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Abstract

Natural language processing (NLP) can
be done using either top-down (theory
driven) and bottom-up (data driven) ap-
proaches, which we call mechanistic and
phenomenological respectively. The ap-
proaches are frequently considered to
stand in opposition to each other. Ex-
amining some recent approaches in deep
learning we argue that deep neural net-
works incorporate both perspectives and,
furthermore, that leveraging this aspect of
deep learning may help in solving com-
plex problems within language technol-
ogy, such as modelling language and per-
ception in the domain of spatial cognition.

1 Introduction

There are two distinct methodologies to build
computational models of language or of world in
general. The first approach can be characterised
as qualitative, symbolic and driven by domain the-
ory (we will call this a top-down or mechanistic
approach), whereas the second approach may be
characterised as quantitative, numeric and driven
by data and computational learning theory (we
will call this the bottom-up or phenomenological
approach). In this context we are borrowing the
terminology of phenomenological model from the
literature on the Philosophy of Science where the
term phenomenological model is sometimes used
to describe models that are independent of the-
ory (see for example (McMullin, 1968)), but more
generally is used to describe models that focus on
the observable properties (phenomena) of a do-
main (rather than explaining the hidden mecha-
nisms relating these phenomena) (Frigg and Hart-
mann, 2017). For this paper we use the term
phenomenological model to characterise models

which are primarily driven by fitting to observable
relationships between phenomena in a domain, as
represented by correlations between features in a
dataset sampled from the domain; as opposed to
models that are derived from a domain theory of
the interactions between domain features. The
focus of this paper is to examine and frame the
potentially synergistic relationship between these
distinct analytic methods for natural language pro-
cessing (NLP) in the light of recent advances in
deep neural networks (DNNs) and deep learning.

In historic terms this discussion is recurrent
throughout the history of NLP. For example,
early approaches such as (Shieber, 1986; Alshawi,
1992) are mechanistic in nature as they are based
on logic and other formal approaches such as fea-
tures structures and unification which are tools that
allow formalisation of domain theories. With the
availability of large corpora in mid-1990s there
was a shift to data-driven phenomenological ap-
proaches with a focus on statistical machine learn-
ing methods (Manning and Schütze, 1999; Tur-
ney et al., 2010). This inspired several discussions
on the relation between the two approaches (e.g.,
(Gazdar, 1996; Jones et al., 2000)). We share the
view of some that both approaches are in fact in
a complimentary distribution with each other as
shown in Table 1 (adapted from a slide by Stephen
Pulman). Mechanistic approaches provide deep
coverage but of a limited domain; outside a do-
main they prove brittle and therefore limited. On
the other hand, phenomenological approaches are
wide-coverage and robust to variation found in
data but provide a shallow representation of lan-
guage.

Our desiderata is a wide-coverage system with
deep analyses. It was considered that this could be
achieved by a hybrid model but working out such
a model has proven not a trivial task. Systems that
used both approaches treated them normally as in-
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tech/cov wide narrow
deep our goal symbolic

shallow data-based useless

Table 1: Properties of mechanistic and phe-
nomenological approaches in NLP

dependent black-boxes organised in layers (e.g.
(Kruijff et al., 2007)). However, the marked re-
cent advances in the NLP based on deep (!) neu-
ral networks have made the question of how these
two methodologies should be used, related and in-
tegrated in NLP research apposite.

The choice of a method depends on the goal of
the task for which it is used. One goal for pro-
cessing natural language is to develop useful ap-
plications that help humans in their daily life, for
example machine translation and speech recogni-
tion. In application scenarios where a rough anal-
ysis is acceptable (e.g., a translation that provides
the gist of the message) and large annotated and
structured corpora are available, machine learning
is the methodology of choice to address this goal.
However, where precise analysis is required or
where there is a scarcity of data, a machine learn-
ing approach may not be suitable. Furthermore,
if the goal of processing language is rather moti-
vated by the desire to better understand its cogni-
tive foundations, than a machine learning method-
ology, particularly one based on an unconstrained,
fully connected deep neural network, is not ap-
propriate. The criticisms of unconstrained neu-
ral network based models (typically characterised
by fully-connected feed-forward multi-layer net-
works) in cognitive science has a long history
(see (Massaro, 1988) inter alia) and often focuses
on (i) the difficultly in analysing in a domain-
theoretic sense how the model works, and (ii) the,
somewhat ironic, scientific short-coming that neu-
ral networks are such powerful and general learn-
ing mechanisms that demonstrating the ability of
a network to learn a particular mapping or a func-
tion is scientifically useless from a cognitive sci-
ence perspective. In particular, as Massaro (1988)
argues, a neural network model is so adaptable
that given the appropriate dataset and sufficient
time and computing power it is likely to be able
to learn mappings that not only support a cogni-
tive theory but also ones that contradict that the-
ory. One approach to address this problem is to in-
troduce domain relevant structural constraints into

the model via the network architecture, early ap-
proaches include (Feldman et al., 1988; Feldman,
1989; Regier, 1996). Indeed, we argue in this pa-
per that one of the important and somewhat over-
looked factors driving the success of research in
deep learning is the specificity and modularity of
deep learning architectures to the tasks they are ap-
plied too.

Contribution: In this paper we evaluate the re-
lation between mechanistic and phenomenologi-
cal models and argue that although it appears that
the former have lost their significance in computa-
tional linguistics and its applications they are still
very much present in the form of formal language
modelling that underlines most of the current work
with machine learning. Moreover, we highlight
that many of the recent advances in deep learn-
ing for NLP are not based on unconstrained neu-
ral networks but rather that these networks have
task specific architectures that encode domain-
theoretic considerations. In this light, the relation-
ship between mechanistic and phenomenological
models can be viewed as potentially more syner-
gistic. Given that many logical theories are de-
fined in terms of functions and compositional op-
erations and neural networks learn and compose
functions, a logic-based domain theory of linguis-
tic performance can naturally inform the structural
design of deep learning architectures and thereby
merge the benefits of both in terms of model inter-
pretability and performance.

Overview: In Section 2, we discuss recent de-
velopments in deep learning approaches in NLP
and situate them within the current debate; then,
in Section 3, we use the computational modelling
of spatial language as an NLP case study to frame
the possible synergies between formal models and
machine learning and set out our thoughts for po-
tential approaches to developing a more synergis-
tic understanding of the formal models and ma-
chine learning for NLP research. In Section 4 we
give our concluding thoughts.

2 Deep Learning: A New Synthesis?

In recent years deep learning (DL) models have
improved or in some cases markedly improved the
state of the art across a range of NLP tasks. Some
of the drivers of DL success include: (i) the avail-
ability of large datasets, (ii) more powerful com-
puters, and (iii) the power of learning and adapt-
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ability of connectionist neural networks. How-
ever, another and less obvious driver of DL is the
fact that (iv) DL network models often have ar-
chitectures that are specifically tailored or struc-
tured to the needs of a specific domain or task.
This fact becomes obvious when one considers
the variety of DL architectures that have been pro-
posed in the literature. For example, a schematic
overview of neural network architectures can be
found at at: http://www.asimovinstitute.

org/neural-network-zoo/ (van Veen, 2016).

2.1 Modularity in Deep Learning
Architectures

There are a large-number of network design pa-
rameters that may be driven by experimental re-
sults rather than domain theory. For example, (i)
the size of the network, (ii) the depth of the layers,
(iii) the size of the matrices passed between the
layers, (iv) activation functions and (v) optimiser
are all network parameters that are often deter-
mined through an empirical trial-and-error process
that is informed by designer intuition (Jozefow-
icz et al., 2016). However, the diversity of current
network architectures extends beyond differences
in these parameters and this diversity of network
architecture is not a given. For example, given
the flexibility of neural networks, one approach to
accommodating structure into the processing of a
network is to apply minimal constraints on the ar-
chitecture and to rely on the ability of the learn-
ing algorithm to induce the relevant structure con-
straints by adjusting the network’s weights.

On the other hand, it has, however, long been
known that pre-structuring a neural network by the
careful design of its architecture to fit the require-
ments of the task results in better generalisation
of the model beyond the training dataset (LeCun,
1989). Understood in this context, DL is assisted
(or supervised!) by the task designer in terms of
a priori background knowledge who decides what
kind of networks they are going to build, the num-
ber of layers, what kind of layers, the connectiv-
ity between the layers and other parameters. DL
is most frequently not using fully connected lay-
ers, instead several kinds of layered networks have
been developed tailored to the task. In this respect
DL models capture top-down domain informed
specification that we have seen with the rule-based
NLP systems. This flexibility of neural networks
is ensured by their modular design which takes

as a basis a single perceptron unit which can be
thought of encoding a simple concept. When sev-
eral units are organised and connected into larger
collections of units, these may be given interpre-
tations that we give to symbolic representations in
rule-based systems. The level of conceptual super-
vision may thus vary from no-supervision when
fully connected layers are used, to weak supervi-
sion that primes the networks to learn particular
structures, to strong supervision where the struc-
ture is given and only parameters of this structure
are trained.

An example of weak supervision are Recurrent
Neural Networks (RNNs) that capture sequence
learning required for language models. The design
of current state-of-the-art RNN language mod-
els is informed by linguistic phenomena such as
short- and long-distance dependencies between
linguistic units. In order to improve the ability of
RNNs to model long-distance dependencies, con-
temporary RNN language models use Long-Short
Memory Units (LSTM) or Gated Recurrent Units
(GRUs) which may be further augmented with at-
tention mechanisms (Salton et al., 2017). The in-
puts and outputs of such networks can be either
characters or words, the latter represented as word
embeddings in vector spaces.

Another example of weakly supervised neural
networks, in the sense that their design is informed
by a domain, are Convolutional Neural Networks
(CNNs) which have their origin in image process-
ing (LeCun, 1989). In CNNs the convolutions are
meant as filters that encode a region of pixels into
a single neural unit which learns to respond to the
occurrence of a pixel pattern in the region specific
visual feature. Importantly, the weights associ-
ated with a specific convolution are shared across
a group of neurons such that together the group
of neurons check for the occurrence of the visual
features across the full surface of the image. Ad-
ditionally, as objects or entities may occur in dif-
ferent parts of image, to decrease the effects of
spatial continuum, operations such as pooling are
used that encode convolved representations from
various parts of the image. In analogy to learn-
ing visual features, CNNs have also been used for
language modelling to capture different patterns of
characters in strings (Kim et al., 2016).

Specialised networks may be treated as mod-
ules which are sequenced after each other. For
example, the current Neural Machine Transla-
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tion (NMT) architecture is the encoder-decoder
(Sutskever et al., 2014; Bahdanau et al., 2015; Lu-
ong et al., 2015; Kelleher, 2016). This architec-
ture uses one RNN, known as the encoder, to fully
process the input sentence and generate its vector
based representation. This is passed to a second
RNN, the decoder, which implements a language
model of the target language which generates the
translation word by word. Domain theoretic con-
siderations have affected the design how the two
language modelling networks are connected in a
number of ways. For example, an understanding
that different languages have different word orders
lead to enabling the decoder to look both back and
forward along the input sentence during transla-
tion. This is implemented by fully processing the
input sequence with the first RNN before transla-
tion is generated by the second RNN. However,
the understanding of the need for local dependen-
cies between different sections of the translation
and somewhat a contrary requirement to the need
for a potentially global perspective on the input
has resulted in the development of attention mech-
anisms within the NMT framework. This means
that DL network architectures modules are not
only sequenced but they are also stacked. A vari-
ant of the NMT encoder-decoder architecture that
replaces the encoder RNN with a CNN has revo-
lutionised the field of image captioning (Xu et al.,
2015). Figure 1 gives a schematic representation
of such image captioning systems. The CNN mod-
ule learns to represent images as vector represen-
tations of visual features and the RNN module is
a language model whose output is conditioned on
the visual representations. We have already men-
tioned that CNNs are also used to generate word
representations. These representations are then
passed to an RNN model to predict the next word
in the context of preceding words in the sequence
(see (Kim et al., 2016)). The advantage of using a
CNN module to learn word representation is that
it enables the system to capture spelling variation
of morphologically-rich languages or texts from
social media that does not use standard spelling
of words. This and also the preceding examples
therefore illustrate how different levels of linguis-
tic representations are modelled in modular DL ar-
chitectures.

In summary, the design of a DL architectures,
where DL networks are treated as composable
modules, can constrain and guide a number of fac-

tors that are important in representing language
and other modalities, in particular the hierarchi-
cal composition of features and the sequencing of
the representations. Importantly, the neural repre-
sentations that are used in these cases are inspired
by rich work on top-down rule-based mechanistic
natural language processing.

2.2 Phenomenological versus Mechanistic
Models

The ability to treat neural networks as composable
modules within an overall system architecture is
a powerful one. This is because during training
it is possible to back-propagate the error through
each of the system’s modules (networks) and train
them in consort while permitting each module to
learn its distinctive task in parallel with the other
modules in the network. However, the power of
this approach has led to some research being based
on a relatively shallow understanding of domain
theory and most of the work being spent on fit-
ting the hyper-parameters of the training algorithm
through a grid-search driven by experimental per-
formance on gold-standard datasets. The domain
theory is only used to inform the broad outlines of
the system architecture. Using image-captioning
as an example, and at the risk of presenting a car-
icature, this approach may be described as: “we
are doing image-captioning so we need a CNN to
encode the image and an RNN to generate the lan-
guage and we will let the learning algorithm sort
out the rest of the details”.

This theory free, or at least, theory light
approach to NLP research is primarily driven
by performance on gold-standard datasets and
lamentably frequently the analysis of the systems
is limited to the presentation of system results rel-
ative to a state-of-the-art leader-board with rela-
tively little reflection on the how the structure of
the model reflects theoretic considerations. This
focus on performance in terms of accurately mod-
elling the empirical relationship between inputs
and outputs and where the trained model is treated
as a black box aligns with what we describe as
the phenomenological tradition in machine learn-
ing. This can be contrasted with an alternative
tradition within machine learning which is some-
times described as being based on mechanistic
models. Mechanistic models presuppose a do-
main theory and the model is essentially a com-
putational implementation of this domain theory.

4



Figure 1: A schematic representation of DL image captioning architectures

To illustrate this difference, contrast for example
the approach to training a support vector machine
classifier where multiple kernels are tested until
one with high performance on a dataset is found
versus the approach to defining the topology of a
Bayesian network in such a way that it mirrors a
theory informed model of the causal relationships
between relevant variables in the domain (Kelleher
et al., 2015). Once the theoretical model has been
implemented, the free parameters of the model can
then be empirically fit to the data.

Consequently, mechanistic models are in-
formed by both top-down theoretical considera-
tions of a task designer but they are also sensitive
to bottom-up empirical considerations, the train-
ing data. Mechanistic models have several advan-
tages, for example: they can be used to test a do-
main theory. If the model is accurate, this pro-
vides evidence that the theory is correct. Assum-
ing the theory is correct, they are likely to outper-
form phenomenological models in contexts where
data is limited.1 The top top-down approach pro-
vides background knowledge that restricts the size
of the training search space.

Traditionally, neural networks have been con-
sidered the paradigmatic example of a phe-
nomenological model. However, viewing neural
networks as component modules within a larger
deep-learning systems opens the door to sophis-
ticated mechanistic deep-learning models. Such
an approach to network design is, however, de-
pendent on the system designer being informed
by domain theory and is therefore strongly super-
vised in terms of background knowledge. An ex-
ample of modular networks where each module is
some configuration of neural units that are tailored
to optimise parameters of a particular task is de-
scribed in (Andreas et al., 2016) who work in the
domain of question answering. The architecture

1See discussion on generative versus discriminative mod-
els in (Kelleher et al., 2015).

learns how to map questions and visual or database
representations to textual answers. In order to an-
swer a question, the network learns a network lay-
out of modules that are responsible for the indi-
vidual steps required to answer the question. For
example, to answer “What colour is the bird” the
network applies the attention module to find the
object from the question, followed by a module
that identifies the colour of the attended region in
the image. The possible sequences of modules are
constrained by being represented as typed func-
tions: in fact the modules translate to typed func-
tional applications through which compositional-
ity of linguistic meaning is ensured as in formal
semantics (Blackburn and Bos, 2005). The sys-
tem learns (using reinforcement learning) a layout
model which predicts the sequence of modules to
produce an answer for a question sentence and an
execution module which learns how to ground a
network layout in the image or database represen-
tation. An extension of this work is described in
(Johnson et al., 2017) where both procedures rely
on less background knowledge. For example, the
system does not use a dependency parser to parse
the input sentence but an LSTM language module
and the modules use a more generic architecture.

The modular networks are in line with the struc-
tured connectionism of (Feldman et al., 1988) and
constrained connectionism of Regier “in which
complex domain-specific structures are built into
the network, constraining its operation in clearly
understandable and analysable ways” (Regier,
1996, p. 2). Regier’s presentation of constrained
connectionism is based on a case study on learn-
ing spatial relations and events. The case study de-
scribes the design and training of a neural network
that receives short movies of 2 two-dimensional
objects, a static rectangle and a circle which is ei-
ther static or moving, as input and the model learns
to predict the correct spatial term to describe the
position and movement of the circle relative to the
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rectangle. For example, a static circle might be de-
scribed as above the rectangle, whereas a moving
circle might move out from under the rectangle.
A crucial aspect of this case study for Regier’s ar-
gument is that the neural network’s architecture is
constrained in so far as it incorporates a number
of structural devices that are motivated by neuro-
logical and psychological evidence concerning the
human visual system, including motion buffers,
angle and orientation computations components,
and boundary and feature maps for objects in the
input. Following (Regier, 1996), in the next sec-
tion we will take spatial language as an NLP case-
study and discuss how domain theory can be used
to extend current deep-learning systems so as to
move them further towards the mechanistic pole
within the phenomenological versus mechanistic
spectrum.

3 Spatial Language

Our focus is computational modelling of spatial
language, such as the chair is to the left and close
to the table or go down the corridor until the large
painting on your right, then turn left, which re-
quires integration of different sources of knowl-
edge that affect its semantics, including: (i) scene
geometry, (ii) perspective and perceptual context,
(iii) world knowledge about dynamic kinematic
routines of objects, and (iv) interaction between
agents through language and dialogue and with the
environment through perception. Below we de-
scribe these properties in more detail:

Scene geometry is described within a two-
dimensional or three-dimensional coordinate
frame in which we can represent locations of
objects as geometric shapes as well as angles and
distances between them. Over a given area we
can identify different degrees of applicability of
a spatial description, for example with spatial
templates (Logan and Sadler, 1996; Dobnik
and Åstbom, 2017). A spatial template may be
influenced by perceptual context through the
presence of other objects in the scene known as
distractors (Kelleher and Kruijff, 2005b; Costello
and Kelleher, 2006), occlusion (Kelleher and
van Genabith, 2006; Kelleher et al., 2011), and
attention (Regier and Carlson, 2001).

Directionals such as to the left of require a
model of perspective or assignment of a frame of
reference (Maillat, 2003) which includes a view-
point parameter. The viewpoint may be defined

linguistically from your view or from there but it
is frequently left out. Ambiguity with respect to
the intended perspective of a reference can affect
the grounding of spatial terms in surprising ways
(Carlson-Radvansky and Logan, 1997; Kelleher
and Costello, 2005). However, frequently the in-
tended perspective can be either inferred from the
perceptual context (if only one interpretation is
possible, see for example the discussion on con-
trastive versus relative meanings in (Kelleher and
Kruijff, 2005a)) or it may be linguistically negoti-
ated and aligned between conversational partners
in dialogue (Dobnik et al., 2014, 2015, 2016).

As mentioned earlier, spatial descriptions do not
refer to the actual objects in space but to con-
ceptual geometric representations of these objects,
which may be points, lines, areas and volumes.
The representation depends on how we view the
scene, for example under the water (water ⇡ sur-
face) and in the water (water ⇡ volume). The in-
fluence of world knowledge goes beyond object
conceptualisation. Some prepositions are more
sensitive to the way the objects interact with each
(their dynamic kinematic routines) while other are
more sensitive to the way the objects relate geo-
metrically (Coventry et al., 2001).

Finally, because situated agents are located
within dynamic linguistic and perceptual environ-
ments they must continuously adapt their under-
standing and representations relative to these con-
text. On the language side they must maintain lan-
guage coordination with dialogue partners (Clark,
1996; Fernández et al., 2011; Schutte et al., 2017;
Dobnik and de Graaf, 2017). A good example
of adaptation of contextual meaning through lin-
guistic interaction is the coordinated assignment
of frame of reference mentioned earlier.

In summary, the meaning of spatial descrip-
tions is dynamic, dependent on several sources of
contextually provided knowledge which provide a
challenge for its computational modelling because
of its contextual underspecification and because it
is difficult to provide and integrate that kind of
knowledge. On the other hand, a computational
system taking into account these meaning compo-
nents in context would be able to understand and
generate better, more human-like, spatial descrip-
tions and engage in more efficient communication
in the domain of situated agents and humans. Fur-
thermore, it could exploit the synergies between
different knowledge sources to compensate miss-
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ing knowledge in one source from another (Steels
and Loetzsch, 2009; Skočaj et al., 2011; Schutte
et al., 2017).

3.1 Modular Mechanistic (Neural) Models of
Spatial Language

The discussion in the preceding section high-
lighted the numerous factors that impinge on the
semantics of spatial language. It is this multiplic-
ity of factors that make spatial language such a
useful case study for this paper, the complexity of
the problem invites a modular approach where the
solution can be built in a piecewise manner and
then integrated. One challenge to this approach to
spatial language is the lack of an overarching the-
ory explaining how these different factors should
be integrated, examples of candidate theories that
could act as a starting point here include (Her-
skovits, 1987) and (Coventry and Garrod, 2005).

At the same time there are a number of exam-
ples of neural models in the literature that could
provide a basis for the design of specific modules.
We have already discussed (Regier, 1996) which
captured geometric factors and paths of motion.
Another example of a mechanistic neural model
of spatial descriptions is described in (Coventry
et al., 2005). Their system processes dynamic vi-
sual scenes containing three objects: a teapot pour-
ing water into a cup and the network learns to op-
timise, for each temporal snapshot of a scene, the
appropriateness score of a spatial description ob-
tained in subject experiments. The idea behind
these experiments is that descriptions such as over
and above are sensitive to a different degree to ge-
ometric and functional properties of a scene, the
latter arising from the interactions between objects
as mentioned earlier. The model is split into three
modules: (i) a vision processing module that deals
with detection of objects from image sequences
that show the interaction of objects, the tea pot,
the water and the cup, using an attention mecha-
nism, (ii) an Elman recurrent network that learns
the dynamics of the attended objects in the scene
over time, and (iii) a dual feed-forward vision and
language network to which representations from
the hidden layer of the Elman network are fed and
which learns how to predict the appropriateness
score of each description for each temporal config-
uration of objects. Each module of this network is
dedicated to a particular task: (i) to recognition of
objects, (ii) to follow motion of attended objects in

time and (iii) to integration of the attended object
locations with language to predict the appropri-
ateness score, factors that have been identified to
be relevant for computational modelling of spatial
language and cognition through previous experi-
mental work (Coventry et al., 2001). The example
shows the effectiveness of representing networks
as modules and their possibility of joint training
where individual modules constrain each other.

The model could be extended in several ways.
For example, contemporary CNNs and RNNs
could be used which have become standard in neu-
ral modelling of vision and language due to their
state-of-the-art performance. Secondly, the ap-
proach is trained on a small dataset of artificially
generated images of a single interactive configu-
ration of three objects.2 An open question is how
the model scales on a large corpus of image de-
scriptions (Krishna et al., 2017) where consider-
able noise is added. There will be several objects,
their appearance and location may be distorted by
the angle at which the image is taken, there are no
complete temporal sequences of objects and the
corpora typically does not contain human judge-
ment scores on how appropriate a description is
given an image. Finally, Coventry et al.’s model
integrates three modalities used in spatial cogni-
tion, but as we have seen there are several oth-
ers. An important aspect is grounded linguistic
interaction and adaptation between agents. For
example, (Lazaridou et al., 2016) describe a sys-
tem where two networks are trained to perform
referential games (dialogue games performed over
some visual scene) between two agents. In this
context, the agents develop their own language in-
teractively. An open research question is whether
parameters such frame of reference intended by
the speaker of a description could also be learned
this way. Note that this is not always overtly spec-
ified, e.g. from my left.

Sometimes a mechanistic design of the network
architecture constrains what a model can learn
in undesirable ways. For example, Kelleher and
Dobnik (2017) (in this volume) argue that con-
temporary image captioning networks as in Fig-
ure 1 have been configured in a way that they cap-
ture visual properties of objects rather than spa-
tial relations between them. Consequently, within
the captions generated by these systems the rela-

2To be fair to the authors, their intention was not to build
an image captioning system but to show that modular net-
works can optimise human experimental judgements.
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tion between the preposition and the object is not
grounded in geometric representation of space but
only in the linguistic sequences through the de-
coder language model where the co-occurrence of
particular words in a sequence is estimated. (Dob-
nik and Kelleher, 2013, 2014) show that a lan-
guage model is predictive of functional relations
between objects that spatial relations are also sen-
sitive to but in this case the geometric dimension
is missing. This indicates that the architecture of
these image-captioning systems, although modu-
lar, ignores important domain theoretic consider-
ations and hence are best understood as close to
the phenomenological (black-box) than the mech-
anistic (grey-box) network design philosophy this
paper advocates.

In summary, it follows that an appropriate com-
putational model of spatial language should con-
sist of several connected modalities (for which
individual neural network architectures are spec-
ified) but also of a general network that con-
nects these modalities, thus akin to the specialised
regions and their interconnections in the brain
(Roelofs, 2014). The challenge of creating and
training such a system is obviously significant,
however one feature of neural network training
that may make this task easier is that it is possi-
ble to back-propagate through a pre-trained net-
work. This opens the possibility of pre-training
networks as modules (sometimes even on different
datasets) that carry out specific theory-informed
tasks and then training larger systems that repre-
sent the full-theory by including these pre-trained
modules components within the system and train-
ing other modules and/or integration layers while
keeping the weights of the pre-trained modules
frozen during training.

4 Conclusion and Future Research

DNNs provide a platform for machine learning
that permits great flexibility in combining top-
down specification (in terms of hand-designed
structures and rules) and data driven approaches.
Designers can tailor the network structures to each
individual learning problem and therefore effec-
tively reach the goal of combining mechanistic
and phenomenological approaches: a problem that
has been investigated in NLP for several decades.
The strength of DNNs is in the compositionality of
perceptrons or neural units, and indeed networks
themselves, which represent individual classifica-

tion functions that can be combined in novel ways.
This was not possible with other approaches in
machine learning to the same degree with a con-
sequences that these worked more as black boxes.
Finally, although we are not advocating that there
is a direct similarity between DNNs and human
cognition, it is nonetheless the case that DNNs
are inspired by neurons and connectionist organ-
isation of human brain and hence at some high
abstract level they share some similarities, for ex-
ample basic classification units combine to larger
structures, the structures get specialised to mod-
ules to perform certain tasks, and training and
classification is performed across several modules.
Therefore, this might be a possible explanation
that DNNs have been so successful in computa-
tional modelling of language and vision, the sur-
face manifestations of the underlying human cog-
nition, as at some abstract level they represent a
similar architecture to human cognition.
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Richards. 2001. The interplay between geometry
and function in the apprehension of Over, Under,
Above and Below. Journal of Memory and Lan-
guage 44(3):376–398.

Simon Dobnik and Amelie Åstbom. 2017. (Percep-
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