1804]. It was not until the 1960s that the tin whistle was
taken seriously in Ireland, it was previously considered as more of an introductory
instrument, The whistle comes in a number of different sizes and keys with the most
common being the small D whistle. The Irish flute is again non-native to Ireland.
There are many different types; the 1™ century classical wooden flute and modern
instruments closely based upon it is the most favoured by Irish musicians. Other

commonly used instruments include the accordion, guitar and banjo.

The proposed system is concerned with the music of the fiddle, flute and tin whistle.
A database of music was formed using fiddle tunes from [Cranitch ‘01] and tin
whistle and flute tunes from [Larsen ‘03]. These tunes included jigs, reels, slides,
polkas and hornpipes and were studied to determine the characteristics of traditional
Irish ornamentation. This database was found to contain approximately 1600

ornaments of various different types.
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2.1.1 Types of ornaments

In classical music [Blood ‘02], ornaments are not necessarily written into the score
although this is often the case. A performer is also free to add their own as a way of
expressing their individual style of playing. They can be left out or added to a piece
without fundamentally changing it. Examples of ornaments used in classical music

are:

1. Grace Notes

2. Trills
3. Mordents
4, Turns

They are sometimes combined, for instance a grace note may be played with a
mordent or a grace note with a trill. The most simple ornament is a grace note, which
is a short passing note played immediately before a parent note. A grace note is
notated as a small note and its duration is not specified, exampies are shown below in
figure 2.1. The two most important types are acciaccatura and appoggiatura. An
acciaccatura, figure 2.1 (a), is a crushed dissonant note of the shortest possible
duration played either on the beat or just before the parent note and immediately
released. An appoggiatura is an ornament note that is usually one step above or below
the note it precedes. It begins either just before the beat, borrowing the time it
occupies from the note preceding it, figure 2.1 (b), or on the beat borrowing the time

it occupies from the parent note, figure 2.1 (c).

@® (b) (c)
) ; ; x

1 1 1 1 1 |1
o 1 ' f ; l t

—~ —

9 73 = -':ri <f L ) = 7 —

T 1 - ‘ . E r" I‘i Z |; r ?“ |
C i — f -

Figure 2.1: Examples of grace notes [Blood ‘02]; (a) acciaccatura, (b) and (¢)
appoggiatura, the top line shows how they would be indicated in a musical score and the

bottom line how they are played
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A trill consists of two notes, it begins on the note above the principal note and finishes
on the principal note. It consists of six or more individual notes, which are as short as
the player is able to play, shorter than a grace note. There are two types of mordent;
the ‘lower’ was used in music before the nineteenth century and the ‘upper’ in all
music that followed. They both consist of three notes, beginning and ending with the
principle note. In the case of the ‘lower’ mordent, the middle note is the note below
the principle note and for the ‘upper’ mordent, the middle note is the note above the
principle note. A turn consists of four notes, the note above the principle note, the
principle note, note below the principle note concluding with the principle note. Each

of the individual notes is generally longer than a grace note.

The most commonly used types of ornamentation in traditional Irish music are the:

1. Cut

2. Double Cut
3. Strike

4. Slide

5. Roll

In our database, the double cut was exclusive to the fiddle and the strike and slide to
the flute and tin whistle. The cut and roll were used by all three instruments. The cut,
strike and slide are single note ornaments, the double cut contains two cuts and the
roll is a multi-note ornament, which involves using a combination of cuts and strikes.
The cut could be considered as the equivalent to a grace note. However, it is not
considered to be a note independent of the parent note to which it is attached, as is the
case for a grace note. Nor is it considered to have a definite pitch or duration and it is
played on the beat of the parent note. It is at the musicians’ discretion what note 1s

used to ‘cut’ the parent note as all players have their own style.

The fundamental difference between a cut and a strike is that a cut is pitched above its
parent note and a strike below. Whereas the cut and strike are articulations that have
an instantaneous effect, a slide is an inflection and is a continuing, moving alteration
of a note’s pitch [Larsen ‘03]. There are two types of slide, falling and rising, where
the preceding note pitches are above and below the parent note’s pitch respectively.

There are also two types of roll, a short roll and a long roll. These are similar to a trill

9
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in classical music. The short roll consists of cut-note-strike-note and a long roll
consists of a short roll preceded by a parent note. Examples of these ornaments can be
seen in figure 2.2, which uses a classical interpretation to define them, i.e. the
ornaments are depicted as notes. This figure is merely an aid to explaining what each
ornament consists of and is not the way they would be indicated within a tune. In the
two books used in this study [Cranitch ‘01] and [Larsen ‘03], different symbols were

used by both musicians to indicate when they should be played.

Traditional Irish Ornaments

Sty
o
7
I
L+
-
bt
-
-

=
Pt
o
It
-

-
et
-

et

\

(a) (b) (c) (d) (e) U

Figure 2.2: Different types of ornament s used in traditional Irish music; (a) the
cut, (b) the double cut, (¢) the strike, (d) a rising slide, (¢) the short roll and (f) the long

roll

In [Windsor ‘00], a study was carried out which investigated the execution of grace
notes in a musical performance. By testing the relationship between different
classifications of grace notes and their durations at different tempi, they attempted to
show that the local structure of music has a systematic effect on both the durations of

the grace notes and the relationship between these and local tempo measurements.

Five pianists each played a simple Beethoven piano piece, containing eleven grace
notes, five times at nine different tempi resulting in forty-five performances. The
time between the grace note and its parent note was measured as well as the time
between the note preceding the grace note and the note following the parent note. The
second measurement was divided by the number of eighth notes in that time span in

order to calculate the local eighth note duration.

Of the eleven grace notes contained in the piece, three had an interval of a semi-tone
with their parent note, six had a tone and two had an interval of nine semitones. [t was
found during the study that the grace notes with a large pitch interval were played for
a longer duration than those with shorter pitch intervals. The grace note that was

played for the shortest time had an interval of a semi-tone and was a black note with

10
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its parent note being a white note. This lead to the conclusion that grace notes in
different structural classifications will be played differently regardless of tempo;
although they found that the major influence on grace note timing seems to be more

stylistic.

Although the above study was carried out on classical music, it is also very relevant to
traditional Trish music. In the study, they found that a players style has the most
influence on the duration of a grace note. This 1s significant as 1t is a players style,
which influences the interval between an ornament and its parent note. For example,
different players use different notes with which to ‘cut’ the parent note. Some notes
are also more difficult to cut than others, for example C#5 on a D tin whistle. A C#5
is played by simply blowing through a tin whistle without covering any holes, D5 the
note above it is played by covering all holes and it is quite difficult to make the
transition while including a cut. A large jump between the note preceding the
ornament and its parent note can also cause a delay. All of this implies that an
ornament will invariably have an effect on the duration of the parent note to which it

belongs, with this effect being more noticeable in some circumstances than in others.

2.2 Note Range

To decide the note range of the proposed system, the tunes in the database were
thoroughly examined. The range of notes used by traditional Irish musicians when
playing the fiddle is somewhat less than that which would be used by a classical
musician. In all only twenty-nine semi tones are used, those from G3 to B5. It is very

unlikely that a note outside of this range would be played.

As previously mentioned, the small D whistle is the most common type played by
traditional Irish musicians and is used in more than 80% of Irish tunes. This is a
transposing instrument in that a note always sounds an octave higher than what was
played from a score. An example would be when D4 is played from a score it is
actually D5 that sounds. The range of this instrument is from D4 to BS. It is possible
to play the next octave but notes of a higher pitch than B5 are shrill and unpleasant to
the ear and are not played in traditional Irish music. The flute range is the same as that

of the tin whistle. Consequently, the transcription system proposed later will deal with
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the 29 semi-tones from G3 to B5 as this covered the range of each of the three

instruments concerned.
2.3 Chapter Summary

This chapter has shown that traditional Irish music is a valuable corpus of music. A
brief history of this style of music has been provided. Ornamentation has been
described in detail in both classical and traditional Irish music with the more familiar
structure of the former used as an aid to define the latter. The instruments that will be
used to test the proposed onset and ornament detection and transcription system have

been outlined along with each of their individual note ranges.
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3. Literature Review

The main objectives of this literature review were:

o To obtain a better understanding of the problem that is automatic music
transcription.

¢ To investigate previous and current methods being used in order to determine
a suitable approach to accurately transcribe monophonic traditional Irish

musical signals, including ornamentation.

The literature review is divided into two sections, 3.1 Music Transcription Systems
and 3.2 Onset Detection. The first section deals with complete systems and pitch
estimation whereas the second deals exclusively with onset detection. It was thought
to be a more appropriate way to deal with the literature review, as onset detection is
an area of work in its own right. Onset detectors are also used in applications other
than music transcription, such as musical instrument separators [Virtanen ‘00] and

time stretching [Duxbury *03a].
3.1 Music Transcription Systems

This section takes a look at existing methods of transcribing a musical signal. Initial
attempts began back in the early seventies and although much progress has been made
over the past few years, the problem still remains unsolved. There are two types of
transcription, monophonic, where one note is played at a time and polyphonic, where
two or more notes are played simultaneously. This review deals with both types. Both
time-domain techniques such as autocorrelation and frequency domain techniques
such as the Short Time Fourier Transform (STFT) have been used, with most opting

for the latter.

[Knowlton ‘71] developed a system at the University of Utah using a hard-wired
piano keyboard as the system input device; however, the system required specially

modified musical instruments to produce the notation.

Initial attempts at an acoustic signal-based transcription system were described in

[Piszczalski “77]. He developed an automatic music transcription system that focused
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on the recorder and symphonic flute, although low-level analysis was also done on the
piano and the violin. He described how a music transcription system consists of three

distinct parts:

1. Detection of component frequencies and their starting and stopping times
along with associated amplitude values.

2. Analysis of the frequency, amplitude and time information produced to
determine the musical notes that are present.

3. Production of the final notation, determining the location of the measure bars,

etc.

The musical signal was converted into a time frequency representation using the Short
Time Fourier Transform (STFT) [Allen ‘77), which is derived from the Fourier
Transform. The continuous Fourier transform is used to transform a continuous time-
domain signal into its continuous frequency-domain equivalent by representing the

signal as a set of sine waves of different frequencies. It is defined as follows:

X(f)= Q]'x(f)e_””ﬂdf (.1)

-0

where x(f) is the continuous time-domain signal and X(f) its frequency

decomposition. The Discrete Fourier Transform (DFT) is used to calculate the

frequency content of a discrete signal sequence and is defined as follows:
N-1 ] .
X(k)= Zx(n')e my2mk N (3.2)
0
where x(»)is the discrete time-domain signal and X(k) its frequency content. Unlike
the continuous Fourier transform, the DFT covers a finite time and frequency span.
The original signal can be retrieved from X (k) using the Inverse Discrete Fourier

Transform (IDFT):

N-l
x(n) = %Z X (kye’?™ ¥ (3.3)
k=0
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The STFT is an analysis method that uses the DFT.

X(k,n) = lz_i x(m + nH yw(n)e ™™™ (3.4)
m=0
where x(m) is the signal, & the frequency bin number, # the frame number, H the hop
length and w(m) the window of length L. The STFT involves dividing a time-domain
signal of any length into shorter blocks, or frames, and applying the DFT to each of
these blocks individually. The frame length must be less than or equal to the DFT
length. A frame is constructed by multiplying the time-domain signal, x(#), which is
in this case an audio waveform, by a window, w(x). This is illustrated below in figure
3.1 where the original signal (a) is multiplied by a windowing function (b) resulting in
a section of the original signal (c), which is known as a frame. The DFT is applied to
this frame to obtain its frequency content. The windowing function is then shifted to
the right and the process is repeated for the length of the signal. The STFT output can

be interpreted as a collection of uniform filter outputs.

” WWW\/W\/\/\A

x(n)

v
wi{n)

{c)

x{nyw(n)

Figure 3.1: Creating a frame by multiplying a signal, x(n), by a window

function, w(n)

The choice of analysis window [Harris *78] is important since good resolution in the

frequency domain means a trade off in the time domain and vice versa, which is an
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important factor to consider if the original audio waveform needs to be reconstructed
from its frequency representation. The ideal window function for good frequency
resolution would be of infinite length whereas for good time resolution it would be as
short as possible. Obviously this is impossible so a compromise must be reached, and
a window that fits somewhere between the ideal must be used. The simplest window
function is the rectangular window. Examples of other windowing functions are
Triangular, Hamming and Hanning. The responses of these windowing functions can

be seen below in figure 3.2.

Rectangular Triangular Hamming Hanning
Window Window Window Window
0 o] 0 0
20
20
-501 40 S0
40 80
-100 80 -100
S0
100
80 160 -120 150
fsid fsi2 fsid fsiz fsid fsi2 fsid fsiz2

Figure 3.2: Responses of the Rectangular, Triangular, Hamming and Hanning

windows

Once the STFT of the signal had been obtained, Piszczalski then extracted the
frequency of strongest amplitude from each individual time section with each
frequency and its associated amplitude value kept in time order. It was then possible
to search for note boundaries by examining the peaks and troughs of this resulting
strongest frequency line. It was assumed that once the amplitude dropped below the
audible hearing threshold [Zwicker ‘99] a note offset had occurred and once the

amplitude rose above this threshold a note onset had occurred.

However, Piszczalski found that for most musical instruments the strongest-frequency
line did not contain enough information for complete identification of the musical
notes and for more difficult note boundaries the joint time-frequency plane would

need to be examined.

16



Chapter 3: Literature Review

[Brown ‘91] used her previous findings on namowed conventional and inverted
autocorrelation to determine the fundamental frequency of musical signals produced
by keyboard, wind, and string instruments. These results were compared to those
obtained on the same sounds using conventional autocorrelation. By doing this, they
were able to determine two things, whether the method of autocorrelation is well
adapted to the problem of pitch tracking of musical signals and under what conditions

narrowed autocorrelation is advantageous.

The autocorrelation of an N length sequence, x(%), is calculated as follows:

N-n-1]

r.(n)= 1 Zx(k).x(k +n) (3.5
N k=0
where # is the lag and x(») is a time domain signal. An important property of musical
sounds is that they usually have harmonic spectral components. This means that the
second harmonic has a period equal to half that of the fundamental so its peaks in the
autocorrelation function occur at T/2, 2(T/2), 3(T/2) ... n(T/2). The second peak of the
second harmonic, then, will coincide with the first peak of the fundamental and
similarly for other harmonics. Therefore a large peak corresponding to the sum of all
spectral components should occur at the period of the fundamental (and all integer
multiples of the period of the fundamental). It was this property that made the method
of autocorrelation appear to be a good one to Brown for the pitch tracking of musical
signals. Narrowed autocorrelation is calculated by including expressions in the
autocorrelation function, which correspond to lags at 2n, 3n, etc. as well as the usual
term with lag ». This results in an autocorrelation function with extremely narrow

peaks.

Brown found that conventional autocorrelation retwned the average of two notes in
some transition regions whereas narrowed autocorrelation was better able to choose
between the two. This mechanism was discussed in [Brown ‘89]. Two disadvantages
of narrowed autocorrelation were that firstly, the longer analysis time meant less was
known about the exact time for which the calculated note applied, i.e. there was the
usual time/frequency trade off, and secondly the calculation was a little more
expensive computationally as there was an extra N - 2 additions, where N is the

number of terms.
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[Cooper ‘94] developed a monophonic pitch-tracking algorithm, which was designed
so that conventional instruments could be used to control musical processes in a way
that was easily understood by the performer. His approach was to use the pattern and
shape of the digitised sound wave to find its pitch. Using an oscilloscope you can
usually see the points where a cycle repeats itself and, if the sampling frequency is
known, determine the frequency of the wave. Cooper discussed the strategy of
segmentation of the sound wave and a method of finding the shortest distance

between two shape-similar repeating segments,

The upward zero crossing points of the sound wave were located. For a pure sine
wave, the pitch could be calculated from the distance between two upward zero
crossing points. However, the sound wave from a real musical instrument is more
complex. The section between two zero crossing points was called a segment. A
shape description was estimated by dividing a segment into eight equal sub-segments
and taking the amplitude values of the first and last three of these sub-segments as six
landmark points. These landmark points provided a simplified shape and were used to
determine a similarity measure between the segments. The length of the largest
segment was compared with all other segments and the distances and similarity ratios
between them calculated. On locating the next similar segment, the frequency of that

snapshot can then be calculated as follows:
, _J
frequency = ] (3.6)

where f; is the sampling frequency and d is the distance between the two similar

segments.

[Martin ‘96a] described a system that transcribes simple polyphonic music using a
blackboard system. A blackboard system [Corkill *91] is based on the idea of a
number of experts in various different fields congregated around a blackboard,
working together to solve a problem. Each person will add his or her own expertise to
help solve the problem when it is required. A blackboard system consists of the
blackboard, knowledge sources and a scheduler. The blackboard would contain the
various steps of the problem, the knowledge sources are equivalent to the experts and

the scheduler decides who develops what and when. A knowledge source finds a
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piece of relevant information on the board and works on it independently of the other
knowledge sources. Knowledge sources can be added or removed as required without

affecting the other knowledge sources.

The front end of the system obtained the time-frequency representation of the signal
using the STFT. In parallel with this analysis, the short-time running energy of the
signal was also measured by squaring and low pass filtering of the original signal.
Any sharp rises that are detected in the running energy were interpreted as note onsets
and this information was used to segment the time-frequency information into chunks,
which represent the individual chords. The time-frequency analysis of each segment
was averaged over time to give an average spectrum for the chord that was played.
The energy peaks were picked out as they corresponded to harmonic tracks. The input
for the blackboard system was now present, i.e., a list of harmonic tracks with their

associated onset time, frequency and magnitude.

Martin was more interested in a simple front-end system rather than a robust one.
Most of his work concentrated on developing the blackboard section. The blackboard
workspace was divided into five levels, tracks, partials, notes, intervals and chords.
Thirteen knowledge sources were described which each fell into one of three
categories of knowledge, garbage collection, knowledge from physics and knowledge

from musical practice.

The implemented system was capable of transcribing polyphonic synthesised piano
performances in which no two notes were ever played simultaneously an octave apart
and where all notes were in the limited range of B3 to AS5. The front end of the
system made the assumption that the notes in the chords are all played
simultancously and that the sounded notes did not modulate in pitch. Although this
system suffered from some limitations, Martin considered it to be an important step

towards solving the transcription problem.

[Martin ‘96b] uses a different front-end system than he used in [Martin ‘96a], based
on autocorrelation as opposed to sinusoidal analysis. One of the difficulties
experienced in [Martin ‘96a] was the problem of detecting octaves and it was hoped
that this system would overcome that problem. Every note has harmonics at integer

multiples of their fundamental frequency e.g., the note A4 will have its second
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harmonic at AS. Therefore when two notes are played simultaneously an octave
apatt, the fundamental frequency of the higher note will occur at the same frequency
as the second harmonic of the lower note. This leads to great difficulty in detecting

the higher note.

The detection system was based on the log-lag correlogram of [Ellis “96]. The signal
was split into frequency bands using forty gammatone filters, six per octave, spaced
evenly in log frequency. This bank of filters models the basilar membrane mechanics
of the human ear. Each band then underwent half-wave rectification followed by
smoothing and onset enhancement, to model inner hair cell dynamics. The bands
were then analysed using short-time autocorrelation. The three axes of the log-lag
correlogram were filter channel frequency, lag (or inverse pitch) on a logarithmic
scale and time. In Martin’s implementation, a summary autocorrelation was obtained
by normalizing each frequency / lag cell by the zero-lag energy in the same
frequency band and averaging across the frequency bands. This computed the *pitch
percept’. The output from the correlogram becomes the input for the blackboard

system.

The system contained only five knowledge sources and therefore much of the
information contained in the summary autocorrelation was ignored. The results were
encouraging and while the problem of octave detection was not overcome, it was
thought that results could be improved through the addition of musical knowledge to
the blackboard system. Overall, the results obtained for the sinusoidal modelling

approach in [Martin ‘96a] were better.

[Sillem *98] described a system that would transcribe polyphonic music. The system
would be required to handle multiple instruments playing simultaneously and was
regarded as a feasibility study for a commercial package. The finished product would
ideally be a black-box music transcription system that would have a microphone on
one side and a MIDI [Rumsey ‘94] port on the other. The musical sounds played into
the microphone would be converted into MIDI messages which could be recorded,

notated or sent to a MIDI confrolled instrument or synthesiser.

He identified a series of steps for converting digitised acoustic signals to MIDI note

on/off messages i.e. a music transcription system:
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1. Convert the wave data to a series of frequency domain snapshots.

2. Extract and characterise sharp peaks.

3. Link sharp features in consecutive frequency snapshots to form features in the
time/frequency plot

4. Group simultaneous, harmonically related features in the time/frequency plot
into notes.

5. Reject unwanted features and notes.

6. Identify the instrument playing the notes.

7. Output the notes as MIDI note on/off messages.

The project would be PC and windows based and use standard wave (WAV) and
MID! files, which would allow maximum compatibility with existing sound recording

and notation packages.

Various methods of frequency analysis were tested. Sillems preferred method was the
FFT although frequency resolution was poor at low frequencies and unnecessarily
good at high frequencies. Increasing the window length increased the frequency
resolution. The other methods discussed were the maximum entropy method / all

poles model, digital filtering and wavelets [Kaiser *99].

The maximum entropy method chooses a model, which is consistent with the facts it
is presented with but is otherwise as uniform as possible i.e. it models all that is
known while assuming nothing about the unknown. This method was mathematically
well suited to modelling sharp features in a power spectrum as the poles in the
continuous power spectral density function produced a set of very high, sharp peaks.
However, the peaks wandered around unpredictably and sometimes split to produce

two peaks where there should only be one. Sillem found that this caused unreliability.

For the digital filtering method, a bank of 1IR filters was used, each tuned to a
different note. This gave poor results with an unacceptable trade-off between time and
frequency localisation. Improvements were seen when the order of the filter was

increased, but this lead to an excessive computational load.

While the Fourier Transform represents a signal as a set of sine waves of different

frequencies, the Wavelet Transform represents a signal as a set of shifted and scaled
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versions of an original wavelet. The Morlet, Meyer and Mexican hat wavelet
functions can be seen below in figure 3.3. A sinusoid has an infinite duration and is
smooth and regular. A wavelet is a waveform of limited duration and is suited to

detecting abrupt changes and beginnings and ends of events, features that are common

in musical signals.
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Figure 3.3: Morlet, Meyer and Mexican Hat wavelet functions

The continuous wavelet transform, C, of a signal, f(7), is defined as follows:

C(scale, position) = J f{tw(scale, position, £)dr

where 7 is the wavelet function. An example of a scaled wavelet is shown in figure
3.4 where (a) is the original wavelet. A high scale, like that used in (b) would be used
to analyse low frequencies and a low scale like in (c¢) is used to analyse high

frequencies where more detail is required. The scaled wavelets are moved along the

signal and correlated with it.

(3.7)
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(a)

(b}

©

Figure 3.4: Examples of an original wavelet (a), a wavelet with a high scale (b)

and a low scale (¢)

Sillem found Morlet wavelets to be computationally similar to the “slow” Fourier
Transform and not particularly efficient. Sillem discovered that better time resolution
was achievable with high frequency elements than for Fourier methods but the results

were not dramatically better in terms of frequency resolution.

The next stage in his study was to extract a set of features that represent continuous
sounds with sharply defined frequencies. He constructed the features by connecting a
frequency peak in one time-slice with a similar or identical one in the next time-slice.
At the end of this step a large list of raw frequency features existed, however not all

were reliable in the current state of the study.

Future developments included tests to see if instruments could be recognised by
comparing the amplitude and phase of the note harmonics to those of actual
instruments. Once the notes, onset and offset times and instrument type have been
identified, the data would then be output into a MIDI file. However, this project had

not been completed, even as a feasibility study.
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[Chan ‘00] described a system that gives real time automated transcription of live
monophonic music into sheet music using common music notation, They attempted to
implement a system on the TMS320C67x EVM board to accept live music through a
microphone, detect the notes and transcribe them into sheet music in real time. The
constraints of the project were that the range of detection was limited to two octaves
(C4 — C6), a note could be no shorter than a semi crochet and the input signal must

not have a high noise content.

They decided to use a simple time-domain approach as opposed to a frequency-
domain technique to find the pitch period of the musical signal. [Wendt “96]
determined the Glottal Closure Instants in speech signals and measured the time
period between each event. A Glottal Closure Instant is a vocal string effect occurring
during each period of voiced speech when the glottis is excited. The signal was
processed period by period which provided impressive time and frequency resolution.
The method proposed was to use a single derivative filtering function defined to
contain a specific bandwidth of voiced speech. When this wavelet function was
convolved with the voiced speech signal, a filtered signal with well-defined local
maxima where Glottal Closure Instants occur was produced. This method promised
dramatic simplification over methods previously used on speech signals in terms of

processing as only convolution was used.

A Glottal Closure Instant is equivalent to a zero crossing in a speech signal.
Therefore, [Jehan ‘97] investigated the adaptation of this algorithm towards musical
signals. By filtering a musical signal with a derivative function a maximum will occur
at each zero crossing with the time period between each representing the pitch period
of the signal at that moment. It was this algorithm that was implemented by Chan.
The wavelets and the final derivative function were chosen by utilising a Daubechies
wavelets [Jense ‘01] generating function and investigating the properties of the
resulting wavelet. In general, the higher the order of the filter, the longer it is and the
better it performs. However, increasing the order also increases computational
expense, so an eighth order filter was chosen and a Matlab function was used to find
the coefficients of the Daubechies wavelets. The coefficients were passed into another
function that generated the wavelet and scaling functions, the frequency band was

also an input. However, Chan discovered that the wavelets alone were not satisfactory
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as band-pass filters since the side-lobes were of relatively high magnitude and

therefore allowed some of the next harmonic to pass through.

It was then decided to use a combination of wavelets and a Finite Impulse Response
(FIR) filter in order to improve the problem. Low pass FIR filters were convolved
with the wavelets to suppress the side-lobes further. They were designed so that the
cut-off frequency was in between the last note of the octave of interest and the first
note of the next octave. These filters were substituted for the ones used in [Jehan ‘97]

and the results of the pitch detection became extremely reliable.

Chan used the parabolic approximation technique that was used to locate the maxima
in [Jehan ‘97], since simply choosing the visible peaks may not locate the actual
maxima due to sampling restrictions. The parabola fits three points and from these the
maximum was located, this is similar to the peak interpolation method used in
sinusoidal modelling. There were some unwanted local maxima due to noise, which
were eliminated by checking the variation of two consecutive durations and the
dynamic threshold. The samples that did not fit into a specified range were eliminated
provided there was not a really strong change in the pitch. To reject un-pitched notes
and errors, they calculated the energy of each 512-sample frame of the input and the
filtered signal {using the sum of squares method). Rejection occurred when the input
signal energy was below a set threshold, if there was no energy in the filtered signal
or if the pitch track exhibited rapid variations. Harmonics are present in the majority
of all pitched musical sounds, i.e. when a note is played its harmonics in the higher
octaves can also be heard. In this case, they solved the problem by always selecting

the lowest note detected.

The Matlab code developed by Chan was converted to C code. This project was
dependent on the user supplying the tempo, number of beats per minute, shortest note
duration and the clef. When all of the musical elements were identified — pitch,
duration, meter — this information was transcribed into musical notation using

Common Music Notation [Schottstaedt].

[McNab “00] gives an evaluation of the melody transcription system used in MelDex
(Melody Index), a system that was developed in the University of Waikato, Hamilton,

New Zealand. MelDex enables users to search for musical scores within a collection
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by singing short phrases into a microphone. The users must sing the melody using the

syllable “da”; this melody is recorded and then transcribed into music notation.

The signal was segmented into the individual notes using the Root Mean Square
(RMS) power of the signal. Two thresholds were used to accommodate noise. These
are calculated from the second-order RMS power over the entire input sound. When
the amplitude exceeds the higher threshold, a note onset is detected and when it drops
below the lower threshold, a note offset is detected. If the note segment is found to be
less than a third of the shortest allowed, set by the user, it is discarded. The frequency
is determined using the Gold-Rabiner algorithm, which is described in [Gold “69].
This algorithim gives a frequency estimate for each pitch period and McNab’s
implementation averages these over 20ms frames. The frequency of each note

segment was determined using a histogram.

Ten people, five male and five female, were given a set of eleven well-known songs
to sing in order to test the system. One of the subjects did not know one of the songs
so that song was dropped from the test. Therefore the implementation was finally
tested on a set of 100 examples. The subjects had varying levels of singing experience
ranging from negligible to extensive. The user was able to visually inspect the
segmentation points and manually reposition them and listen to the segments if
necessary. Segmentation errors were recorded and these fell into four categories,
insertion, deletion, concatenation and truncation. There was an error of 11.3%, mainly
concatenation errors, over half of which occurred on short notes. A big problem was
finding onset and offset threshold values that covered all situations. Frequency errors
were classed as the wrong octave and the wrong note and had an error rate of less than
1%. These are very accurate results but this was due to the use of a histogram, which
finds the average frequency during a note segment. Frequency results at the frame
level did contain errors. This means that frequency determination relies on the note
segmentation information in order to give accurate results, however the note
segmentation results were not accurate enough. Therefore, the conclusion resulting
from the evaluation was that it would be necessary to replace the Gold-Rabiner
algorithm in order to obtain better frequency results at the frame level and to enable

note segmentation at that stage.

[Monti ‘00] describes a transeription system that uses an autocorrelation based pitch
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tracker. They listed four physical parameters that can be used to describe a musical

signal, along with how a listener perceives these parameters:

1. Fundamental frequency or pitch.
Signal amplitude or loudness.

Signal shape or timbre.

Rl

Sound source location or spatial perception.

The fundamental frequency of each note was calculated using the autocorrelation
function in Equation (3.5). This function shows peaks for any periodicity present in
the signal and the zero lag autocorrelation gives the energy of the signal. Some
algorithms from [Slaney ‘98] were used in the implementation. There was good
detection for the steady part of the note since the pitch remains almost constant while
useful information could not be provided during the noisy attack transient. The
envelope of the signal was calculated to assist the pitch tracker and the pitch
calculation was skipped whenever the energy of the signal dropped below the
audibility threshold. Each pitch was then converted to its corresponding MIDI

number.

The MIDI numbers and signal envelope were then passed into a collector, which
extracted the score. The main parameter of the collector was the minimum note
duration. When a pitch maintained the same value for the minimum note duration, a
note onset was detected. This was modified to adapt to the speed of the music, which
improved the performance of the system. A note offset was detected by a change in
frequency or silence. If the pitch varied after a note onset before returning to the
original pitch within the minimum note duration, it was considered to be one note.

Note duration was calculated as the difference between its onset and offset times.

[Csound] was used to synthesize the transcribed music using the pitch, onset and
duration of the notes, which were obtained from the collector. In addition to these
three parameters, the envelope and timbre were also required to recreate the original
melody. Each note envelope was recreated using the Csound function /inseg, which
traces linear segments between defined points. This was useful in detecting missed
notes as two notes of the same frequency played consecutively would be detected as

one by the collector. When the amplitude rose twice for the one note, it was assumed
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that a second note of the same frequency had been played. The timbre of a note
depends on the characteristics of the instrument. To recreate the timbre, the basic
waveform of each note was extracted from the original signal and multiplied by its
envelope. The section of waveform was chosen after the initial attack had occurred,
when the note was in its steady state. However since the note transients were not

considered, poor synthesis results were achieved.

The system was tested on a CD collection of brass instrument riffs and the tempo and
pitch were correctly extracted. The results were compared with those of a commercial

program [WAV2MIDI] with similar results being achieved.

[Plumbley ‘02] found that in practice using the Fast Fourier Transform (FFT) [Cooley
‘65], was more efficient than the autocorrelation function. The autocorrelation
measures the similarity between shifted versions of the time waveform and the delay
corresponding to the highest peak in the autocorrelation gives the period of the
waveform. Since frequency is the inverse of time period, this information can be used
to give the frequency of the signal. Since high frequencies have a short duration in the
time domain, Plumbley found that using a frequency transform gave more accurate

results,

[Bello *00] gave an overview of two techniques for automatic music transcription,
which were developed at Kings College in London. The first was a monophonic
transcription system, described above in [Monti ‘00], which was tested on a
saxophone and a fluge! horn. He found that it had good detection and smooth values
during the steady part of the note, i.e., after the initial attack of the note onset, and

gave correct results for the note range it was tested on, B1-E6.

The second of their techniques was a simple polyphonic transcription blackboard
system and Neural network. Top-down processing, where different levels of the
system are determined by predictive models of the analysed object or by previous
knowledge of the nature of the data, was used in this project and was achieved
through the implementation of a neural network [Haykin ‘99]. It was noticed that
while analysing the running spectrum of the sound, when an onset occurs there is a

large burst of energy, particularly in the high frequencies. They made use of this
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property to determine onset time. Segmentation was performed by averaging the

STFT of the signal between onsets.
The levels in this blackboard system were:

1. Tracks, the peaks of the averaged STFT in a given segment.

2. Partials, which were created from the tracks and created a link between tracks
and notes.

3. Notes representing the high-level musical structures the system aims to

extract.

A feed forward network was the type of neural net implemented. The input pattern
consisted of the spectrogram of a piano signals segment (a note/chord). The target

output was represented by the absence “(” or presence 17 of a chord in the sample.

When the system was running, the network received the STFT data, which the
blackboard system analysed as input. The networks output changed the performance
of the system allowing multiple note hypotheses to survive if necessary. The output
was in the form of a piano roll and CSOUND score file. A recurring problem was that
the system chose a note an octave below the actual note that was played. It was
suggested that new knowledge sources should be added to overcome this octave
detection problem. The architecture needed to be modified, to incorporate dynamic
structures to handle different sized hypotheses, i.e. chords with more than three notes.
The training space also needed to be expanded to include all eight octaves of the

piano.

[Goto ‘00] proposed a system, called PreFEst (Predominant FO Estimation Method),
to estimate the fundamental frequency of melody and bass lines in CD recordings.
The system did not rely on the presence of the fundamental frequency in order to
calculate the pitch of a note and instead obtained the most predominant fundamental
frequency, which was supported by predominant harmonics within a specified

frequency range. PreFEst made the following assumptions:

¢ The melody and bass sounds contain the harmonic structure of a tune,

however did not care about the presence of the F0’s frequency component.
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¢ The melody line is predominant in the middle and high frequency regions and
the bass line predominant in the low frequency region.
o [t was also assumed that the melody and bass lines tend to have temporally

continuous trajectoties.

PreFEst first calculates instantaneous frequencies using multirate signal processing
techniques and extracts candidate frequency components on the basis of an
instantaneous-frequency-related measure. PreFEst basically estimates the F0O, which is
supported by predominant frequency components within a limited frequency range.
The frequency range was limited by using two band-pass filters, one for the middle
and high regions of the melody line and a second for the low region of the bass line. It
then forms a probability density function of the FO and this represents the relative

dominance of every possible harmonic structure.

The time-frequency representation of the signal was obtained using an STFT-based
multirate filter bank. Initially the signal was down-sampled using a decimator, which
contained an FIR low pass filter with a cut-off frequency of 0.43/s, where f5 was the
sample rate of the branch. This resulted in five output branches — from the original
signal at 16 kHz to the final decimated signal at 1 kHz — with each of these branches

analyzed as follows. Firstly the STEFT of a branch was obtained:
X(@,0y= [ x(0)h(z e dr = a+ jb 3.8)

where x(7) is the time domain signal and h(?) is the window function. Time delays at
the different multirate layers were compensated for. Potential frequency components
were extracted based on mapping from the center frequency, @, of a STFT filter to

the instantaneous frequency, A(w,?), of its output [Flanagan *66]:

ob Oa
CJT —b—"—‘
Mo, )= +%—b2—0’ (3.9)

Once fixed stable mapping points were found, it was then possible to extract a set of

instantaneous frequencies of the frequency components as follows [Abe ‘97]:
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-

5,
V= 120 -y =050 —y) <0} (3.10)
Calculating their powers, the power distribution function was defined as:

X (@, 0)|ifw e \P}’)} o)

Y (w) =
? 0 otherwise

The frequency range was limited using two band pass filters. One covered a low

frequency range, 1000 - 4800 cents, to correspond with dominant bass line harmonics

and the second, a middle to high frequency range, 3600 — 9600 cents, to correspond

with dominant melody line harmonics. There are 100 cents to a semi-tone and

frequency in cents, feeu, is obtained from frequency in Hz, fy., as follows:

.fcem = 1200 lng #

3

440% 212

(3.12)

The filtered frequency components could then be represented as BPF, (x)‘{"‘fj) (x),

where BPF;(x) was the frequency response of the band pass filter at x (in cents) for the
melody (i=m) and bass (i=b) lines. The power distribution was the same as in
Equation (3.11) above with the exception that frequency was now in cents. The
probability distribution function (pdf) of each of the filtered frequency components

was given by:

BPE(x)¥'9 (x)
fm BPF,(x)¥" (x)dx

po(x) = (3.13)

giving a pdf of the fundamental frequency. It could be considered that the pdf was
created from a weighted mixture of harmonie-siructure tone models. The pdf of each
tone model was denoted as p(x|F) where F was its fundamental frequency and the

mixture density was defined as:

b,
p(x;69) = j; wO(F) p(x| F)dF, (3.14)
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0" ={w(FY| FI, < F < Fh} (3.15)

where FI; and Fh; were the upper and lower limits of the possible fundamental

frequency range, and w”(F) was the weight of a tone model that satisfies

h
L'w(’)(F )dlF =1. All simultaneous possibilities of the fundamental frequency

needed to be considered, as it was not known how many sound sources were

)

» (x) was likely to have been

contained in the mixture. By estimating 8 so that p

created from p(x;8), w (#) could be interpreted as the pdf of the fundamental

frequency.

To estimate the value of 9, the Expectation-Maximization (EM) algorithm
described in [Dempster *77] was used. This algorithm consists of two iterative steps
and 1s used to calculate maximum likelihood estimates from incomplete data. The first
step is the Expectation or E-step and calculates the conditional expectation of the

mean log-likelihood as follows:

OO 10 = [ p(E,[log p(x, F;6V) | x;00 Jdx  (3.16)
where Erfalb] is the conditional expectation of ¢ with respect to the hidden variable F

with the probability distribution determined by the condition . The second step is the

Maximization or M-step, which maximizes &6 {8' ) as follows:

6" = argmax_,, ®@" 19" G.17)

gt
to obtain the ‘new’ estimate 8 from the ‘old’ estimate, 8'“’, which was updated on

each iteration.

The peak trajectories, resulting from the EM algorithm, were sequentially tracked to
select those which were the most dominant and stable. This was achieved using a
multiple-agent architecture. A salience detector extracted salient peaks from the pdf of
the fundamental frequency. Agents were generated which interacted and allocated

peaks amongst themselves. When more than one agent claimed the same peak, it was
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allocated to the most reliable agent. When the most salient peak was not located, a
new agent was generated to track it. If an agent had not been allocated a salient peak,
or could not find its next peak in the pdf it was penalised and once it was allocated a
peak, the penalty was reset. Once this penalty exceeded a threshold, the associated
agent was terminated. Each agent evaluated its own reliability using the reliability at
the previous frame and the degree of the peaks salience at the current frame. The most
reliable agent, and the power along the trajectory of the peak it was tracking
determined the final value of fundamental frequency. The system was tested on
excerpts of ten songs with an average accuracy of 86.5% achieved for melody

detection and 75.3% for bass detection.

[Klapuri ‘00] proposed a multipitch estimation (MPE) algorithm to operate reliably on
polyphonic music. The algorithm was divided into two parts, the first involved
estimating the predominant pitch and the second subtracting the spectrum of this

detected pitch from the mixture.

Firstly a frequency representation of the signal was obtained by applying a Discrete
Fourier Transform (DFT) to the Hamming-windowed signal. An enhanced spectrum,
Xe(k), was calculated by taking the logarithm of the magnitude spectrum and high
pass filtering the result. The signal was then separated into 18 logarithmically
distributed bands. Each band covered two thirds of an octave, weighted by a
triangular window with 50% overlap between bands. A fundamental frequency
likelthood vector, Lg(n), was calculated for each band, B, so that each frequency
sample of X,(k) had a corresponding fundamental frequency likelihood sample of
Lp(n). Frequency samples X, (k) at band B were in the range & [kg, kg+Kp-1] where ks
is the lowest sample and K the number of samples at the band. The bandwise
fundamental frequency likelihoods, Lg(n), were calculated by finding such a series of

every n spectrum sample that minimises the likelihood:

H-1
Ly (n)=maxW(H)Y X, (k, +m + hn) (3.18)

meM o0

where me M, M={0,1,...,n-1} is the offset of the series of partials, H = [(K, — m)/n

is the number of harmonic partials in the sum and W(H)=0.75/H+0.25 was used as a

normalization factor.
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Before the bands could be recombined, the inharmonicity factor was calculated.
Inharmonicity is explained in chapter 1. This was because the fundamental
frequencies at different bands did not match for inharmonic sounds. Inharmonicity
caused a slight rise in the perceived pitch. It was also discovered that raising the
likelihoods to a second power, prior to recombining, gave better robustness. The
outputs of this stage were the fundamental frequency, inharmonicity factor and the

frequencies and amplitudes of the harmonic series of the sound.

In the second stage of the system, the partials of the detected sounds were removed
from the mixture. Although good estimates of the amplitude, «_, angular frequency,
@, and phase, @ , of each partial, s(f) = ¢, cos(w ¢ +8,), of a sound were found in
the first section, more accurate estimates were found by applying a Hamming window

and zero padding in the time domain and then using quadratic interpolation of the

spectrum. The STFT of each partial, s(¢), was obtained as follows:

S{w) = f[w(r)s(r)e"”" }Jr (3.19)
where temporal weighting was performed by the window function:
w(t)=a, +b, cos(w t+8 ),t<[0,T] {3.20)

This partial was then subtracted from the mixture. This process was repeated for each

partial of the detected sound.

A problem was encountered when sounds with overlapping partials were contained in
the same sample of the mixture. This resulted in a corrupted mixture when partials of
sounds, which had not yet been subtracted, had already been removed. To rectify this,
the sound spectrum was smoothed, by calculating a moving average over the
amplitudes of the harmonic partials. A hamming window, an octave wide, was
centred at each harmonic and a weighted mean calculated within this window. Then
the minimum amplitude of the original and average was taken as the new amplitude.
This meant that the partials of the sound would have much lower amplitudes, and
would not be completely removed from the mixture. This adjustment approximately

halved error rates in polyphonies.
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The system was tested on a database of sung vowels and twenty-six different musical
instruments, which included plucked and bowed strings, flutes, brass and reed
instruments. Sounds were played in a five-octave range from 65 Hz to 2100 Hz and
pitches were estimated in a single 190ms time frame. Results were compared with
those obtained manually by 10 musicians, Overall, the implemented system

performed better than the trained musicians.

[Klapuri ‘01] combined existing algorithms, the onset detector previously presented in
[Klapuri ‘99] (see section) and the multipitch estimator in {Klapuri *00], and added
two new features to enable the application to deal with real world signals. The
features were both part of the MPE algorithm, the first was noise suppression, which
occurs before the predominant pitch estimation, and the second estimated the number

of voices present in the sound mixture.

In a musical signal, noise is typically caused by drums and percussive instruments.
Since this is not continuous throughout the entire signal, the proposed system
estimated and removed noise independently in each analysis frame. The system dealt

with both convolutive and additive noise which are defined as follows:
X(k) =Sk H(k)Y+ N(k) 320

where X(k) is the power spectrum of the input signal, S¢k) the power spectrum of the
vibrating system whose fundamental frequency is to be measured, H(k) is the
frequency response of the operating environment and body of the instrument and
filters Stk), and N(k) is the power spectrum of the additive noise. Both additive and
convoluted noises were removed simultaneously, using a technique based on RASTA
spectral processing in [Hermansky ‘93]. The power spectrum was transformed as

follows:
Y(k) = Infl + J x X (k)} (3.22)

where J scales the input spectrum so that N(k)<<] and the spectral peaks of
{Stky)H(k,)]>>1 (k, corresponded to the fundamental frequency of spectral peak p). J
depended on the level of additive noise and the spectral peaks and was caiculated as

follows:
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k&,
J = (3.23)

where kg and %; are determined by the frequency range, in this case they were 50 Hz
and 6 kHz, and the optimal value for & was 1. M(k), the noise content of Y(k), was
estimated by calculating a moving average over Y(k) in equivalent rectangular
bandwidth (ERB) frequency scale [Smith ‘04]. This was achieved by calculating a
Hamming-window weighted average over ¥k) for values around & where the width of
the window was dependent on the centre frequency f corresponding to k& and was

calculated as follows:

N S
W(f)y=p 24.7(4.371000“] (3.24)

where the optimum value for f was 4.8. This estimated noise spectrum, M%), was

linearly subtracted from ¥(k) resulting in Z(k) with resulting negative values set to

zero. This value was then passed on to the multipitch estimator.

In a study [Huron ‘89] on the ability of musicians to identify the number of voices
present in a polyphonic mixture, there was a noticeable drop in accuracy when there
were four or more voices present, with the musicians tending to underestimate the
number of voices in over half of the examples. Klapuri used a statistical approach to
solve the problem. Random mixtures were created that contained between zero and
six simultaneous harmonic sounds from 26 musical instruments, and these were
contaminated with pink noise or random drum sounds. These mixtures of known
polyphony were used to test the system, with different characteristics being measured
in order to find a way of determining when to stop the iterations. It was determined
that two techniques were necessary to estimate polyphony; the first detected if there
were harmonic sounds in the signal and the second how many simultaneous sounds

were present, if any.

Voicing was detected using the likelihood, L;, calculated in the first iteration of the
predominant pitch estimator, using Equation (3.18). This was combined with features

related to the signal-to-noise ratio of the input signal:
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P
V, = 4In(L, )+ ln[P* J (3.25)

A

where P, is the power spectrum of X(k) between 50 Hz and 6kHz after the signal had
been scaled with J and P, is the power spectrum of the estimated noise spectrum in
the same frequency region, calculated by transforming M(k) back to power spectral
domain by inverse transforming Equation (3.17). The signal was voiced if V> Toicing

where Tyoiemg Was a fixed threshold.

To stop the iterative multipitch estimator, the likelihoods, Z;, of the predominant pitch
estimator were again used. The likelihoods are affected by the signal-to-noise ratio,

decreasing as noise increases. This is corrected using the following equation:

v, = 1.81n(L,)—1n[iJ (3.26)

M
when V; remains greater than a fixed threshold, the iterative process continues.

Results for both voicing and the number of iterations in the multipitch estimation
system can be calculated without using the likelihoods of the predominant pitch

estimator as follows:

Vy'= ln( UtE J (3.27)
R\f
V.'=2In(P)- ln{ £ J (3.28)
P.\f

where P. in Equation (3.27) is the power of Z(k), and P; in Equation (3.28) is the
power of the sound detected at iteration 7, calculated by selecting frequency samples
from Z(k) from the positions of the harmonic components of the detected sound,
transforming to the power spectral domain and summing. The accuracy of this method

was comparable to using the likelihoods.

The biggest problem for the voicing detector was the presence of drum sounds. As

half of the acoustic energy of the sounds of bass drums, snares and tom-toms is
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harmonic, the voicing detector tended to be misled. This system was tested on
simulated examples as opposed to real musical signals, which are significantly more
complex. It was thought that MIDI-songs would give the best evaluation of the system

and initial tests had not yet been completed.

[Marchand ‘01] proposed a pitch tracker that used a series of Fourier transforms. To
determine the pitch at a time, ¢4, this section of the signal was multiplied by a Hanning
window and then analysed using the order-1 Fourier transform. The fundamental

frequency of a note may be determined from this analysis using the equation:

Fs iFT
= 3.29
f== (3.29)

where [ is the fundamental frequency, 7., is the bin number of the peak of greatest
magnitude in the Fourier transform, F, is the sampling frequency and A is the size

of the Fourier transform. The problem with using this method is that occasionally, the
fundamental frequency is missing so the peak of greatest magnitude may correspond

to a harmonic giving the wrong result.

Therefore, the magnitude spectrum of the first Fourier transform was analysed using
the classic Fourier transform, resulting in a Fourier of Fourier transform of the

original signal. This time, the fundamental frequency is calculated as follows:

F
f=—"— (3.30)

2’&7‘(;-T)

where J,, ., is the bin number of the peak of greatest magnitude (after that at bin 0)

in the second Fourier transform. However, this set of peaks did not always give the
correct frequency value so a peak-tracking strategy similar to that used in [Althoff
*99] was applied to deal with the pseudo-partials detected in the Fourier of Fourier
transform spectrum. Partials are eliminated according to amplitude and length with
the dominant ones remaining. The frequency of the dominant partial is then taken to

be the fundamental frequency:,
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The system was tested on many natural sounds like the saxophone, guitar and human
voice with good results being achieved. The algorithm was found to be much faster
than the autocorrelation method. The results were compared to those obtained using
the system described in [Arfib ‘99]. Error rates of 1-6% were found for the proposed

system compared with error rates of 5-12% for the [Arfib “99] system.

This review on music transcription systems has described some of the current
techniques that are being used to tackle the problem of automatic music transcription.
Time-domain domain techniques, such as autocorrelation, are fine when dealing with
monophonic transcription as they deal with the audio signal as a whole but are not
suitable for polyphonic music. Frequency-domain techniques, such as the STFT, have
proved to be more popular, are more computationally efficient and are also more

effective.
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3.2 Onset Detection

It became clear during the literature review that a good onset detector is an essential
clement of a music transcription system. An onset indicates when something new has
happened in a signal. In the case of a musical signal, this could be a change in pitch,
i.e. the precise time when a new note is produced by an instrument. Onsets are very
important in instrument recognition, as the timbre of a note with the onset removed
has proved be very difficult to recognize [Sethares ‘97]. Knowing the location of the
onsets allows a signal to be segmented so that each event can then be examined in
1solation. Therefore, in order to determine what notes constitute a musical piece, an
onset detector 1s vital. Onset detectors are not exclusive to music transcription as they
are also used in a number of other applications such as music instrument separators,

time stretching and instrument recognition as mentioned above.

There are different types of onset, the most common of which can be loosely termed
fast and slow onsets. A fast onset is the easier to recognize since it has an abrupt
change in the energy profile for a short duration at the beginning of a note and the
onset is very noticeable in the higher frequencies. This type is typical of the
percussive instruments such as a ptano or a banjo. An example of a fast onset, played

by a piano, is shown below in figure 3.5 (a).
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Note Onsets
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Figure 3.5: (a) A single note played by a piano; (b) A single note played by a
fiddle

The slow onset is much harder to recognize as it takes a much longer time to reach the
maximum onset value and has no noticeable change in the higher frequencies. This
type is typical in wind instruments such as the flute and tin whistle and bowed
instruments such as the fiddle. An example of a slow onset, played by a fiddle, is

shown in figure 3.5 (b).

A great deal of research has been carried out in the area of onset detection, and
although much progress has been made, it still remains an unsolved problem,
particularly in the case of slow onsets. The first onset detectors considered the musical
signal as a whole [Chafe ‘85]. However this approach is only suitable for monophonic
signals with very prominent onsets. [Bilmes ‘93] introduced a sub-band approach by
dividing the signal into two bands. He calculated the short time energy of the high
band using a window and then computed the slopes of the energy over time, searching
for a value that reached a given threshold. Once the threshold had been attained, the

attack time was the maximum slope in a predefined region.
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[Masri *96] proposed an approach to detect onsets in order to improve music analysis-
resynthesis. He based his approach on the deterministic plus stochastic sinusoidal
model developed by [Serra ‘90). The energy, %, and high frequency content, HFC, of

the & bin of the Fourier transform of the signal, X(k), were measured as follows:

%
E=YS {X(k)|2} (3.31)
k=2
1\’2
HFC =) {X(k)|2.k} (332)
k=2

where N is the FFT array length. The condition for onset detection was as follows:

HFC, _HFC,
HFC E

r—1 r

>T, (3.33)

Where r is the current frame and T, the threshold above which an onset is detected.

[Scheirer ‘98] built upon the sub-band approach, which is more suitable for dealing
with polyphonic signals. He carried out psychoacoustic analysis on musical signals to
better understand beat perception. A musical signal was divided into six frequency
bands and their energy envelopes calculated. These were modulated with the
corresponding frequency bands of a noise signal and the resulting bands summed
together. It was discovered that the resulting noise signal possessed a rhythmic
percept that was significantly the same as that of the original musical signal. This
implies that only the energy envelopes of a musical signal are required to extract pulse
and meter information. However, it is necessary to divide the signal into bands and
process each one individually, otherwise the rhythmic content is not preserved. Based
on this information, he divided a musical signal into six bands with the range of each
band roughly covering one octave. This was achieved using sixth order band-pass
elliptic filters with the lowest being a low-pass filter and the highest, a high pass filter.
The amplitude envelope was extracted from each band, and this was convolved with a
200ms half-hanning window in order to further smooth the signal. Convolving with a
half-hanning window performs much the same task as the human auditory system,

masking fast amplitude modulations but emphasising the most recent inputs. The first
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order difference function was calculated and then half wave rectified. Results for
extracting the beats of musical signals were similar to those obtained by human
listeners. However, the system was only suitable for use on percussive sounds, i.e.

sounds with fast onsets.

[Klapuri ‘98] used Schierer’s approach as a basis for his own system, which detects
the onset of notes in a musical signal. This time the musical signal was divided into
seven one-octave bands, The first order difference function of each of the amplitude
envelopes was calculated and only the segments that were above a certain threshold
were considered. The first order relative difference function, W), was then

calculated:

Suw
@) =4 = L (log () 634

A(r)
where A(f) is the amplitude envelope of the signal. This measures the amount of
change in relation to signal level and is the same as differentiating the logarithm of
the amplitude envelope. It gives a more accurate onset time than using the first order

difference function. This is illustrated below in figure 3.6.
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Figure 3.6: First order absolute (dashed) and relative (solid) difference functions
of the amplitude envelopes of different frequency hands. Picked onset times are circled

|Klapuri '98]
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Potential onset times were then collected from each band by performing a peak
picking operation on the relative difference function. Finally, the results from the

different frequency bands were combined to give the onset times of the signal.

[Klapuri ‘99] describes a modified version of the onset detector described in [Klapuri
‘08]. This time he incorporated the psychoacoustic loudness perception model
described in [Moore 97]. A bank of twenty-one nearly critical-band filters were used
in an attempt to mimic the human auditory system. The filters covered the frequency
range from 44 Hz to 17 kHz, the lowest three were one-octave band-pass filters and
the remaining eighteen were third-octave band-pass filters. As in the previous case,
the calculations were performed one band at a time. The outputs of the filters were
full wave rectified and decimated by a factor of 180 in order to ease the following
computations. This time the signals were convolved with 100ms half Hanning
windows in order to calculate the amplitude envelopes. The first order relative
difference function was calculated in the same way as in the previous system. The
onsets were then detected by using a simple peak picking operation, which looks for

peaks above a global threshold.

The intensity of each onset was extracted from the first order difference function. It
was chosen between the onset and the point where the amplitude envelope begins to
decrease, at the point of maximum slope. Any component that was detected less than
50ms from a more intense component was discarded. The onset components in the
different frequency bands were then sorted in time order. Each onset was then
assigned a loudness value, which was calculated by collecting onset intensities in a
50ms time window around the onset components. The loudness results compared very
well with the perceived loudness of onsets in listening tests. A loudness threshold was
then set and any components with a value below this were dropped. Components that

were less than 50ms from a ‘louder’ component were also dropped.

The system was tested on musical signals containing a range of instruments and
genres. The period of each signal was inspected and their onsets marked. The signals
were then fed into the system and those results compared with the manual ones. Good
results were achieved for signals containing a small number of instruments but it
performed very poorly on symphony orchestras, as the system was not able to deal

well with strong amplitude modulation.
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[Marolt *02a] and [Marolt ‘02b] presented a system to detect note onsets in
polyphonic piano music. The onset detector was a part of their transcription system,
SONIC. It was based on a model for segmentation of speech signals in [Smith ‘96],
which uses a network of integrate and fire neurons [Gerstner “02]. Marolt added a

multilayer perceptron {MLP) neural network to improve reliability.

The signal was split into 22 frequency bands using band-pass infinite impulse
response (IIR) filters. These filters were designed to imitate the function of the basilar
membrane in the human inner ear. The signal in each of the frequency bands was

processed by a filter, which calculated the difference between two amplitude

o) = }(exp(— %J ~ exp(— ’f‘f"']}mdx (339)
0 sts S5t

where s(x) is the signal, f; the sampling frequency and 7, and 1 the time constants of

envelopes:

two smoothing filters. 7, is a short time constant of 6-20ms, depending on the centre
frequency of the signal, and # a longer time constant of 20-40ms. The output of the

difference filter is positive when the signal energy rises and negative otherwise.

Peak picking was performed using a combination of a network of integrate and fire
neurons and an MLP. Neural networks are modelled on how biological nervous
systems, such as the brain, process information. Most biological neurons
communicate by short electrical pulses. In artificial networks, integrate and fire
neuron models do not rely on a temporal average over the pulses, unlike the standard
neuron model. Each neuron, 7, changed its activity, 4,, which was initially set to zero,

as follows:
d
A =0,(t)-¥, (3.36)
dt

where Oy(#) is the output of the i difference filter and y describes the leakiness of
integration. Once A; reached a threshold, a neuron was fired, i.e. emited an output
pulse, and 4; was reset to zero. The firing of neurons was an indication of amplitude

growth in each band. Once a neuron had been fired, the next input could not be
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accepted for a refractory period of 50ms. All neurons were connected via excitatory

connections and once one was fired, activities of all others were raised.

The MLP neural network was used to determine which of the pulses are note onsets.
Its inputs were the neuron activities, 4, and several other factors such as the
amplitudes of the frequency bands. The system was trained to recognise note onsets
on synthesised piano tunes and tested on both real and synthesised polyphonic piano
tunes with good results being achieved. They found that network connections
improved detection of weak onsets as they encourage neurons close to the threshold to
fire. The refractory period meant that a series of spurious onsets were not detected for
the one note, however, it also meant ornamentation and some notes played in quick

succession went undetected.

[Duxbury ‘02] presented an approach to onset detection that used an energy-based
detector on the upper sub-bands and a frequency-based distance measure on the lower
sub-bands. A method for improving the detection function by using a smoothed
difference metric was also presented and they showed that by analysing the statistics

of this detection function, the detection threshold could be set antomatically.

Using a constant-Q filter bank, the signal was split into five bands. The highest band
was disregarded as it contains weak onset information. The next three bands (1.2-
11kHz) contain bursts of energy for a range of onsets while although the lowest band
(0-1.1kHz) does not, it does have noticeable differences in the frequency content at
note changes. An energy-based technique was used on the upper three bands (1.2 -

11KHz). The sub-band energy, SE, was given by:

uh 2

SE(ny= Y |x(m)| (3.37)

m-(n-1Yh
where m is the time index, # the hop number and 4 the hop size.

A transient energy measure was aiso used in the upper bands to eliminate upper
steady state components such as high frequency partials or high-pitched notes. To do
this, an extra STFT was used in each band. This was based on basic phase vocoder

theory [Dolson “86]. It is possible to show that when presented with a perfect sinusoid
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in ideal conditions, the instantancous phase should be equal between successive
frames of a STFT. However this is an unrealistic assumption in real conditions and

the unwrapped estimate phase, @ , of the K" bin is expected to be equal to the target

phase, @, , plus a deviation phase, @, , i.e.:

@, (m,k) = princarg[@(m,k) - @, (m, )] (3.38)

Where princarg is the principal argument function mapping the phase to the [-m,zn]
range and m is the hop number. The instantaneous frequency, f;, of the K" sinusoid is
calculated by dividing the unwrapped phase difference, A@(m, k), between

consecutive frames by their time difference as follows:

Ap(m, k)

k)=
)= R

/s (3.39)

Where R is the hop size and £, is the sampling frequency.

A note onset consists of an unstable transient, i.e. note at attack, followed by a stable
steady state. During the steady state, the instantaneous frequency at hop m should be
close to the instantaneous frequency at hop m-/. When this is not the case, it is an
indication that an unstable event has occurred, e.g. a note onset. The difference in the
instantaneous frequency between frames is proportional to the differential angle

between target and current phase, d@ , which is calculated as follows:
do = princarg[g'ﬁ(m, kYy-2p(m-1Lk)+@(m-2, k)] (3.40)
The transient energy, TE, was given by:

TE(n) =Y |X(k, nh)|2 (3.41)

kek

where X is the set of transient frequency bins, of which a bin £ is said to contain

energy related to a transient if:

#k,(n—2)n) =20k, (n—)n)+ gk, nh} < T, (3.42)
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where ¢ is the phase and 7, is the transient detection threshold. It was found that

some of the detection function noise in recordings with greater higher frequency
content was eliminated. However, there was not a significant improvement in the
uppermost band and due to the added computational cost, it was only used for the

mid-frequency content.

For the lowest two sub-bands (1-2.5kHz), he proposed using a distance measure
between each frame of an FFT, considering only positive values in order to reject

offset detection:

DM = Y adx,(k) (3.43)

{kuetx, (% )>0}
To detect soft as well as harder onsets, a normalization term is incorporated:

dX}l (k)2
DM = {koay, (k -0} (G.44)

N2

> Xk, (- 1)1)

k=1

where N is the FFT array length. This detection function obtains the average increase
in energy per frame. Both detection methods are used on the second lowest band as it

contains both energy bursts and slowly decaying pitch information.

The detection function from each band took the form of an energy / distance measure
over time. Onsets were detected when the exponential weighting function given below

was greater than the threshold:

L SE(n—a
ons(n) = SE(m) - > ——— ( ) (3.45)
a=l1
where the transient energy term, TE, or the distance measure, DM, are substituted for
the energy term, SE, where required. This detection function gave most emphasis to
recent frame values but still allowed previous frames have an effect, acting like a low
pass filter with very smooth roll-off, where the integer a is equivalent to the filter

coefficients.
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The threshold was set automatically using the statistical properties of the detection
function. The probability distribution function (pdf) of the detection function was
estimated and the second derivative of this was then calculated. The threshold was
chosen at the point where data is most likely to be an onset, which was found to ocecur
at the maximum of the second derivative. All values in the detection function, which

are equal to or greater than this, should be an onset.

The onsets were chosen from each sub-band individually and the results combined.
This caused multiple onsets at the same location, which was solved by applying a
50ms window and choosing the most prominent onset. Onsets in the higher bands
were always given precedence as the higher bands have better time resolution and the
lower bands have better frequency resolution. The system was tested on a wide range

of signals and yielded good results.

[Duxbury ‘03a] used the system described above in [Duxbury ‘02] to locate transients
for improved segmentation in audio time scaling. Time scaling means to stretch or
compress a piece of music without altering the pitch. Once a transient was located, the
remaining steady state region of the note was stretched or compressed with excellent

results being achieved for a range of signals.

[Bello ‘03] presented a phase-based onset detector. A transient / steady state
separation method was used and the resulting data analysed using statistical methods.
Phase-vocoder theory, as described on page 46 from equations (3.38) to (3.40), was

used to obtain differential angles.

The pdfs of the differential angles are observed, frame-by-frame, for all 4. It was
discovered that when a transient occurs, the distribution becomes dispersed along the
phase range. Immediately afterwards, when entering the steady state, the sharpness

and height of the distribution increase.

Three methods were used to measure the spread of the distribution, the standard
deviation, interquartile range (IQR) and kurtosis. IQR is a measure of spread or
dispersion. It is the difference between the 75" (Q3) and 25" (Q1) percentiles, i.e. Q3-
Q1. IQR performed better than the standard deviation as it is less sensitive to small

variations in the distributions spread. Tt was discovered that in real recordings, phase
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misalignment between partials of a note caused the differential angular distribution to
spread. This is critical when notes evolve for a long time. Kurtosis is a measure of the
shape of the distribution, increasing for sharp distributions and decreasing for flat

distributions. The Fisher kurtosis, a common implementation, is measured as follows:

_ lusi (ﬂ) _3 — }J4(ﬂ) _3 (346)

" ()’ o

where p,(#) denotes the fourth central moment of the data and o is the standard

deviation. A peak in the kurtosis profile is an indication of when the steady state of a
note occurs. The onset time of this note can be found by locating the closest preceding

peak in the IQR profile.

A dynamic threshold was used to select peaks. This was calculated as the weighted

median of a H-length section of the kurtosis around the corresponding frame:
o, (m) = C,mediany,(k, ).k, € [m - g,m + —]Ziil (3.47)

where C, is a predefined weighting value and &, the analysis window.

The system was tested on a small database of commercial recordings using different
values of C,. They decided that an optimal value of C, gave good detection rates of

80-90% at a cost of around a 10% rate of false positives.

[Duxbury ‘03b] used a combination of phase and energy based approaches to detect
onsets. The histograms of phase deviation and energy difference have a similar
distribution at both transient and steady state regions. Each vector of the energy
difference and phase deviation were considered as data sets X, and X, where each x
X is a bin value and f(x) is the pdf of X. The curve describing the spread of f(x) over
time became noisy when X contained few points. To overcome this, the mean of the

distribution of the absolute values of X across time, 77(xn), was calculated as follows:

n(n) = mean( £, (]) (348
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1(n) yielded a sharp profile which maximises the spread of the distribution. The

distributions of the phase deviation and energy difference were measured separately

and the results combined by multiplying both spreads as follows:
nr(n)y=n,(n)xn,(n) (3.49)
Onset peaks were sclected using equation (3.47) above, substituting 77, (1) for y,.

A database of musical recordings including three solo instruments and a group
recording were used to test the system. The system was robust to the signal type,
which is not the case when using either detection method independently. Phase based
approaches tend to be distorted by noise whereas soft onsets pose a problem to energy
based approaches. The combined approach has the advantage of greatly reducing
instabilities in either approach. It also yields sharper peaks at onsets, resulting in more

accurate detection.

[Duxbury ‘03c] presented a novel method for onset detection by combining energy
and phase based approaches in the complex domain. It builds upon the previous
approach, described in [Duxbury ‘03b]. He observed that onset detection could be

divided into two parts:

1. Onset Detection

2. Peak picking

The first is concerned with locating onset transients whereas the second must
determine which of these onset transients are note onsets. This approach dealt mainly

with the onset detection stage.

By inspecting changes in both the frequency and amplitude of audio signals, onset
transients can be located. However, the effects of both variables can be
simultaneously considered by predicting values in the complex domain. The target

value for the k"™ FFT bin is obtained as follows:

.Sn'k (m) = }Iék (m)e”;*("’) {3.50)
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where fek corresponds to the magnitude of the previous bin, |S (m— 1)| ie. R, ,,and

gﬁk is the expected phase. The measured value for the same bin is given as follows:
S, (m) = R, (m)e’*" (3.51)

where R, and ¢, are the measured magnitude and phase for the K" bin of the current

STET frame. Using the Euclidean distance between the target and measured vectors,

the stationarity of the k™ bin can be found:

I, (m) = {s}{(s"k ()~ RS, ()] + [S(S‘R_ ()~ (s, ()] }5 3.52)

where R and 3 are the real and imaginary parts. By summing these values over all

k, a frame-by-frame detection function can be obtained as follows:
X
n(m) = T (m) (3.53)
k=1

To simplify equation (3.50), they mapped .§k (m) onto the real axis thus forcing

ggk (m)=0. S, (m) can then be represented using the phase deviation, d¢@, from

equation (3.40):
S, (m)= R, e ™™ (3.54)

Applying these conditions to equation (3.47) and simplifying gives:

1
T, (m)= {Rk (m)" + R, (m)> = 2R, (m)R, (m)cosd@, (111)}5 (3.55)
In the case where d@, (m)=0:
[, (m)= fik (m)— R, (m) (3.56)

which is equivalent to a basic amplitude difference measure for the k™ bin. They

found that the resulting detection function gave sharp peaks at points of poor
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stationarity and was less noisy than using either an amplitude or phase based

approach, thus simplifying the peak picking task.

Onset peaks were selected using equation (3.47) above. The system was tested on a
wide range of polyphonic signals and the results were compared with those achieved
using separate phase and energy based techniques and the same peak picking method.
The complex domain method gave the best performance with an average of 95% good

detections for 2% of false negatives.

In [Gainza ‘04b], a technique based on onset detection was presented to transcribe
single ornaments in traditional Irish music. The tin whistle is a wind instrument and
therefore produces a slow onset, which is more difficult to detect than a fast onset. In
its most common mode, the range of this instrument is fourteen notes, from D4 to B5.
The tin whistle is a transposing instrument. This means that when a musician plays
D4 from a musical score, the pitch of the note played is actually D5. Many types of
ornamentation are used in traditional Irish music and this paper dealt with the two
single note ornaments used by the tin whistle, the cut and the strike. The cut is pitched
above the parent note and the strike below. More information on ornamentation can

be found in chapter 2.

Firstly, a time-frequency analysis of the signal was obtained using the STFT. The
STFT representation of the signal was then split into 14 bands, one for each note in

the range. The average energy envelope, £, of each band was calculated using:

[}

v

Eion = 2 {Xf (%, ”]2} (3.57)

k=1

where X; contains the frequency bins associated with band i, k is the K" frequency bin
in X; and /; is the number of frequency bins in band /. This was convolved with a Half
Hanning window. Both of these operations were carried out to smooth the signal. The
first order difference function of the energy envelope for each band was then
calculated to give a series of peaks. The energy increases and decreases were
separated into two vectors, Dggny and Dpg,y, which were inspected for onset and

offset peaks that reached a predetermined band dependent threshold.
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It has been noted that the blowing pressure a musician must apply to play each note
on the tin whistle increases logarithmically with frequency [Martin *94]. As a result of
this, the threshold, 7, for each band, i, was obtained as shown in the following
equation:

R

T =T#21 (3.58)

Where 7 was a known threshold for a band, which is separated from band 7 by s semi-

tones. A possible onset candidate was detected if:
D.":'(r'.n) = E(J,n) - E(t,rhl) 2 ‘Tt (3.59)

and an offset candidate when:

Dl)(r’,u) =F

wm ~ Eenny <1, (3.60)

Each onset candidate was matched with the next offset candidate to form audio
segments. Segments that were shorter than a time threshold were considered to be
ornaments. A cut was detected if the ornament pitch was higher than the parent note
and a strike was detected when the pitch was lower than the parent note. Since an
ornament occurs on the beat of its parent note, the ornament onset time was also the
onset time of ifs parent note. The system was tested on three recorded tin whistle

tunes with high accuracy rates for ornamentation detection.

3.3 Chapter Summary

During this review of onset detectors, several techniques were discussed. These
included energy and phase based approaches and combinations of the two. One of the
most challenging aspects of an onset detector appears to be setting the threshold
above which onsets are detected. Choosing a threshold that is too low results in
unwanted spurious onsets, while one that is too high means that softer onsets will

often be missed.

A common approach encountered during the literature review was to split the audio

signal into a number of frequency bands and analyse each one individually before
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combining the results at the end. This seems like a good approach and one that would

be suitable for the proposed onset detection/transcription system.
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4. Onset, Ornament Detection and Music Transcription

This chapter is divided into three different sections. Section 4.1 Technique Analysis
contains a brief analysis of some of the onset detection and music transcription
techniques defined during the literature review. It gives some advantages and
disadvantages of these techniques and explains why some would be more suitable
than others to use in an attempt to attain note onsets, pitches and ornamentation from
monophonic traditional Irish musical signals. [n section 4.2, the proposed system is
presented and described in detail. An overview of the proposed system is described in
section 4.1.3. The description of the proposed onset detector begins in section 4.2.4
and the music transcription i1s explained in section 4.2.7. Section 4.3 contains the
results obtained for both onset and pitch detection and ornament detection when the

system was tested using real live recordings.
4.1 Technique Analysis

4.1.1 Onset Detection

The first onset detectors considered the musical signal as a whole [Chafe ‘85], while
others [Scheirer ‘98], [Klapuri ‘99] expanded on this approach by dividing the signal
into a number of frequency bands. Both energy [Masn ‘96] and phase based [Bello
‘03] approaches have been implemented; sometimes a combination of both has been
used [Duxbury ‘03b). There have been techniques where different detection functions
have been applied to the low and high frequency bands [Duxbury ‘02]. Due to the
success and widespread use of sub-band systems in onset detection, they appear to be

a suitable approach to use in the proposed system.
4.1.2 Zero-Crossings

The zero-crossings method [Cooper ‘94] is a time-domain technique and is only
suitable for use with monophonic signals. It involves dividing a musical signal into
segments according to zero crossing points, locating similar segments and
determining the distance between them. The frequency is calculated by multiplying
the inverse of this distance by the sampling frequency. The robustness of this method

is questionable due to the unpredictability and instability of real musical signals.
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4.1.3 Autocorrelation

This is another example of a time-domain technique. Correlation is used to determine
if two random processes are independent or if there is some connection between them,
autocorrelation is the correlation of the waveform with itself. Autocorrelation has
been successfully used as a method of pitch detection in previous monophonic
transcription systems [Brown ‘91], [Bello 00]. As in the zero-crossing technique, it is
not suitable for use in a polyphonic system as autocorrelation fuses sounds together,
which prevents the separate treatment of harmonic partials. In practise, frequency

based approaches have been found to be faster and more efficient [Plumbley ‘02].

4.1.4 Constant Q Transform

The Constant Q Transform [Brown ‘92] is closely related to the Fourier Transform in
that it can be viewed as a bank of filiers. However, it has geometrically spaced centre

frequencies, which are given by:

k

fo=/1,2° 1)

where b is the number of filters per octave, k the octave number and fp the centre
frequency of the lowest band. This makes the constant Q transform very useful in
analysing music since by choosing appropriate values for 4 and fp the centre
frequencies can be made to directly correspond to musical notes. By choosing b= 12,
since there are twelve semi-tones in an octave, and fp to be the frequency of midi note
zero means that the ¥™ constant Q bin will correspond to midi note number £. Since
the constant Q uses the FFT in implementation, it is just as efficient to create an

approximate constant Q by combining the filter outputs of an STFT.
4.1.5 Wavelets

While the Fourier Transform represents a signal as a set of sine waves of different
frequencies, the Wavelet Transform represents a signal as a set of shifted and scaled
versions of an original wavelet. A wavelet is a waveform of limited duration with an
average value of zero and tends to be irregular and asymmetric. Computationally it

has been found to be similar to the ‘slow’ Fourier transform [Sillem *00] and although
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it gave better time resolution for higher frequencies than the STFT, there was not
much improvement as regards frequency resolution. Overall the STFT proved to be

more efficient.
4.1,6 Short Time Fourier Transform

This is an example of a frequency-based technique. The STFT is a popular choice for
music transcription since it gives a frequency representation of a time domain signal.
It has been used extensively throughout the Literature Review, both in music
transcription [Piszczalski ‘77], [Martin ‘96a|, [Klapuri ‘00], [Bello ‘00] and onset
detection [Duxbury ‘02], [Gainza ‘04b], with good results being achieved. One
disadvantage is the time-frequency trade off, very good frequency resolution means
poor time resolution and very good time resolution indicates that frequency resolution
is compromised. This can be overcome by using a short window for time resolution
and a long window for frequency resolution. The STFT was the preferred analysis
method for detecting note onsets, ornamentation and note pitches in the proposed

systemn.
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4.2 Proposed Energy-Based Approach

4.2.1 Note Range

The proposed system uses a sub-band approach to detect the onset of each note and
ornament. Twenty-nine bands are used; one band for each of the semi-tones in the
note range G3 to BS, shown below in figure 4.1. This covers the range of each of the
instruments used to test the system; the fiddle, flute and tin whistle. When played in a
classical style, the violin has a greater note range but after analysis of fiddle tunes it
was discovered that G3 to BS covers the notes used by a traditional musician. It is
very unlikely that a note outside of this range would be played. The range of both the
flute and tin whistle in traditional Irish music is D4 to B5. However, the tin whistle is
a transposing instrument and so when a musician plays D4 from a musical score, the

pitch of the note that is actually played is D5.

a3 196.00 185.00

A3 270.00 <207.65

B3 246.94 233.08
L 261.63

S;‘ 293.67 £77.18

R4 32963 S11.13

F4 349.23

G4 39z.00 369.99

Ad 440_gg 415.30

Bd 493,88 466.16

¢s [ e 32325

DS 557.33 994.37

ES —— = 65026 ©622.25

F5 698.46

cs i 783.90 739.99

AS g80.00 ©30.61

BS gg7.77 932.33

Figure 4.1: The note range of the proposed system, shown on a piano keyboard

[Wolfe]

4.2.2 Initial Attempts

Initial attempts were based on those of [Piszczalski “77] and used synthesised
traditional Irish tunes. The time frequency representation of the signal was obtained

using the STFT:

11 ) , )
Xk,n)= Z x(m + nF (e /27 ¥m 4.2)

wm=0
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where x(m) is the signal, k the frequency bin number, » the frame number, H the hop
length and w(m) the window of length L.. A 1024-sample Hamming window with a
50% overlap was applied; this is based on a cosine function, gives good side-lobe
attenuation and has a wide main-lobe. After experimentation it was found that a 2048-

point FFT gave sufficiently good frequency resolution.

A spectrogram of one of the signals can be seen in figure 4.2, the tune is comprised of
eight notes and one single note ornament. The eight notes can clearly be seen along
the time axis. The ornament is located between the sixth and seventh notes, indicated
by a red arrow and surrounded by a red box. Some harmonics of the first note can be
seen along the frequency axis. The highest peak in each frame was located and the

corresponding frequency bin number, found on the frequency axis, was retained.

Time Frequency Representation

100 e
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800 Jore

magnitude
600 .- E
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\\ !1‘"') | " L

frequency time

Figure 4.2: Spectrogram of tune

To locate onsets and offsets, each frequency bin number corresponding to a peak was
analysed over time. An example of the amplitude envelope of the bin number of the

fourth note can be seen in figure 4.3. A threshold, 7, was set as follows:
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i
T =

= 4.3
20 (4.3)

where m was the height of the largest peak in the time evolution of a bin number.
Once the amplitude rose above this threshold an onset was detected and when it
dropped below the threshold an offset was detected. This value was chosen through
experimentation, it was discovered that if the threshold value was too low,
fluctuations in the signal were picked up as onsets. If it was too high, the duration of
the note was interpreted as being shorter than it actually was. Note durations were

obtained by subtracting onset times from offset times.
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Figure 4.3: Amplitude Envelope of Frequency bin number of note

Note pitches were calculated from the frequency bin numbers as follows:

S =k (fﬁ_size] “d

where f is the note frequency in Hertz, & the frequency bin number and F; the

sampling frequency.

Even with synthesised tunes this method encountered difficulties. When two notes of
the same frequency were played close together, as in figure 4.4, the offset of the first
note never dropped below the threshold and so the two notes were picked up as one.
The duration of the ornament in the above example was detected as being the same
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length as the other notes in the tune when it is in fact five times shorter. These errors
are a strong indication that this method of onset detection is unsuitable. However, the
results for pitch detection were encouraging with correct detections in the majority of

cascs.
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Figure 4.4: Two notes played simultaneously

4.1.3 System Overview
An overview of the proposed energy-based approach can be described as follows:

1. Obtain a time-frequency representation of the signal.

2. Split this representation info logarithmically spaced frequency bands, one for
each note in the range.

3. Calculate the 1** order difference function of the energy envelope of each
band.

4. Use a band dependant threshold to determine if a peak is an onset.

5. Combine bands and determine note pitches.

6. Apply music theory to determine if an onset is a note or ornament.
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4.2.4 Frequency Analysis

The audio signals used had a sample rate of 44100Hz, this is the standard sampling
rate for CD audio signals. Firstly a time-frequency representation of the signal is
obtained, this is achieved using the STFT, equation (4.2). Each frame was created by
multiplying the signal by a 1024 sample Hanning window with a hop length of 512
samples, giving a 50% overlap between frames. A 4096 point-FFT was applied to

each frame.

The output of the STFT can be interpreted as a collection of uniform filter outputs. To
create the bands for each note, the frames were combined using upper and lower band
limits in accordance with the frequency of each note. Note semi-tones are

logarithmically spaced and can be calculated using the following equation:

fi=r*2" (4.5)

where fis a reference frequency, which is separated from f;, the frequency of semi-
tone i, by s semi-tones. The frequency of cach of the 29 semi-tones, from G3 at

196Hz to BS at 987.77Hz, was converted to its frequency bin equivalent as follows:

k= f* [fﬁ_}s’i‘iJ (4.6)

&

where k is the frequency bin number, f the note frequency in Hertz and F; the
sampling frequency. The lower band limit of a note was set by obtaining the midpoint
between the notes bin number and that of the note before it and the upper band limit
by obtaining the midpoint between the notes bin number and that of the note above 1t.
In effect, this can be viewed as an approximation of a constant Q transform. The
STFT outputs have been grouped together to create a number of frequency bands

whose center frequencies are logarithmically spaced.

The average cnergy of each band was calculated as follows:

]l
Em‘(l,n) = Z {l‘X]r'(k’nj2 } (47)

k=1
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where X; contains the frequency bins associated with band i, k is the " frequency bin
in X; and /; is the number of frequency bins in band /. This gives the amplitude
envelope, which contains the energy profile of the band associated with a given note.
Additional smoothing is also carried out by convolving the energy envelope of each
band with a half-hanning window. This performs in much the same way as the human
auditory system, masking fast amplitude modulations and emphasising most recent
inputs [Klapuri ‘99]. The first order difference function of each band is then
calculated. All negative values of this function are set to zero so that only the energy

increases are considered.

This results in a series of peaks in each band, which are possible note or ornament
onsets. Figure 4.5 below shows the audio signal of an excerpt of a fiddle tune
containing thirteen notes composed of four different pitches, along with the 1% order
difference function of the note bands. Figure 4.6 shows a tin whistle tune with the 1™
order difference functions of its twelve notes containing seven different pitches. Peaks
are clearly visible at each note onset in both tunes. Now we are faced with the
problem of determining which of these peaks are in fact note and ornament onsets,
and which are merely spurious onsets which could be due to noise or amplitude
modulation. This was achieved by automatically choosing a suitable threshold for

each band.

50 100 150 200 250 3oo 350

Figure 4.5: Wave file of fiddle tune, shown with the 1st order difference function

of note bands
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Figure 4.6: Wave file of tin whistle tune, shown with the Ist order difference

function of note bands

4.2.5 Automatic Threshold

There is a certain threshold in each band where a peak equal to or greater than this
value is more than likely an onset. Choosing a suitable threshold is arguably the most
difficult part of onset detection. Setting the threshold too low leads to fluctuations in
the signal being interpreted as notes, setting it too high and weaker onsets are missed.
It is not sufficient to have one threshold to cover all bands; this is evident in figure 4.5
and particularly figure 4.6 above, where amplitude values vary greatly in each band.
At the beginning, thresholds were chosen by finding the maximum amplitude value in
the first order difference function of a band, and dividing this value by an integer like
in equation (4.3). This proved to be an inadequate way of setting a threshold, as it was

impossible to choose an appropriate divisor.

In the case of the tin whistle, it has been noted that the blowing pressure a musician
must apply to play each note increases logarithmically with frequency [Martin ‘94].
For example, a musician would have to blow twice as hard to play a D5 as they would
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to play a D4. As a result of this, Gainza, Kelleher, et al. determined that a suitable
threshold, 7, for each band, i, when transcribing the tin whistle can be obtained as

shown in the following equation:

T,=T%2" (4.8)

Where 7" is a known threshold for a band, which is separated from band 7 by s semi-

tones [Gainza ‘0O4a] and each band contains the frequency range for one semi-tone.

The bands were then recombined and compared in order to determine possible note
onsets. When two or more peaks are contained in the same, previous or next frame,
i.e. within 46ms, the strongest is retained as the possible onset candidate. This is
because it is not possible for the human auditory system to distinguish between two
onsets occurring within a 50ms timeframe and the most intense onset will more than
likely mask any others. Next, a 46ms window was applied to each onset candidate. In
the case where there is one onset in the window, the frame number is retained as the
note onset time and the band number is retained as the note pitch. When two peaks
occur in the window an articulation has occnred, the frame number of the first peak is
retained as the note onset time and the band number of the second peak as the note

pitch.

Two tin whistle tunes from [Larsen ‘03] were used to test the system, a 17 second
excerpt from “The boys of Ballisodare” (p. 134) and a 16 second excerpt from
“Bantry Bay” (p. 152). The results were compared with those using Klapuri’s system
from [Klapuri ‘99] and are shown in Table 1. Comments on each tune follow the
table. The percentage of correct onset detections were calculated using the following
equation:

no_of notes — (zmdetecfed + spurious) X100 (4.9)

Y%correct =
no _of _notes
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Tune System Undetected Spurious % Correct
1 Tin Whistle 0/50 3 94
1 Klapuri 4/50 3 93.4
2 Tin Whistle 0/42 0 100
2 Klapuri 2/42 2 85.7

Table 1: Tin whistle onset detection comparison

1. The three spurious onsets were detected when a stepwise descending note was
played with a cut. This is the most complex type of cut to play and as it was
played for longer than the set ornamentation duration threshold and was
considered to be an independent onset by the system.

2. All note onsets were detected correctly.

The results for pitch detection can be seen in Table 2. Comments on each tune follow

the table.
Tune Correct pitch detections (%)
1 94
2 97.6

Table 2: Pitch transcription results

1. The pitch for each detected onset was transcribed correctly.
2. One onset was transcribed incorrectly when a strike was picked up as its

parent note.

As can be seen from the results, the tin whistle onset detection system performed
better than that of Klapuri. The band dependent threshold was adequate at dealing
with strong signal modulations. Klapuri’s system had some problems detecting fast
changes between notes in the same band. Customising the system according to the
characteristics of the instrument improved the onset detection accuracy. However, this
approach is unsuitable for use with the fiddle as it is a string and not a wind
instrument. As a result of this, an alternative method had to be used to determine

thresholds, which was also suitable for use with the fiddle.
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A threshold can be automatically chosen for each band by analysing the statistics of
their energy envelopes [Duxbury ‘02]. Considering a histogram of the amplitude
envelope of a band, the ideal threshold is at the point where the data is more likely to
be an onset. This threshold was determined as follows; firstly, the probability
distribution function (pdf) of the energy envelope was estimated using a smoothed
histogram, followed by obtaining the second derivative of the pdf. The point where all
greater values in the first order difference function should represent note onsets is
where the curve in this second derivative takes the characteristic of the transient

component.

I S—

%) 80 ki

Figure 4.7: Second derivative of frequency band energy envelope

This point can be seen as the peak in figure 4.7. Duxbury found that a peak in the first
order difference function whose amplitude is greater than or equal to this maximum is
probably an onset. Peaks with amplitudes less than this threshold are likely to be due
to noise and fluctuations in the amplitude envelope of the signal. Therefore this
maximum is chosen as the band threshold. The peak in cach frame is compared with
the peaks, if any, in the previous and next frames. The peak of greatest amplitude is
kept and the other frames are set to zero. Peaks that are greater than the band
threshold are retained as possible onsct locations. Analysis of this onset detector is

carried out in section 4.3,
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4.2.6 Band Combining

Every band is compared with each of the other 28 bands to determine possible onset
locations. A peak in the current frame of the current band is compared with the
previous, current and next frame of all other bands. When there are no peaks in the
other bands, the current frame is chosen as the possible onset location. In cases where
there are peaks in the other bands, the peak with the greatest magnitude is chosen to
be the possible onset location and the same frame in the other 28 bands is set to zero.
This results in no more than one peak per frame across the 29 bands. All bands are
then combined to give a series of peak locations, which are possible onset candidates,

in time order.

To give a more accurate onset time, the onset locations are adjusted to be three frames
before those detected. This is necessary as there is a gradual slope to each peak
maximum. We have observed in practice that this operation gives a similar result to
obtaining the relative difference function of the signal as used by Klapuri to get onset
times in [Klapuri ‘99] but is simpler to implement. This slope is clearly seen in figure
4.8, which is the first order difference function of the energy envelope of a fiddle
note. The onset occurs at frame 1 but the maximum amplitude is not reached until

frame 4.
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Figure 4.8: Fiddle note onset peak showing gradual slope to maximum

69



Chapter 4: Onset, Ornament Detection and Music Transcription

Onsets are located in the original wave file as follows:
onset location = frame no.* H (4.10)
where H is the hop length used in the original STFT, 512 samples in this case.

A second approximation of the onset locations is obtained in a simple summation of

the energies in each frame of an STFT of the original signal:

L-1
E(n) =Y {F(k,m)} @.11)
k=1

where F(k) contains the frequency bins, 4, associated with frame » and L is the
window length used in the STFT. This energy summation is shown in figure 4.9. The
onset times of these peaks are found by locating the minima in this summation, as
there is a gradual slope from zero to the maximum value of each peak, similar to that
described above in the sub-band case. Therefore taking the location of the minima as

opposed to the maxima gives a more accurate result.

40 60 80 100 iz0 140 160 180

Figure 4.9: Summation of the energies in each STFT frame of a fiddle tune

Although the sub-band procedure described above does an adequate job detecting the
note onsets of a tune, this energy summation is intended to pick up any onsets that
may have been missed and combining both techniques results in a more robust
system. It should be noted that the energy summation does not detect ornaments and

is merely a way of eliminating gross errors in the detection system. It is of some help
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in the case of the fiddle and tin whistle but is of little or no benefit for the flute. This
is because the energy summation waveform for the flute has unpronounced minima,
as shown below in figure 4.10. To detect the peak maxima would require setting a
threshold and this would be extremely difficult due to the constant signal energy

modulations.
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Figure 4.10: Summation of the energies in each STFT frame of a flute tune

Figure 4.11 shows a situation where the energy summation proves useful in the case
of a fiddle tune; the onsets are denoted by the red lines. It has picked up the 4" onset,
which was missed by the sub-band approach. Both sets of onsets are then compared

with multiples at the same location eliminated.
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Figure 4.11: Comparison of both onset detection technique results prior to

combining

A novel onset detector has been presented, consisting of the best elements of other
systems combined. The sub-band approach from [Klapuri ‘99] was used, although
each frequency band in his approach contained at least four notes whereas the onset
detector proposed above used one frequency band for each note. The amplitude
envelope and first order difference function of each frequency band was calculated,
just as in Klapuris system. A band dependent threshold was automatically chosen for
each band by analysing the statistics of its energy envelope as in [Duxbury ‘02].
There was a slight difference in that Duxbury analysed the statistics of his detection
function whereas the above system analysed the amplitude envelope statistics. A
novel idea in the proposed system was the addition of an efficient double check for
missed onsets in the STFT energy summation, the advantages of which can be seen in

figure 4.11 above.
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4.2.7 Note Pitch and Ornament Identification

While the sub-band approach is a reliable method of determining the onset locations
of a note, it is not the case when determining note pitches. In some cases the onset
peak occurred in a band a semi-tone or two above or below the actual pitch of a note.
This is due to the time-frequency trade off of using the STFT. For good time
resolution, required for detecting onsets, a short analysis window is used. Good
frequency resolution is required for pitch detection so a longer analysis window must
be used. For this reason, the band frequency is not relied upon as being equal to the

fundamental frequency of a note.

The fundamental frequencies of the notes are determined by obtaining excerpts from
the waveform and carrying out frequency analysis on each excerpt. The possible
onsets are located in the wave file using Equation (4.10), and analysis is carried out
once a third of each note duration has passed. In the case of very short notes, i.e.
possible ornaments, analysis occurs three samples into the note. The reason pitch
estimation does not take place immediately when the note begins is because a more
accurate result can be obtained by analysing the note after it has entered its steady

state where the pitch of the note is more clearly established.

Once the analysis starting point has been ascertained a 4096-sample window is
applied to the signal, beginning at this starting point. This is four times longer than the
analysis window used during onset detection and should give much better frequency
resolution. A 4096-point FFT is then carried out on this section of the wave file The
fundamental frequencies of the considered note range, from G3 at 196Hz to B5 at
987.77Hz, are found in the frequency bins numbered 1 to 103. Therefore the location
of the peak within this frequency bin range is found for each onset. These frequency
bin numbers are converted into their corresponding frequency in Hertz using Equation
(4.4) above. We now have a series of possible onset locations and their corresponding
pitches and all that must be determined is whether these onsets are note or ornament

onsets, or if they are spurious.

Examples of four types of ornament, along with their respective parent notes are

shown in figure 4.12 below, onsets are indicated from above using black arrows.

Example (a) is a cut played by a flute, (b) is a strike played by a tin whistle, (¢c) is a
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double cut played by a fiddle and (d) is a long roll played by a tin whistle. Examples
(a) and (b) are single note ornaments, (c) is a double note ornament and (d) is a multi-
note ornament consisting of parent note-cut-parent note-strike-parent note. This figure
gives a good indication of how short an ornament really is, the ornaments are roughly
seven times shorter than the parent note, which in itself is only 320ms. In the case of
the double -cut, this means that each of its individual ‘notes’ are fourteen times shorter

than the parent note.
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Figure 4.12: Examples of ornament plots; (a) is a cut played by a flute, (b) a
strike played by a tin whistle, (¢) a double cut played by a fiddle and (d) a roll played by

a tin whistle

The system dealt with the identification of three different ornaments, the cut, strike
and double cut. Multi-note ornaments such as the roll were beyond the scope of this

project.

To establish whether an onset is a note, ornament or spurious, the distance between

each consecutive onset is obtained. Considering the scenario of two onsets where
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onset x occurs before onset y, a number of outcomes are possible. The two note onsets

are expected to be a certain minimum distance, D, apart, i.e.:
y—-xz2D (4.12)

At first, this distance D was calculated by obtaining a fractional value of the average
distance between each note in a tune. After experimentation, the average note length
was divided by three. Results using this method were not consistent and there were
many times when regular notes were detected as ornaments and ornaments detected as

regular notes so another method of setting the ornamentation duration was sought,

After analysis of the database of fraditional Irish tunes used in the study, it was
discovered that no regular note was shorter than 136ms, which is equivalent to 11
frames. Consequently if D) is greater than 11 frames x is a regular note onset, onset y
1s compared to the next onset and so on. In the case where D is less than 11 frames, if
x and y have the same pitch, x is again a regular note onset and this time onset y is
spurious. When x and y are of different pitches, x is an ornament onset, onset y is
compared to the next onset and so on. If x > y then x is a cut and when x <y, xis a
strike. The note frequencies were then assigned their equivalent note name, i.e. G3 to
B5. If an onset was that of an ornament, a cut was represented by a * and a strike by a
A, The result of this process is a series of note and ornament onsets of varying

frequencies, which should correspongd with those contained in the original wave file.

An example of correct onset and pitch detection is shown below in figure 4.13. It is
the same tune segment used in figure 4.11 above. The note names are displayed at the

onset locations.
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Note names

L

Figure 4.13: Example of correct onset and pitch detection
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4.3 Results

In [Kelleher ‘05], the system described in Section 4.2 above was used to detect note
and ornament onsets in fiddle tunes. When detecting ornaments if x has a greater pitch
than y, and y is a regular note then x is a cut and y the onset of its parent note. Another
possible scenario 1s when the pitch of x is less than y and y is also an ornament whose
pitch is greater than the note, z, which follows it. If z is a regular note, x and y are the

onsets of a double cut and z the onset of its parent note.

Real live recordings from Matt Cranitch’s frish Fiddle Book [Cranitch ‘01] were used
to test the system with ten excerpts from ten different tunes selected. Appendix A
contains an index of where to find the tunes, listed in Table 3. All but three of these
excerpts contained single or double note ornaments and were, on average, ten seconds
long. As these were real recordings played on a fiddle, it was found upon very close
inspection of the waveform that what was played did not always exactly match the
notation, particularly in the case of ornamentation. This was picked up by the
detection system and was not noticeable to the untrained listener. On that basis it was
thought it would be more accurate to compare the detection results to what was
actually played, as transcribed by an expert listener, rather than the given notation.
The results for onset detection of regular notes can be seen below in Table 3. The
system detected regular onsets quite well with an average accuracy of 91% in the
tunes that were tested. Percentages for accurate regular onset detection were
calculated as follows:

no_of _notes - (un + spur -+ orn) 100 (@.13)

Yocorrect =

no _of notes
where no_of notes is the number of notes in the tune, un undetected notes, spur
spurious onsets and orn notes that were detected as ornaments. Pitch detection results
were also good with an average accuracy of 89%. Percentages for accurate pitch

detection were calculated using the following equation:

no_of notes— (zm + spur + orn + pifch)

Yocorrect = x 100 (4.14)

no of notes
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where pitch is the number of pitches detected incorrectly in the tune. Comments on

each tune follow the table.

Tune Undetected Wrong Spurious Detected % % Correct
Pitch as Correct Onset
ornament Pitch Detection
Detection
1. Giveus a 0 0 0 0 100 100
drink of water
2. The 1/35 0 0 0 97 97
Connachtman’s
Rambles
3. Dalaigh’s 1/34 0 0 1/34 94 94
Polka
4. The 4/26 0 0 0 85 85
Humours of
Carrigaholt
5. Denis 5/38 0 0 0 87 87
Murphy’s Slide
6. Cronin’s 1/43 2/43 0 0 93 97
Hornpipe
7. The Peeler’s 2/34 0 0 0 94 94
Jacket
8. The Hag’s 0 1/38 0 0 97 100
Purse
9. The top of 0 0 0 4/33 88 88
Maol
10. The Lakes 4/40 0 0 4/80 80 80
of Sligo
11. The 1/42 6/42 0 6/42 69 83
Scartaglen
Slide

Table 3: Onset detection results for fiddle
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10.

11.

All note onsets and pitches were detected correctly.

The undetected note was the first of two Ads played in succession and had a
very weak onset.

There was an unclear transition to the undetected note from the note preceding
it. One note was detected as a double cut, this may be because this note was a
semi quaver, half the length of the other notes in the tune, and there was a
short change in pitch to A7 at the beginning of this note.

The four undetected notes had very weak onsets.

The five undetected notes had weak onsets, particularly those of the 1% and
last missed notes.

Two notes were detected as being an octave too high. In both cases G5 was
detected instead of G4, and a spurious strike was detected immediately before
each note. This occurred because of a brief pitch change from G4 to G5 during
the notes. In the second case the pitch change from G5 back to G4 at the end
of the tune was detected as a strike before the note following it. The
undetected note had a weak onset.

Both of the undetected notes had weak onsets.

The pitch of one note was detected a semi-tone high as G4 instead of F#4.

The four note onsets interpreted as ornaments were semi-quavers.

Two of the undetected notes were semi-quavers and one of the remaining
undetected notes had a weak onset. The four notes interpreted as ornaments
were semi-quavers.

The undetected note had a very weak onset. Of the six pitch errors, four were a
semi-tone higher than they should have been and were always E4 interpreted
as F4. As there were no other Eds played in the tune, this may have been due
to the tuning of the fiddle. The other two were octave errors, G5 instead of G4
and in the first of these a strike with a pitch of G4 was detected immediately
before. The six notes that were incorrectly interpreted as ornaments occurred

during fast transitions between notes.

Results for ornament detection are in Table 4, where ¢, s and de represent a cut, strike

and double cut respectively. The double cut posed most problems to the system. This

is a double note ornament and the system often failed to detect the onset of the second

note, as it was generally less than 10ms long. The first note of a double cut is usually
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of the same frequency as its parent note, which meant that it would be treated as a
spurious onset in the selection process if the onset of the second note of the double cut
was not detected. In other cases, a double cut was detected as a cut. The average
accuracy was low for cuts at 38% and double cuts at 25%. The one strike was

detected giving an accuracy of 100% Percentages were calculated as follows:

detcted — spurious

Y%correct = =100 4.15)

no of _ornaments
where defected is the number of ornaments detected correctly, spurious is the number
of spurious ornaments that were detected and rno of ornaments is the number of

ornaments in the tune,

80



Chapter 4: Onset, Ornament Detection and Music Transcription

Tune Ornament Detected Spurious Yo % % Yo
Types Correct Correct Correct Correct

Double Strike Cut Ornament

Cut Detection
1. Giveus a 1 de 1 de 0 100 - - 100
drink of water
2. The 2¢ e 0 - 100 100 100
Connachtman’s
Rambles L L8
3. Dalaigh’s 6 dc 3c 1 dc 0 - - 0
Polka
4. The lc 0 Is - - 0 0
Humours of
Carrigaholt
5. Denis ldc 0 0 0 - - 0
Murphy’s Slide
6. Cronin’s 4c 2c 3s - - 50 50
Hornpipe
7. The Peeler’s le 0 Is - - 0 0
Jacket
8. The Hag’s 2 dc 0 0 0 - - 0
Purse

Table 4: Ornamentation results for fiddle

1. The double cut was detected correctly.

2. Both ornaments were detected correctly.

3. The ‘notes’ of the double cuts were so short that the 1*' was not detected in all
cases and the 2™ in the 1%, 4™ and 5", The reason for the spurious double cut
is explained above in the comments on Table 3 above.

4. The cut was undetected as it was 7ms long, less than 1/3 of a frame. A
spurious strike was detected where a short B4 had been played.

5. The second ‘note’ of the double cut was 10ms long and undetected.

6. The spurious strikes that were detected have been explained in the comments

on Table 3 above. Neither of the first two cuts were detected.
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7. The cut was undetected and a spurious strike occurred where there was a
change in pitch towards the end of a note.

8. Neither double cut was detected. The 1* was a very ‘blurred’ cut and the onset
of the second ‘note’ of the 2" cut was not detected and so its 1% ‘note’ was

treated as a spurious onset.

A representation of the double cut played in ‘Give us a drink of water,” tune 1 in
Table 4 above, is shown in figure 4.14 below. The double cut occurs immediately

before C5, it’s strike and cut are is illustrated using the symbols » and * respectively.

Note names

Figure 4.14: A double cut played in a fiddle tune segment

Real live recordings of tin whistle tunes from Grey Larsen’s Essential Guide to Irish
Flute and Tin Whistle [Larsen ‘03] were also used to test the system. Appendix A
contains an index of where to find the tunes, which are listed in Table 5. The tunes are
on average ten seconds long. As mentioned previously, the tin whistle is a transposing
instrument. To obtain the correct score notation for a transposing instrument, the user
has the option of specifying this when running the program. When this option is

chosen, each detected pitch is divided by two to lower it by an octave. Otherwise the
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default mode is selected and the notation will be displayed an octave too high.

Percentages were calculated using Equations (4.13) and (4.14) above. Results were

very good for regular note onsets with an average accuracy of 93% and also for

correct pitch detections with an average accuracy of 92%. These can be seen in Table

5. Comments on each tune follow the table.

Tune  Undetected  Wrong Spurious Detected % %
pitch as Correct Correct
ornament Pitch Onset
Detection Detection
1 0/30 0 0 0 100 100
2 1/30 2/30 2/30 0 87 90
3 0 1/29 1/29 0 93 97
4 0/30 0 0 0 100 100
5 0 0 5/31 0 84 84
6 0 0 2/30 0 93 93
7 0 0 4/30 0 87 87
8 0 0 2/33 1/33 91 91
9 0/15 0 0 0 100 100
10 2/37 1/37 2137 0 86 89

Table 5: Onset detection results for tin whistle

1. Note onsets and pitches were detected correctly.

2. The two notes detected at the wrong pitch were D5s detected as B4 and the

missing note was also D5.

3. The spurious onset occurred when there was a high jump from D4 to C5. The

wrong pitch was a D5 detected a semi-tone too low as a C#5.

4. All note onsets and pitches were detected correctly.

5. Three of the spurious onsets occurred when D4s played preceding leap-wise

ascending cuts which are difficult to play. One of the spurious onsets was

actually a cut, which was played for longer than the set ornamentation

threshold.

6. One of the spurious onsets was a cut that was played for longer than the set

ornamentation threshold.
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7. The four spurious onsets occurred during notes preceding large jumps.

8. The first spurious onset was a cut played for longer than the set ornamentation
threshold and the spurious ornament was the middle note of a triplet.

9. All note onsets and pitches were detected correctly.

10. Both spurious onsets occurred during the first note, which was a dotted
crochet, 6 times longer than a regular note. A D5 was detected a semi-tone too

low as C#5. Both undetected notes had very weak onsets.

The system detected two types of ornament in tin whistle tunes, the cut and the strike,
which are represented in Table 6 below as ¢ and s respectively. Percentages were
calculated using Equation (4.15) above and were a little better than in the case of the

fiddle with an average accuracy of 34% for strikes and 53% for cuts.

Tune Ornament  Detected  Spurious % % %o
Types Correct Correct  Correct

Strike Cut Ornament

Detection
1 10c 6¢ 0 - 60 60
2 Q¢ 4c 0 - 44 44
3 9¢ 5€ 0 - 56 56
4 6s ls 0 17 - 17
5 8c 3¢ 0 - 63 63
6 12¢ dc 0 - 33 33
7 I5e 13e 0 - 87 87
8 5¢ 4c ls 50 80 65

2s ls

9 2¢ 0 0 - 0 0

Table 6: Ornamentation results for tin whistle

5. One of the undetected cuts was detected as a note, and is explained in the
comments on Table 5 above.

6. One of the undetected cuts was detected as a note.
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9. The undetected cut was detected as a note as it was played for longer than the

set ornamentation threshold. and the spurious strike was explained in the

comments on Table 5 above.

The real live recordings of flute tunes used to test the system were obtained from

Grey Larsen’s Essential Guide to Irish Flute and Tin Whistle [Larsen ‘03]. Appendix

A contains an index of where to find the tunes, listed in Table 7. The tunes are on

average ten seconds long. Percentages were calculated using Equations (4.13) and

(4.14) and results in Table 7 were very good for regular onsets with an average

accuracy of 93% and for correct pitch detections with an average accuracy of 92%.

Comments on each tune follow the table.

Tune  Undetected Wrong  Spurious Detected % %
Pitch as Correct Correct
ornament Pitch Onset
Detection Detection
1 0 1/38 1/38 0 97 97
2 2/29 0 0 0 93 93
3 2/25 0 0 0 92 92
4 2/30 0 0 0 93 93
5 0 0 2/28 0 93 93
6 0 0 1/27 0 96 96
7 3/31 0 0 0 90 90
8 8/33 0 0 0 9 77
9 2/40 0 0 0 95 95
10 0 2/44 0 0 95 100

Table 7: Onset detection results for flute

1. The first note was detected an octave high as F#5 with a strike before it

instead of F#4. A spurious C5 was detected between a B4 and D5.
2. There were two undetected F#4s both had weak onsets.
3. Both undetected notes had weak onsets.

4, The undetected F#4s had weak onsets.
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5. One of the spurious onsets was actually a cut that had been played for too
long.

6. The spurious onset was a strike that had been played for longer than the set
ornamentation threshold.

7. The first undetected onset was the parent note of a cut, which was detected.
The second was detected as a cut and the third had a weak onset.

8. The eight undetected onsets were semi-quavers and all were detected as
strikes.

9. Both of the undetected notes were picked up as strikes.

10. The two notes detected at the wrong frequency were G4s detected an octave

too high at GS5.

The system detected two types of ornament in flute tunes, the cut and the strike,
which are represented in Table 8 below as ¢ and s respectively. Percentages were
calculated using Equation (4.15) above and there was an average accuracy of 14% for

strikes and 61% for cuts.

Tune  Ornament Detected Spurious % Y% %
Types Correct Correct  Correct

Strikes Cuts Ornament

Detection
1 8c 4c 0 - 50 50
2 8c 5¢ 0 - 63 63
3 ile Oc¢ 0 - 82 82
4 8c 5¢ 0 - 63 63
5 12 ¢ 9¢ 0 - 75 75
6 7s ls lc 14 - 14
7 6c 3e lc - 33 33
8 6¢c 3 8s - 50 50
9 3¢ 2i¢ 28 - 67 67
10 8c Sie 0 - 63 63

Table 8: Ornamentation results for flute

5. One of the undetected cuts was detected as a note.
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6. An undetected strike was detected as a note
8. The spurious strikes were actually semi-quaver onsets.
10. Contained two types of multi-note ornaments that are not dealt with by this

system. The two spurious strikes were note onsets.

87



Chapter 4: Onset, Ornament Detection and Music Transcription

4.4 Chapter Summary

In this section the results of a novel onset and ornament detector and music
transcription system for monophonic traditional Irish music have been presented. It
was tested on tunes played by three of the most popular traditional Irish instruments,
the fiddle, tin whistle and flute. Results for onset detection of regular notes were very
good with average accuracies of 91%, for the fiddle and 93% for both the tin whistle
and flute. Pitch detection results were also very good in all cases with average

accuracies of 89% for the fiddle and 92% for both the tin whistle and flute.

Results for ornamentation detection were not as good. In the case of the fiddle, 38%
of cuts and 25% of double cuts were detected correctly. The average accuracy for
strikes was 100% but only one strike was played in the tune database. The tin whistle
fared better in the case of cuts with an average accuracy of 53%, strikes were detected
correctly 34% of the time. The best results for cuts were in the case of the flute where
61% were detected correctly. Only 14% of strikes were identified accurately for this
instrument. Although the results for ornamentation detection were not that good they
were encouraging as a first attempt. They show that despite the fact that
ornamentation detection is a very challenging task, it is possible. The most difficult
aspect is setting the correct ornamentation duration threshold. In some cases where
ornaments were not picked up by the detection system, they were identified as regular

notes with the correct frequency.
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5. Conclusions and Further Work

A thorough literature review of onset detectors and music transcription systems has
been presented. During this literature review, various techniques that are currently
being used to approach the problem were described. As regards onset detection, these
included energy and phase based techniques. Sub-band techniques have proved
popular with some opting to apply different detection techniques to the high and low
frequency bands. Autocorrelation and Wavelets are examples of two techniques that
have been used in music transcription, however the STFT has gained more
widespread use. Each of these techniques were discussed along with their advantages

and disadvantages.

An introduction to the history of traditional Irish music was also presented. This
included a comprehensive explanation of the different types of ornamentation used in
this style of music. A description of the well documented classical ornamentation was
also given and this was used as an aid in explaining the more ambiguous traditional
Irish ornaments. Each of the three instruments, the fiddle, flute and tin whistle, that
were used to test the system were also given an introduction. These are among the
more popular instruments used by traditional Irish musicians. The note range of each

instrument was also determined,

Based on this review, a system that detects note onsets, pitches and ornaments in
monophonic traditional Irish music played by the fiddle, flute and tin whistle has been
implemented. The proposed system is a novel hybrid approach and combines the best
elements of previous onset detectors resulting in a robﬁst onset and pitch detector. A
sub-band approach was adopted from [Klapuri ‘99] although some changes were
made. While each frequency band in Klapuris system contained at least four notes, the
proposed system allocates one frequency band to each note. The musical signal was
decomposed into 29 frequency bands, one for each semi-tone in the note range G3 to
B3. This note range covers the range of each instrument used to test the system.
Frequency analysis was achieved using a constant Q approximation, the STFT of the
sighal was calculated and the resulting filter outputs combined to give a series of
frequency bands whose center frequencies are logarithmically spaced. Each of these

frequency bands represents a musical note.
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Each of these frequency bands is analyzed independently. Firstly, the amplitude
envelope is calculated followed by the first order difference function just as in
[Klapuri ‘99]. Unlike his system, the relative difference function is not calculated. An
approximation of this is obtained by moving detected onsets back three samples,
Similar results are achieved but it is simpler to implement. A threshold is
automatically calculated for each band by analyzing the statistics of its amplitude
envelope. This is achieved by implementing the threshold approximation method in
[Duxbury *02]. There is one difference, while this system analyses the amplitude
envelope, Duxburys system analyzed the results from the detection function. A novel
idea in the proposed system was the addition of an efficient double check for missed

onsets in an STFT energy summation.

Results for onset detection were very good with average accuracies of 91% for the
fiddle and 93% for the flute and tin whistle. These results would have been improved
slightly if the ornament detector was excluded from the implementation as
occasionally a regular note, which was played for shorter than the set ornamentation

threshold was incorrectly detected as an ornament.

Note pitches were calculated by extracting segments of the waveform after each onset
and carrying out frequency analysis on each excerpt. This was achieved by applying
an STFT with a longer window length than was used during onset detection in order
to gain better frequency resolution. Pitch detection results were very good with
average accuracies of 89% in the case of the fiddle and 92% in the case of the flute

and tin whistle.

Ornaments were detected by setting a duration threshold. This duration was equal for
both the cut and the strike and for each individual ‘note’ of a double cut. This
threshold was chosen after thorough analysis of the traditional Irish music database
and was 11 frames or 136ms long as regular notes were generally found to be longer
than this. Results for ornamentation detection were not as good as those for regular
onsets. In the case of the fiddle, 38% of cuts and 25% of double cuts were detected
correctly. The average accuracy for strikes was 100% but only one strike was played
in the tune database. The tin whistle fared better in the case of cuts with an average

accuracy of 53%, strikes were detected correctly 34% of the time. The best results for
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cuts were in the case of the flute where 61% were detected correctly. Only 14% of

strikes were identified accurately for this instrument.

Ornamentation detection is a very challenging task and this was reflected in the
results. Although the results were not exceptional, they were encouraging as a first
attempt. The main difficulty proved to be the setting of an adequate ornamentation
duration threshold. In some cases where ornaments were not picked up by the
detection system, they were identified as regular notes with the coirect frequency.
During the review on traditional Irish music, it was discovered that each individual
musician plays ornamentation differently. There are only so many ways you can play
a regular musical note, it is a relatively standard practice. This does not apply to
ornamentation, it may be classified in books but ultimately it is up to each individual
musician how they would like to play it. This leads to ornamentation being extremely

difficult to detect.

Further work could involve attempting to solve the problem of ornament detection.
The major problem to overcome is sefting the correct ornament duration threshold.
This is currently a fixed value but perhaps a method of calculating an automatic
threshold could be devised. Extending the number of bands in the detection system to
include additional higher octaves may contribute to a possible solution. Improved
temporal resolution at note onset locations may also be beneficial as most ornaments

are less than ten milliseconds long.

The ornament detection system could be developed to deal with multi-note ornaments
such as the roll, another commonly used ornament, particularly in the case of the
fiddle. The system could also be extended to deal with other popular traditional Irish

instruments such as the accordion, guitar and banjo.

The implemented system has been shown to be effective in transcribing the regular
notes of fiddle, flute and tin whistle tunes. While the results for ornamentation
detection are not as good, they nevertheless represent a good starting point for future

work in transcribing ornamentation in the context of Traditional Irish Music.
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Appendix A

This appendix contains an index of the tunes that were used to test the system. It is
divided into three sections, one for each instrument. The names the tunes were given

in the results section are listed down the left hand side.

Fiddle

The fiddle tunes were obtained from [Cranitch ‘01], the page on which the notation

can be found is on the right hand side.

1. Give us a drink of water 59
2. The Connachtman’s Rambles 52
3. Dalaigh’s Polka 69
4. The Humours of Carrigaholt 90
5. Denis Murphy’s Shde 63
6. Cronin’s Hornpipe 76
7. The Peeler’s Jacket 83
8. The Hag’s Purse 54
9. 'The top of Maol 67
10. The Lakes of Sligo 70
11. The Scartaglen Slide 64

Tin Whistle

The tin whistle and flute tunes were obtained from [Larsen ‘03] and again the page

numbers are on the right hand side.

1. Study 1 308
2. Study 3 308
3. Study 4 309
4. Study 19 318
5. Study 7 310
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Flute

[a—

R T A B I S

10.

Study 8

Study 9

Bantry Bay
Hardiman the Fiddler

. Tuttle’s Reel

The Lonesome Jig
Study 5

Study 6

Study 11

Study 17

Study 22

Lady on the island
Maids of Ardagh

The whinny hills of Leitrim

Hardiman the Fiddier

310
311
152
135
28

126
309
310
312
316
320
353
356
346
346
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