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Re-evaluating Hedging Performance 

 

May 30th 2005 

 

 

Abstract 

Mixed results have been documented for the performance of hedging strategies using futures. 

This paper reinvestigates this issue using an extensive set of performance evaluation metrics 

across seven international markets. We compare the hedging performance of short and long 

hedgers using traditional variance based approaches together with modern risk management 

techniques including Value at Risk, Conditional Value at Risk and approaches based on 

Downside Risk. Our findings indicate that using these metrics to evaluate hedging performance, 

yields differences in terms of best hedging strategy as compared with the traditional variance 

measure. We also find significant differences in performance between short and long hedgers. 

These results are observed both in-sample and out-of-sample. 

 

Keywords: Hedging Performance; Lower Partial Moments; Downside Risk; Variance; Semi-

Variance; Value at Risk, Conditional Value at Risk. 

 

JEL classification: G10, G12, G15.  
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1. Introduction 

 

Hedging with futures contracts is perhaps the simplest method for managing market risk arising 

from adverse movements in the price of various assets. The success of a hedging strategy is 

measured by the extent to which it reduces risk, and many techniques have been developed and 

applied to find the optimal investment in futures – the optimal hedge ratio (OHR) with the aim of 

reducing risk. A large body of research has developed in the calculation and evaluation of 

optimal hedging strategies (see, for example, Kroner and Sultan 1993; Park and Switzer 1995; 

Choudhry, 2003). The literature on optimal hedging indicates that OHR’s estimated by OLS 

generally yield the best results in-sample. There is little performance difference between models 

in an out-of sample context, however, with both OLS and GARCH models failing to 

significantly outperform the simple naïve hedge (see, for example Brooks et al, 2002). It is not 

clear, however, whether the general results on model hedging effectiveness are specific to the 

narrow performance appraisal criteria that have been applied in the literature (namely the 

variance) or whether these results hold under a broad range of hedging performance metrics. The 

evaluation of hedging strategies has been overwhelmingly based on the objective of minimising 

variance and therefore the general results on hedging efficiency reflect models that achieve 

variance minimisation as their stated aim.  

 

A key issue not extensively explored in the literature is whether the estimates of hedging 

effectiveness of optimal hedging strategies for many applied models would change if 

performance criteria other than the variance were to be applied. The use of variance or standard 

deviation as measures of risk have been criticised because negative and positive returns are given 

equal weight, whereas a measure of hedging effectiveness that incorporates trading position and 

differentiates between positive and negative outcomes may be more appropriate. Such a measure 
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would need to be one-sided in nature so that it can distinguish between downside and upside 

risks that are relevant to short and long hedgers respectively. This paper addresses this issue of 

performance evaluation in a number of ways.  

 

First, we evaluate and compare hedging strategies using five different performance metrics. 

These are the Variance, Semi-Variance; Lower Partial Moments (LPM); Value at Risk (VaR) 

and Conditional Value at Risk (CVaR). With the exception of the first metric, these performance 

metrics are tail specific. Second, we examine hedging effectiveness across a number of different 

hedging strategies including, a no hedge strategy; a naïve approach, and a model based hedging 

approach. We use three models to calculate the OHR. These are OLS using a rolling window 

approach, and two time-varying multivariate GARCH approaches; the Diagonal VECH and the 

Constant Correlation models. This gives a total of five hedging strategies. Third, we apply each 

of the above metrics for both short and long hedgers across seven leading stock index spot and 

futures contracts. This approach allows us to examine whether the dominance of Naïve and OLS 

based hedging strategies is specific to the use of the variance reduction criterion or whether 

different performance metrics favour different hedging strategies. To anticipate our results, we 

find that while the overall dominance of Naïve and OLS based hedging strategies is confirmed, 

in certain cases the use of performance metrics other than the variance may result in GARCH 

models being chosen as the best performing hedging methods. This is particularly true of the 

Value at Risk performance metric. Furthermore, we also find substantial differences in the 

hedging performance of short as opposed to long hedgers. This suggests that the hedging 

objectives and trading position of an investor should be considered when choosing a 

performance metric that is appropriate for evaluating the performance of different hedging 

strategies. 
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The remainder of this paper proceeds as follows. In Section 2 we describe the metrics for 

evaluating hedging performance. Section 3 details the models used for estimating optimal hedge 

ratios. Section 4 describes the data and presents some summary statistics. Section 5 presents our 

empirical findings on hedging performance. Section 6 summarises and concludes. 

 

2. Performance Metrics 

 

We examine the in-sample and out-of-sample hedging performance of five hedging strategies 

using five different metrics of performance. Our performance metrics are based on the Variance, 

the Semi-Variance, LPM, VaR, and CVaR. The hedging strategies we use are no hedge, a naïve 

hedge, and a model based hedge where three different models are used to estimate the OHR: 

Rolling OLS, Diagonal Vector GARCH (DVECH) and Constant Correlation GARCH (CC).  

 

2.1 Hedging Effectiveness Metric 1 - The Variance 

 

The first performance metric we use to examine hedging performance is the variance. The 

variance metric (HE1) that we use measures the percentage reduction in the variance of a hedged 

portfolio as compared with the variance of an unhedged portfolio. The hedged portfolios are 

calculated by using the OHR’s derived from our hedging models, with the best model being the 

one with the largest reduction in the variance. The performance metric is: 









−=

rtfolioUnhedgedPo
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HE 11       (1) 

This gives us the percentage reduction in the variance of the hedged portfolio as compared with 

the unhedged portfolio. When the futures contract completely eliminates risk, we obtain HE1 = 1 

which indicates a 100% reduction in the variance, whereas we obtain HE1 = 0 when hedging 
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with the futures contract does not reduce risk. Therefore, a larger number indicates better 

hedging performance1.  

 

The variance is a standard measure of risk in finance and has become the dominant measure of 

hedging effectiveness used by hedgers. It has also been extensively applied in the literature on 

hedging and was used by Ederington (1979) to evaluate hedging effectiveness. The advantage of 

using the variance as a measure of performance is its ease of calculation and interpretation. 

However, there are a number of problems with its use as a hedging performance metric. Firstly, 

because the variance is a two-sided measure that attaches the same weight to both positive and 

negative returns, it does not distinguish between upside and downside probabilities. This may not 

be efficient since hedgers are concerned with the probabilities associated with a single tail of the 

return distribution. Secondly, when return distributions are non-normal, as is standard for 

financial returns, we require more than the first two moments to adequately characterise the 

distribution. Thus we also use a number of alternative performance metrics. 

 

2.2 Hedging Effectiveness Metric 2 - The Semi Variance 

 

The semi-variance, which measures the variability of returns below the mean was used as a 

measure of risk following work by Roy (1952) who developed the safety first criterion. This 

introduced the concept of an investor preferring to minimise the probability of falling below 

some predefined level of return, termed the disaster level. A more general approach to downside 

risk developed from this, which specified risk in terms of probability weighted functions of 

deviations below some target level of return. The semi-variance is the first of a class of downside 

risk measures that we use and is presented here as a special case of the more general LPM 

discussed later. It is calculated as: 
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Semi-Variance= [ ]( ){ }2,0max RE −τ  = ( ) ( )∫
∞−

−
τ

τ RdFR
2     (2) 

where τ, the target return is set to the expected return, R is the return on the hedged portfolio and 

F is the distribution function of R. In the downside risk framework the weighting that is attached 

to deviations from the target rate of return is based on an investors risk preference. For the semi-

variance, the deviations from the target return )( R−τ are squared. When the distribution is 

symmetric and the target return is set to the mean, the semi-variance is equivalent to half the 

variance. For a non-symmetric distribution, however, the semi-variance can distinguish between 

the tails of the distribution. It therefore addresses the primary shortcoming of the variance and 

provides a more intuitive measure of risk for hedging as it focuses on downside risk. However it 

does not distinguish between investors who may have different risk preferences since only one 

weighting is attached to deviations from the mean. The performance metric that we use is the 

percentage reduction in the semi-variance of our hedge strategies as compared with a no hedge 

position. 
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2.3 Hedging Effectiveness Metric 3 - The Lower Partial Moment  

 

The development of the LPM was an important development in the area of downside risk 

measures and is attributed to Bawa (1975) who introduced a general definition of downside risk, 

and Fishburn (1977) who developed the (α,t) model. The lower partial moment of order n around 

τ is defined as 

LPMn (τ;R) = [ ]( ){ }n
RE −τ,0max ≡  ( ) ( )∫

∞−

−
τ

τ RdFR
n    (4) 
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where F(R) is the cumulative distribution function of the investment return R and τ is the target 

return parameter. Note that if n=2 and τ is set to the mean, then (4) is equivalent to the semi-

variance (3). In practice the value of τ will depend on an investor’s minimum acceptable level of 

return. Some values of τ that may be considered are zero, or the risk free rate of interest. The 

parameter n reflects the amount of weight an investor will attach to the shortfall from the target 

return. An investor who is more concerned with extreme shortfalls would assign a higher weight 

which would be represented by higher values of n. Fishburn (1977) shows that 10 << n is 

suitable for a risk seeking investor, 1=n  for risk neutral, and 1>n for a risk averse investor. By 

changing these parameters we can form a complete set of downside risk measures. There are a 

number of advantages of using LPM to examine performance in a hedging context. Firstly, since 

the LPM is estimated as a function of the underlying distribution, it has been shown to be robust 

to non-normality (Bawa, 1975). This is an important advantage of the LPM framework in that it 

does not require the assumption of normality in the return distribution, and can therefore estimate 

tail probabilities for assets whose return distributions are non-normal. Secondly, an analysis of 

differential hedging performance may reveal information regarding the asymmetry of the joint 

distribution of spot and futures returns for a given asset. Therefore, a downside risk approach 

using LPM addresses the primary shortcoming of the traditional variance based measure of 

hedging performance. This is especially important for short and long hedgers, as each type of 

investor would minimize the associated risk measure over the opposite portions of the return 

distribution of the hedge portfolio.    

 

Recently, a number of studies have examined hedging using the LPM methodology (see, for 

example Lien and Tse, 2002 for a comprehensive survey). The literature on the applications of 

LPM to futures hedging generally deals with the calculation of minimum LPM hedge ratios and 
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compares these ratios to the traditional minimum variance hedge ratios. Also, Lien and Demirer 

(2003) calculate OHR’s designed to minimise the LPM, however their focus is on the 

relationship between the inputs into the LPM calculations and the effects on the resulting OHR. 

Examining their findings indicates similar levels of performance across differing values of n. A 

more recent paper by Demirer et al (2005) investigates hedging performance using a number of 

risk measures including LPM. The results from these studies indicate that long hedgers tend to 

gain more benefit than short hedgers, as measured by the percentage reduction in the LPM’s of 

their hedged portfolios. In both papers, the measure of hedging effectiveness is based on the 

methodology used to estimate the OHR. For example, where the LPM minimising OHR is 

estimated, the measure of hedging effectiveness used is the percentage reduction in the LPM of 

the portfolios constructed using that OHR. However, no study has applied LPM based 

performance measures to evaluate optimal hedging strategies based on OLS or GARCH models. 

 

We calculate the lower partial moment as DSR measures, using n=3, which corresponds to a risk 

averse investor2. The target return τ used in the LPM function is linked to an investor’s stated 

aim. From a risk management perspective the aim of a hedger is to avoid negative outcomes, 

therefore we use a target return 0=τ . The performance metric that we use is the percentage 

reduction in the LPM of our hedge strategies over a no hedge position. This is calculated as: 
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2.4 Hedging Effectiveness Metric 4 – Value at Risk  

 

The fourth metric we use to gauge hedging effectiveness is VaR. The use of VaR as a method of 

evaluating hedge strategies is relatively new, although Brooks et al (2002) analyse the impact of 
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asymmetry on time varying hedges using an alternative performance metric, based on Minimum 

Capital Risk Requirements (MCRR’s), which is a VaR based approach. We use VaR because it 

determines the maximum size of losses associated with the hedging strategy and also because of 

its increasing use as a measure of risk, both for internal risk management models and for 

regulatory requirements. VaR estimates the probability of a loss that may occur as a result of 

changes in the value of a security or portfolio. VaR has two parameters, the time horizon (N) and 

the confidence level (x).  Generally VaR is the (100-x)th percentile of the return distribution of 

the change in the asset or portfolio over the next N days. Using equation (4) with n = 0, we 

calculate VaR as a special case of the LPM approach. By fixing the probability LPM0, the 

corresponding VaR can be calculated.  

)( 0
1

LPMFVaR
−=          (6) 

The cumulative distribution function F(R) is the probability of the portfolio return R being less 

than a given value (τ) which is exogenous. Therefore, VaR gives us the return that is exceeded 

with (100-x) % probability. It is possible, however, that two portfolios will have the same VaR 

but with different potential losses. This is because VaR does not account for losses beyond the 

(100-x)th percentile. We address this shortcoming by estimating an additional performance metric 

(CVaR) which is outlined in the next section. We calculate VaR using the 1% confidence level 

under which we would expect losses in excess of the VaR to occur once every N days. The 

performance metric employed is the percentage reduction in VaR.  









−=

rtfolioUnhedgedPo

folioHedgedPort

VaR

VaR
HE

%1

%1

4 1        (7) 

 



 9 

2.5 Hedging Effectiveness Metric 5 – Conditional Value at Risk 

 

The fifth performance metric is CVaR. This measures the mean loss, conditional that we have 

exceeded the VaR. We use CVaR as a hedging performance metric because it provides a hedger 

with an estimate not only of the probability of a loss, but also of the magnitude of a possible loss 

(for further details see Tasche, 2002). We calculate CVaR as a special case of LPM with n=1 and 

the minimum return τ set to the VaR. This gives us the CVaR which is sometimes referred to as 

the expected or target shortfall. 

=CVaR  ( ) ( )∫
∞−

−
τ

τ RdFR
1        (8) 

In calculating CVaR we again use the 1% confidence level to examine the position for different 

types of hedgers. The performance metric we use to evaluate hedging effectiveness is the 

percentage reduction in CVaR. 
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In this section we have outlined five different performance metrics (Variance, Semi-variance, 

LPM, VaR and CVaR). These include the dominant variance measure, but also include metrics 

that allow a comprehensive comparison of the best hedging strategies for different types of 

hedger and different trading positions. Now we outline the five hedging strategies and the 

models used to estimate the OHR.  

 

3. Hedging Models 

 

The aim of hedging is to reduce the risk of investing in one financial asset by taking an offsetting 

position in another financial asset. In this paper we consider stock index and stock index futures 
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contracts. The OHR - the hedge ratio that minimises risk, is the slope coefficient β obtained by a 

regression of the change in the spot price against the change in the futures price. This is given 

by: 

  tftst rr εβα ++=         (10) 

where str and ftr are the spot and futures returns respectively for period t, and tε is the 

disturbance term. This regression estimation with OLS was first used by Ederington (1979) and 

has been applied extensively in the literature. However, this method assumes that the second 

moments do not change over time, whereas numerous studies (see, for example, Cecchetti et al., 

1988, Baillie and Myers, 1991) have found that the joint distribution of spot and futures returns 

is time-varying and therefore the hedge ratio is estimated incorrectly. Time-varying volatility is 

the rule for financial time series and as the optimal hedge ratio depends on the conditional 

distribution of spot and futures returns, so too should the hedge ratio. Five hedging strategies are 

used therefore, three of which allow for time variation in the return distribution. The hedging 

strategies used are: No Hedge, Naïve Hedge, and an OHR estimated by; Rolling Window OLS; 

DVECH GARCH; and CC GARCH. This allows a broad comparison in terms of hedging 

performance over a range of hedging models.  

 

3.1 No Hedge 

 

This assumes that the exposure is left unhedged and is used as a performance benchmark. This is 

included as many firms and financial market participants choose not to hedge their exposures 

since hedging reduces not only risk, but also the expected return to bearing that risk.  
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3.2 Naïve Hedge 

 

This involves adopting a futures position equal in magnitude but opposite in sign to the spot 

position being hedged. The hedge ratio is therefore -1 at all times. The advantage of this method 

is its simplicity, although it will not minimise risk unless both spot and futures positions are 

perfectly correlated. 

 

3.3 Rolling Window OLS 

 

The first model we use to account for time variation is a rolling window OLS model. This 

estimates the hedge ratio by conditioning on recent information using a rolling window estimator 

of the variance-covariance matrix. Hedge ratios are re-estimated on a day-by-day basis whereby 

the most recent observation is added and the oldest observation is removed, thus keeping the 

number of estimation observations unchanged. The advantage of this method from a hedging 

perspective is that by updating the information set we obtain a more efficient estimate of the 

hedge ratio, which takes time variation in the return distribution into account. However, in 

common with other methods that require the hedge ratio to be time-varying, it may be expensive 

as changing the hedge ratio increases transactions costs. 

 

3.4 GARCH Models 

 

Strategies to account for time variation using the GARCH class of models have become 

prevalent (see, for example, Bollerslev, 1986, 1990). In general, GARCH models assume that the 

conditional variance of returns is affected by its own history and the history of the squared 

innovations (changes) in returns. The advantage of GARCH models is that they have been able 
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to capture the behaviour of financial time series, such as serial correlation in volatility and co-

movements in volatilities. The large literature on optimal hedging has extensively used 

multivariate GARCH models to generate OHR’s (see, for example, Kroner and Sultan, 1993; 

Lien et al, 2002). From a hedging perspective the multivariate GARCH class of models are 

particularly suitable, since they can estimate jointly the conditional variances and covariances 

required for optimal hedge ratios, and they have demonstrated good performance when used to 

generate forecasts of the variance-covariance matrix over short time horizons (Conrad et al, 

1991, Engle and Kroner, 1995). On the other hand, the performance of the multivariate GARCH 

class of models has generally been poor when used to generate forecasts over longer hedging 

horizons (see, for example, Brooks et al, 2002,  who also report, as stated, mixed results for out-

of-sample performance when applying these models). 

 

The Diagonal VECH GARCH Model (DVECH) 

 

We apply two GARCH models to allow for an extensive comparison. The first GARCH model 

that we use is the Vector GARCH (1, 1) model proposed by Bollerslev, Engle and Woolridge 

(1988). The diagonal parameterisation of the VECH model has been used to generate OHR’s by 

Baillie and Myers (1991) and Brooks and Chong (2001). This models the conditional mean and 

variance equations as follows: 

stsstr εµ +=  

ftfftr εµ += ,           (11a) 

( )tt

ft

st
N

2
1 ,0~ σ

ε

ε
−Ω








        

2
1,

2
1,

2
−− ++= tsstsssst σβεαγσ         (11b) 
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2
1,

2
1,

2
−− ++= tfftfffft σβεαγσ        (11c) 

1,1,,1, −−− ++= tsfsftftssfsfsft σβεεαγσ        (11d) 

where str ftr  are the returns on spot and futures respectively, ftst εε ,  are the residuals which 

represent the innovations in the spot and futures prices, 1−Ω t represents the information set at 

time t-1, 22 , ftst σσ denotes the variance of spot and futures and sftσ is the covariance between 

them, γ is an intercept term which is a 3x1 parameter vector, and α  and β  are 3x3 parameter 

matrices.  This gives 21 parameters to be estimated (γ has 3 elements and α  and β each have 9 

elements). However, this model restricts theα and β matrices to be diagonal whereby only the 

upper triangular portion of the variance covariance matrix is used. This means that the 

conditional variance depends on past values of itself and past values of the squared innovations 

in returns. This reduces the number of parameters to 9 (now α and β each have 3 elements). 

This is subject to the requirement that the variance-covariance matrix is positive definite in order 

to generate positive hedge ratios. 

 

The Constant Correlation GARCH Model (CC) 

 

The second GARCH model we use is the Constant Correlation (CC) GARCH (1, 1) model 

introduced by Bollerslev (1990). The CC model has been applied extensively in a hedging 

context (Kroner and Sultan, 1993; Park and Switzer, 1995; Lien et al, 2002). The model is 

specified as follows: 

 ∑
=

− ++=
J

j

stjtssjsst rr
1

,0 εθθ , ∑
=

− ++=
K

k

ftktffkfft rr
1

,0 εθθ     (12a) 
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 ftstsft σρσσ =          (12d) 

where 1, =kj  for a GARCH (1, 1) model, ,,αγ and β are all positive, with 1≤+ ii βα  for 

fsi ,= . The conditional means follow an autoregressive process. The equations 12b and 12c 

maintain the assumptions of the Diagonal VECH model while the conditional correlation 

coefficient between spot and futures ρ in equation (12d) is constant. An advantage of the CC 

model is that it is positive semi-definite, subject to the conditional variances being positive. This 

is an important property for a model being used to generate hedge ratios as it means that the 

variance-covariance matrix is always non-negative. It is therefore easy to estimate and 

computationally efficient, which is a useful property as we re-estimate our model on a rolling 

window basis.  

 

Using the models outlined, out-of-sample OHR’s are computed using one-day-ahead forecasts of 

the variance’s and covariances as estimated from each of the models. The parameters of the 

various GARCH models were estimated using the in-sample period comprising five years of 

data. Using these starting parameters, the forecasts of the conditional variance’s and covariance’s 

were then computed recursively using a constant sample size which was rolled forward by 

adding on the most recent observation and taking away the oldest. This method is similar in 

approach to Lien et al (2002). The resulting hedge ratios are used to compile hedge portfolios 

which are constructed as fs rhr
*−+  (short hedger) and fs rhr

*+−  (long hedger), where sr and 
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fr  are the returns on the spot and futures respectively, and *
h is the estimated OHR. The five 

performance metrics outlined above are then used to provide a comprehensive comparison of the 

hedged portfolio returns over a one-day holding period, which is consistent with the OHR 

estimation. 

 

4. Data Description 

 

We use daily stock index and stock index futures contracts from seven major indices spanning 

the period 1 January 1998 – 31 December 2003. The data include two US, three European and 

two Asian equity markets indices. The indices chosen are: the S&P500 Composite, Dow Jones 

Industrials, DAX 30 KURS, CAC 40, Financial Times 100, Hang Seng, and Nikkei 225 Stock 

Average. These indices are representative of the most important equity stock and futures markets 

over a wide geographic and economic area. Since we evaluate hedging strategies using different 

performance evaluation methods, it is important that the hedging performance of the various 

models be consistent with some benchmark. Various studies (see, for example, Lien et al, 2002) 

have shown that hedging performance tends to be best over a short holding period. Daily data are 

therefore used, where returns are calculated as the differenced logarithmic prices. For each of the 

contracts the first five years observations were used to estimate the basic models and their 

diagnostics. The remaining one year of observations were used to facilitate out-of-sample 

comparisons. Summary statistics for the full sample are displayed in Table I. The means of the 

return series are generally negative with the exception of the DOW and the CAC40. Volatility as 

evidenced by standard deviation ranges from 1.3% to 2.1% with the Asian and European indices 

markedly higher than the American indices. All of the return series are non-normal as evidenced 

by large Bera-Jarque statistics and most of the series display significant kurtosis. The distribution 
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of our return series is broadly similar within geographic regions. The HANGSENG shows the 

largest deviations from a Gaussian distribution as evidenced by excess kurtosis of 4.29 for the 

spot index and a correspondingly high Bera-Jarque statistic. All of the series exhibit conditional 

heteroskedasticity with significant LM test statistics. This is particularly noticeable in the 

European markets with the FTSE100 showing the most significant effects. This result justifies 

our decision to use methods that account for time variation. The data were checked for 

stationarity using Dickey Fuller unit root tests. We find that the raw series are non-stationary 

while the log return series are stationary. This is important from a hedging perspective as non- 

stationary series may lead to spurious regressions and therefore invalidate the estimation of 

optimal hedge ratios. 

[INSERT TABLE I HERE] 

5. Empirical Findings 

 

The estimated in-sample model parameters for the Rolling OLS, DVECH and CC GARCH 

models are quite standard and are therefore not reproduced in detail3, however, the following 

points were observed. The results of the Rolling OLS regression indicate positive significant 

coefficients on the futures returns which are the OHR estimates for this model. Both the DVECH 

and CC GARCH models appear to represent the conditional variance of the data quite well. The 

sum of the parameter estimates ss βα +  for spot and ff βα +  for futures is close to unity in most 

cases indicating strong volatility persistence. All of the coefficients in the models are strongly 

significant indicating the time-varying nature of the conditional variances and covariance’s. 

Also, for all series the hedge ratios appear to be stationary. This result corroborates Brooks et al 

(2002) and indicates that there may be a narrow performance gap between the time varying and 

time invariant hedging approaches.  
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Table II presents the results of hedging performance for each hedging model for both short and 

long hedgers (Panel A, In-Sample and Panel B, Out-of-Sample).  

[INSERT TABLE II HERE] 

We compare the hedging performance of the different hedging strategies for each of the hedging 

effectiveness metrics HE1 – HE5 using Efrons (1979) bootstrap methodology. This involves the 

generation of a large number of sample datasets from the short and long data for each hedged 

portfolio. This enables us to test for statistical differences by employing t-tests of the differences 

between models based on the point estimates of our results. We do this for each market and for 

both short and long hedgers. For example, using the short hedged SP500 in-sample in column 1- 

HE5, we compare the best performing OLS model with each of the other models. We therefore 

calculated 210 differences between the hedging models, together with their associated t-statistics 

both in-sample and out-of-sample. Of the 210 pairs tested, 170 (81%) are significant at the 1% 

level in-sample, whereas 140 (69%) are significant out-of sample. This indicates substantial 

differences in the statistical performance of the different hedging models across each of the 

different performance metrics.  

 

Considering the overall hedging performance using HE1 - the variance reduction criterion, both 

the in-sample and out-of-sample results show substantial reductions in variance for each of the 

hedge strategies as compared with a no-hedge position. In-sample, the clear winner in 

performance terms is the OLS model, which yields superior performance in each of our markets, 

followed by the two GARCH models. This result is consistent with other studies and is not 

surprising given that the OLS and GARCH models minimise the variance and are better able to 

fit the data in-sample (see, for example, Brooks and Chong, 2001). Out-of sample results show 
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that both the Naïve and OLS strategies tend to outperform the GARCH models, however, the 

performance differences between the hedging strategies are not economically significant.  

 

More generally we can see a number of features emerge when we examine performance using 

the performance measures other than the variance.  Firstly, we can see that for each metric HE2 – 

HE5, both the in-sample and out-of-sample results of the hedging strategies illustrate the value of 

hedging in reducing risk, irrespective of the measure of risk employed. In-sample using HE3 – 

the LPM for example, there are typical reductions in the LPM’s of the hedged portfolio’s ranging 

from around 70% to over 90% for each of the LPM’s calculated. Also, using HE4 - VaR, the 

results show large reductions in the VaR across all markets, and for both short and long hedgers. 

For example, a short hedger using the DVECH model to hedge the SP500 reduces the VaR by 

over 68% as compared with a no-hedge strategy. Similar results are found when we use HE5 – 

CVaR. Also, out-of-sample results out-perform the in-sample results. This occurs in 96% of all 

cases and by an average of just over 8%. The only exceptions to this are the Long SP500 and 

NIKKEI for the VaR and CVaR metrics.   

 

Secondly, performance differences between short and long hedgers were also compared. This 

was carried out as follows. Taking the SP500 for example, the hedging performance of the naïve 

model for short hedgers was compared against the naïve model for long hedgers. This was done 

for each market and for each performance metric excluding the variance, yielding 112 

comparisons in total4. The results of this comparison indicate that short hedgers outperform long 

hedgers in 68% of cases in-sample and 64% of cases out-of-sample. The differences between 

short and long hedgers are more pronounced for some performance measures. For example, 

across all markets the average differences between model hedging effectiveness in-sample for 

the LPM, VaR and CVaR performance measures are 11%, 23% and 17% respectively as 



 19 

compared with just 4% for the Semi-Variance. This result is replicated out of sample and is 

consistent with those reported for short vs long hedgers in Demirer et al. (2005) and Lien and 

Demirer (2003). 

 

Finally, we examine the results on a market by market basis finding economically significant 

performance differences both in-sample and out-of-sample between markets. Better performance 

is observed for the SP500, DOW and FTSE, while the worst hedging performance is observed 

for the DAX30. For example using performance metric HE3 - the LPM, the DAX30 typically 

underperforms the SP500 by an average of around 27% in-sample and 5% out-of-sample. These 

performance differences are also observed on a model by model basis. Using the OLS model and 

performance metric HE1 – the Variance, the best performing hedge in-sample is the FTSE100 

(HE1 94.9%) while the worst hedging performance is for the DAX30 (HE1 72.7%). This 

represents a performance differential of over 30% and is consistent with lower correlation 

between the DAX30 spot and futures index as compared with the other markets. We also 

compare in-sample and out-of-sample results using an F-test of the ratio of the variances.  The 

results are significantly different in all cases at the 5% level, with the out-of sample hedging 

performance better than-in-sample by an average of 6% across all hedging models and markets.  

 

Table III provides a summary of model hedging performance for each of our stock market 

indices. This demonstrates that using different performance metrics to evaluate hedging 

strategies yields important differences in terms of which model is the most effective. If we 

examine the dominant hedging strategy in-sample and out-of sample for both short and long 

hedgers, we find substantial differences between the performance metrics. For example using the 

variance as our performance metric, the dominant hedging strategies are the Naïve and OLS 

models which together account for 93% of the best performing models. This drops to 82% when 
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we use the semi-variance, 71% for both the LPM and CVaR metrics,  whereas when we examine 

the best hedging model using the VaR performance metric, the GARCH models are the best 

performers in 54% of cases.  

 

This has important implications for hedgers in that their performance criteria indicate which 

hedging model would be most appropriate in a given hedging context. Where hedgers have a 

variety of performance aims they should, therefore, consider a variety of measures of hedging 

effectiveness. Differences between markets also indicate that a different model may be chosen to 

generate a hedge strategy when a performance metric other than the variance is employed.  More 

generally, the overall results indicate the superiority of the simpler rolling window OLS model 

in-sample and both the OLS and Naïve models out-of-sample. It would appear, therefore, that 

with the exception of the VaR metric, the dominance of these strategies is not specific to the use 

of the variance as a hedging performance metric. 

[INSERT TABLE III HERE] 

To verify our findings on the divergence of hedging effectiveness for the performance metrics 

applied, we again employ the bootstrap methodology. Table IV reports mean returns for the post 

sample hedge portfolios, together with statistical comparisons of performance results between 

hedging models. For each performance metric we compare each of the hedging models for both 

long and short hedgers with a benchmark hedge model which is the best performer (based on 

lowest dispersion). Specifically, let θθα −= ijij , where ijθ is the ith performance measure 

(Variance, Semi-variance, LPM, VaR, CVaR) for the jth hedging model (None, Naïve, OLS, 

DVECH, CC) and θ is the benchmark performance measure. We test the null 

hypothesis 0:0 =ijH α . For example, consider the CVaR (column 7) for the SP500 short hedger. 

We compare each CVaR with the benchmark best performer which is the CC hedge model. This 
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is done for each contract and each performance metric. In this way we generate 280 comparisons 

between hedging models and their associated t-statistics. Of these, 131 of the pairs tested are 

significant at the 1% level (47%). This suggests that the performance differences reflect the out-

of-sample performance differences of the hedge positions and is not the result of sample 

variation. Again we can see from Table IV the performance differences between a no hedge 

position and all the other hedge strategies. 

[INSERT TABLE IV HERE]  

Examining column 6 and 7 - the VaR and CVaR figures clearly show the benefits from hedging. 

Using the short hedged SP500 for example, the VaR figure indicates that there is a 1% chance of 

the unhedged portfolio losing more of 2.082% of its value, whereas the corresponding CVaR 

figure shows that the expected loss conditional that the VaR figure is exceeded will be 2.676% of 

the value of the portfolio. Hedging with the best performing model, however, reduces the VaR 

(using OLS) by 79% and the CVaR (using CC) by almost 76% to just 0.631% of the portfolio 

value. This again demonstrates not only the value of hedging, but also that the use of different 

performance metrics may differentiate between the best performing model, and therefore the best 

hedging strategy. 

 

6. Conclusion 

 

This paper compares the hedging effectiveness of some of the commonly applied econometric 

models using an extensive set of performance metrics for a range of global equity indices.  

 

The metrics chosen are the Variance, Semi-variance, LPM, VaR and CVaR. A number of our 

results are worth noting. First, we find that the overall dominance of Naïve and OLS hedge 

strategies is not specific to the use of the variance as a method of evaluating hedging 
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performance. However, the choice of performance method that is used to evaluate an optimal 

hedge strategy is an important consideration in determining the model that is chosen to generate 

an optimal hedge ratio. Some performance metrics, especially VaR, yield different results in 

terms of which econometric model provides the best hedging solution when compared with the 

traditional variance reduction performance criterion. This result indicates that the measure of 

hedging effectiveness that is used should also correspond to the outcome that is desired from 

hedging as different performance metrics may differentiate in terms of model choice.  

 

Second, the performance metrics applied in this paper indicate different hedging performance for 

short as opposed to long hedgers. This suggests that hedgers who are interested in opposite tails 

of the return distribution may benefit by considering the use of hedging performance metrics that 

differentiate between the left and right tail probabilities. This result may be even more 

pronounced for assets and markets that have strongly asymmetric return distributions, and is 

currently being investigated. 
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Table I:  Summary Statistics of Daily Stock Index Futures and Spot Returns
a 

Index  Security Mean Std Dev Skewness Kurtosis B-J LM Stationarity 

         

American         

S&P500 Spot -0.008 0.013 0.02 1.83* 182.6* 74.3* -36.3* 

 Futures -0.008 0.014 0.00 2.13* 247.0* 80.9* -36.7* 

DOW Spot 0.004 0.013 -0.12 2.79* 427.3* 93.9* -36.0* 

 Futures 0.003 0.014 -0.03 2.55* 355.0* 93.2* -37.7* 

European         

FTSE100 Spot -0.020 0.013 -0.15* 1.49* 126.7* 220.1* -35.5* 

 Futures -0.022 0.014 -0.10 1.33* 98.8* 294.6* -35.9* 

CAC40 Spot 0.002 0.017 -0.10 1.63* 147.6* 167.1* -35.1* 

 Futures 0.002 0.017 -0.12* 1.69* 160.2* 140.3* -34.9* 

DAX30 Spot -0.038 0.018 -0.125 1.62* 147.1* 159.4* -35.6* 

 Futures -0.030 0.018 -0.12 1.61* 144.6* 167.1* -35.2* 

Asian         

HANGSENG Spot -0.011 0.019 0.24* 4.29* 1012.1* 65.2* -34.4* 

 Futures -0.011 0.021 0.32* 3.11* 550.0* 50.5* -37.1* 

NIKKEI225 Spot -0.044 0.015 0.11 1.70* 160.8* 42.4* -37.6* 

 Futures -0.045 0.016 0.18* 1.76* 177.0* 25.8* -38.5* 

         

95% C.V      5.99 11.07 -2.86 

Notes: a Summary statistics are presented for the log returns of each spot and futures series. The Bera-Jarque (B-J) statistic combines 

skewness and kurtosis to measure normality.  LM, (with 4 lags) is the Lagrange Multiplier test proposed by Engle (1982). The test 

statistic for B-J and LM tests are distributed χ2. Stationarity is tested using the Dickey-Fuller unit root test.  *Denotes Significance at 

the 5% level.  



 27 

Table II:  Evaluation of Hedging Performance  

(1) (2) HE1 

Variance 

 

(x10-2) 

(3) HE2 

Semi- 

Variance 

 (x10-2) 

(4) HE3 

LPM 

 

(x10-2) 

(5) HE4 

VaR 

 

(x10-2) 

(6) HE5 

CVaR 

 

(x10-2) 

(7) HE1 

Variance 

 

(x10-2) 

(8) HE2 

Semi- 

Variance 

(x10-2) 

(9) HE3 

LPM 

 

(x10-2) 

(10) HE4 

VaR 

 

(x10-2) 

(11) HE5 

CVaR 

 

(x10-2) 

 Panel A: In-Sample Panel B: Out-of-Sample 

SP500-Short           

 Naïve 93.40* 92.65* 97.20* 68.19* 64.78* 96.95 a 96.28 a 99.32 a 78.00* 74.44* 
 OLS 93.92a 93.36 a 97.80 a 68.25* 71.58 a 96.32* 95.66* 99.19 78.96 a 75.86* 
 DVECH 93.63* 92.94* 97.47* 68.49 a 67.11* 96.59* 95.87* 99.26 78.91 76.01 
 CC 93.73* 93.05* 97.55* 68.16* 67.28* 96.50* 95.87* 99.24 78.72 76.42 a 

           
SP500-Long           
 Naïve 93.40* 94.18* 98.67 79.84* 78.35* 96.95 a 97.47 a 99.61 a 75.95 76.71* 
 OLS 93.92 a 94.50 a 98.75 a 79.69* 78.47* 96.32* 96.84* 99.46 76.12 a 77.27 a 

 DVECH 93.63* 94.34* 98.71 80.52 a 78.40* 96.59* 96.99* 99.50 75.37* 76.86* 
 CC 93.73* 94.42* 98.74 80.37* 78.76 a 96.50* 96.99* 99.49 75.66* 77.01 
           
DOW-Short           
 Naïve 92.63* 92.19* 96.99* 64.54* 65.12* 96.96 a 96.52 a 99.38 a 78.76 a 82.97 a 

 OLS 93.41 a 92.93* 97.39 59.91* 68.04 96.10* 95.65* 99.18 76.26* 81.17* 
 DVECH 93.36 93.03 97.52 71.64 a 68.30 a 96.19* 95.65* 99.20 76.35* 81.38* 
 CC 93.40 93.04 a 97.53 a 66.89* 68.08 96.29* 95.87* 99.25 76.63* 82.64 
           
DOW-Long           
 Naïve 92.63* 93.10* 97.57 74.39* 70.15* 96.96 a 97.30 a 99.57 a 85.68 a 84.87 a 

 OLS 93.41 a 93.92 a 98.01 a 76.73* 73.15 a 96.10* 96.45* 99.36 81.29* 83.08* 
 DVECH 93.36 93.71* 97.75 77.03 71.72* 96.19* 96.62* 99.39 81.26* 82.69* 
 CC 93.40 93.78* 97.80 77.33 a 71.74* 96.29* 96.62* 99.40 81.94* 82.69* 
           
CAC40-Short           
 Naïve 87.07* 87.54* 94.05* 61.19* 54.22* 92.44* 92.16* 97.70 71.17* 70.24* 
 OLS 88.33 a 88.60 a 94.80 a 64.90* 57.60 a 92.82 a 92.79 a 98.21 a 74.52 a 74.43 
 DVECH 87.86* 88.11* 93.54* 63.96* 55.77* 92.36* 92.25* 97.80 72.13* 70.75* 
 CC 88.28 88.58 93.89* 65.91 a 56.72* 92.65 92.61* 98.08 73.55* 74.47 a 

           
CAC40-Long           
 Naïve 87.07* 86.57* 93.35* 59.55* 53.12* 92.44* 92.73* 97.94 a 72.15* 71.79 a 

 OLS 88.33 a 88.05 a 94.41 a 65.76 a 59.27 a 92.82 a 92.89 a 97.72 79.94 a 70.69* 
 DVECH 87.86* 87.59* 93.69* 62.09* 57.31* 92.36* 92.49* 97.63 73.83* 70.06* 
 CC 88.28 87.97 94.11 64.59* 57.89* 92.65 92.73* 97.86 73.97* 71.11 
           
DAX30-Short           
 Naïve 70.12* 72.26* 72.51* 50.28* 40.74* 82.62* 83.55* 94.18* 61.71* 63.29* 
 OLS 72.70 a 73.71 a 74.67 a 52.52* 43.77 a 85.97 a 87.28* 95.94 66.55* 66.37* 
 DVECH 71.14* 72.09* 73.22* 51.66* 42.66* 85.84 88.08 a 96.28 a 70.95 a 68.54 a 

 CC 72.13* 72.96* 74.36 53.47 a 43.62 85.61 87.50* 95.89 68.15* 66.73* 
           
DAX30-Long           
 Naïve 70.12* 67.75* 60.20* 44.77* 35.37* 82.62* 82.22* 92.50* 54.69* 58.03* 
 OLS 72.70 a 71.58 a 70.83 51.34 a 40.56 a 85.97 a 84.86 a 94.22 a 61.68 61.51 a 

 DVECH 71.14* 70.08* 66.72* 49.96* 39.07* 85.84 83.80* 93.81 61.93 a 60.57 
 CC 72.13* 71.19* 70.90 a 51.03 40.32 85.61 83.86* 93.78 58.88* 61.31 
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 Table II (Continued) 

(1) (2) HE1 

Variance 

 

(x10-2) 

(3) HE2 

Semi- 

Variance 

 (x10-2) 

(4) HE3 

LPM 

 

(x10-2) 

(5) HE4 

VaR 

 

(x10-2) 

(6) HE5 

CVaR 

 

(x10-2) 

(7) HE1 

Variance 

 

(x10-2) 

(8) HE2 

Semi- 

Variance 

(x10-2) 

(9) HE3 

LPM 

 

(x10-2) 

(10) HE4 

VaR 

 

(x10-2) 

(11) HE5 

CVaR 

 

(x10-2) 

 Panel A: In-Sample Panel B: Out-of-Sample 

FTSE-Short   

 Naïve 94.60* 94.40* 98.12 73.51* 71.12 a 97.03 a 96.27* 99.24 76.80* 80.31 a 

 OLS 94.92 a 94.77 a 98.24 a 73.05* 67.72* 96.96 96.27 a 98.93 75.40* 79.24* 
 DVECH 94.82* 94.74* 96.85* 74.53 68.63* 96.89* 96.27* 99.26 a 79.25 a 79.47* 
 CC 94.74* 94.70* 97.35* 74.76 a 68.49* 96.75* 95.96* 99.17 77.13* 79.06* 
           
FTSE-Long           
 Naïve 94.60* 94.82* 98.40 77.42* 73.77 a 97.03 a 97.63 a 99.69 a 85.54 86.18 a 

 OLS 94.92 a 95.09 a 98.45 a 75.29* 69.89* 96.96 97.38* 99.15 77.98* 79.45* 
 DVECH 94.82* 94.91* 97.50* 77.95 a 71.31* 96.89* 97.50* 99.63 85.63 a 84.76* 
 CC 94.74* 94.79* 97.69* 75.50* 70.00* 96.75* 97.38* 99.62 84.52* 84.47* 
           
HANGSENG 

- Short           
 Naïve 84.44* 84.09* 89.97* 55.33* 49.92* 88.44* 85.71* 95.27* 64.46* 62.29* 
 OLS 88.10 a 87.30 a 92.19 60.27* 54.33 a 91.86 a 90.93 a 99.18 a 65.06* 71.03 
 DVECH 87.93* 87.09* 92.29 61.43* 53.32* 91.77 90.25* 97.34* 68.02 a 69.82* 
CC 88.00 87.20* 92.36 a 65.68 a 53.79 91.67 90.70* 97.55* 66.13* 71.04 a 

           
 HANGSENG 

- Long           
 Naïve 84.44* 84.78* 91.61* 57.46* 54.85* 88.44* 90.42* 97.14* 72.16* 68.22* 
 OLS 88.10 a 88.87 a 94.72 67.37 a 60.35 91.86 a 92.58* 99.49 a 76.27 a 75.92 a 

 DVECH 87.93* 88.73* 95.11 a 63.76* 60.36 91.77 92.74 a 98.30* 76.09 75.30 
 CC 88.00 88.77* 95.00 62.96* 60.82 a 91.67 92.43* 98.21* 75.91 75.81 
           
NIKKEI225 

-Short           
 Naïve 89.63* 89.60* 96.49* 60.31* 65.78* 90.69* 90.66* 97.53* 73.73* 80.31 a 

 OLS 90.17 a 90.20 a 96.79 a 64.43 a 66.86 a 91.80* 91.95* 98.06 75.92 a 79.24* 
 DVECH 89.77* 89.64* 96.34* 61.25* 64.78* 92.16 a 92.15 a 98.15 75.40 79.47* 
 CC 89.59* 89.48* 96.30* 61.50* 65.00* 92.00* 92.15 98.17 a 75.74 79.06* 
           
NIKKEI225 

-Long           
 Naïve 89.63* 89.66* 96.08 67.59* 65.28* 90.69* 90.86* 96.66* 66.41* 61.22* 
 OLS 90.17 a 90.14 a 96.34 a 69.72 a 66.73 a 91.80* 91.68* 97.38 69.90* 69.17* 
 DVECH 89.77* 89.90* 96.22 69.15* 65.79* 92.16 a 92.20 a 97.66 a 71.45 71.33 a 

 CC 89.59* 89.70* 96.12 69.23* 65.34* 92.00* 91.99* 97.54 71.52 a 70.43* 

Notes: Figures are in percentages. HE1 – HE5 give the percentage reduction in the performance measure from the hedged model as compared 

with a no hedge position. For example, short hedging the S&P500 with the OLS model yields a 93.92% in-sample reduction in the 

variance as compared with a No-Hedge strategy. The best performing hedging model is highlighted in bold. Statistical comparisons 

are made for each hedging model against the best performing model. For example, again short hedging the S&P500. If we examine 

column 1, we can see that the in-sample hedging effectiveness of the Naïve, DVECH and CC models are all significantly different 

than the best performing OLS model at the 1% level. * Denotes significance at the 1% level. 
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Table III:  Summary of Best Hedging Performance  

 Panel A: In-Sample 

 Short Hedgers 

 Variance Semi - 

Variance 

LPM VaR CVaR 

SP500 OLS OLS OLS DVECH OLS 

DOW OLS CC CC DVECH DVECH 

CAC OLS OLS OLS CC OLS 

DAX OLS OLS OLS CC OLS 

FTSE100 OLS OLS OLS CC NAÏVE 

HANGSENG OLS OLS CC CC OLS 

NIKKEI225 OLS OLS OLS OLS OLS 

 Long Hedgers 

 Variance Semi - 

Variance 

LPM VaR CVaR 

SP500 OLS OLS OLS DVECH CC 

DOW OLS OLS OLS CC OLS 

CAC OLS OLS OLS OLS OLS 

DAX OLS OLS CC OLS OLS 

FTSE100 OLS OLS OLS DVECH NAÏVE 

HANGSENG OLS OLS DVECH OLS CC 

NIKKEI225 OLS OLS OLS OLS OLS 

      

 Panel B: Out-of-Sample 

 Short Hedgers 

 Variance Semi -  

Variance 

LPM VaR CVaR 

SP500 NAÏVE NAÏVE NAÏVE OLS CC 

DOW NAÏVE NAÏVE NAÏVE NAIVE NAÏVE 

CAC OLS OLS OLS OLS CC 

DAX OLS DVECH DVECH DVECH DVECH 

FTSE100 NAÏVE OLS DVECH DVECH NAÏVE 

HANGSENG OLS OLS OLS DVECH CC 

NIKKEI225 DVECH DVECH CC OLS NAÏVE 

      

 Long Hedgers 

 Variance Semi - 

Variance 

LPM VaR CVaR 

SP500 NAÏVE NAÏVE NAÏVE OLS OLS 

DOW NAÏVE NAÏVE NAÏVE NAÏVE NAÏVE 

CAC OLS OLS NAÏVE OLS NAÏVE 

DAX OLS OLS OLS DVECH OLS 

FTSE100 NAÏVE NAÏVE NAÏVE DVECH NAÏVE 

HANGSENG OLS DVECH OLS OLS OLS 

NIKKEI225 DVECH DVECH DVECH CC DVECH 

Notes: The findings indicate which models provided the best hedging performance for the different performance measures. For example, for a 

short hedger holding the S&P500 with VaR as the performance criterion, the best performance out-of-sample would be the OLS 

model.  
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Table IV:  Out of Sample Comparisons of Hedging Model Performance 

(1) (2) Mean 

(x10-2) 

 

(3) Variance 

(x10-4) 

 

(4) Semi variance 

(x10-4) 

 

(5) LPM 3 

(x10-6) 

 

(6) VaR 

(x10-2) 

 

(7) CVaR 

(x10-2) 

 

SP500-Short       

None 0.0900 1.1133* 0.4839* 0.8655* 2.082* 2.676* 
Naïve 0.0001 0.0341a 0.0180 a 0.0059 a 0.458 0.684* 
OLS 0.0051 0.0411* 0.0206 0.0070 0.438 a 0.646* 
DVECH 0.0031 0.0382* 0.0196 0.0064 0.439 0.642* 
CC 0.0053 0.0394* 0.0200 0.0066 0.443 0.631 a 
       
SP500-Long       
None -0.0900 1.1133* 0.6317* 1.2385* 1.746* 2.692* 
Naïve -0.0001 0.0341 a 0.0160 a 0.0048 a 0.420 0.627 
OLS -0.0051 0.0411* 0.0204 0.0066* 0.417 a 0.612 a 
DVECH -0.0031 0.0382* 0.0185 0.0062 0.430* 0.623 
CC -0.0053 0.0394* 0.0192 0.0063 0.425 0.619  
       
DOW-Short       
None 0.0868 1.0507* 0.4596* 0.7994* 2.161* 3.388* 
Naïve 0.0009 0.0325 a 0.0161 a 0.0050 a 0.459 a 0.577 a 
OLS 0.0068 0.0410* 0.0195 0.0066 0.513* 0.638* 
DVECH 0.0063 0.0401* 0.0196 0.0064 0.511* 0.631* 
CC 0.0071 0.0392* 0.0189 0.0060 0.505* 0.588* 
       
DOW-Long       
None -0.0868 1.0507* 0.5919* 1.2029* 2.801* 3.912* 
Naïve -0.0009 0.0325 a 0.0161 a 0.0052 a 0.401 a 0.592 a 
OLS -0.0068 0.0410* 0.0213 0.0076 0.524* 0.662 
DVECH -0.0063 0.0401* 0.0204 0.0074 0.525* 0.677* 
CC -0.0071 0.0392* 0.0202 0.0072 0.506* 0.677* 
       
CAC40-Short       
None 0.0575 2.3814* 1.1229* 3.1028* 3.732* 5.108* 
Naïve -0.0005 0.1800* 0.0882 0.0714 1.076* 1.520* 
OLS 0.0055 0.1711 a 0.0815 a 0.0556 a 0.951 a 1.306 
DVECH 0.0218 0.1817* 0.0868 0.0682 1.040* 1.494* 
CC 0.0184 0.1750 0.0833 0.0596 0.987 1.304 a 
       
CAC40-Long       
None -0.0575 2.3814* 1.2515* 4.0931* 4.237* 6.292* 
Naïve 0.0005 0.1800* 0.0911 0.0844 a 1.180* 1.775a 
OLS -0.0055 0.1711 a 0.0889 a 0.0935 0.850 a 1.844 
DVECH -0.0218 0.1817* 0.0942 0.0972 1.109* 1.884 
CC -0.0184 0.1750  0.0911 0.0878 1.103* 1.818 
       
DAX30-Short       
None 0.1820 3.0504* 1.3683* 4.2459* 4.179* 5.530* 
Naïve 0.0591 0.5295* 0.2255 0.2470 1.600* 2.030 
OLS 0.0761 0.4281 a 0.1735 0.1724 1.398* 1.860 
DVECH 0.0967 0.4315 0.1632 a 0.1579 a 1.214 a 1.740 a 
CC 0.0932 0.4394 0.1715 0.1744 1.331* 1.840 
       
DAX30-Long       
None -0.1820 3.0504* 1.7036* 5.3862* 4.502* 6.267* 
Naïve -0.0591 0.5295* 0.3031 0.4039 2.040* 2.630 
OLS -0.0761 0.4281 a 0.2581 a 0.3114 a 1.725 2.412 a 
DVECH -0.0967 0.4315 0.2761 0.3332 1.714 a 2.471 
CC -0.0932 0.4394 0.2747 0.3349 1.851* 2.425 
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Table IV (Continued) 
(1) (2) Mean 

(x10-2) 

 

(3) Variance 

(x10-4) 

 

(4) Semi variance 

(x10-4) 

 

(5) LPM 3 

(x10-6) 

 

(6) VaR 

(x10-2) 

 

(7) CVaR 

(x10-2) 

 

FTSE100-Short       

None 0.0491 1.4466* 0.6431* 1.5173* 2.728* 4.418* 
Naïve -0.0019 0.0431 a 0.0242 0.0115  0.633* 0.870 a 
OLS 0.0002 0.0444 0.0237 a 0.0162 0.671* 0.917* 
DVECH 0.0161 0.0450 0.0244 0.0112 a 0.566 a 0.907* 
CC 0.0141 0.0469* 0.0261 0.0126 0.624* 0.925* 
       
FTSE100-Long       
None -0.0491 1.4466* 0.8013* 2.1440* 3.243* 4.828* 
Naïve 0.0019 0.0431 a 0.0188 a 0.0066 a 0.469 0.667 a 
OLS -0.0002 0.0444 0.0206 0.0181 0.714 0.992 
DVECH -0.0161 0.0450 0.0204 0.0080 0.466 a 0.736 
CC -0.0141 0.0469 0.0206 0.0081 0.502 0.750 
       
HANGSENG-Short       
None 0.1150 1.0807* 0.4410* 0.8552* 2.164* 3.519* 
Naïve -0.0032 0.1253* 0.0626 0.0404 0.769 1.327* 
OLS 0.0180 0.0885 a 0.0403 a 0.0070 a 0.756 1.019 
DVECH 0.0101 0.0895 0.0427 0.0228 0.692 a 1.062 
CC 0.0162 0.0896 0.0409 0.0209 0.733 1.019 a 
       
HANGSENG-Long       
None -0.1150 1.0807* 0.6465* 1.3006* 2.777* 3.704* 
Naïve 0.0032 0.1253* 0.0617 0.0371 0.773* 1.177 
OLS -0.0180 0.0885 a 0.0481 a 0.0066 a 0.659 a 0.892 a 
DVECH -0.0101 0.0895 0.0466 0.0221 0.664 0.915 
CC -0.0162 0.0896 0.0486 0.0233 0.669 0.896 
       
NIKKEI225-Short       
None 0.0841 1.9760* 1.0060* 2.8766* 3.784* 4.418* 
Naïve -0.0039 0.1837* 0.0941 0.0711 0.994* 0.870 a 
OLS 0.0027 0.1623* 0.0808 0.0559 0.911 a 0.917* 
DVECH 0.0009 0.1555 a 0.0789 a 0.0531  0.931 0.907* 
CC 0.0014 0.1577 0.0792 0.0527 a 0.918 0.925* 
       
NIKKEI225-Long       
None -0.0841 1.9760* 0.9738* 1.9145* 2.953* 3.669* 
Naïve 0.0039 0.1837* 0.0889 0.0639 0.992* 1.423* 
OLS -0.0027 0.1623* 0.0808 0.0501 0.889* 1.131 
DVECH -0.0009 0.1555 a 0.0760 a 0.0449 a 0.843 1.052 a 
CC -0.0014 0.1577 0.0779 0.0472 0.841 a 1.085 

Notes: This table presents Out-of-Sample hedge portfolio statistics which form the basis of our performance measures. Taking the short 
hedged S&P500 for example, the unhedged portfolio yields a VaR of 2.082%. Comparisons are made between models using t-
statistics obtained from a bootstrap resampling procedure.  a denotes the minimum risk measure. * denotes significance at the 1% level 
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Footnotes 

 

1. The same applies to each of the performance metrics we employ. 

2. We calculated LPM for three different orders of LPM corresponding to n=1, n=2 and n=3 

however in common with Lien and Demirer (2003) we found similar performance levels 

and therefore focus only on the case n=3 which is appropriate from a hedging 

perspective. 

3. Further details are available on request. 

4. Obviously the variance will not distinguish between opposite tails of the return 

distribution and therefore will yield the same results for long and short hedgers. 
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