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ABSTRACT: Building Information Modelling (BIM) is now seen as one of the leading transformative processes within the 
Architectural, Engineering and Construction (AEC) sector and has the potential to assist in streamlining the structural design 
process. However, its practical implementation can often add another layer to the existing workflow and can result, to its detriment, 
in the primary objective of optimising structural workflows being hindered. This can lead to structural organisations producing 
3D models in tandem with traditional drawings, a lack of human intervention regarding software interoperability, and a reluctance 
to move away from conventional work methods. This paper will explore how a lean approach to BIM adoption can optimise the 
digital structural workflow, thereby enhancing BIM adoption. Although much research has been conducted on BIM as an enabler 
of Lean, there remains a gap regarding the synergies in how Lean tools can advance BIM adoption within the structural discipline. 
The closing of this knowledge gap will be advanced by comparing existing digital workflows within a structural organisation 
against a proposed integrated BIM workflow underpinned through Lean. The findings highlight that while BIM and Lean offer 
enhanced digital solutions to modernise structural design office workflows, the true capability of these tools will not be realised 
without a cultural change. 

KEYWORDS: Building Information Modelling; BIM and Lean; Robot; RC; Value Stream Mapping. 

1 INTRODUCTION 

Engineering is constantly evolving and, through its very nature, 
embraces innovation. An innovation currently shaping the 
construction industry's future is Building Information 
Modelling (BIM). BIM can be viewed as a disruptive 
innovation; it requires a fundamental shift from traditional 
work practices. It is not a software but a process underpinned 
by technology and collaboration, requiring cultural change 
within organisations to leverage its benefits fully. BIM adds 
value to the construction design process, but that is dependent 
on human interaction with it.  

The authors' anecdotal experience within the structural 
engineering sector suggests that BIM is used primarily due to 
project or client requirements. The organisational structure, in 
many cases, is set up to react to this requirement, not embrace 
it. BIM can often be viewed as a draughting software and when 
introduced alongside traditional work practices can sometimes 
add to existing workflows and create a more inefficient 
structural design process. BIM in isolation has not resulted in a 
complete cultural change within the sector; a shift in mindset is 
also required to facilitate this. Lean thinking, a philosophy 
driven by eliminating waste and creating better value, helps 
accelerate this cultural change.  

This paper highlights how lean thinking can aid effective 
BIM implementation within the structural engineering sector, 
removing wastes, adding value, and optimising design office 
workflows.  

2 LITERATURE REVIEW 

Structural engineering is a sub-discipline of civil engineering 
that deals primarily with analysing, designing, and constructing 
structures. Structural engineers apply the laws of mathematics, 
physics, and empirical knowledge to safely design the internal 
skeleton and foundation of a structure [1]. The field has 

advanced by necessity to support the growing size and 
complexity of buildings and other structures through the ages. 
As human knowledge has progressed, it has introduced new 
ideas and technologies that continue to evolve the industry, 
such as the use of cast iron and cement in built structures and 
the introduction of AutoCAD, one of the most widely utilised 
CAD programs in the structural engineering sector today [2]. 
One of the more recent advances with the potential to transform 
the industry is Lean construction, a philosophy based on lean 
manufacturing concepts. 

2.1 Lean 

Toyota developed the 'Lean' manufacturing process in its car 
manufacturing plants in Japan in the decades after the Second 
World War, which at its core was eradicating waste and non-
value-adding methods [3]. Toyota achieved this by developing 
the 5S (sort, set in order, sweep, standardise, sustain) process 
and empowering employees [4].  

The success of Toyota's lean approach led to the realisation 
that the same principles, extrapolated from the specific 
environment of car manufacturing, have the potential for a 
universal application in other areas of manufacture and 
production. Adopting Lean principles such as defining value; 
mapping the value stream; creating flow; using a pull system, 
and pursuing perfection would significantly reduce waste from 
the supply chain. Many studies have explored its context within 
the construction industry, where adopting this new philosophy 
would create a paradigm shift within the sector [5,6]. 

Lean implementation is mainly focused on eliminating Muda 
(waste) in the process. Lean tools, including Value Stream 
Mapping (VSM), Last Planner, and Just-in-Time, help identify 
these wastes, allowing the sector to improve efficiency, and 
enabling lean thinking to be applied in practice [5].  

Despite increased awareness and the clear advantages offered 
by implementing Lean thinking, tools, and principles in the 
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construction sector, the actual implementation of Lean 
construction practices has been anything but universal in the 
industry. Many structural and cultural factors feed into the 
failure to embrace Lean construction principles fully, 
including:- 
 Traditional management structures within the sector that 

do not allow for the 'flattening of the management 
structure' and 'closing the loop';  

 The existing disconnection between design and design 
implementation leads to costly conflicts; 

 The adoption of Lean-thinking principles from the 
manufacturing industry without the necessary modification 
for the construction sector; 

 A lack of knowledge or understanding of the fundamental 
concepts and application of Lean; 

 The disparate and fragmented nature of the construction 
industry; 

 The financial cost of providing the necessary education, 
skills, and resources required to implement Lean [6]. 

This has seen the argument for the partnering of Lean and BIM  
due to their substantial synergies as a potential vehicle to 
advance the sector.   

2.2 BIM 

Traditional non-BIM methodologies see professionals develop 
their design in silos before exchanging information with the rest 
of the project team. As a result, this data may have already 
become obsolete by the time it is shared. In contrast, BIM, 
which can be defined as using a shared digital representation of 
a built asset to facilitate design, construction, and operation 
processes to form a reliable basis for decisions, can enable a 
more integrated approach [7,9]. 

The information produced through the BIM model can be 
shared with partners through a common data environment 
(CDE), which encourages collaboration and enables the 
structural engineer to connect with the workflows and data of 
all project team members, offering a real-time view of the 
design development [11].  

BIM is becoming an integral part of the structural engineering 
workflow. The interoperability of programs within BIM allows 
for a quicker and more accurate structural design. The 
structural engineer's ability to collect a vast amount of 
information from these data-rich models has resulted in a more 
precise assessment of developments allowing them to 
incorporate as lean and as sustainable a design as possible [8]. 

If BIM implementation is successful, companies need to 
ensure that their adoption processes result in a leaner and more 
efficient workflow [9]. Suppose BIM is operated in tandem 
with traditional methods. In that case, the company does not 
benefit from BIM's potential for streamlining the construction 
process, enhancing efficiency, and waste reduction, but it can 
add to workflows and costs. This, in turn, can lead to a negative 
view of new technologies and a reluctance to introduce them 
into the sector [10]. 

2.3 Lean and BIM 

BIM facilitates lean measures through design to construction to 
occupancy and, at the same time, contributes directly to lean 
goals of waste reduction, improved flow, reduction in overall 
time, and improved quality by utilising clash detection, 
visualisation, and collaborative planning [15]. According to 

Sacks et al., there are 56 synergies between BIM and Lean 
construction. A survey of experimental and practical literature 
found that 48 of the 56 interactions were seen as beneficial in 
optimising the flow of information and materials [11].  

The Construction Industry Research and Information 
Association (CIRA) put forward four main mechanisms for 
how Lean and BIM interact. These mechanisms include; 

 BIM contributes directly to Lean goals - BIM offers the 
ability to visualise the project and analyse the building 
design, greatly benefiting the client, designers, and 
contractors. This results in reduced variations at the 
planning and design stage. 

 BIM contributes indirectly to Lean goals by enabling Lean 
processes - Utilising BIM tools such as 4D planning to 
simulate and demonstrate how a task can be best-
performed offers a much greater understanding than the 
traditional methods at the planning stage.  

 The auxiliary information systems of the design team can, 
when enabled by BIM, contribute directly and indirectly to 
Lean goals - The analysis model for the structural engineer 
is an example of this, whereby the interoperability of BIM 
programs has enabled a smoother iteration between the 
design and analysis programs than more traditional 
methods.   

 Lean processes facilitate the introduction of BIM - Lean 
construction's emphasis not only on collaboration, 
predictability, and discipline but also on experimentation 
facilitates BIM implementation [12]. 

Team working skills, critical thinking, leadership, 
communication skills, work ethics, knowledge, and positive 
attitudes help enable lean and provide the foundation to 
facilitate the full potential of BIM within the sector [13]. A 
willingness to transition from traditional working methods and 
embrace Lean thinking and new technologies could positively 
impact structural engineering organisations. An example of this 
is in modelling reinforced concrete (RC) components in 
structural concrete models. RC can account for up to 15% of an 
overall construction build, so a significant opportunity exists to 
leverage BIM for RC design within the sector to minimise 
waste and visualise complicated junctions to solve clashes 
before they reach the site, ultimately saving considerable time 
and money on a project [14]. 

3 METHODOLOGY 

This paper aims to understand to what extent Lean thinking and 
its culture can enhance BIM processes and facilitate its 
adoption within a structural engineering organisation. Focusing 
on an existing BIM project, an action research study is applied 
to discover and compare the current workflow used on BIM 
projects against a leaner BIM workflow. The subject of the 
action research study is a large mixed-use development spread 
over multiple blocks comprising of apartments, commercial 
and amenity spaces. Due to the scale of the development, the 
fact that it is still under construction, and the time constraints 
of this study, the authors focused solely on one aspect of the 
structural design office workflow, namely the current RC 
element of the project, from the initial design to publishing the 
drawings and schedules on the project's CDE. The potential 
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benefits of utilising the interoperability of the company's 
analysis software and integrating project reinforcement 
elements into the BIM environment will be explored.  

Design engineers built the initial analysis model, and a survey 
was issued to help gather an accurate indication of the data for 
this element. The results found that the engineers did not 
complete an overall analysis model containing the complete 
design analysis for the development; instead, a series of 
individual models were built up based on the most urgent RC 
requirement on site. The process involved in building these 
models, how long it took, and the advantages and disadvantages 
of this method were investigated. The information gathered 
helped to assign a time to this research element.  

To provide data for building the proposed future state analysis 
model, the authors used the structural model to set up the 
analytical model in Revit before using the bi-directional link to 
send this information to Robot. The design engineers then 
checked the model to ensure it was fit for purpose. The time 
taken to undertake this process was recorded.  

The time constraints of this study meant it was not possible 
to re-do the entire reinforcement drawings and schedules for 
the project in 3D. Instead, the authors completed an area within 
the BIM environment utilising CADS RC3D, and the time 
taken to undertake this task was recorded.  

The Lean tool Value Stream Mapping (VSM) was chosen to 
provide a structured visualisation of the critical steps and 
associated data to help understand and optimise the entire 
process. VSM, one of the most widely adopted Lean tools for 
construction, is designed to eliminate waste and all activities 
that do not add value throughout the construction processes,  
thereby providing a clear view of the best way to maximise 
customer value.  

4 PRIMARY RESEARCH  

4.1 The  current  workflow  for  reinforcement  on  BIM 
projects 

To evaluate if Lean and BIM synergies could enhance RC 
workflows within the structural engineering sector, it is 
essential to understand the organisation's current process. The 
action research was conducted on a BIM project set to ISO 
19650 standards. The concrete elements were modelled within 
the BIM environment; however, the reinforcement input sat 
unconnected alongside this process. As discussed earlier in this 
paper, BIM is not widely leveraged by structural engineering 
organisations for reinforcement design, a more traditional 
workflow is often used.    

Revit and Robot Structural Analysis Professional software 
was used to create draughting and analysis models on structural 
projects within the organisation. Revit supports the BIM 
process by providing a physical model for documentation and 
an associated analytical model for structural analysis and 
design. The bidirectional link between these programs enables 
users to send a model directly from Revit to Robot for structural 
analysis and design. 

Similar to traditional non-BIM methodologies, software-
dependent silos developed within the organisation, as 
illustrated in Figure 1. Each professional developed the design 
before exchanging this information with the rest of the 
structural team. As a result, this data can become obsolete by 
the time it is shared. 

Figure 1. Current RC Workflow 
 

The current organisational workflow for project reinforcement 
design and the production of RC construction documentation is 
detailed below: 
 A structural model is created from the existing architectural 

information; 
 2D dwg format plans are extracted from the model by the 

BIM technician and sent to the design engineer; 
 The design engineer inputs connection point locations into 

these drawings and links this information into Robot 
Structural Analysis; 

 The design engineer creates an initial independent analysis 
model from 2D information; 

 The design engineer runs calculations within Robot and 
informs the BIM technician of the required changes; 

 As neither model is linked, the BIM technician updates the 
Revit model accordingly, i.e., incorporate beam loads and 
changes, column or foundation sizes, etc.; 

 Multiple plans, sections, and elevation sheets are created 
and cut from the Structural model by the BIM technician, 
providing this information to the RC detailer;  

 After extraction to dwg format, this information is deleted 
from the model to ensure no reinforcement-specific section 
marks, plans, or elevations are shown on the general 
arrangement (GA) drawing sheets within the model; 

 In AutoCAD, the extracted sheets are cleaned up by the RC 
detailer to align with all company draughting standards, 
including line type and text styles; 

 The RC detailer undertakes the reinforcement in CADS RC 
2D; and 

 The RC detailer then publishes the reinforcement drawings 
and schedules to the project CDE.  

 

As the project design develops, the structural and analysis 
models and reinforcement drawings are updated independently,  
requiring the above steps to be repeated after every design 
change. 
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4.2 VSM – The Current State 

A value stream map was created to help record and reflect on 
this workflow. Each step was mapped, with a data box included 
in each process containing information on the cycle time (C/T) 
or person-hours to undertake the task.  

As illustrated in Figure 2, the information flows left to right 
across the page from the project CDE before being pushed back 
into the CDE once the design and analysis processes are 
completed. Due to the siloed nature of the current workflow, 
mapping of three independent design engineers, BIM 
technicians, and RC detailer workflows was required, placed 
from top to bottom respectively, on the diagram. Points, where 
these workflows interact, were added before two timelines were 
created, one for the reinforcement design and the second for the 
drawing and schedule production process. The timelines have 
two levels of information taken from the data boxes. On the top 
are the value-added processes' times,  and on the bottom, the 
non-value-added actions or lead times. Added together, this 
provides the total C/T to complete each workflow. 

The current state had excessive waste in the process, with 
considerable time, effort, and re-work expelled on the project. 
A significant finding of the mapping exercise was that the total 
contribution of the BIM technician to the current  RC workflow 
consisted solely of waste or necessary non-value-adding 
activity. In essence, the current way of working with 
reinforcement was not only outside the BIM workflow but it 
also required much additional work to extract information. 

4.3 Embedding  reinforcement  drawings  and  schedules 
within the BIM workflow 

Mapping the current process enabled the authors to identify the 
areas of overproduction and waste, and this information was 
used as the basis for the future state map. The authors identified 
some typical lean opportunities within this design environment 
to eliminate this waste to improve efficiency and the overall 
quality of the process. One of these opportunities involved 
leveraging the power of the software packages and utilising the 
interoperability of the organisation's structural design and 
analysis software to reduce the person-hours within the 
workflow.  
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The current software used to detail reinforced concrete within 
the organisation is CADS RC2D. In recent years a Revit add-
on CADS RC3D., has been developed to enhance 
reinforcement detailing and scheduling within Revit. This has 
made the transition from 2D detailing more straightforward, 
offering increased productivity through its enhanced 
functionality. The authors explored the functionality of this 
software by detailing sections of the project previously 
completed in 2D and testing the viability of introducing it into 
the company's reinforcement workflow. 

There were significant advantages that contributed to lean 
goals. The ability to produce the reinforcement within the 
structural model provided the opportunity to streamline the 
office workflow significantly by removing the excessive non-
value added activities. In addition, as the design develops, less 
re-work is required. Initial parameters, such as reinforcement 
cover and centres of bars, are set, and Revit retains this 
information. If a pile cap, column, or beam size, for example, 
is changed, then the reinforcement for these elements will 
automatically update. The detailing process is also enhanced by 
visualising this information in 3D. A complete view of 
complicated areas is provided, ensuring all factors are 
considered and offering greater clarity. 

 The reinforcement now embedded in the BIM workflow 
enables the project team to utilise clash detection tools. The 
entire project team can track the progress of this clash 
resolution, ultimately eliminating the risk of costly errors and 
re-work on site.  

4.4 VSM – The Future State 

A VSM was created to focus on what the workflow ideally 
looks like after the process improvements outlined in the 
previous sections of this paper have taken place in the value 
stream. This future state workflow, illustrated in Figure 3, 
shows considerably less waste in the process. The fragmented 
nature of the current workflow is replaced by a more 
collaborative approach achieved through integrating the RC 
deliverables into the BIM workflow. The ability to push and 
pull information electronically from the structural and analysis 
model, as illustrated in Figure 4, enriching the central structural 
model hosted on the project CDE helps avoid potential errors 
resulting from manual coordination of construction 
documentation. The structural model is enriched with the RC 
analysis and draughting information, ensuring that the 
organisation's design team, the project design team, and all 
other professionals involved in the project have access to the 
most up-to-date and reliable information.   

While the data illustrated demonstrates the considerable gains 
in design efficiency in bringing the development to its current 
stage on-site utilising this workflow,  it also indicates the 
potential of exponential advantages as the project develops. 
Design changes naturally occur on projects; the dashed arrows 
shown on the future state map represent such changes 
undertaken on the project to date. With the link already created 
between the RC elements and the structural model, the time 
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required to undertake these revisions would be reduced up to 
the project completion stage.  

From conducting the VSM exercise on both the current and 
future state workflows, the importance of integrating the 
reinforcement elements of projects into the BIM environment 
is evident.  

4.5 Enhanced BIM and Lean workflow 

Throughout their research on the project, the authors found that 
embedding the reinforcement design and draughting processes 
can bring the whole structural design team together, offering a 
more collaborative workflow that eliminates non-value-added 
activity. 

The central model stored on the organisation's network, 
hosting the integrated structural, reinforcement and analysis 
models, essentially acts as a CDE for the project. Creating local 
files from this data-rich central model, which serves as `the 
single source of truth` for the structural information, allows 
each collaborator to proceed with their specific design or 
detailing before syncing this information back to the central 
model and updating it. The enhanced workflow, illustrated in 
Figure 4, removes the current design silos, ensuring that the 
most up-to-date information is accessible to all stakeholders 
within the process.  

 

Figure 4. Enhanced RC BIM Workflow 
 

The findings of the mapping exercise highlighted a marked 
increase in efficiency, with the future state workflow reducing 
cycle times by 60%, as shown in Table 1. 

 

Table 1: Cycle Time Reduction 

5 CONCLUSIONS 

One of the most significant obstacles to the advancement of 
BIM within structural engineering organisations is that it is 
often presented as a stand-alone initiative. As highlighted in 
this paper, BIM can be applied without Lean; however, the 
efficiencies inherent in BIM are not often realised when 
implemented in this way. Introduced in this manner, BIM can, 
in many cases, add another layer to the traditional structural 
design workflows without the proper organisational structure in 
place. Thus, the successful alignment of BIM with work 
processes is critical for successful BIM adoption. Lean thinking 
fosters a culture of continuous improvement, enabling 
organisations to adapt and embrace this new way of working. 
The synergies between Lean and BIM mean combining both 
achieves more significant benefits than introducing BIM in 
isolation. 
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 Current 
State (hrs) 

Future 
State (hrs) 

Value Added Time 712 347 
Lead Time 168.25 1 
Cycle Time  880.25 348 

Percentage Improvement in Process Time =  
(Future State–Current State)/Current State x 100% 

∴ (348-880.25) / 880.25 x 100% 
∴-532.25 / 880.25 x 100% 
∴ ൌ -60.46% 
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ABSTRACT: Feature selection is an important task for data analysis, pattern classification systems, and data mining applications. 

In this paper, an advanced version of binary slime mould algorithm (ABSMA) is introduced for feature subset selection to enhance 

the capability of the original SMA for processing of measured data collected from monitoring sensors installed on structures. In 

the first step, structural response signals under ambient vibration are pre-processed according to statistical characteristics for 

feature extraction. In the second step, extracted features of a structure are reduced using an optimization algorithm to find a 

minimal subset of salient features by removing noisy, irrelevant and redundant data. Finally, the optimized feature vectors are 

used as inputs to the surrogate models based on radial basis function neural network (RBFNN). A benchmark dataset of a wooden 

bridge model is considered as a test example. The results indicate that the proposed ABSMA shows better performance and 

convergence rate in comparison with four well-known metaheuristic optimizations. Furthermore, it can be concluded that the 

proposed feature subset selection method has the capability of more than 80% data reduction. 

KEY WORDS: Feature selection; Binary slime mould algorithm; Surrogate model, Data reduction. 

1 INTRODUCTION 

Vibration-based structural health monitoring has been widely 

explored over the past decades. Avci et al. [1] and Das et al. [2] 

presented a comprehensive review of various vibration-based 

damage detection methods and their applications to civil 

structures and infrastructures. Recently, with the fast 

development in sensing technologies [3], [4], signal processing 

techniques [5], [6], and machine learning [7], [8], a number of 

advanced methods have been proposed [10,11]. Gharehbaghi 

al. [9] recently reviewed the new development of structural 

health monitoring for civil engineering structures.  

In vibration-based SHM, damage identification is performed 

from vibration signals measured simultaneously at different 

locations of the structure [10]. Damage detection can be 

performed in the time domain from the raw sensor data or in 

the feature domain, in which damage-sensitive features are first 

extracted from the time series, This process is referred to as 

feature extraction [11]. 

Another importing step in extracting the useful information 

and signal processing is Feature Selection (FS) [12], [13]. FS is 

generally used in machine learning, especially when the 

learning task involves high-dimensional datasets. The primary 

purpose of feature selection is to choose a subset of available 

features, by eliminating features with little or no predictive 

information and also redundant features that are strongly 

correlated [12]–[14]. The availability of large amounts of data 

represents a challenge to classification analysis. For example, 

the use of many features may require the estimation of a 

considerable number of parameters during the classification 

process. Ideally, each feature used in the classification process 

should add an independent set of information. Often, however, 

features are highly correlated, and this can suggest a degree of 

redundancy in the available information which may have a 

negative impact on classification accuracy [12]. Thus, the FS 

approaches is needed to tackle these problems.  

For a large number of features, evaluating all states is 

computationally non-feasible and therefore metaheuristic 

search methods are required. Due to the inefficiency of 

traditional search approaches in solving complex combinatorial 

optimization problems various metaheuristics have been 

proposed, such as Particle Swarm Optimization (PSO)[15], 

Genetic Algorithm (GA)-based attribute reduction [16], 

Gravitational Search Algorithm (GSA) [17]. 

 The metaheuristic algorithms above-mentioned strengths 

motivated us to present a metaheuristic-based method for FS in 

SHM. Slime mould algorithm (SMA) [18] is a novel and robust 

metaheuristic algorithm proposed to solve continuous problem 

and it’s inspired by the propagation and foraging of the slime 

mould and includes a unique mathematical model. However, 

considering that the FS is a combinatorial optimization 

problem, a binary version of SMA is used [19], and its 

performance is improved by incorporating two new operators 

in algorithm: mutation and crossover. 

The main focus of this research is facilitating the processing 

of large data set in SHM [20]. Accordingly, the integrated 

system consists of three blocks is used in this paper. Firstly, 

statistical characteristics of structural response signals under 

ambient vibration are extracted, and feature vectors are 

obtained. Subsequently, the best feature subset is selected by 

the ABSMA algorithm based on desirability index using F-

score [21]. In the final step, selected feature is employed for 

training the surrogate model based on radial basis function 

neural network (RBFNN). 

The proposed method’s performance is evaluated 

statistically on benchmark dataset of wooden bridge model 

[22]. Furthermore, the efficacy of using ABSMA as the main 

algorithm for feature selection is compared to Binary Particle 

An advanced binary slime mould algorithm for feature subset 
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Swarm Optimization (BPSO) [15], binary Harris hawks 

optimization(BHHO) [23], binary whale optimization 

algorithm (BWOA) [24] and binary farmland fertility 

optimization algorithm (BFFA) [25]. Moreover, the impact of 

various transfer functions on accuracy of ABSMA is also 

accessed 

2 DAMAGE DETECTION PROCEDURE BASED ON THE 
PROPOSED ALGORITHM 

Fig. 1 presents a summary of the method employed in this paper 

for an optimal feature subset selection and health monitoring of 

structures. The method consists of three main blocks: 

(A) The Feature Extraction Block, (B) The Feature Selection 

Block and (C) The Feature Classification Block. 

 

Figure 1. Summary of damage detection approach 

 

 Feature Extraction block: Statistical Features (SF) 

Time-domain vibrational signals collected from sensors can be 

pre-processed to form feature vectors using the functions 

shown in Table 1. The features of each sensor are: root mean 

square, variance, skewness, kurtosis, crest factor, the maximum 

and range of acceleration response signal of each sensor [26].  

 

Table 1 Time-domain features 
Feature Function 

Root mean square 

𝑟𝑚𝑠 = √∑ (𝑥(𝑛))
2𝑁

𝑛=1

𝑁
 

Variance 
𝑣𝑎𝑟 = 𝜎2 =

∑ (𝑥(𝑛) − 𝑚𝑒𝑎𝑛(𝑥))2𝑁
𝑛=1

(𝑁 − 1)
 

Skewness 
𝑠𝑘𝑒𝑤𝑛𝑒𝑠𝑠 =

∑ (𝑥(𝑛) −𝑚𝑒𝑎𝑛(𝑥))3𝑁
𝑛=1

(𝑁 − 1)𝜎3  

Kurtosis 
𝑘𝑢𝑟𝑡𝑜𝑠𝑖𝑠 =

∑ (𝑥(𝑛) − 𝑚𝑒𝑎𝑛(𝑥))4𝑁
𝑛=1

(𝑁 − 1)𝜎4  

Crest factor 
𝑐𝑟𝑒𝑠𝑡 =

max⁡ |𝑥(𝑛)|

𝑟𝑚𝑠
 

Maximum value 𝑚𝑎𝑥 = max⁡ |𝑥(𝑛)| 

Range 𝑟𝑎𝑛𝑔𝑒 = max|𝑥(𝑛)| − min|𝑥(𝑛)| 

    These features represent the energy, the vibration amplitude 

and the time series distribution of the signal in time-domain 

[26]. 

 Feature Selection Block: Slime mould algorithm  

In second block, the best subset of extracted features will be 

selected using ABSMA based on the objective function that 

will describe in next subsection.Slime mould algorithm (SMA) 

is proposed by [18] based on the oscillation mode of slime 

mould in nature. The proposed SMA has several features with 

a unique mathematical model that uses adaptive weights to 

simulate the process of producing positive and negative 

feedback of the propagation wave of slime mould based on bio-

oscillator and to form the optimal path for connecting food with 

excellent exploratory ability and exploitation propensity. For 

complete details, please refer to main paper by Li et al.  [18]. 

The logic of SMA is shown in Fig. 2. 

 

Figure 2. The overall steps of SMA [18]. 

2.2.1 Binary Slime mould algorithm 

All meta-heuristics start with the initialization step to spread 

the solutions within the search space of the optimization 

problem. Accordingly, the proposed algorithm is initialized by 

creating a population of 𝑛 moulds. Each mould which 

represents a solution to the optimization process that has 𝑑 

dimensions equal to the number of features in the used dataset. 

The FS problem is considered a discrete problem as it is based 

on choosing a number of features that provides the machine 

learning methods with better classification accuracy. 

Therefore, for each dimension, the proposed algorithm is 

randomly initialized with a value of 1 for the accepted feature 

or 0 as the rejected one as shown in Fig. 3. This provides the 

representation of an initial solution for the FS. Then, at the end 

of each iteration, each mould has a solution in the form of a 

binary vector with the same length as the number of the 

features, where 1 means selecting and 0 means deselecting the 

corresponding feature. This process continues for all iterations 

and at last, the best feature subset with the least classification 

error of the classifier is suggested as the best result. 

 

Figure 3. An initial solution to the FS. 
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It should be noted that, the values generated by the standard 

SMA are continuous, but the features in FS problems are 

binary: 0 (selected feature) and 1 (not selected) values. 

Therefore, a wide range of transfer functions belonging to the 

family of the V-Shaped and S-Shaped functions [19] has been 

supposed to convert continuous values into binary.  

Selected V-Shaped and S-shaped transfer functions are listed in 

Table 2. A transfer function receives a real value from the 

standard SMA as an input and then normalizes this value 

between 0 and 1 using one of the formulas in Table 2. The 

normalized value is then converted to a binary value using Eq. 

(2) [19] . 

 

𝑆𝑏𝑖𝑛𝑎𝑟𝑦 = 𝑓(𝑥) {
1, 𝑖𝑓⁡𝑆(𝑎) > 0.5

0,⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (1) 

 

Table 2: V-Shaped and S-shaped transfer function.   

V-Shaped S-Shaped 

V1,𝐹(𝑎) = |
2

𝜋
tan−1(

𝜋

2
𝑎)| S1, 𝐹(𝑎) =

1

1+𝑒−𝑎
 

V2,𝐹(𝑎) = |tanh(𝑎)| S2, 𝐹(𝑎) =
1

1+𝑒−2𝑎
 

V3,𝐹(𝑎) = |
𝑎

√1+𝑎2
| S3, 𝐹(𝑎) =

1

1+𝑒
−
𝑎
2

 

V4,𝐹(𝑎) = |erf(
√𝜋

2
𝑎)| S4, 𝐹(𝑎) =

1

1+𝑒
−
𝑎
3

 

2.2.2 Fitness Function 

The fitness function (FF) is an important factor for the speed 

and the efficiency of ABSMA algorithm. In this study, the 

fitness function of ABSMA is developed based on the surrogate 

model accuracy and the efficiency of selected subset of 

features. The surrogate model (RBFNN) accuracy is obtained 

by the evaluation of the test data classification using the trained 

model. In addition, efficiency of the selected subset of features 

are evaluated using the F-score to measure desirability of the 

features. ABSMA selects the vector with the smallest fitness 

value when the completion conditions are satisfied.  The fitness 

function of ABSMA is formed as follows: 

𝐹𝐹 = 1 − [𝑊 × (𝐶𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛⁡𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦)

+ (1 −𝑊) × (
1

n
∑𝐹𝑠𝑐𝑜𝑟𝑒𝑖

𝑛

𝑖=1

)] 

(2) 

where W is weighting factor between 0 to 1 and 𝑛 is the total 

number of features. 

2.2.3 Measure the desirability of features: F-score 

A desirability value, for each feature generally represents 

the attractiveness of the features, and can be any subset 

evaluation function like an entropy-based measure or rough set 

dependency measure [27]. In this paper, F-score will be used as 

index for measuring the desirability of the features. The F-score 

is a measurement to evaluate the discrimination ability of the 

feature 𝒊. Eq. (3) defines the F-score of the⁡𝒊𝒕𝒉 feature. The 

numerator specifies the discrimination among the categories of 

the target variable, and the denominator indicates the 

discrimination within each category. A larger F-score implies 

to a greater likelihood that this feature is discriminative [21]. 

𝐹𝑠𝑐𝑜𝑟𝑒𝑖 =
∑ (𝑥̅𝑖

𝑘 − 𝑥̅𝑖)
2𝑐

𝑘=1

∑ [
1

𝑁𝑖
𝑘 − 1

∑ (𝑥𝑖𝑗
𝑘 − 𝑥̅𝑖

𝑘)
2𝑁𝑖

𝑘

𝑗=1
]𝑐

𝑘=1

 
(3) 

where 𝑐 is the number of classes and n is the number of 

features; 𝑁𝑖
𝑘 is the number of samples of the feature 𝑖 in class 

𝑘, (𝒌⁡ = ⁡𝟏, 𝟐, … , 𝒄; ⁡𝒊⁡ = ⁡𝟏, 𝟐,… , 𝒏), 𝑥𝑖𝑗
𝑘   is the 𝒋-th training 

sample for the feature 𝒊 in class 𝑘, (𝑗⁡ = ⁡1,2, … ,𝑵𝒊
𝒌 ), 𝒙𝒊 is the 

mean value of feature 𝒊 of all classes and 𝑥𝑖𝑘 is the mean value 

of feature 𝒊 of the samples in class 𝒌 [21]. 
It should be mentioned that the features selected by the 

proposed algorithms are evaluated with the well-known metrics 

precision, recall, accuracy, F1- score and Feature-Reduction 

index (𝐹𝑟). In this paper, the classification accuracy (CA) is 

used to define the quality function of a solution, which is the 

percentage of samples correctly classified and evaluated as Eq. 

(4):  

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑁𝑢𝑚𝑏𝑒𝑟⁡𝑜𝑓⁡𝑠𝑎𝑚𝑝𝑙𝑒𝑠⁡𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦⁡𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑

𝑇𝑜𝑡𝑎𝑙⁡𝑛𝑢𝑚𝑏𝑒𝑟⁡𝑜𝑓⁡𝑠𝑎𝑚𝑝𝑙𝑒𝑠⁡𝑡𝑎𝑘𝑒𝑛⁡𝑓𝑜𝑟⁡𝑒𝑥𝑝𝑟𝑖𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛
 (4) 

Another parameter which is used for comparison is the 

average feature reduction 𝐹𝑟, to investigate the rate of feature 

reduction: 

𝐹𝑟 =
𝑛 − 𝑝

𝑛
 (5) 

where 𝑛 is the total number of features and 𝑝 is the number of 

selected features by the FS algorithm 𝐹𝑟 is the average feature 

reduction. The more it is close to 1, the more features are 

reduced, and the classifier complexity is less. 

2.2.4 Advanced version of binary slime mould algorithm 

In the proposed BSMA, two ideas from genetic algorithm 

[28] are implement on the BSMA to enhances its capability for 

the FS and solve low population diversity. The new solutions 

in GA are created by the two operators: crossover and mutation. 

In the crossover operator, two solution sets are selected 

randomly and some portions are exchanged, thereby creating 

two new solutions. In the mutation operator, a randomly 

selected bit of a particular solution is mutated; means the 1 is 

changed to 0 and 0 is changed to 1. Therefore, in the first step 

of proposed method, a random solution is generated, and then 

a crossover operation is applied to the randomly generated 

solution and the best solution. Next, the solution obtained from 

the crossover operation is given as inputs to the mutation 

operation. The main intention of these operations is increase 

population diversity and escapes from local optimal points and 

improve solutions’ quality. 

 Feature Classification Block: radial basis function 
neural network 

In the final block of the employed framework, a well-trained 

surrogate model is applied to classify various condition of the 

structure. In these models, the input matrix will include the 

selected features and the outputs are the corresponding damage 

conditions. In recent years, many neural network models have 

been proposed or employed for various components of 

structural health monitoring in order to perform pattern 

classification, function approximation, and regression [29], 
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[30]. Among them, the RBF network is a type of feed forward 

neural networks that learns using a supervised training 

technique. Lowe and Broomhead [31] were the first researchers 

that exploited the use of the RBF for designing neural networks. 

Radial functions are a type of function in which the response 

reduces or grows monotonically with the distance from the 

center point.  It has been shown that the RBF networks are able 

to approximate any reasonable continuous function mapping 

with a satisfactory level of accuracy [32].  

3 EXPRIMENTAL RESULTS 

In this section, a benchmark data set is used to show the 

effectiveness of the proposed feature selection algorithm. The 

data set collected in the laboratory of Helsinki Polytechnic 

Stadia [22], [33] is employed in this paper. The structure was a  

timber bridge model as shown in Fig. 4. In order to excite the 

lowest modes, a random excitation was generated with an 

electrodynamic shaker to activate the vertical, transverse, and 

torsional modes. The response was measured at three different 

longitudinal positions by 15 accelerometers. The frequency of 

sampling was 256 Hz and the measurement period was 32 s. 

The data were filtered below 64 Hz and re-sampled for 

sufficient redundancy. The measurements were repeated 

several times and it was noticed that the dynamic properties of 

the structure vary due to the environmental changes. The main 

influencing factors were assumed to be the changes in the 

temperature and humidity.  

In the SHM community, there are various schemes for 

modelling of damage scenarios, mainly damage modelled as 

decreasing in the module of elasticity or in the stiffness 

parameter of elements [8]. Moreover, some researchers used 

additional mass as an indicator of damage [34]. In this 

benchmark data set, five artificial damage scenarios were then 

introduced by adding small point masses of different size on the 

structure. The mass sizes were 23.5, 47.0, 70.5, 123.2 and 193.7 

gr. The point masses were attached on the top flange, 600 mm 

left from the midspan (Fig. 4). The added masses were 

relatively small compared to the total mass of the bridge (36 

kg), where the highest mass increase was only 0.5 %. 

The total number of experiments were carried out on the 

structure was 273.  The 190 measurements were selected as the 

training data. The test data consisted of both healthy and 

abnormal systems measurements. It is worth mentioning that 

the total number of extracted features for each experiment 

based on Table 1 is: 15 sensors ×7 features=105 features.  

 

 
(a) Wooden bridge model 

 
(b) Wooden bridge with the locations of sensors and damage 

(D) are indicated [22]. 

Figure 4. Wooden bridge 

 Impact of transfer functions on the ABSMA 

In this subsection, the impact of the transfer functions on the 

ABSMA’s performance is investigated. For providing the 

stochastic behaviour of metaheuristic algorithms, the 

performance of the algorithms is compared using the best, 

worst, average and standard deviation (SD) of the obtained 

fitness values over 20 independent runs in Table 3. Columns 

BSMAS1, BSMAS2, BSMAS3, BSMAS4, BSMAV1, 

BSMAV2, BSMAV3, and BSMAV4 gives the results of the 

transfer functions S1, S2, S3, S4, V1, V2, V3, and V4, 

respectively. According to the results of Table 3, the ABSMA 

algorithm has performed the best using V2. Moreover, 

according to the SD, the best performance is related to 

BSMAV2. Therefore, V2 is selected as the transfer function in 

this study. 

 

Table 3: The best fitness values under eight different transfer 

functions 

 ABSMA-

V1 

ABSMA-

V2 

ABSMA-

V3 

ABSMA-

V4 

Best 

Avg 

Worst 

SD 

0.07 

0.11 

0.14 

0.02 

0.04 

0.07 

0.12 

0.02 

0.09 

0.11 

0.13 

0.01 

0.1 

0.13 

0.15 

0.02 

 
ABSMA-

S1 

ABSMA-

S2 

ABSMA-

S3 

ABSMA-

S4 

Best 

Avg 

Worst 

SD 

0.11 

0.13 

0.14 

0.01 

0.1 

0.12 

0.14 

0.01 

0.07 

0.09 

0.11 

0.01 

0.05 

0.07 

0.1 

0.01 

 Classification accuracy of metaheuristic optimization 
algorithms 

In this section, the accuracy and effectiveness of the 

proposed framework for feature extraction/selection in SHM 

domain is evaluated. Furthermore, the results obtained by the 

proposed ABSMA algorithm are compared to BPSO [15], 

BHHO [23], BWOA [24], and BFFA [25] which are reported 

to be good algorithms in FS [19]. The parameters need to be set 

in these algorithms are set to the best values are reported in the 

original papers. The population size for all the algorithms is 50 

and the maximum iterations is set to be 200.  The weighting 

factor W in the fitness function is varied from 0.6 to 0.9 to get 

the different sets of features. The results are averaged over 20 

independent runs in each data set and by every algorithm. 
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Table 4 gives the mean of the CA, best, worst, average and 

SD of the results for each algorithm. The number in the brackets 

in each table slot shows the ranking of each algorithm. A 

comparison of the average precision, recall, F1 score and the 

amount of 𝐹𝑟 for other algorithms are given in Table 5. It can 

concluded from these tables that the proposed ABSMA 

algorithm can obtain, in most of cases, better classification 

accuracy using a smaller feature set, compared to other 

algorithms 

 

Table 4: Classification accuracy of each algorithm for the tested 

datasets of Wooden bridge 
 ABSMA BHHO BPSO BWOA BFFA 

Mean 

of CA 

(Rank) 

0.94 

(1) 

0.87 

(2) 

0.81 

(4) 

0.86 

(3) 

0.8 

(5) 

Best  

Avg 

Worst 

SD 

0.04 

0.07 

0.12 

0.02 

0.09 

0.13 

0.16 

0.02 

0.12 

0.17 

0.22 

0.03 

0.09 

0.13 

0.16 

0.02 

0.13 

0.19 

0.23 

0.03 

 

Table 5: Comparison of the performance (precision, recall, F1-

score and Fr) of the algorithms on Wooden bridge 

Metrics ABSMA BHHO BPSO BWOA BFFA 

Precision 0.94 0.88 0.83 0.87 0.81 

Recall 0.96 0.92 0.87 0.91 0.86 

F1-score 0.95 0.90 0.85 0.89 0.83 

Fr 0.81 0.714 0.667 0.743 0.619 

 

The extended results are also shown in Figures 5-6. From these 

figures, one may admit that ABSMA not only finds smaller 

feature subsets than the other algorithms, but also the number 

of selected features also decreases much faster. 

It can be concluded that the ABSMA provides a higher 

degree of exploration than the other algorithms, which enables 

it to explore the search space to find a solution that selects a 

smaller number of features and better performance. 

 

 

 
Fig. 5 Number of selected features of each optimization 

algorithms  

 
Fig. 6 Average of Fr for each optimization algorithms with 

respect to number of iteration  

 

It is worth to note that, the FS method proposed in this study 

is a supervised wrapper-based feature selection method [13]. 

Generally, in comparison with the filter model, the wrapper 

model could achieve a higher classification accuracy and tend 

to have a smaller subset size; however, it has high time 

complexity [12]. 

Finally, according to the results shown, adding desirability 

index, mutation and crossover operators to the BSMA increases 

the exploration of the search and guide the algorithm to more 

salient features. 

4 CONCLUSIONS 

In this paper, a new framework is presented for the feature 

selection for SHM problems. Furthermore, an ABSMA is 

presented for enhance capability of SMA in this domain. The 

mutation and crossover operators are employed in the original 

BSMA to the proposed ABSMA which could increase diversity 

and prevent excessive convergence during the optimization 

process, and local optimal trap escape. A data set collected 

from a timber bridge is employed in this paper. The ABSMA is 

initially evaluated using eight transfer functions that convert 

continuous solutions to binary ones, in which the best transfer 

function (transfer function V2) is selected. The results obtained 

from the proposed algorithm were compared with 4 state-of-

the-art metaheuristic-based algorithms including BHHO, 

BPSO, BWOA and BFFA. The results of the experiments 

indicate that a significant improvement in the proposed 

algorithm compared to other ones. Moreover, the proposed 

framework can remove the irrelevant and redundant 

information by choosing useful features as the input of the 

surrogate model. It is shown that the proposed FS approach 

based on the ABSMA optimization algorithm reaches a better 

feature set in terms of classification accuracy and the number 

of selected features.  
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