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 _______________________________________ Abstract 

The ISU SSP 2008 Team Project Volcanic Activity: Processing of Observation and Remote 
Sensing Data (VAPOR) has established the following mission statement:  
 

To define an integrated framework for early warning and hazard tracking of volcanic 
activities on Earth using space-based and terrestrial resources 

 
Early warning is defined as monitoring and reporting on the risk of an eruption during the 
period from the first sign up to the point of the eruption. Hazard tracking is defined as 
monitoring and reporting on lava flows, ash plumes, gas emissions, lahars, and pyroclastic 
flows during and post eruption.  
 
The main deliverable for this project is the VAPOR Integrated Data-sharing and Analysis 
(VIDA) framework. VIDA is a framework for the implementation of a system capable of 
integrating data from global providers, standardizing that data, processing it into useful 
information, and disseminating both data and information to the end-users. Providers would 
include ground-based, air-borne, and space-based Earth observation sensors that collect data 
on the precursors and indicators of volcanic activity. End-users could include decision 
makers at various levels of government, emergency crews, aviation authorities, the scientific 
community, and populations at risk from volcanic hazards. In addition to the technological 
challenges, this report considers the governance, policy and law issues, the business and 
financial aspects, and the potential societal benefits associated with such a system.  
 
The design and implementation of a VIDA system is well beyond the scope of this project. 
Instead, this project has conducted the preliminary work of identifying and assessing the 
need for this system and establishing a set of top-level requirements that such a system 
would need to satisfy. In order to move the VIDA framework to the design stage, the users 
must verify the system requirements. Implementation of a framework like VIDA requires 
coordinated efforts between data providers, data processing organizations, the companies 
that store produced information products and finally the companies that distribute them.  
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Faculty Preface __________________________________  

Volcanoes are one of nature’s most amazing phenomena, credited for both triggering life on 
our planet Earth and being responsible for several of the extinction level events registered on 
the geological record. For these reasons volcanoes have inspired both wonder and fear for 
centuries. Mythological creatures and deities are present in diverse cultures, endowed with 
responsibility (and accountability) for volcanic activity and consequences. Examples include 
Vulcan, who in Roman mythology is the god of fire, responsible for manufacturing tools and 
weapons for the other gods in his workshop at Olympus. In Hawaiian mythology, Pele is the 
goddess of fire, lightning, dance, volcanoes, and violence. Agni is a Hindu and Vedic deity, 
he is the god of fire, messenger between gods and man, and accepts sacrifices through fire. 
In the Mesoamerican Aztec mythology, Chantico was the goddess of volcanoes and fires in 
the family hearth. 
 
This international, intercultural, and interdisciplinary fascination for volcanoes has been 
deeply embedded in the human spirit for centuries, and this summer it has captured the 
interest of forty (40) intelligent and enthusiastic students of the International Space 
University Space Studies Program. The students come from different academic and 
professional backgrounds, from cultures and countries as diverse as the mythologies: Austria, 
Canada, China, Colombia, France, Georgia, Germany, India, Ireland, Israel, Italy, Japan, 
Spain, Turkey, and the United States of America. This remarkable group has studied volcanic 
phenomena and the human response to it without preconceptions and from a 
multidisciplinary vantage point. They have performed a gap analysis that identified three 
main areas that could benefit from creative thought and innovation. Further, they develop a 
framework listing a set of actions and requirements to integrate space-borne, airborne, 
terrestrial sensor data, human-, and computer-based expert and knowledge systems to 
provide early warning and response information to multiple interested parties in  
near-real-time. 
 
This report synthesizes information about the current understanding of volcanoes and their 
effects, of disasters and technologies deployed in mitigating consequences, and of the 
applicable policy and legal context. Innovative recommendations are offered that are capable 
of having a significant impact on the space, geophysics, disaster risk management, and 
aviation sectors. This exemplary work is characteristic of the intentions of the ISU; the team 
have competently met and surpassed expectations.  
 
We commend this work to the reader, and look forward to its impact. 
 
 
Barcelona, Spain – August 2008 
 
 
 

Ed CHESTER 
Head of R&D 
CTAE, Spain 

TP Chair 

Jim BURKE, 
Retired, JPL, NASA, 
The Planetary Society 

Integration Chair 

Juan Carlos FERNANDEZ DIAZ 
Ph.D. Researcher 

University of Florida 
TP Teaching Associate 
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 ________________________________Student Preface 

The World Bank makes a very clear distinction between disasters and natural phenomena. 
Natural phenomena are events like volcanic eruptions. A disaster only occurs when the 
ability of the community to cope with natural phenomenon has been surpassed, causing 
widespread human, material, economic or environmental losses. By these definitions, 
volcanic eruptions do not have to lead to disasters. 
 
On November 13, 1985, the second most deadly eruption of the twentieth century occurred 
in Colombia. Within a few hours of the eruption of the Nevado del Ruiz volcano, 23,000 
people were dead because no infrastructure existed to respond to such an emergency. José 
Luis Restrepo, a Colombian geology student, recalled: 
 
"We didn't hear any kind of alarm, even when the ash was falling and we were in the hotel. We turned on 
the radio. The mayor was talking, and he said not to worry, that it was a rain of ash, that they had not 
reported anything from the Nevado, and to stay calm in our houses... When we went out, the cars were 
swaying and running people down, there was total darkness, the only light was provided by cars. We were 
running and were about to reach the corner when a river of water came down the streets. We turned around 
screaming towards the hotel, because the waters were already dragging beds along, overturning cars, sweeping 
people away. We went back to the hotel, to a three-story building with a terrace, built of cement and very 
sturdy. Suddenly, I heard bangs, and looking towards the rear of the hotel I saw something like foam, coming 
down out of the darkness. It was a wall of mud approaching the hotel, and sure enough, it crashed against the 
rear of the hotel and started crushing walls. And then the ceiling slab fractured and the entire building was 
destroyed and broken into pieces. Since the building was made of cement, I thought it would resist. But the 
boulder-filled mud was coming in such an overwhelming way, like a wall of tractors, razing the city, razing 
everything. Then the university bus, that was in a parking lot next to the hotel, was higher than us on a wave 
of mud and on fire. It exploded, so I covered my face, thinking this is where I die a horrible death.”  
[Scarth, 1999] 
 
Six years later, the 1991 eruption of Mount Pinatubo in the Philippines was the largest 
volcanic eruption in the 21st century to affect a heavily populated area. Because the volcano 
was monitored, early warning of the eruption was provided and thousands of lives were 
saved. 
 
Despite these improvements, some communities still face danger from volcanic events and 
volcano-monitoring systems still require further development. There remain clear gaps in 
monitoring technologies, in data sharing, and in early warning and hazard tracking systems.  
 
A global volcano-monitoring framework such as the VIDA framework can contribute to 
filling these gaps. VIDA stands for “VAPOR Integrated Data-sharing and Analysis” and is 
also the Catalan and Spanish word for ‘life’. The ultimate goal for this project is to help save 
the lives of people threatened by volcanic hazards, while protecting infrastructure and 
contributing to decision support mechanisms in disaster risk management scenarios. 
 
The VAPOR Team would like to dedicate this report to all the victims of volcanic eruptions 
in the hopes that our proposal can be used to develop a comprehensive system that may one 
day save lives. We hope that one day the natural phenomena of volcanic eruptions will not 
become disasters.  
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 ______________________________Keywords Glossary 

 
Ash plume Ash plume is a cloud containing fine-grained fragments (less than 2 

mm in diameter) of volcanic rock blasted into the air after an 
explosion or carried upward by hot gases during an eruption.  
 

Early warning For the purpose of this report, early warning is defined as monitoring 
and reporting on the probability of a volcanic eruption during the 
period from the first sign of a possible eruption (as provided by 
existing monitoring systems) up to the point of the eruption. 
 

Geographic 
Information 
System (GIS) 

A GIS is a system (both hardware and software) for acquisition, 
storage, analysis of data, and display of geographically referenced 
information allowing users to view and interpret data in a way that 
can reveal relationships and patterns among several sources. 
 

Hazard tracking Monitoring and reporting on volcanic hazards, such as lava flows, ash 
plumes, gas emissions, and pyroclastic flows during and after 
eruption. 
 

SWOT analysis SWOT Analysis is a method used to evaluate the Strengths, 
Weaknesses, Opportunities, and Threats of a project It helps to 
identify internal and external factors that create or destroy value. 
 

The Charter The Charter On Cooperation To Achieve The Coordinated Use Of 
Space Facilities In The Event Of Natural Or Technological Disasters
 

VIDA VIDA is a framework for the design of a system capable of 
integrating data from global providers, standardizing that data, 
processing it into useful information, and disseminating both data and 
information to the end-users. 
 

VIDA end-users End-users could include decision makers at various levels of 
government, aviation authorities, emergency crews, the scientific 
community, and populations at risk from volcanic hazards. 
 

VIDA providers Providers would include ground-, air-, and space-based Earth 
observation sensors that collect data on the precursors and indicators 
of volcanic activity. 
 

VIDA system System adhering to the VIDA framework. 
 

Volcanic hazards Lava flows, tephra, pyroclastic flows, lahars, landslides, and gas 
emissions. 
 

Volcano 
monitoring 
technologies 

Awide variety of instruments and sensors used to provide primary 
data, algorithms and modeling techniques, and systems such as GIS 
used to produce valuable information regarding volcanic risks and 
hazards. 
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______________________________________Chapter 1 

1 Introduction 

Volcanic eruptions are one of Earth’s most dramatic and violent agents of change. Notorious 
eruptions in the past, such as Krakatoa, Mount (Mt.) Pinatubo, and Mt. St. Helens as shown 
in Figure 1-1, have demonstrated the devastating impact volcanoes can have on landscapes 
and communities. Some of the major hazards that result from a volcanic eruption are lava 
flows, ash plumes, and pyroclastic flows. These can have severe consequences for the 
surrounding areas by displacing, injuring or killing people, and by destroying habitats and 
infrastructure. 
 

 
Figure 1-1: Mount St. Helens before, during, and after the 1980 eruption 

[Tilling, 1990] 

1.1 Impacts of Volcanic Activities 
The most important effects of volcanic eruptions are the human casualties. There are over 
1500 active volcanoes (excluding undersea volcanoes) around the world [ESA, 2004]. Some 
of these volcanoes are in populated areas, posing a significant threat to the safety of human 
lives. Since the beginning of the 20th century, the two largest volcanic disasters in terms of 
fatalities were the 1902 eruption of Mont Pelée in French Martinique and the 1985 eruption 
of Nevado del Ruiz in Colombia, causing 30,000 and 23,000 deaths respectively. However, 
the number of people affected by volcanic events, for example requiring immediate 
assistance during a period of emergency, must also be taken into account. In 1991 the 
eruption of Mt. Pinatubo in the Philippines killed approximately 600 people, but affected 
more than one million [EM-DAT, 2008].  
 
The rich fertile soil around volcanic sites attracts a large number of people [The Geography 
Site, 2006b], leading to the development of local and national economies in close proximity 
to volcanoes. An estimated 500 million people live near an active volcanic site [ESA, 2004]. 
Since the period between eruptions can vary significantly, up to thousands of years in some 
cases, the consequences of an eruption are mostly unacknowledged [Hawaiian Volcano 
Observatory, 2008]. Table 1-1 shows estimated values of the social and economic impact of 
past volcanic eruptions. 
 
The financial impact of volcanic eruptions varies depending on the location and intensity of 
the event. The economic impact includes damage to agriculture, natural resources, industry, 
tourism, trade, and infrastructure such as transportation, communication networks, power, 
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and water facilities. An estimation of the economic damage in different regions is also 
provided in Table 1-1. It is important to realize that the impact of volcanic eruptions on the 
regional and national economy persists for several years after the event.  
Table 1-1: Volcanic damage from 1900 to 2006 
 

Continent 
Number 
of Events 

Killed Homeless Affected 
Total 

Affected 
Damage 

US$ (000’s) 

Africa 15 2,213 180,710 318,800 500,353 9,000 
Americas 69 67,841 35,680 1,082,150 1,123,587 2,808,697 
Asia 80 21,456 97,900 2,565,980 2,668,287 696,549 
Europe 11 783 14,000 12,200 26,224 44,300 
Oceania 20 3,665 46,000 202,391 248,422 400,000 

 

[Salichon, 2007] 
 
A rising concern is the effect ash plumes can have on aircraft even at long distances – up to 
thousands of kilometers – from the actual eruption site. In the case of Mt. St. Helens, ash 
accumulation and poor visibility caused the closure of several airports in eastern Washington 
State and the cancellation of more than a thousand commercial flights [Tilling, 1990]. Ash 
plumes are a direct threat to the human and financial aspects of air travel. 

1.2 Present Challenges  
Despite a recent increase in enthusiasm and support for Earth observation, such as the 
Global Monitoring for Environment and Security (GMES), monitoring systems for 
volcanoes still require further development. Volcano hazards require accurate and near-real-
time transfer of data to interested parties to help prevent or limit the effects of an event. 
Currently, ground-based observation techniques have helped scientists gain a deeper 
understanding of many phenomena associated with an eruption. Meteorological satellites 
provide information on volcano hazards and have aided in the tracking of ash plumes. The 
launch of new X-band Synthetic Aperture Radar (SAR) satellites and other Earth observation 
missions (e.g. the ‘Sentinel’ series), as well as the development of advanced instrumentation 
and analysis such as Interferometric SAR (InSAR) is slowly increasing the ability to identify 
and track hazards using space-based assets. However, even with the improved ability to 
identify hazardous areas and to warn of impending eruptions, communities still face 
imminent danger from volcanic events. 
 
There remain clear gaps in the existing monitoring technologies, in data sharing, and in early 
warning, hazard tracking, and disaster management systems. The revisit time of remote 
sensing satellites is often inadequate in providing rapid notification of volcanic activity. The 
Volcanic Ash Advisory Centers (VAACs), as well as the many individual volcano 
observatories use various data formats, different modeling tools, and do not necessarily 
transfer data effectively between them. Furthermore, a near-real-time database of volcanic 
hazards and relevant geophysical data near volcanic sites does not yet exist. 
 
Volcano monitoring and early warning systems in developing nations are insufficient or non-
existent. The Charter On Cooperation To Achieve The Coordinated Use Of Space Facilities 
In The Event Of Natural Or Technological Disasters (the ‘Charter’) is an important 
mechanism to aid relief efforts in the event of volcanic eruptions, that suffers from delays in 
response time, in data availability and delivery. 
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1.3 Project Mission Statement and Scope 
‘Volcanic Activity: Processing of Observation and Remote sensing data’ (VAPOR) is the name adopted 
for this project, and reflects the selected scope. The VAPOR project is primarily focused on 
the important gap in data access, collection, and sharing. To that end, the mission statement 
for this project is: 
 

“To define an integrated framework for early warning and 

hazard tracking of volcanic activities on Earth using  

space-based and terrestrial resources.” 
 
This mission statement includes the terms ‘early warning’ and ‘hazard tracking’. Early 
warning is defined as monitoring and reporting on the probability of an eruption during the 
period from the first sign of a possible eruption (as provided by existing monitoring 
systems), up to the point of the eruption. The development of a long-term monitoring 
system is not considered a part of this project. Hazard tracking is defined as monitoring and 
reporting on volcanic hazards, such as lava flows, ash plumes, gas emissions, and pyroclastic 
flows during and after an eruption. 

1.4 Deliverables 
The main deliverable for this project is the VIDA framework. VIDA stands for “VAPOR 
Integrated Data-sharing and Analysis,” and is also the Catalan and Spanish word for ‘life’. 
The ultimate goal for this project is to help save the lives of people threatened by volcanic 
hazards, while protecting infrastructure and contributing to decision support mechanisms in 
disaster risk management scenarios. 
 
VIDA is a framework for the design of a system capable of integrating data from global 
providers, standardizing that data, processing it into useful information, and disseminating 
both data and information to the end-users. The actual design, selection of data, and the 
proposed standardization are all beyond the scope of this project. Providers would include 
ground-based, air-based, and space-based Earth observation sensors that collect data on the 
precursors and indicators of volcanic activity. End-users could include decision makers at 
various levels of government, aviation authorities, the scientific community, emergency 
crews, and populations at risk from volcanic hazards. Such end-users would obtain data and 
information through a variety of means including the internet via web-based tools, 
Geographic Information Systems (GIS) tool interfaces, specific network–based interfaces, 
mobile platforms, etc. By disseminating information in near-real-time, such a system adhering 
to the VIDA framework – herein referred to as a ‘VIDA system’ – could provide advanced 
warnings to end-users, enabling them to avoid the effects of volcanic activity. Such a system 
could allow end-users to track volcanic hazards, enabling them to mitigate their effects. 
 
Not only would a VIDA system present a technological challenge, it would also have 
implications on policy, law, economics, society and education. Policy and law issues include 
governance, data collection and standards, licensing, and liability. Societal and educational 
issues include the potential benefits of such a system and local community awareness of 
volcanic hazards. Economic aspects include possible stake holders, funding, and business 
opportunities. The aforementioned framework is not the system itself. The design and 
implementation of a VIDA system is well beyond the scope of this project. Instead, this 
project has conducted the preliminary work of identifying and assessing the need for this 
system, researching the expectations of the end-users, and establishing a set of top-level 
requirements that such a system would need to satisfy. 



Introduction 

1.5 Report Purpose and Outline 
The scope and deliverables provided in sections 1.3 and 1.4 drive the main purpose of this 
report: to define the VIDA framework and provide a useful starting point and a reference 
source for future designers of a volcano early warning and hazard tracking system. 
 
Figure 1-2 illustrates both the content of this report, and the process through which it was 
developed. Important process steps that fall outside the scope of this project are shown as 
hatched blocks. These show awareness of the context required to develop a framework with 
regard to the needs of end-users and are highlighted as steps for further research. Each 
element of Figure 1-2 within the scope of this report is identified with the corresponding 
chapter number, while those elements contained as appendices are labeled by ‘App.’. 
 
 

 
Figure 1-2: Report content and development of the VIDA framework 

 
This Introduction provides an overview of the human and financial impacts of volcanoes 
and establishes the motivation for this project. Chapters 2 and 3 present the background 
research conducted during this project and establish a context for the report. In Chapter 2, 
volcanoes are described in greater detail, along with descriptions of the many hazards 
associated with them. The concept of the multi-hazard is presented, as hazards seldom occur 
in isolation, one often induces another.  
 
Chapter 3 begins with a survey of existing systems and examines the volcano monitoring 
technologies that are employed on the ground, in the air, and in space. The survey of the 
existing systems, programs, and organizations addressing the challenge of volcano 
monitoring include existing coordination and management systems like the Global Earth 
Observation System of Systems (GEOSS), warning systems like the Global Disaster Alert 
and Coordination System (GDACS), and the various volcano observatories. 
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This background research provides the input to a gap analysis, which is presented at the end 
of Chapter 3; several gaps were already identified earlier in this Introduction. The gap 
analysis justifies the need for a VIDA system and supports research into the needs of 
potential end-users. Both the gap analysis and the identified user needs provide enough 
information to develop a list of high-level system requirements. These requirements can be 
viewed as a stand-alone document and are given in Appendix A. 
 
In Chapter 4 the high level system requirements are used to define high-level use cases for a 
VIDA system and its overall description. Emphasis is placed on how such a system could 
leverage enabling technologies. Four examples of how a VIDA system would interact with 
data providers and end-users are presented. Chapter 4 is thus the main deliverable of this 
report; it is the framework. The expectation is that a designer could take the information in 
this Chapter, with Appendix A and cited references, and design a system for volcano early 
warning and hazard tracking. This objective is consistent with the project goals established at 
the outset. 
 
The remaining chapters of this report address legal, political, economic, and societal 
implications of the VIDA framework. Chapter 5 addresses the questions of how data is 
obtained from the providers, how such a system would be run and by whom, are also 
addressed. It also outlines liability and copyright issues with the data sharing. Chapter 6 
addresses the question of whether such a system would be financially viable and justifiable. 
The results of a stakeholder analysis are presented, followed by a Strengths, Weaknesses, 
Opportunities, and Threats (SWOT) analysis, and a risk assessment along with a cost 
estimation using a comparative method. Finally, Chapter 7 returns to the societal motivations 
for a volcano early warning and hazard tracking system. It shows how a VIDA system will 
help international aid organizations and how such a system can be used as an educational 
tool. 
 
As shown in Figure 1-2, several blocks (each representing elements of the system definition 
process and/or the present project) have not been addressed. These are the next steps in the 
development of a volcano early warning and hazard tracking system. Direct consultation 
with end-users is needed to derive more detailed system requirements and use cases, and the 
requirements need to be reviewed before the system can be designed. Chapter 8 concludes 
the report with recommendations for these next steps. 
 
References, bibliography, and appendices may be found at the end, in support of the material 
given throughout the main body of this report. 
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______________________________________Chapter 2 

2 Volcano Fundamentals 

To define a framework to improve early warning and hazard tracking of volcanic eruptions, 
the physics of volcanoes including what causes them, where they occur, and what hazards 
they pose must be addressed. This Chapter introduces plate tectonics, the types of volcanoes, 
the hazards associated with volcanoes, and the timeline of an eruption. 

2.1 Structure of Earth 
In a simplified way, the solid Earth is composed of three principal layers: the core, the 
mantle, and the crust [Harris, 2001]. 
 

 
Figure 2-1: Earth’s composition  

[USGS, 1999b] 
 
The center of Earth is composed of a solid inner core surrounded by a liquid outer core. 
Rotation of Earth causes spinning of the outer core liquid that creates Earth's magnetic field  
[USGS, 2000b]. Surrounding the core is the mantle, the largest layer of the earth [Brown, 
1992]. The mantle is extremely hot but most of mantle material stays solid because the 
pressure at this depth is so high that the material cannot melt. The external layer of Earth is 
called the crust and is composed of continental and oceanic plates. The oceanic plates are 7 
to 8 km thick and the continental plates, on average, are 35 km thick [Fowler, 2005]. 

2.1.1 Plate Tectonics and Volcano Production 
The lithosphere, composed of the outer crust and the uppermost solid mantle, is divided into 
plates. These plates drift very slowly over the mantle. This motion is called plate tectonics 
and is the result of surface cooling and lithosphere subduction [Green, 2005]. The activity at 
the boundary between some of these plates causes the solid mantle material to melt, 
producing magma. A volcano is any place on Earth where magma from the mantle makes its 
way through the outer crust to the surface. Figure 2-2 shows the locations of the plates and 
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the general locations of volcanoes on Earth; the lines indicate the plate boundaries and the 
dots indicate volcanoes [Harris, 2001]. 
 

 
Figure 2-2: Plate boundaries  

[Topinka, 2003] 
 
The interaction between different plates can typically occur in one of three ways as shown in 
Figure 2-3: a transform plate boundary (shown on the left), a divergent plate boundary 
(shown in the middle), or a convergent plate boundary (shown on the right). The plate 
boundaries are narrow and are characterized by seismic and volcanic activity  
[Sandwell, 2005]. However, transform plate boundaries rarely produce volcanic activity 
[Harris, 2001]. 
 

 
Figure 2-3: Types of plate boundary interaction  

[Pompa, n.d.] 
 
When two plates move away from each other it is called a divergent plate boundary. At a 
divergent plate boundary, the plates separate, allowing magma from the mantle below to fill 
the space between the plates. The magma cools and hardens forming ocean or continental 
ridges. This process is called spreading center volcanism [Harris, 2001]. 
 
When two plates collide it is called a convergent plate boundary. At a convergent plate 
boundary, subduction may occur where one plate is pushed under the other plate. This 
normally causes formation of trenches in the ocean floor. Water from these trenches is 
forced into the mantle material of the upper plate lowering its melting point and forming 
magma. This process is called subduction zone volcanism. If subduction does not occur at a 
convergent plate boundary, volcanoes will not be produced but the crust will be forced up 
and form mountains [Harris, 2001]. 
 
Intraplate volcanic activity occurs when magma is formed under the middle of a plate but 
this is far less common than spreading center volcanism and subduction zone volcanism at 
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plate boundaries. Intraplate volcanic activity is caused by unusually hot mantle material at a 
specific location called ‘hotspot’: when a plate moves over the hotspot, volcanoes are created 
(e.g. Hawaiian volcanoes) [Harris, 2001]. 

2.1.2 Volcano Types 
Despite a unique history of eruptions, all volcanoes can be divided into three main types 
according to the following criteria: eruptive patterns and general forms. Characteristics of 
each type are summarized in Table 2-1 [Camp, 2006]. 
 
Table 2-1: Form and composition of main volcano types 

Volcano Type Volcano Shape Eruption Type 

Scoria Cone 
 

Small, steep, straight 
slopes and large summit 

crater 

Strombolian – eruptive 
columns of pasty lava 
ejected a few hundred 

meters into the air 

Shield Volcano
 

Broad, gentle slopes 
and flat summit 

Hawaiian – effusive 
emission of lava flows 

Stratovolcano 
 

Gentle lower slopes 
that rise steeply near 

summit; small summit 
crater 

Plinian – highly variable 
and highly explosive 

(most dangerous type) 

2.2 Volcano Hazards 
The eruptive products of volcanoes are "highly variable and largely dependent on the 
composition, viscosity, and gas content of the erupting magma" [Camp, 2006]. Hazards 
include lava flows, tephra, pyroclastic flows, lahars, landslides, and gas emissions. 

2.2.1 Lava Flows 
Lava flows are masses of magma that pour out of the volcano during an eruption. Both 
moving lava and the cooled solidified deposit are referred to as lava flows. Because of the 
wide range in viscosity, the effusion rate (i.e. volume of lava produced over a given amount 
of time), the characteristics of the erupting volcano, and the topography over which the lava 
travels, lava flows can be of different shapes and sizes. Lava flows can travel tens of 
kilometers from an erupting volcano. When thermally isolated by a channel or lava tube on 
steep slopes, they can reach speeds of over 30 km/hr but they typically travel at speeds less 
than 1 km/hr [USGS, 2000b]. 
 
Although a lava flow moves at relatively low speeds, everything unable to get out of its path 
will be knocked over, surrounded or buried. The intense heat from the lava can melt or burn 
materials relatively close to it. If the lava flow encounters water, the water can "boil violently 
and cause an explosive shower of molten spatter over a wide area" [USGS, 2000b]. 
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Figure 2-4: Volcano hazards  

[USGS, 2000b] 

2.2.2 Tephra 
Tephra are fragments of volcanic rock and lava that are blasted into the air for up to 10 km 
[Hogan, 2007] by explosions or carried upward by hot gases during an eruption. Tephra are 
classified on the basis of size as follows [USGS, 2000b]: 
 

• Ash: very fine-grained fragments of less than 2 mm in diameter. When carried 
upward by hot gases, they form ash plumes and ash clouds that can rise tens of 
kilometers into the atmosphere and travel for hundreds or thousands of kilometers 
downwind from a volcano. 

• Lapilli: gravel-size fragments between 2 mm and 64 mm in diameter. The bigger 
they are, the shorter period of time they can remain in the air. Therefore, they can 
still be hot liquid when they hit the ground [Camp, 2006]. 

• Blocks and Bombs: fragments bigger than lapilli. Blocks are solid fragments with 
angular shapes; bombs are lava fragments that are semi-molten and become more 
aerodynamic when airborne. These can still be hot liquid when they hit the ground. 
Both blocks and bombs typically fall back to the ground on, or close to the volcano 
[Camp, 2006].  
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Figure 2-5 contains a visual representation of the different types of tephra: ash and lapilli on 
the left, and bombs on the right. 
 

 
Figure 2-5: Different sizes of tephra  

[USGS, 2003] 

2.2.3 Pyroclastic Flows 
A pyroclastic flow is a fluid-like mixture of solid fragments and hot gases that quickly move 
down the side of a volcano. These flows are heavier than air and move much like a snow 
avalanche. They are intensely hot (generally between 200°C and 700°C), contain toxic gases 
and move at high speeds often over 100 km/hr [Camp, 2006]. The extreme temperatures can 
cause fires, destroying forests, crops, and buildings. People can die or be seriously injured 
from burns and inhalation of hot gases that pyroclastic flows contain [USGS, 2000b]. 
 

 
Figure 2-6: Pyroclastic flow on the Mayon Volcano, Philippines 

[USGS, 2003] 

2.2.4 Lahars 
In Indonesian ‘lahar’ means volcanic mudflow. It is a mixture of tephra and water that looks 
like wet concrete, but can move as fast as streams of normal water [Camp, 2006]. They can 
be produced by the heat from the volcano melting large amounts of ice and snow, by the 
disruption of crater lakes or by intense rainfall during or after the eruption [Martí, 2005]. 
Lahars can carry boulders of more than 10 m in diameter and can vary from hot to cold, 
depending on how they were produced [Camp, 2006]. Lahars and pyroclastic flows are the 
deadliest volcano hazards [Martí, 2005]. 

2.2.5 Landslides 
Landslides are masses of rock and soil that fall or slide under the force of gravity. Volcano 
landslides can be triggered by intrusion of magma into a volcano, explosive eruptions, 
earthquakes beneath or near a volcano, or intense rainfall. They can be more than 100 km3 in 
size and reach speeds of more than 100 km/hr. These factors explain their immense 
destructive power: a large landslide can bury valleys with tens to hundreds of meters of rock 
debris or can dam streams to form lakes [USGS, 2000b]. 
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2.2.6 Volcanic Gases 
Gases constitute around 1% to 5% of the total magma weight, 70% to 90% being water 
vapor. The remaining gases include sulfur dioxide (SO2), carbon dioxide (CO2), as well as 
some amounts of “nitrogen (N), hydrogen (H), carbon monoxide (CO), sulfur (S), argon 
(Ar), chlorine (Cl), and fluorine (F)” [Camp, 2006]. In combination with hydrogen and water 
they can produce toxic products of volcanic activity (e.g. hydrochloric acid (HCl), hydrogen 
fluoride (HF), sulfuric acid (H2SO4) [Camp, 2006]. 
 
The destructive effects of volcanoes are usually caused by lava flows, lahars or pyroclastic 
eruptions. However, volcanic gases are also dangerous as their emission in large quantities 
can be fatal due to their toxicity and high temperature. In rare cases, they can kill thousands 
of people. For example an outburst of Lake Nyon, a crater lake in Cameroon, killed 1746 
people [Brown, 1992]. 

2.2.7 Multi-hazards 
The hazards described in sections 2.2.1 to 2.2.6 are not discrete hazards. They can be 
triggered directly by a volcanic eruption, but also by the occurrence of other hazards. The 
volcano hazards can also initiate floods, tsunamis (large sea waves), earthquakes, and storms. 
It is also possible that these natural phenomena can trigger volcanic eruptions. The hazards 
that result from the interaction between volcano hazards and other natural phenomena are 
called multi-hazards. 
 
Some examples of multi-hazards include: 
• Landslides that reach a lake or ocean can cause waves or tsunamis.  
• A lake formed by a landslide or lava flow that has dammed a stream may eventually drain 

catastrophically and generate lahars and floods.  
• Landslides may decrease pressure on the volcano magmatic and hydrothermal systems, 

which can generate explosions, pyroclastic flows, and earthquakes [USGS, 2000b].  
• When Krakatoa exploded in 1883, the eruption produced a series of tsunamis that swept 

over the coastal areas of Java and Sumatra killing over 36,000 people [the Geography 
Site, 2006a]. 

• Forest fires were ignited by lightning during the eruption of Mount Saint Helens in 1980 
[Thompson, 2007]. 

2.2.8 Supervolcanoes and Global Risks 
The term ‘supervolcano’ has no well-defined scientific meaning but is used to describe 
volcanoes that have violently erupted in the past. It is generally agreed that an eruption with 
a Volcanic Explosivity Index (VEI) of 7 or 8 is considered a supervolcano. These explosions 
produced large amounts of volcanic tephra, which led to long lasting changes to weather 
patterns around the globe. Yellowstone is a prime example of a supervolcano with an 
eruption that occurred 600,000 years ago releasing about 1,000 km3 of material [USGS, 
2000b]. In comparison Mt. St. Helens and Mt. Pinatubo released 1 km3 and 10 km3 of 
material respectively during their most recent eruptions [USGS, 2000b]. 
 
The probability of an eruption of a supervolcano has been estimated as once every 100,000 
years. The main potential consequence of such an eruption is the volcanic winter that could 
last as long as 7 years. It could cause global climate changes and block out large amounts of 
incoming solar radiation [Leggett, 2006]. With the decrease in sunlight, vegetation would be 
killed by sudden hard freezes and the human death toll has been estimated to reach one 
billion [Leggett, 2006]. 
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2.3 Eruption Timeline and Monitoring 
To discuss the effects of a volcanic eruption, the actions to be taken, and the tools to be 
used, it is important to define the timeline of an eruption. For this purpose, the timeline is 
separated into four phases: long-term monitoring for scientific purposes, monitoring for 
early warning purposes, hazard tracking and response, and recovery.  
 
Long-term monitoring for scientific purposes is defined as the continued observation of a 
volcano to detect any changes that could indicate an increase in volcanic activity that may 
signify an upcoming eruption. This monitoring is performed over many months and years 
and will continue indefinitely. It is conducted before, during and after an eruption. Note that 
long term monitoring is outside the scope of this report. 
 
Monitoring for early warning purposes is defined as the continued monitoring of a 
volcano for the purpose of detecting when an eruption will occur in order to initiate 
appropriate action. It begins when there is an increase in volcanic activity that may signify an 
upcoming eruption and ends either at the point of eruption or when the volcanic activity 
decreases to previous levels. 
 
Hazard tracking is defined as continuous monitoring of a given hazard for changes in its 
magnitude and direction. It begins from the point of hazard detection until it is unlikely to 
cause any further injury or damage. Response is defined as the reaction taken to the hazards 
to preserve lives and to prevent or mitigate damage to land and property. This phase 
normally lasts from several hours to several days after an eruption. 
 
Recovery is defined as the actions taken to re-establish the lives of affected populations and 
the infrastructure that supports returning them to the pre-eruption state. There is no distinct 
point at which response transitions to recovery, but the recovery phase can last for many 
years. 

2.4 Conclusion 
The hazards of volcanoes vary and are significant. Distinct volcanic hazards can also interact, 
forming multi-hazards. With the potential loss of life and damage to property, it is important 
to monitor these hazards and ensure that the right people are informed in a timely manner to 
prevent loss of life and mitigate the effects of the hazards. The existing systems and 
organizations that monitor and respond to volcanic hazards are discussed in the next 
Chapter. 
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______________________________________Chapter 3 

3 Existing Systems and Gaps 

Many organizations are already actively involved in hazard tracking and early warning 
systems. To propose any recommendations regarding improvement of early warning and 
hazard tracking systems, it is necessary to understand these existing systems. The term 
‘system’, in this context, encompasses international groups, regional groups, and Geographic 
Information Systems (GIS). The research of current systems and technology presented in 
this Chapter leads into a gap analysis that identifies areas where improvements would benefit 
volcano monitoring and hazard tracking. 

3.1 International Integration Initiatives 
Several organizations provide Earth observation data and information internationally. These 
groups include Global Monitoring for Environment and Security Initiative (GMES), Group 
on Earth Observation (GEO), Integrated Global Observing Strategy (IGOS), and the 
Charter. Some of these organizations are still being developed and all are fairly new, 
emerging in the course of the last ten years. Nevertheless, they are now key players in 
integrating ground-, air-, and space-based Earth observation capabilities to provide useful 
information and services in a more efficient and timely manner. The following sections 
highlight some of the important features of each of the organizations.  

3.1.1 Group on Earth Observation 
GEO is coordinating the effort to implement the Global Earth Observation System of 
Systems (GEOSS). GEO is a voluntary partnership of international organizations and 
governments. GEOSS, when established, will aim at improving connection between data 
providers and the users to enhance the relevance of Earth observation to the activities 
covered. Issues of focus include disasters, health, energy, climate, water, weather, ecosystems, 
agriculture, and biodiversity [GEO, 2008b]. GEOSS is discussed further in section 5.1.2. 

3.1.2 Global Monitoring for Environment and Security  
GMES is an initiative led by the European Commission in collaboration with the European 
Space Agency (ESA). GMES will be the European contribution to GEOSS (see section 
3.1.2) services which are expected to be operational by the end of 2008 [European 
Commission, 2007]. The aims of GMES are to compile the use of multiple sources of data, 
provide rapid and high quality information, as well as provide services and knowledge to 
decision makers concerning environment and security [Liebig, 2007].  

3.1.3 Integrated Global Observing Strategy 
IGOS is a partnership that pursues the goal of providing a framework that harmonizes of the 
interests and activities of space- and ground-based systems for global Earth observations 
[IGOS, 2004]. It is meant to address the needs of policy makers, as well as the scientific 
community. The goal of IGOS is to build an overall strategy to coordinate environmental 
observations in order to improve the monitoring capability as well as data availability [IGOS, 
2004].  

15 
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In 2001, IGOS started a Geohazards Initiative. This initiative addresses the information 
needs for predicting and monitoring geophysical hazards including volcanoes [IGOS, n.d.]. 
Since 2005 this initiative is also part of the GEO coordination process and is represented in 
all four committees established by GEO to implement GEOSS [Salichon, 2007]. 

3.1.4 The Charter 
The Charter is a group of space agencies that came together to provide access to space 
resources for those affected by natural or man-made disasters. It serves as a mechanism to 
provide information to rescue and civil protection agencies, as well as defence and security 
bodies for use in crisis management [The Charter, 2000]. 
 
ESA and Centre National d’Etudes Spatiales (CNES) initiated the Charter in July 1999. It was 
originally intended to be a temporary solution for countries without advanced space 
technologies to gain access to space-based assets in times of emergencies. The Charter was 
declared operational in November 2000, and current membership has expanded to include 
the Canadian Space Agency (CSA), National Oceanic and Atmospheric Administration 
(NOAA), the United States Geological Survey (USGS), the Indian Space Research 
Organization (ISRO), the Argentine Comision Nacional de Actividades Espaciales (CONAE), the 
Japan Aerospace Exploration Agency (JAXA), the British National Space Centre (BNSC), 
the Disaster Monitoring Constellation International Imaging Ltd. (DMCii), and the China 
National Space Administration (CNSA) [The Charter, 2008]. 

3.2 Regional and National Organizations 
International organizations coordinate the efforts between different national actors, such as 
space agencies. They help to prevent the overlap of space capabilities from different 
countries and to streamline the process of Earth observation. In addition to their efforts, 
regional and national organizations have a role in volcano monitoring and hazard tracking. 
They have some advantages over global monitoring and response groups. For example, these 
organizations can quickly transfer data from volcanic sites to response units, have a lower 
management load and can retrieve near-real-time in situ measurements allowing effective 
response actions. They are also responsible for ‘ground truthing’ of space data and ensuring 
the accuracy of space-based technology. These organizations include local volcano 
observatories, government relief agencies, and the local offices of humanitarian organizations 
like the Red Cross and Red Crescent Movement. 
 
Volcano monitoring organizations and observatories are normally the first to trigger an alarm 
regarding possible eruptions and usually work closely with local governments. They are 
important players with dual roles as data providers and as links to local governments. While 
this scheme works in most locations, it is important to note that not all regions have 
extensive in situ monitoring capabilities. Table 3-1 contains a very brief list outlining some 
regional organizations involved in volcano monitoring. This list was narrowed from a 
compiled table of more than 130 organizations in order to focus on the major players by 
region and to demonstrate the wide range of monitoring capabilities. For example, the 
Democratic Republic of the Congo (DRC), unlike larger, economically stable countries, is 
unable to perform extensive monitoring due to regional instabilities. For countries such as 
this, global services are most useful in providing information such as digital elevation maps, 
vegetation change monitoring, ash plume tracking, and more. 
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Table 3-1: Organizations for volcanic eruption early warning and hazard tracking 

Region Country Description 

North 
America US 

• The USGS operates the Volcano Hazards Program to 
provide information on potentially active volcanoes in the 
US. The web-based interface for this program displays a 
Google Maps-based view of every volcano within the US 
and its territories, along with a color-coded hazard level 
[USGS, 2008b]. 

• The Federal Emergency Management Agency (FEMA) is 
concerned with response to an eruption event, and its 
website provides information on how to prepare for the 
harmful effects of an eruption, as well as what to do in the 
event of an eruption [FEMA, 2006]. 

Central 
and 

South 
America 

 

Mexico 
 

• The Centro Nacional de Prevención de Desastres (CENAPRED) is 
responsible for monitoring volcanoes in Mexico. Daily 
updates on the activity of volcanoes are posted on the 
agency’s website, along with risk maps that show which areas 
are in danger of being affected by an eruption, and to what 
degree, as well as evacuation routes [CENAPRED, 2008]. 

Japan 

• The Geographical Survey Institute (GSI) is a national 
organization that conducts basic surveys for mapping, and 
provides data for disaster prevention. They also utilize 
ground based GPS receivers throughout Japan to get 
information about crustal movements and deformation 
throughout the country [GSI, n.d.]. Asia and 

the 
Pacific 

 
The 

Philippines 

• Philippine Institute of Volcanology and Seismology 
(PHIVOLCS) is a governmental agency that monitors 
natural disasters and mitigates hazards arising from 
geotectonic phenomena, particularly volcanic eruptions and 
earthquakes. It aims at formulating up-to-date and 
comprehensive disaster preparedness plans for volcanic 
eruptions and earthquakes that can affect the human 
environment [PHIVOLCS, n.d.]. 

Europe Italy 

• The Istituto Nazionale di Geofisica e Vulcanologia (INGV) 
gathers all scientific and technical institutions operating in 
geophysics and volcanology to create a permanent scientific 
forum in Earth sciences. INGV cooperates with universities 
and other national public and private institutions, as well as 
with many research agencies worldwide and is devoted to 
24-hour countrywide seismic surveillance, real-time volcanic 
monitoring, early warning, and forecast activities [INGV, 
2008]. 

Africa DRC 

• Goma Volcano Observatory (GVO) is a small observatory 
building located in Goma, a city near Nyiragongo and 
Nyamuragira volcanoes. There is little done to monitor them 
because of the political unrest in the country, the dangers of 
the Ebola virus, and the dangers of volcanic hazards caused 
by their regular eruptions [Allard, 2002]. 

3.3 Information Providers and Networks 
On an operational basis, different systems gather data to produce information that is then 
disseminated via the Internet using mostly web-based services. Some organizations such as 
GDACS address hazards from multiple natural phenomena, while others such as the Global 
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Volcanism Program (GPV) are focused on hazards from one natural phenomenon. This 
section briefly presents some of the main information providers and networks dealing with 
volcano monitoring and hazard tracking to show how information is currently relayed. 

3.3.1 Global Disaster Alert and Coordination System 
GDACS is a joint initiative of the United Nations Organization (UN) and the European 
Commission. They provide a web-based system which automatically alerts registered users of 
potentially disastrous events all around the world. Alerts provided by GDACS are not meant 
to be authoritative and are generated automatically without human verification.  
 
GDACS offers a platform for those involved in emergency response to exchange 
information and coordinate efforts. Its near-real-time alert service is currently only available 
for earthquakes and tsunamis. GDACS offers a daily newsletter for all natural phenomena 
monitored, including volcanic eruptions. The volcano information provided by GDACS is 
based on the weekly bulletins of the GVP [GDACS, 2008]. 

3.3.2 Global Volcanism Program 
The GPV is run by the National Museum of Natural History at the Smithsonian Institute in 
Washington, D.C. It contains a database of all volcanoes that have been active in the last 
10,000 years. Together with the USGS Volcano Hazards Program, it provides a weekly 
report that shows changes in volcanic activities. It takes into account news reports, reports 
from external observers, and changes in the alert level by VAACs (see section 3.3.5). The 
GPV also provides a monthly Global Volcanism Network bulletin containing a summary of 
volcanic activities [Smithsonian Institute, n.d.]. 

3.3.3 Relief Web 
Relief Web is an information portal about humanitarian emergencies including natural 
disasters provided by the UN Office for the Coordination of Humanitarian Affairs (UN 
OCHA). It helps to improve worldwide communication and coordination in disaster 
response. It is continuously updated and contains information useful in case of a 
humanitarian crisis. This information includes, but is not limited to, situation reports, maps, 
and background information as well as documents related to policy issues such as 
coordination and security. This information is produced by the UN, Non-Governmental 
Organizations (NGOs), media reports, and scientists [Relief Web, 2008]. 

3.3.4 GlobVolcano 
GlobVolcano is a project run by ESA as a part of the Data User Element (DUE) program. It 
provides an Earth observation based information service for volcanic observatories and 
other users with a focus on prevention and early warning. The information service includes 
deformation mapping by SAR, surface thermal anomalies, volcanic gas emission (SO2), 
plumes, and cloud characteristics (volcanic ash) [GlobVolcano, 2008]. 

3.3.5 Volcanic Ash Advisory Centers 
Ash clouds and SO2 gas emission are serious threats to aircraft. An encounter can cause 
severe damage such as surface abrasion, cabin air contamination, and even complete engine 
failure [USGS, 2000a]. In 1987, safety concerns led the International Civil Aviation 
Organization (ICAO) to create the International Airways Volcano Watch (IAVW), an 
international framework for issuing ash cloud warnings to aircraft [Servranckx, 2005]. This 
led to the creation of nine VAACs tasked to monitor volcanic hazards within assigned 
airspace as shown in Figure 3-1. For this they use different technologies, including 
meteorological satellite imagery. Official ash cloud warnings are issued as Significant 
Meteorological Information (SIGMET) by the Meteorological Watch Offices (MWOs) who 
are close collaborators with the VAACs [Servranckx, 2005]. The warnings are also sent to 
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control centers that then use Notices to AirMen (NOTAM) to warn their pilots about 
potential hazards and to communicate modified air routes [Elrod, 2008]. 

3.3.6 World Organization of Volcano Observatories  
World Organization of Volcano Observatories (WOVO) is dedicated to the observation and 
monitoring of volcanoes. This organization maintains open communication between 
observatories around the world, collecting a database of monitoring data. In the time of an 
eruption WOVO is responsible for notifying the local authorities and the public directly of 
potential volcanic hazards [WOVO, n.d.]. 
 

 
Figure 3-1: VAAC territories 

Areas with hatchlings are not monitored [Darwin VAAC, 2008] 

3.3.7 Humanitarian Early Warning Service 
Humanitarian Early Warning Service (HEWS) is a partnership project of the Inter-Agency 
Standing Committee Sub-Working Group (IASC-SWG) on Preparedness and Contingency 
Planning developed by the World Food Program. It is a global multi-hazard watch service to 
support humanitarian preparedness and the monitoring of volcanoes, storms, floods, seismic 
activity, tsunami, locusts, El Niño, and severe weather. It issues early warning messages and 
alarms through its website, HEWSWeb. This includes systematic early warning by displaying 
graphics, maps, and simple messages for managers and decision makers. It aims to establish a 
better link between early warning and preparedness actions among partners. Seismic activity 
data is frequently updated but the volcano related section is not [IASC, 2008]. 

3.4 Existing Technology 
All the organizations, information providers, and networks rely on technology to be able to 
gather data and process it into useful information. To monitor volcanoes, a wide variety of 
instruments are used to provide primary data that support analysis of risks and hazards. 
Measurements come from the sensors and are then processed to extract valuable information 
using algorithms and modeling techniques. This section gives an overview of the sensors, 
algorithms, and GIS used for volcano monitoring. 

 19
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3.4.1 Sensors 
The sensors used for monitoring can be classified into three categories: ground-, air-, and 
space-based. Table 3-2 presents the most commonly used sensors: ground-based and air-
borne sensors provide local information, whereas space-based sensors can capture global 
features. Early warning and tracking systems use a combination of these sensors to improve 
their overall accuracy. Figure 3-2 shows a typical deployment of monitoring sensors in the 
vicinity of a volcano. 
 

 
Figure 3-2: Typical deployment of volcano monitoring sensors  

[USGS, 2004b] 

3.4.2 Algorithms and Modeling Techniques 
Several attempts to automatically process and combine data from ground-, air-, and space-
based sensors have already been made by different research groups and analysis centers. Data 
processing algorithms are important because they enable fast and automatic data processing. 
By studying these, it is possible to understand the strengths and weaknesses of each 
technique. The importance of having a human in the process to verify the final output before 
measures such as evacuations are undertaken should be considered, as there are number of 
uncertainties in the current programs. Nevertheless, these algorithms and modeling 
techniques are a crucial first step in helping turn data into useful information in a timely 
manner. Examples of algorithms and VAAC modeling techniques are provided in Table 3-3 
and Table 3-4, respectively. 

3.4.3 Geographic Information Systems 
GIS is a system (both hardware and software) for acquisition, storage, and analysis of data 
and display of geographically referenced information. It allows the user to view and interpret 
data in a way that can reveal relationships and patterns among several sources. The output 
can be displayed in different forms such as maps, globes, and graphs. GIS technology is an 
expansion of cartographic science, enhancing the capabilities of more traditional methods 
using computers. 
 

 20
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Table 3-2: Most commonly used sensors for volcano monitoring and hazard tracking 

Existing 
Technologies

Sensor Types Description 

Seismometer Measures seismicity related to magma movements 
and eruptive phenomena. 

Electronic Distance 
Measure (EDM) 

Measures distances between the instrument and a 
remotely located reflector. 

Global Positioning 
System (GPS) 

Measures position to allow for ground deformation 
and movement calculations. 

Tiltmeter Measures ground tilt near active volcanoes. 

Borehole strainmeter
Measures crustal deformation near active 
volcanoes. Strainmeters are installed at the bottom 
of boreholes. 

Spectrometer 
Analyzes gas samples from the active craters or by 
ground-based remote sensors to determine 
chemical composition. 

Magnetometer Measures the intensity of the local magnetic field 
for comparison with previously measured data. 

Gravimeter Measures long and short-term gravity changes due 
to ground and magma movement. 

Acoustic Flow 
Monitor (AFM) 

Measures ground vibrations in the frequency range 
of 10-300 Hz. 

Hydrological sensor Measures changes in water level and composition 
around volcanic sites. 

Ground-
Based*

 

Electric field sensor Measures electric field around volcanic sites. 

SAR, InSAR, and 
Differential InSAR 

(DInSAR) 

Used to generate Digital Elevation Models (DEMs) 
of the crater and surrounding area. Provides an 
unobstructed view of a volcano even if it is covered 
by smoke.  

Thermal Imaging Measures thermal signatures of active volcanoes, 
lava flows, and hot spots. 

Air-Based 

Laser Altimetry Is used to measure time varying topographical 
changes around the volcanic regions. 

Thermal Infrared 
Sensor 

Measures the changes in surface temperatures in 
volcanic regions, track volcanic ash plumes, and 
estimate the spectral attenuation of infrared 
terrestrial radiation from volcanoes to quantify 
emissions. 

Ultraviolet sensor Measures ultraviolet backscattering and absorption 
bands to provide critical information of the tephra. 

Space-Based

SAR, InSar, and 
DInSAR 

Are used to generate DEMs of wide areas or on 
global scale. InSAR and DInSAR are used to 
monitor relative changes in landforms  
[Kobayashi, 1999]. 

*[USGS, 1999c, 2000c, 2001] 
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Table 3-3: Examples of algorithms 

Algorithm Function/Capability 
Failure Forecast 
Method (FFM) 

Ground deformation or seismic energy release is used as an input to 
forecast material failure within volcanoes using physical laws. Failure time 
is forecasted from the inverse relationship between time and a proxy for 
strain rate. 

Mogi Model Models volcanic sources allowing for the interpretation of the 
deformations based on a model of a pressure source buried in an elastic 
half-space. 

Robust Advanced Very 
High Resolution 
Radiometer (AVHRR) 
Techniques (RAT) 

Is used to improve the automatic detection of volcanic hotspots and 
thermal anomalies; potentially can be used to detect low-level thermal 
anomaly and to identify early pre-eruptive thermal anomalies. 

NOAA AVHRR plume 
detection 

Improves automatic detection of volcanic hotspots and thermal anomalies; 
is based on a multi-image approach, statistical measures for pixels 
separation, and contextual information for pixels corresponding to plumes. 

IAVW Uses remote sensing data to perform surface based observations, pilot 
reports, and dispersion model output. 

Co-registration of 
Optically Sensed 
Images and Correlation 
(COSI-Corr) Software 
Package 

“Allows for automatic and precise ortho-rectification, co-registration, and 
subpixel correlation of satellite and aerial images” [Leprince, 2008]. 

 
Table 3-4: Summary of VAAC models 

VAAC Model Function/Capability 
London Nuclear Accident Model 

(NAME) 
Atmospheric dispersion model used to forecast the 
dispersion of the ash up to 48 hours in advance. 

Toulouse Modle Eulerian de DIspersion 
Atmospherique (MEDIA) 

Computes drifting due to winds, dispersion by 
turbulence, washing by precipitations, sedimentation 
by gravity. 

Montreal CANadian Emergency 
Response Model (CANERM) 

3-dimensional numerical transport and dispersion 
model that calculates advection and diffusion and 
simulates wet and dry depositional processes. 

Washington Volcanic Ash Forecast 
Transport and Dispersion 
(VAFTAD) 

Volcanic ash model that runs on output from various 
models employing a three-dimensional grid Eulerian 
formulation. 

Darwin HYbrid Single-Particle 
Lagrangian Integrated 
Trajectory (HYSPLIT) 

Computes simple air parcel trajectories and performs 
complex dispersion and deposition simulations. 

 
According to the Environmental Systems Research Institute (ESRI), one of GIS leading 
system developers, a GIS can be understood in three different ways. First, GIS a database 
that incorporates and integrates information from several geographic and socio-economic 
sources (known as a geo-database). Second, GIS is a set of maps that presents information in 
layers that can be overlapped showing interactive features, trends, and relationships suitable 
to be displayed on a map. GIS has also the capability to support queries, analyses, and editing 
of the information. GIS is not only capable of answering the question “where” but also 
“what” and “what if”. Third, GIS is a set of software tools for transforming information 
from existing datasets to derive new geographic information [ESRI, n.d.]. 
  
Examples of GIS software include ArcGIS, Geographic Resources Analysis Support System 
(GRASS), and Miramon. ArcGIS is created by ESRI, while GRASS is free and open source 
software. An interesting project that emphasizes the usefulness of GIS for monitoring 
natural hazards is the database ‘Hazard of the Pacific’ (HAZPAC) [Bemis, 2002]. It was 
created by the Crowding the Ring Initiative that was set up in 2002. HAZPAC is a useful and 
educational tool since it can combine information regarding hazards and infrastructures. 
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Examples of its capabilities are depicting air routes, population density, and major shipping 
lanes with respect to volcano locations in a single map. 

3.5 Gap Analysis 
This gap analysis is derived from the survey of the existing systems and technology presented 
in the previous sections. Gaps in technology, aviation safety, and the Charter were identified 
as being the most crucial and are discussed in this section. 

3.5.1 Technological Gaps 
Several important gaps regarding current monitoring capabilities, instrumentation, temporal 
and spatial coverage, and software have been identified. Since all technological resources rely 
on the existence and availability of useful data, some issues regarding data are also addressed. 
No measurement by itself can provide a definitive conclusion relating to volcanic activity. 
 
Data 
Issues that need to be improved include incompatible data formats, restricted circulation of 
data, the necessity to calibrate acquired data, and a lack of ground truth verifications. 
Standards for catalogues of data should be proposed and digitized inventories of existing 
volcanic related information should be progressively created and updated. Access to the data 
catalogues should also be facilitated and networks of data created [Anderson, 2008]. 
 
Monitoring capability 
Significant gaps in the capability to monitor potentially active volcanoes remain and need to 
be addressed. Nineteen volcanoes in Alaska and the Mariana Islands that represent a 
significant threat to air traffic, lack the ground sensors necessary for near-real-time ground-
based monitoring. Furthermore, many dangerous volcanoes are only monitored at a minimal 
level with regional networks of sparsely spaced seismometers [USGS, 2005]. Failing to 
monitor the early stages of volcanic activity can result in the loss of crucial and timely 
information needed to forecast the behavior of volcanoes. This can result in both human and 
infrastructure losses. 
 
Ground-based sensors 
Ground-based networks have been identified as sparse, as in the case of seismic and 
deformation networks. Although wireless integration networks exist in some volcanic 
regions, such networks have not yet been systematically deployed for all volcanoes on a 
global basis. There is a strong need for detailed maps of the surface of volcanic regions but 
high-resolution digital topographic mapping is not being done. The necessity for better 
topographic maps may be met with satellite data, but not in areas of low relief.  
 
Air-based sensors 
The reliability of volcanic activity predictions could be improved with frequent air-borne 
SAR and laser altimetry operations. However, these are carried out only over limited regions. 
The detection of anthropogenic contaminants in ash plumes would require expanded 
airborne hyperspectral capability [Simpson, 2000]. The integration of local ground 
measurements and InSAR or advanced InSAR data should be carried out. 
 
Space-based sensors 
No single satellite sensor is able to identify and track all volcanic hazards. In particular, 
volcanic ash clouds can be very difficult to track. The main limitations are due to the 
presence of meteorological clouds, ambient moisture, or substantial amounts of ice 
obscuring volcanic hazards. There are no satellites in operation to specifically monitor 
volcanoes, instead meteorological satellites are being used. Satellites have a limited ability to 
detect small-scale events due to their spatial resolution power. Satellite sensors working in 
the visible spectra have a reduced capability of monitoring volcanoes at night. As well the 
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detection of toxic compounds in ash plumes would require expanded space-based 
hyperspectral capabilities. 
 
Temporal resolution as well as continuous monitoring is a current drawback due to the few 
satellites devoted to civilian applications. This was the case for Total Ozone Mapping 
Spectrometer (TOMS) data; it was limited due to infrequent observations. TOMS 
instruments performed daytime observation of the stratosphere, but only the Anchorage 
VAAC had a direct TOMS downlink. The last TOMS instrument on board the Earth Probe 
satellite was decommissioned in 2005 [MACUV, n.d.]. The Ozone Monitoring Instrument 
(OMI) on board the Aura spacecraft has taken over collecting ozone data. Subsets of 
collocated AVHRR satellite imagery are required to carry out time series analysis.  
 
GIS software 
One of the most significant gaps of GIS is the lack of complete integration between GIS and 
remote sensing data formats, which requires standardization. Other gaps include the level of 
data exchange, the geometric registration of multi-angle images acquired by airborne 
multispectral scanners, the matching of cartographic representation, parallel user interfaces, 
and the compatibility of geographic abstraction [Mesev, 2007]. In order to move towards the 
integration of data, algorithms, techniques, and organizations that use GIS with remote 
sensing data, greater computer processing power is required. Errors in data propagation 
should be reduced, as well data structure compatibility should be improved. Issues such as 
data availability, costs, standards, and organizational infrastructure should be addressed 
[Mesev, 2007]. 
 
There is also a need to dynamically update GIS databases. Information stored in a static GIS 
cannot be relied on after a natural phenomenon has occurred to track hazards. In the 
previously presented HAZPAC interactive map, the information has not been updated since 
2002. A tool that maintains an up-to-date GIS database would be an important asset when 
an eruption occurs, to plan any evacuations or civil response design in accordance with the 
topology within the hazardous area. 

3.5.2 Gaps Identified for the Aviation Sector 
Even following the creation of the VAACs, which have global responsibility for the prompt 
detection of airborne volcanic ash and for notifying the aviation community, aircraft 
encounters with ash clouds have not been eliminated. The aviation sector is concerned about 
accurate early warning and ash cloud tracking to minimize losses. Unreliable and false 
detection of ash plumes is another major problem for forecasters during the early stages of 
the eruption that is most critical to aviation safety. Below the main challenges identified for 
the aviation industry are summarized. 
 
Timely information 
In 2008 ESA analyzed aviation needs to support volcanic ash avoidance. Current hazard 
warnings emitted through VAACs take between 1 and 1.5 hours to get to the pilots from the 
moment a volcano starts emitting ash. However, it takes as little as five minutes before the 
ash cloud reaches flight altitude [ESRIN, 2008]. An ideal system would thus provide ash 
cloud location and altitude within this five minute window to allow immediate avoidance 
measures. Unfortunately, accurate detection of volcanic ash within five minutes is difficult to 
be achieved due to limitations in the simulation models with regards to particle size, shape, 
and plume opacity. Unpredictable atmospheric motions may also keep larger particles in the 
ash cloud aloft much longer than expected.  
  
Effects of ash clouds and aerosols on aircraft 
The strategy for ash clouds is currently total avoidance [Ellrod, 2008]. Flights are  
re-routed or even cancelled in order to prevent encounters. This is a safe way to proceed 
since structural damage has been recorded even in low gas and ash concentration clouds  
[ESRIN, 2008]. Minimum tolerable concentrations remain unknown. More research is 
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needed to better understand the effects of ash clouds and aerosols on aircrafts and 
passengers. To achieve this, more data would be needed on ash and gas concentrations. Only 
certain VAACs have access to SO2 and other aerosol measurements [ESRIN, 2008]. 
 
Disparity in VAAC tools 
Table 3-4 shows that every VAAC runs its own detection and forecasting model based on 
different meteorological data and inputs. An analyzed of the different outputs obtained for 
the same eruption from various algorithms used by different VAACs was performed 
[Witham, 2007]. The results were very similar although small differences were noted. For 
example, the London system is more likely to overestimate a small eruption than other 
VAAC’s systems. The type of output maps are also hard to compare since they differ from 
one facility to the other. There is a need to improve and potentially standardize the 
parameters and thresholds used by all the different VAAC models to ensure consistency 
[Witham, 2007]. 
 
There is a requirement for a stand alone, robust volcanic ash retrieval algorithm for satellite 
data [Simpson, 2000]. Some attempts to automatically detect ash plumes have been carried 
out. For instance, Craig Bauer, Lead Techniques Development Forecaster for the Anchorage 
VAAC, tried to set up an automatic scan for volcanic ash detection derived from AVHRR 
T4–T5 imagery in the late 1990’s. He encountered problems due to false indicators of ash in 
the atmosphere. This work showed that cumulonimbus clouds and some cirrus features 
make it difficult to reliably detect volcanic ash [Simpson, 2001].  
 
Communication gap 
Communication gaps were analyzed in a study on disaster risk management for the Ruapehu 
volcano eruption in New Zealand, 1995. A survey questionnaire to all involved organizations 
showed that communication problems were perceived as an important issue [Paton, 1998]. 
More specific problems such as lack of clear responsibility for coordination and inadequate 
communication within the agencies involved were also identified. 

3.5.3 The Charter Gap Analysis 
The Charter has achieved a great deal of success given that it has only been in effect since 
2000. However, there are a number of issues that it currently faces. These concerns include 
timeliness of activating the Charter, data delivery, data availability, formatting, and language 
continuity. Activation of the Charter is defined as “mobilization of space and associated 
ground resources to obtain data and information on a disaster” [The Charter, 2008]. 
 
Delays in activating the Charter 
Delayed responses can greatly intensify the severity of the impacts of a natural event. 
According to the Charter’s 2006 annual report, the average response time of the Charter is 
almost two days, [The Charter Executive Secretariat, 2008]. However, in the case of volcano 
eruptions that have lead to the activation of the Charter, the average time is over 6 days. 
Figure 3-3 shows delays of activation following a volcanic disaster, using the activation data 
provided by the Charter annual reports and website. For example, a deadly volcano occurred 
in Ecuador in January 2008 and the Charter was not activated until 16 days after the eruption 
started [The Charter Executive Secretariat, 2008].  
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Figure 3-3: Days before activation of the charter following a volcanic eruption 

The lengthy process of activating the Charter contributes to delays. First, an Authorized User 
must call the On Duty Operator and submit a request form to activate the Charter. After the 
request is made, an On Duty Operator confirms the identity of the Authorized User. Next, 
the operator relays the information to an Emergency On-Call Officer who reviews the 
request with the Authorized User. Then, they together formulate an acquisition plan based 
on available space resources. Finally, a Project Manager is selected to assist the user 
throughout the process of data acquisition and delivery [The Charter, 2008]. For example, 
during the 2006 floods in Ethiopia, it took three days before a Project Manager was officially 
designated [The Charter Executive Secretariat, 2008].  
 
Given the complexity of the process there are many opportunities for activation to be 
delayed. Authorized Users, as well as Cooperating Bodies, are the only entities authorized to 
request the services of the Charter [The Charter, 2008]. This means that those who are first 
aware of an event have to rely on authorized users to start the process for them. Commercial 
entities, such as airline companies, are unable to initialize the charter. 
 
Reactive nature of the Charter 
Given the process that must take place in order to activate the Charter, it currently acts 
reactively rather than proactively. Although the Charter has been activated twice in advance 
of a natural phenomenon, this practice is far from the norm [The Charter Executive 
Secretariat, 2008].  
 
Delays in data delivery 
In order for the Charter to have a positive impact on the situation, the relevant data must be 
successfully delivered to the right people in a timely manner. Unfortunately this is sometimes 
not the case, for instance during the Stromboli Volcano eruption in Italy in April 2003, 
shipment issues led to a 12-day delay of data [The Charter Executive Secretariat, 2004].  
 
Data format problems  
The Charter has also faced problems with data formatting. For example, during the volcanic 
eruption in El Salvador in October 2005, the project manager had difficulty downloading the 
image data [The Charter Executive Secretariat, 2006]. Similarly during the floods in Ethiopia 
in October 2006, the Radarsat-1 system provided data that was not compatible with the data 
delivery system, leading to delays [The Charter, 2008]. In addition, the system for 
downloading and delivering the information had many stations, service offices, and actors 
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involved for a single call, leading to delays in providing this information to the project 
manager [The Charter Executive Secretariat, 2008]. Another more basic communications 
problem is the lack of an official language for the Charter framework, this can lead to 
difficulties in using the data and products. 

3.6 Conclusion 
For complex problems such as volcano monitoring and hazard tracking, getting useful 
information in a timely manner to the right people is a challenge. With new existing global 
initiatives such as GMES, IGOS or GEOSS, there is a trend towards developing integrated 
systems to provide global services to a wide variety of users. These initiatives have their 
foundations in large databases, networks, and technologies already available today. However, 
there are still obstacles to producing a truly efficient early-warning system for eruptions and 
volcanic hazard tracking. Some difficulties are technical, since predictions and hazard 
identification methods are not yet completely reliable and others are related to organization 
coordination. Improving communication and data sharing should definitely be addressed in 
order to achieve a global strategy in volcano monitoring and hazard tracking. The principal 
existing gap identified has been the lack of an integrated framework for all available data. 
The framework for a global cooperative, communicative, and participative system, the 
implementation of which would contribute to solving these issues is introduced in the next 
chapter. 
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______________________________________Chapter 4 

4 VIDA Design Framework 

The previous chapter identified gaps in the existing systems and networks used for early 
warning and hazard tracking of volcanic eruptions, such as GDACS, ReliefWeb, and 
GlobVolcano. For instance, GDACS (see section 3.3.1) lacks authoritative information, is 
initially only based on automatic alerts and is not capable of near-real-time warnings for 
volcanic events. The information on volcanoes is based on weekly reports and is shared via 
daily newsletters. Moreover, even though the scientific community is the main data provider, 
GDACS does not provide them with any valuable information. GlobVolcano (see section 
3.3.4) uses only satellite data and provides it to the scientific community and public users. 
However, it does not integrate data from ground-based sensors with the space-based 
platforms. 
 
To address these gaps, this chapter will describe the framework for a new system – VIDA – 
that will collect and provide uniform access to relevant Earth observation data, as well as 
information services.  
 
This chapter begins with a brief summary of the high-level requirements for a VIDA system; 
the details are given in Appendix A. These requirements are based on research into end-user 
needs, as well as on the survey of technology and the gap analysis in Chapter 3. These 
requirements in turn form the basis for a description of a VIDA system. This chapter 
identifies several use cases for the system and provides four examples of interactions with a 
VIDA system. The requirements, system description, use cases, and examples form the 
design framework for a VIDA system, which is the main deliverable for the report.  

4.1 High-Level System Requirements 
The high-level requirements for a VIDA system are classified into four categories: end-user, 
early warning, hazard tracking, and core system requirements. The requirements for early 
warning and hazard tracking are defined independently, because they represent tasks that the 
system is supposed to carry out separately. This section will provide a brief overview of the 
system requirements. A detailed description can be found in Appendix A. 
 
For the end-user requirements, the system shall be capable of providing information to at 
least five classes of end-users: the aviation community, private citizens, emergency crews, 
authorities, and the scientific community. The information provided to each end-user should 
allow them to plan, make decisions, and take appropriate actions. It should be noted that the 
end-user requirements have been written according to reference documents and not in 
coordination with any specific end-user. Consultation with end-users is a necessary next step 
before the implementation of the VIDA framework. 
 
For the early warning requirements, a VIDA system shall be capable of collecting and 
analysing data about the precursors of volcanic activities such as thermal flux, gas emissions, 
hydrological changes, geomagnetic changes, seismic activity, and ground deformation.  
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For the hazard tracking requirements, a VIDA system shall be capable of accessing data 
that can be used to track hazards associated with volcanic activity including pyroclastic flows, 
lahars, lava flows, landslides, and ash plumes. 
 
For the core system requirements, a VIDA system shall be capable of collecting, 
processing, storing, and delivering data coming from different sources. All the data provided 
will be transformed by the system into a standardized, documented, and open format. To 
allow the system to expand in the future, it will be flexible, extendable, and scalable.  

4.2 Description of a VIDA System 
The Earth observation community has access to a large amount of data, information, and 
methods for processing, but one of the main problems is that the end-user has to deal with 
many different data formats and different ways to collect and to process them.  
 
The VIDA framework outlines a system that will provide uniform storage and easy access to 
Earth observation data and information. Such a system will provide uniform access to 
services that allow the end-user to process this data, as well as advanced computing facilities 
for creating useful information. The aim of the VIDA framework is not to develop new 
computing, storing, or data providing facilities, but to integrate existing Earth observation 
technologies, computing, and storage facilities in a uniform fashion. 
 
Figure 4-1 presents a general overview of the architecture of a VIDA system. It is composed 
of three different layers. The first layer is the interface layer and contains the interface tools 
that are employed by end-users to interact with the system. These can be web-based tools on 
web-enabled devices (e.g. desktops or mobile phones), GIS-based tools, broadcast tools for 
early warning, or other specific tools to interface with governmental organizations.  
 
The second layer is the access layer. It provides access to the services of the system and is 
responsible for creating the content that is sent to the users through the interface tools. This 
layer is composed of the content provider, the service provider, and the notification 
server. The content provider creates the content requested by the user via an interface tool. 
One of the important features of the system is that it is able to select different degrees of 
detail and complexity of information, depending on the user’s needs and technical skills. It 
allows many different users to access the information in a straightforward manner. For 
instance, the crew of an aircraft only needs to know how ash plumes are moving in the 
airspace and how they can avoid them. Scientists, on the other hand, require data that has as 
much detail as possible to study volcanoes. The service provider implements the different 
functionalities provided by the system. This component coordinates access to the resources 
managed by the VIDA system. The notification server is responsible for providing 
notifications to users concerning specific set of events that are detected by the system.  
 
The third layer is the processing layer and contains the external systems and architectures 
that provide uniform input that is integrated into the overall VIDA framework. This layer 
standardizes and unifies specific data formats and specific access procedures for other 
systems. It is composed of the data provider, the knowledge provider, the storage 
provider, and the computing provider. The data provider ensures uniform access to the 
external systems that provide raw data. For example, the external data providers can include 
organizations such as USGS and ESA. The knowledge provider uses various mechanisms to 
create information from the raw data. To do this, capabilities of other systems (e.g. the NASA 
Distributed Active Archive Centers and the ESA Earth Observation Service) will be used as 
well. These mechanisms can be specific tools, methods, or algorithms for data processing. 
The computing provider and storage provider supply computing and storing facilities to the 
system and end-users. Similar to the previous components, these providers unify access to 
the infrastructures. 
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Figure 4-1: Architecture of a VIDA system 

4.2.1 Enabling Technologies 
The VIDA framework is intended to leverage enabling technologies that are becoming more 
important and widely used. They can be classified in three different areas: communication 
interfaces, computing and modeling services, and collaborative work tools. 
 
Communication interfaces, part of the first layer in Figure 4-1, provide content to the user in 
a very dynamic and flexible way. They specify what information is delivered and how it is 
delivered. The VIDA framework can take advantage of technologies like RSS feeds, blogs 
[Avesani, 2005], Multimedia Messaging Services [Sevanto, 1999], and AJAX [Jeon, 2007] 
tools. Furthermore, the framework can use novel infrastructures and protocols to transmit 
the information. For example, the Satellite-Based Augmentation System (SBAS)  
[Bonnet, 2004] can be used to broadcast small packets of information concerning early 
warning and hazard tracking. 
 
Existing computing and modeling services can be integrated into the third layer of the VIDA 
framework. These technologies create knowledge and provide computing power. Examples 
include ESA’s computing and data provider Grid Processing on Demand (GPod)  
[ESA, 2008a], the computing infrastructure of the Distributed European Infrastructure for 
Supercomputing Applications (DEISA) project [Catlett, 2002], and the TERAGRID project 
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[Andrews, 2006]. The VIDA framework could also integrate other service providers such as 
the ESA Service Support Environment that provides generic service for process Earth 
Observation raw data. 
 
Collaborative work tools promote interaction between VIDA users. These are Web 2.0 
technologies that facilitate the dynamic flow of knowledge. The VIDA framework can 
incorporate wikis, portfolios [Siddiqi, 2000], twitters, and Basic Support for Cooperative 
Work (BSCW) [Appelt, 1996]. 
 
In order to integrate these technologies, the VIDA framework can use standard web 
technologies and data formats like eXtensible Markup Language (XML), XML Schemas, 
Resource Description Framework (RDF), and open standards such as the OpenGIS 
Geography Markup Language (GML) [OGC, 2008a]. 
 
Communication and computing technologies are continuously evolving. Incorporating these 
technologies into the VIDA framework means that such a system will also evolve, allowing 
more effective dissemination of early warning and hazard tracking information. 

4.3 General Use of a VIDA System 
 The foregoing section described the architecture of a VIDA system. This section provides a 
discussion of how end-users interact with such a system, and the general use of the system, 
that is common to all users. 

4.3.1 Common User Access 
Users will be able to access a VIDA system through user-specific connections and will be 
able to manage their user profiles and the characteristics associated with their accounts. They 
will be able to manage files, including functions such as creating, moving, copying, and 
deleting files or directories. They will be able to request access to specific services, software 
tools, specific data from a particular provider, and resources such as computing services or 
storage capacity. They will be able to retrieve a list of services available to them, including 
technical description, available data quota, and instructions on how to use them. Depending 
on the user profile, they will be able to access different types of data and resources including 
the semantics of the data (such as a satellite thermal infrared image), the format of the data 
(such as an XML based format), and the sensor used to gather the data (such as MODIS).  

4.3.2 Administration of VIDA  
A VIDA system will provide a web-based application to manage the user accounts, including 
the ability to create or delete a user account, and to grant or deny specific user privileges. 
These features will allow managers to permit specific users to access specific services, data, 
and resources. Managers of the system will have access to the status of the different services 
provided by VIDA using a web-based interface. This will provide information about the 
status of the different computing, data, and knowledge providers.  

4.3.3 Alarms and Hazard Warnings 
A VIDA system will provide an interface that can automatically trigger alarms when volcanic 
activity is anticipated or volcanic hazards are detected. Authorized users will specify 
conditions that lead to an alarm being triggered for a given volcano, depending on its 
location. They will also be able to override the system to either cancel a false alarm or issue 
an alarm not triggered. The information provided with the alarm will depend on the type of 
user. 
 
If a user identifies a potential hazard that has not been already identified by the system or by 
other users, they will have an interface via a web-based tool to introduce the hazard and 
request its integration into the system. The user will have to describe the identified hazard. 
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The system will provide the ability to include visual information about hazards. Some users 
will be authorized to review these entries and delete them if they are not valid. 

4.3.4 Callbacks on specific monitoring information 
The users will be able to subscribe/unsubscribe to different kinds of events that will be 
triggered when a volcanic event is impending. These callbacks could be done through Really 
Simple Syndication (RSS), Short Message Service (SMS), or email. The user will be able to 
specify the characteristics of the event (e.g. specify different levels of confidence, time of 
notification, and geographic locations concerned). 

4.4 Use Cases for a VIDA System 
A VIDA system will provide different levels of services and privileges depending on user 
groups. Table 4-1 shows a summary of these services available for each of the different user 
groups. Each of the users contained in the table is explained below. 

4.4.1 Local Communities and Individual Users 
The main goal of the functions provided to local communities and individual users is to 
reduce their risk to hazard exposure by providing updated information concerning volcanic 
eruptions. A VIDA system will allow access to a set of predefined forecasting information 
provided in near-real-time. Through a user-friendly web-based application, the user will have 
access to visual information of different hazards in the specified area including the evolution 
of each of the detected hazards over time. The information concerning the hazard will 
include generic information specifically composed for non-expert users. 
 
Once an alarm is triggered, the users will be able to track the impact of a hazard on specified 
areas. For instance, a VIDA system will provide areas and locations at higher risk, possible 
changes on the topography, or possible routes of entry and evacuation. To provide this 
information, the system will use forecasting models to create knowledge about how a given 
hazard may behave. For example, it could estimate the flow of ash plumes using satellite 
images and wind information coming from weather forecast providers. Forecasts will be 
accompanied by a level of confidence measure. 

4.4.2 Authorities 
The main goal of the functions given to the authorities is to provide them with sufficient 
information for decision-making purposes. The term “authority” includes three levels of 
users: local governments, national governments, and international organizations. Personnel 
authorized to access the VIDA system will be chosen within each organization. The 
functionalities designed for different authorities will be characterized by different levels of 
details, depending on the area controlled by the specific entity. Authorities will interface with 
the system via a desktop web browser. 
 
A VIDA system will provide mechanisms to apply forecasting models or other models to 
data from a suitable sensor to create useful information about how a given hazard may 
behave and how different areas may be affected. Models will be predefined within the system 
so that users only deal with the final information and avoid interfacing with complex 
simulation models. This function will also allow generating damage scenarios to get 
information such as: specific maps with the general outline of the affected area, estimate of 
the population, infrastructures likely to be affected, and general estimates of the damage. 
Two types of data will support this function: pre-event data for planning purposes and  
near-real-time data during the volcanic events for hazard tracking and response actions.  
 
When an alarm is triggered, the user will be provided with detailed information about the 
identified hazard including who has triggered the alarm, if it is an early warning alarm, the 
level of confidence, and forecasting information (e.g. direction and velocity of ash plumes). 
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By default, the system will provide all the information available on hazardous events in 
progress. This will also include information related to human safety risks. 
  
A VIDA system will allow authorities to introduce and publish information to the system 
concerning the different in situ data that they collect, mainly related to population density and 
infrastructure. This information can be introduced manually or using a specific tool. 
 
Table 4-1: Services provided to the different user groups 

 
 

Local 
Communities / 
Individual Users 

Authorities 
Emergency 

Crews 
Aviation 

Community

Scientific and 
Educational 
Community 

Passive (only visualization) 
Access to Hazard 
Information X X X X X 

Access to Alarms X X X X X 
Access to Experts 
Information    X X 

Access to Experts 
Network 

    X 

Access to Processing 
Capabilities 

    X 

Active (those with inputting rights) 
Provide Hazard 
Warnings X X X X X 

Callbacks on specific 
monitoring information X X X X X 

Updating System Data  X X X X 
Editing 
Recommendations    X X 

Activating Alarms    X X 
Defining Research 
Groups     X 

4.4.3 Emergency Crews 
The main goal of the functions given to emergency crews is to enable them to acquire 
sufficient information to be able to respond effectively. Emergency crews include 
organizations such as fire departments, police, non-governmental organizations (NGOs), and 
hospital staff members. The functions will be accessible to the users by means of a web 
browser interface accessible via desktop browser or a mobile device. Utilizing the VIDA 
framework via mobile devices can enable emergency management to be more effective by 
providing an information link between the control center and the ground personnel.  
 
A VIDA system will provide both forecast and monitoring information for identified 
volcanic hazards. The information will be provided based on the needs of the emergency 
crews. This can be done, using an interface like a desktop GIS tool or a simplified web-based 
GIS. The system will provide forecast information about the detected hazards to identify 
how a given hazard may behave and how the different areas may be affected. This tool will 
allow the user to perform such activities as estimating the vulnerability of the population, 
comparing knowledge of past volcanic episodes by examining several eruption scenarios in a 
potentially hazardous area, and to access hazard predictions. 
 
When an alarm is triggered, the user will be provided with detailed information about the 
identified hazard: a representative image of the hazard detected, identification of the risk 
level of the affected areas, access to possible routes of entry and evacuation, topography of 
the terrain, seismic activity, direction of lahars and lava flows, gas emissions, ground 
deformation, and access to information related to ash clouds, hotspots, and landslides. 
Moreover, information about who has triggered the alarm, the level of confidence, 
forecasting information, and other details will also be provided. VIDA will allow emergency 
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crews to introduce and publish new information to the system concerning the different in situ 
data that they can collect.  

4.4.4 Aviation Community  
The main goal of the functions provided to the aviation community is to give them sufficient 
information to avoid hazards, primarily ash plumes. These functions will provide monitoring 
and early warning. In this area there are two different users: the crew of the aircraft and the 
ground segment - i.e., air traffic controllers (ATCs). 
 
The aircraft crew will have access to early warning information concerning ash cloud hazards. 
This information can be provided by using beacon and satellite connections. Near-real-time 
satellite images of ash clouds crossing aircraft routes will be processed to provide the crew 
with information regarding cloud position, velocity, level of hazard intensity, etc. The system 
will also be able to provide weather forecasting information concerning the hazard. Users 
will have access to recommendations on how to interpret the data provided by the tool and 
confidence of the reliability of such information, depending upon whether the provided 
information is based on forecasting models or based on near-real-time data. 
 
A VIDA system will provide an interface that will issue alarms when an ash plume that can 
affect the aircraft has been detected. This alarm will provide detailed information about the 
identified hazard: who has triggered the alarm, the level of confidence, forecasting 
information, and relevant information about the ash cloud. In the event that the crew 
identifies a potential ash plume hazard that has not been already identified by the system, 
they will be able to provide this information to other aircrafts and the ground segment. The 
system assumes that the aircraft already have a communication channel to exchange 
information with other aircraft and ATCs.  
 
The ATC will have access to a set of specific tools and web-based tools that will provide 
several functions. Some of these functions are shared with the crew members, such as access 
to hazard information and alarms. In this scenario the ATC users will have a global view of 
the whole airspace, using GIS software and specific system tools. They will be able to select 
the areas about which they want to get information. 
 
In case the ATC identifies a potential hazard that has not been already identified by the 
system, they will have a web interface to introduce the information related to the hazard and 
request its integration into the system. The system will allow users to introduce and publish 
information to the system concerning the different routes and other in situ information 
available to them. This information can be introduced manually, or may be provided 
automatically by aircraft sensors or images. The user will be able to provide 
recommendations to the crews of different aircrafts. 
 
A VIDA system will provide an interface to automatically generate reports and information. 
The ATC, using, for example, a web-based interface, will be able to select which data has to 
be included in the report and which procedures have to be applied to the data. 

4.4.5 Scientific and Educational Community 
The main goal of the functions available to the scientific and educational communities is to 
provide them with all the data required to further their understanding of volcanoes and to 
facilitate communication with relevant authorities. These functions will be accessible to users 
that have expertise in the early warning and monitoring systems, who will have access to all 
content and extended information. 
 
Whenever a hazardous event in a specific location is detected by the system, the scientific 
community in the area (e.g. local volcano observatory members) will be notified and all the 
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available information about hazards will be automatically sent to them. Expert users will also 
receive notifications about new sensors and data sources.  
 
To facilitate the coordination among the different researchers, the system will allow for the 
creation of research groups consisting of experts from different countries. In each group the 
users will have access to collaborative and communication tools to coordinate their work. 
The users will have a set of tools that will allow communication among scientific and 
educational users.  
 
In addition, users will have a set of collaborative existing frameworks that facilitate the 
interaction between the different organizations belonging to the system (volcano 
observatories, space agencies, universities etc.). These frameworks will allow users to share 
data, knowledge, and procedures. Technologies that will be available to users are: Wikis, 
Portfolios [Siddiqi, 2000], Knowledge Map Tools (IHMC, Mind Maps, FreeMind, and 
Belvedere), Concurrent Version Systems (CVS), and BSCW Collaborative Platform  
[Appelt, 1996]. 
 
A VIDA system will provide scientific and educational users with specific interfaces to create 
data analysis experiments, and use computational and storage resources. It will enable them 
to define workflows of tasks and to specify when the output of one task is needed as an 
input for another task. The system will provide mechanisms that apply forecasting and other 
models to useful data. This will create knowledge about how a given volcanic event may 
develop. In this scenario, the user will have to specify which models and data should be used 
and will have to deal with the complexity of using such models. Therefore, this user should 
know how complex models behave, what data they require, as well as how to interpret their 
outputs. To access this function the user will have a specific VIDA tool. This tool will be 
available in a web-based interface.  
 
Scientific and educational community users will be able to provide warning alarms after they 
analyze available data. The system will allow the researchers to introduce data and 
information into the system. They will be able to store raw data and processed information. 

4.5 Interaction Examples 
The preceding user case descriptions highlighted all interactions with a VIDA system. This 
section presents specific interaction examples that illustrate the utility of a VIDA system. 

4.5.1 Interaction with the Charter 
One of the goals of a VIDA system is to improve information flow between all the entities 
involved when a volcanic event happens, including the Charter. The flow diagram in  
Figure 4-2 shows a possible interaction between the Charter and the proposed VIDA system. 
The system can act both as a user of the Charter and as a knowledge provider. Once a 
volcanic event occurs, the Charter can be activated in two different ways: by an Authorized 
User through the VIDA system or by a VIDA administrator that will act as an Authorized 
User. When the Charter is activated, the VIDA system will provide information to the on-
duty operator, the emergency on-call officer, and the program manager, and will deliver value 
added information directly to the local authorities and emergency crews on the ground. 
 
A VIDA system can help authorities make the decision to activate the Charter in advance of 
volcanic events, since data will already be available to forecast the event. This way, the 
process of assigning a project manager and gathering data will already be taking place if and 
when the volcanic event occurs. By activating prior to a potential event, the Charter would 
add further value to the disaster management process, taking on a new role as an early 
warning mechanism. 
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Figure 4-2: Interaction between the Charter and VIDA system 

4.5.2 Local Community and Individual User example 
A simple example of interaction between a VIDA system and a local community or 
individual user is described in Figure 4-3. The information, as described in section 4.4.1, is 
provided to the local user at two different levels: near-real-time information, and monitoring 
and forecast information.  
 
The top of the diagram shows schematically the data acquisition, both from ground stations 
and from space assets. The provided data are converted by the VIDA system into an open 
source standard; this is value added data. At this point the knowledge provider can interact 
with the user at different levels. 
 
The bottom left of the diagram shows the early warning alarm issued by the notification 
provider of the VIDA system. The early warning alarm can be communicated by SMS,  
e-mail, or RSS, as well as through a web portal. The information has a defined scope to allow 
local authorities to make an informed decision on how the local population should react 
given the impending volcanic event.  
 
On the bottom right, the VIDA system knowledge provider interacts with the user by means 
of different technologies (web-based, specific tool interfaces, etc.) and supplies information 
useful to follow ongoing volcanic activity and anticipate possible hazards. The information 
accessible is in the form of images and maps of the area of interest, as well as information 
provided by other users of the system (e.g. the scientific community).  
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Figure 4-3: Interaction between VIDA and user from local community 

4.5.3 Scientific and Educational User example  
A VIDA system will provide the scientific and educational communities with a set of 
different services and tools, as shown in Figure 4-4. According to the defined framework, the 
scientific community will interact with the VIDA system in two different ways: as an end-
user with access to all the services and tools available, and as a data provider, introducing 
into the system data that will be available to the whole scientific community. Different tools 
and services provide the user with different types of information: near-real-time information, 
monitoring information, and forecast information.  
 
The VIDA system will include a notification service to provide the scientific community in 
areas surrounding volcanoes (e.g. volcano observatories) with an early warning alarm about a 
detected hazard by means of SMS technology, e-mail, or RSS services. All the available data 
related to this hazard will be automatically sent to them. They will also have access to a 
communication tool with the identification of the relevant authorities. The scientific 
community will have access to GIS and web-based tools to interact with other users sharing 
data and knowledge, to visualize the data, and to conduct interactive experiments with other 
scientists. 
 

 38



VIDA Design Framework 

 
Figure 4-4: Interaction between VIDA and the scientific community 

4.6 Summary 
This chapter has presented the VIDA design framework - a starting point from which future 
system designers can develop a VIDA system capable of collecting, standardizing, and 
sharing information about volcanic activity with many different end-users. This design 
framework includes high-level system requirements, a system description, use cases, and 
specific user interaction examples. 
 
The challenges to implementing a VIDA system are not just technical. The following 
chapters discuss the political and financial implications of a VIDA system. 
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______________________________________Chapter 5 

5 Governance, Policy, and Law 

For a system to be successful it must have a governance structure that oversees its functions 
and it must comply with relevant policies and laws. This chapter will discuss the governance, 
policy and law issues that should be considered in the design of a system that adheres to the 
VIDA framework. 

5.1 Governance  
This section discusses the governance structure for a VIDA system, including the 
consortium under which such a system could be set up. It will also discuss the potential 
integration of the system under the umbrella of a global Earth observation system, such as 
GEOSS described in Chapter 3, and the advantages of such an integration. 

5.1.1 VIDA Governance 
A volcano early warning and hazard tracking system adhering to the VIDA framework is 
best conducted in a global context. Similarly, the ultimate goal of GEOSS is to be a global 
and flexible network providing information to decision makers [GEO, 2008a]. Integration of 
a VIDA system into GEOSS would ease a VIDA system’s ability to obtain data and would 
minimize redundancy of multiple similar systems. To integrate into the global GEOSS 
network, a VIDA system organization would need to be established.  
 
A VIDA system would initially be established by a consortium that would be, at least initially, 
publicly funded. Public funding is justifiable given the humanitarian benefits. This 
consortium would be comprised of government agencies and satellite companies that 
specialize in earth observation, meteorology and hazard tracking. Initialization of a VIDA 
system would require the consortium to establish and administer the VIDA framework 
during a two year pilot project.  
 
If a VIDA system prototype were to be established, governance would fall to a private entity 
called, for the purpose of this report, VIDA Co. VIDA Co. would be governed by a 
decision-making body called the Council. The Council could consist of volcanologists, 
stakeholder representatives and remote sensing experts. They would govern the functioning 
of the VIDA system by vetting end-user requirements, ensuring the requirements are being 
met and determining which volcanoes fall under the repository of the system. The Council 
would be responsible for periodically making system improvements and would conduct an 
annual meeting with end-users to discuss system operation, system updates, user needs, and 
potential improvements.  
 
In addition, the Council would be tasked with writing end-user agreements. Several types of 
agreements will need to be written depending on the type of user or provider. These 
agreements would state the conditions of use for the system including a condition detailing 
that the data would be used only for monitoring and disaster risk management of volcanic 
disasters. Data providers and end-users would have to sign this agreement before becoming a 
cooperating entity or end-user of VIDA Co.  
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Under the Council, a management team would oversee and operate the daily workings of 
VIDA Co. The management team would administer the process of obtaining end-user 
requests and granting licenses. In addition, the management team would monitor the use of 
the data and restrict user access if inappropriate conduct were to become evident. An 
information technology and system engineering team would design the physical 
infrastructure and ensure that it functions correctly.  

5.1.2 Integration within GEOSS 
Once a recognized corporation, VIDA Co. could adopt the GEOSS framework and 
following a successful installation, could submit a proposal for integration in the overall 
GEOSS system structure. A summary of how this would be accomplished can be found in 
Figure 5-1. Once GEOSS is implemented, it will support nine Societal Benefit Areas (SBAs): 
disasters, health, energy, climate, water, weather, ecosystems, agriculture, and biodiversity 
[GEO, 2008a]. A VIDA system could potentially be integrated under the societal benefit area 
of disaster mitigation. 
 

VIDA System
Development

Construction,
Standardization

and Testing
Trial Period

Potential
Integration within

GEOSS
 

Figure 5-1: Flowchart illustrating potential integration of VIDA within GEOSS 

 
If incorporated, VIDA Co. would also be able to maintain its own governance structure 
because GEOSS itself does not have a hierarchical structural system. GEOSS will consist of 
existing and future Earth observation systems that will be “supplementing but not 
supplanting their own mandates and governance arrangements” [GEO, 2005]. The overall 
GEOSS structure is being built by the Group on Earth Observations (GEO) on the basis of 
a ten year implementation plan, which runs from 2005 to 2015 [EPA, 2008]. GEO is open to 
all UN Member States, as well as the European Community. Currently, GEO has seventy-
four Member States plus the European Commission, as well as forty-six participating 
organizations [GEO, 2007]. GEOSS can thus be described as an inter-institutional 
mechanism for ensuring the necessary level of coordination, strengthening and adding value 
to the existing Earth observation systems [GEO, 2005].  
 
On the 26th of June, 2008 GEO issued its Call for Participation (CFP) in the GEOSS System 
Pilot Architecture [GEO, 2008c]. A VIDA system could potentially participate in a later 
phase of the GEOSS Pilot Architecture Project within the area of disaster management by 
registering VIDA Co. as a GEOSS component and implementing the GEOSS system 
interoperability arrangement.  
 
By becoming a GEOSS component, the VIDA system would gain an international 
infrastructure in which crucial data from different sources would be interconnected and 
standardized to serve the public good. If embedded within GEOSS, VIDA Co. could 
process raw GEOSS data pertaining to volcanoes, integrate it into predictive models and 
forward data to stakeholders, policy makers, and public and private entities [GEO, 2007].  

5.2 Data Policy Considerations 
The key role of any governance body applying the VIDA framework to a system would be to 
consider data policy issues including data sharing restrictions and interoperability. This 
section will discuss how data can be collected and standardized - two necessary components 
for the implementation of a system adhering to the VIDA framework.  
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5.2.1 Data Collection 
In addition to a functioning governance system, it is essential that a system applying the 
VIDA framework acquire enough data to serve its purpose. The success of implementing 
such a system would depend on the amount of free data accessible from data providers. This 
may be complicated since various nations have data policy and data sharing restrictions. 
Certain nations may prefer to maintain control over their data rather than share it due to 
national security, commercial confidentiality or financial considerations. Data providers 
would be more likely to overcome these complications if the effectiveness and societal 
benefits of a VIDA system were proven. The Council would be responsible for outreach to 
data providers to promote the rationale and benefits of the system. 
 
A model that could be used to convince data providers to provide free data would be the de 
facto data policy, adopted by the Brazilian Instituto Nacional de Pesquisas Espaciais (INPE) in the 
late 1990’s. The goal of this policy is to make all remote sensing data received by INPE 
available for free on the Internet, including the resulting maps, and software for image 
processing and GIS [Ferreira, 2008]. International recognition of the importance of 
providing free data has grown since this policy was enacted. In 2007, China and Brazil agreed 
to deliver China-Brazil Earth Resources Satellite (CBERS) data free of charge to African 
countries, in a partnership which included Italy, South Africa and Spain [Ferreira, 2008]. 
From April 2004 until January 2008, more than 350,000 CBERS images have been delivered 
to governmental and NGOs, educational institutions, and the private sector [Ferreira, 2008]. 
The USGS is currently working to provide end-users with increased electronic access to any 
Landsat data. As of July, 2008, newly acquired Landsat 7 data are being distributed by the 
USGS over the Internet free of charge [USGS, 2008a]. It is expected that by February 2009, 
any archived Landsat data will be processed automatically to a standard product recipe free 
of charge and staged for electronic retrieval [USGS, 2008a]. This movement toward sharing 
data can continue to expand facilitating the implementation of a framework, such as VIDA, 
that relies on free data.  

5.2.2 Data Interoperability and Standards 
Once the data has been provided, it must be standardized to meet the needs of end-users. 
Several international organizations are involved in the definition of standards for 
interoperability. These standards are necessary for system implementation, including those 
using the VIDA framework. Data standards for integration within GEOSS would also need 
to be considered.  
 
Most of the international agreements on interoperability and standards for Earth observation 
were created as a result of the development of GEO, which, as mentioned, is constructing 
GEOSS [GEO, 2008a]. The main international organizations involved in the definition of 
standards for geospatial information are the Institute of Electrical and Electronics Engineers 
(IEEE), the International Standards Organization (ISO), the Open Geospatial Consortium 
(OGC), and the CEOS. These groups define standards for sharing geospatial data, services 
and systems across different platforms all over the world. During the implementation of a 
VIDA system it would be necessary to consider the ISO, OGC and CEOS standards to 
assure the proper operation and interoperability of this system. 
 
The first standard that would need to be considered is that of the IEEE, specifically the 
committee in charge called the IEEE Committee on Earth Observation (ICEO) established 
in 2004. ICEO provides expertise in information technologies associated with Earth 
observation to support GEO’s needs in the development of GEOSS [ICEO, 2008].  
 
Another standard that would need to be followed is the ISO, which also collaborates with 
GEOSS through the definition of standards for data sharing and protocols in the geospatial 
community. Within the ISO, Technical Committee 211 is responsible for setting 
international standards on digital geographic information aiming to establish a set of 
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standards for information concerning or related to Earth. These standards specify geographic 
information, methods, tools, and services for data management, acquiring, processing, 
analyzing, accessing, presenting, and transferring such data in digital and electronic form 
between different end-users, systems and locations [Liping, 2006].  
 
Additionally, OGC standards would need to be considered. OGC works on standards 
definition for sharing geospatial data and services across different systems and platforms 
[OGC, 2008b].  
 
The final organization involved in standardization activities to consider would be CEOS. For 
a VIDA system to integrate this organization’s standard, it must participate in CEOS 
working groups. These working groups include the Working Group on Calibration and 
Validation (WGCV), the Working Group on Information Systems and Services (WGISS) 
and the Working Group on Education, Training and Capacity Building [CEOS, 2008]. 

 
The VIDA framework would also need to address specific standardization needs at the end-
user level, including the aviation sector, emergency aid crews, political decision makers, 
scientific communities and private citizens. See Table 5-1 for a summary of the current 
existing or required standardizations for the different user groups. 
 
Table 5-1: Standardization for end-users 

End-User Standard 
Aviation Sector The implementation of geospatial data is in its infancy. 

Agencies such as the US Federal Aviation Administration 
(FAA) are leading on-going standardization activities [NRC, 
2004]. 

Emergency Aid Crews Safety protocols and data standards need to be defined. This is 
an on-going activity at an international level. 

Political Decision Makers International standardization exists and as a result proprietary 
data formats and communication protocols are adopted at the 
local and national level. 

Scientific Communities Scientific community users utilize ISO rules to aid in the 
definition of the data formats, communication protocols, and 
interfaces. 

Private Sector Standard data formats and protocols exist since these end-users 
employ web-based technology. 

 
The components and services of a VIDA system must be registered in the GEOSS 
Component Registry and the Service Registry to include the system within GEOSS. These 
registries will provide a formal listing and description of all the Earth observation systems, 
data sets, models, and other services and tools [GEO, 2008d]. Standards and protocols will 
interlink the various components and will facilitate the integration of data and information 
from various sources [GEO, 2008d]. Decision-makers, managers and other users of Earth 
observation data and information will have access to the components and services listed on 
the Registry, thus creating a GEOSS common infrastructure [GEO, 2008d]. 

5.3 Legal Implications  
A variety of legal systems exist that would impact the functioning of a VIDA system, 
including international, national and private law. Issues involving licenses and liability would 
also prove crucial to the viability of the VIDA system.  
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5.3.1 Relevant International Law 
While no specific treaty deals exclusively with remote sensing from space, the 1967 Treaty on 
Principles Governing the Activities of States in the Exploration and Use of Outer Space, 
Including the Moon and Other Celestial Bodies (The Outer Space Treaty), declares the 
“freedom of use and exploration” of outer space [UNGA, 1967]. As a result, it can be argued 
that remote sensing satellites are free to collect data on any portion of the Earth from space. 
On January 22, 1987, the United Nations General Assembly (UNGA) adopted the UN 
Principles Relating to Remote Sensing of the Earth from Outer Space (UN Principles) in the 
form of a non-binding Resolution [UNGA, 1986]. Under these UN Principles, remote-
sensing activities must be carried out for the benefit and interest of all countries and in 
accordance with international law [UNGA, 1986]. However, since the UN Principles are not 
a binding source of international law, enforceable regulation of remote sensing activities is 
carried out on a national level. 

5.3.2 National Law 
Although national laws regarding remote sensing vary widely from country to country, they 
must be considered in the development of a VIDA system. One issue that might prevent the 
VIDA framework from properly functioning is the so-called “shutter control”. This is when 
a government bars remote sensing satellite operators from sensing certain areas or from 
disseminating acquired data and information derived from it. Shutter control could occur 
when a government chooses to shut down satellite operations for national security reasons. 
All existing national laws regarding remote sensing activities give national governments with 
remote sensing capabilities the right to carry out shutter control. For example, in the United 
States, the Land Remote Sensing Policy Act requires private space-based remote sensing 
systems to be licensed by the US Government [US Congress, 1992]. Presidential Decision 
Directive 23 requires these licensees to limit data collection and/or distribution by the 
system to the extent necessitated by the given situation during periods when national  
security or international obligations and/or foreign policies may be compromised  
[US Government, 1994]. Although shutter control is rarely practiced, the fact that countries 
have the capability to shut down satellite operations could prove problematic in the future, 
and therefore must be considered in the development of a VIDA system. 
 
Moreover, attention should be paid to the delivery of sensitive remote sensing data to entities 
prohibited by national statutes. Restrictions in national remote sensing acts will inevitably 
influence data flow.  

5.3.3 Private Law  
Since the VIDA framework includes commercial providers, carries on commercial activities 
and works with copyrighted material, application of this framework to a system would 
involve private law. To make the procedure of gaining data required for a VIDA system 
functional, data protection must be addressed. Some national space laws (e.g. Law of Russian 
Federation on Space Activities), national data policies (e.g. Indian Remote Sensing Data 
Policy), and corporate data policies (e.g. SPOTImage general license, Eurimage licensing 
conditions, ESA ENVISAT Data Policy) refer to existing national and international 
copyright regimes as governing the protection of remote sensing data. According to 
copyright laws, some creative effort is needed in the production of a piece of work. 
However, remote sensing data does not qualify under this law [Guibault, 2002]. Furthermore, 
ideas, processes, methods of operation, including data are not protected by copyright laws 
[WIPO, 1996]. 
 
A VIDA system is intended to gain the participation of both commercial remote sensing 
companies and government data providers. However, data received from commercial remote 
sensing companies (e.g. GeoEye and DigitalGlobe) and government subsidized data (e.g. 
Landsat and ENVISAT) must be treated differently. The commercial remote sensing data are 
gained through commercial operations, while government data are subsidized. In addition, 
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the principles of access to and often use of these two types of data are different. Further 
complicating this issue, within the category of government subsidized data, different states 
have distinct approaches in regulating access and use issues. For example, the US has state 
and federal open record laws [Dansby, 1991]. In addition, the US information policy at the 
federal level is based on the following principles: freedom of access to and re-use of 
information, no government copyright and information at the cost of reproduction and 
delivery [Weiss, 1997]. However, the majority of European Union (EU) Member States have 
systems that operate with closed access to commercially valuable government GIS records 
[Onsrud, 2004]. For instance, in the United Kingdom, the Ordnance Survey, as a Crown 
Corporation, is responsible for dissemination of topographic maps and has the right to 
establish prices for its products and services as the copyright holder [Ordnance Survey, 
2008]. 
 
In the EU, remote sensing datasets have an extra layer of protection under the Database 
Directive on the legal protection of databases. According to this directive under article 7, the 
database-maker has the right to prohibit unauthorized extraction or re-utilization of the 
substantial parts of the database. Article 11 states that the protection is granted to only those 
databases created in Europe which results in denial of protection of databases made 
elsewhere. 
 
Dissemination of information facilitates the exchange of knowledge, furthers awareness, 
benefits “downstream creators”, and ultimately fosters the generation of social welfare gains 
[Okediji, 2006]. This is exactly what the VIDA framework aims to accomplish in the sphere 
of early warning and hazard tracking of volcanic events. From a global perspective, if the 
goal of achieving welfare within society is to be pursued to its logical conclusion, there is a 
need to recognize a legitimate claim and interest in accessing data. Furthermore, access to 
information should be recognized as a right, by virtue of the public interest in it. Therefore, 
the relationship between VIDA and its data providers should be based on this ideal to freely 
access data needed to achieve its aims. 

5.3.4 Licensing 
In the development of a VIDA system, licensing schemes would have to be developed to 
enable the system to take on value-added activities regarding the licensed data, as well as to 
disseminate the processed information. Full and open access to available data resources 
would be a key principle for the VIDA framework. Such open access would ensure that 
value-added activities are properly conducted and the necessary information is delivered to 
those in need. 
 
Licensing mechanisms represent private regulation of rights regarding access to data and 
information. It can include copyright, other intellectual property protection regimes and 
elements of trade secret or confidentiality laws. Content of the license depends on the source 
of data (private or public) and the category of use (research or commercial). Licensing 
conditions restricting access to a single application or a specific purpose are common in 
many projects. 
 
Standard End-User Licensing Agreements (EULAs) set strict conditions of data access and 
use. For example, technological protection measures the use of digitized products that are 
otherwise available for end-users of hard copies. It normally includes the following: 
Intellectual Property Rights (IPRs) and reservation of ownership, specification of the type of 
the license granted, scope of use, terms and termination, limited warranties and disclaimers, 
exclusive remedies, limitations of liabilities, and infringement indemnities. The license is 
limited and non-exclusive, permitting only internal use of the data products and value-added 
products containing licensed imagery, developed by the end-user (e.g. SPOTImage license). 
The licensors generally control the distribution and dissemination of data. 
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During the development of a VIDA system, two types of licenses should be developed: one 
for the incoming data with data providers and the other for the outgoing information with 
system end-users. 

5.3.5 Liability issues 
Since a VIDA system will provide information services for the purpose of early warning and 
hazard tracking of volcanic eruptions, no liability for the damage that the use of information 
provided may cause will be attached. This is because the system will serve humanitarian 
purposes and the information within this use will be provided for free. To ensure that the 
information is produced with the highest level of care and accuracy, a Code of Conduct for 
VIDA system personnel, as well as strict specifications with regard to the indicators used to 
process the data should be introduced. 

5.4 Conclusion 
Governance, policy, and law issues are critical in the implementation of a framework such as 
VIDA and must be considered throughout the planning process. Once A VIDA system 
implemented, the governance body of VIDA will need to continue to monitor these issues as 
policies and laws evolve to ensure that the system continues to comply. 
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______________________________________Chapter 6 

6 Business and Financial Aspects 

While the previous chapter discussed the governance of a VIDA system, this chapter 
addresses the issue of financing. It begins by investigating the economic impact of volcanic 
events. It outlines the strengths, the weaknesses, and the costs of a system adhering to the 
VIDA framework and then identifies possible business opportunities, stakeholders, and risks. 
The system referred to in this section is a hypothetical system assuming that all high-level 
requirements of the VIDA framework are met. All monetary amounts are in US dollars 
unless otherwise specified. 

6.1 Economic Impact 
Depending on the location of the volcanic eruption and the intensity of the event, the 
financial impact can vary widely. A financial regional estimation impact for the 20th century 
was provided in Table 1-1. In the 1970s, the UN Economic Commission for Latin America 
and the Caribbean (ECLAC) developed a method for disaster evaluation. It has been 
strengthened and customized for different areas of the world and the World Bank has also 
conducted assessments using it [CRED, 2004]. It is now considered a global standard. The 
financial impact of an event contains several aspects such as damages to infrastructure 
(transportation, communication networks, power facilities, water), destruction of natural 
resources and agricultural lands, as well as the effects on industry, tourism, and trade. 
 
The eruption of Mt. St. Helens was the most economically destructive volcanic eruption in 
the United States. At the request of the US Congress, the International Trade Commission 
estimated the cost at $1.1 billion [Tilling, 1990] (representing more than $2.8 billion in 2008 
dollars). In Colombia, the eruption of Nevado del Ruiz cost the country an estimated $1 
billion − about 20% of the country’s Gross National Product for the year 1985  
[SDSU − Department of Geological Sciences, 2006]. 
 
The impact of a volcanic eruption on regional and national economies persists for several 
years after the event. The authors of the Socioeconomic Impacts of the Mt. Pinatubo 
Eruption study estimated that “damage to crops, infrastructure, and personal property 
totaled at least 10.1 billion pesos ($374 million) in 1991, and an additional 1.9 billion pesos 
($69 million) in 1992.” They also stated, “in addition, an estimated 454 million pesos ($17 
million) of business was foregone in 1991, as was an additional 37 million pesos ($1.4 
million) of business in 1992” [Mercado, 1999]. The financial benefits of monitoring Mt. 
Pinatubo are further outlined in section 6.7. 
 
Collateral financial impact of volcanic eruptions also includes air travel. In the case of Mt. St. 
Helens, ash accumulation and poor visibility caused the closures of several airports in eastern 
Washington State and the cancellation of more than a thousand commercial flights 
[Tilling, 1990]. During the 1995-1996 eruptions of Mt. Reuapehu in New Zealand, the value 
of cancelled flights alone was $2.4 million [GNS Science, n.d.]. 
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In a 2002 report, the Japanese government estimated that a future Mt. Fuji eruption could 
cost up to $21 billion. While experts try to determine the likelihood of such an eruption, 
many volcanologists believe it is really a question of timeframe, not likelihood  
[Earth Island Institute, 2007]. 

6.2 Stakeholder Analysis 
In this analysis, the major potential stakeholders, along with their interests, were identified. 
Table 6-1 summarizes this, and presents how a VIDA system can address those interests. 
 
Civil aviation companies have an interest in protecting their aircraft and passengers from 
accidents and damage due to ash plumes. More rapid access to and distribution of data 
would help to mitigate the hazards. The academic community and the volcanology 
community would benefit greatly from a system that integrates data from ground-based and 
space-based sensors. A VIDA system would also allow easy and efficient data sharing, and 
ultimately provide access to a much wider base of information. Governments, particularly of 
countries with volcanoes, are also identified as stakeholders. They may be the primary source 
of funding, and their major interest is the protection of their citizens. They are also interested 
in economic development and industrial growth. Therefore, spin-off and spin-in potential 
would be important. Remote sensing data processing companies would be interested in 
business opportunities, while insurance companies would be interested in risk assessment 
and mitigation, as well as claims verification. Finally, the World Bank is identified as a 
stakeholder due to its mandate to assist during and after natural hazards. A process that 
increases efficiency of response would be of interest to them. 
 
Table 6-1: A Summary of VIDA stakeholders 

Stakeholders Interests 
How a VIDA system can meet these 

interests 
Civil Aviation Security of people, 

cost reduction of 
aircraft assets  

Faster access to ash plume information 

Space Agencies Ownership of assets, 
data providers 

Decreased processing time of data 
through automation 

Geosciences Union, 
Academic Community, 
Volcano Observatories 

Scientific knowledge Data integration of a wide variety of 
sources 
 

UN, Governments Security of people, 
economic growth 

Information to decision makers enabling 
them to reduce loss of life in the time of a 
disaster; spin-off potentials; licensing 
agreements to generate revenue 

Remote sensing data 
processing companies 

Business 
opportunities 

Increases business opportunities for data 
distribution 

Insurance Companies, 
World Bank 

Cost estimation, 
claims verification 

Contribution of dynamic data to risk 
assessment  

6.3 SWOT Analysis 
The strengths and weaknesses of a VIDA system were assessed by evaluating its ability to 
meet the needs of the stakeholders. This allowed for the identification of potential 
opportunities and threats. The full SWOT analysis can be found in Appendix B. The major 
strengths of the system are the rapid access to information, the data sharing capabilities, and 
the scalability of the system. The major weaknesses are cost, size, and complexity of the 
system. The most important opportunity was the potential for saving lives, however 
scientific, research, and business opportunities were also identified. The major threat to the 
success of the system was identified as lack of funding, or interrupted funding, as this would 
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lead to gaps in data acquisition and impair the functionality of the system. Changing political 
regimes within countries around the world has been identified as the leading source of 
potential funding issues. 

6.4 Risk Analysis 
The SWOT analysis was followed by a risk analysis, which also identified the cost of a 
system, along with the related lack or interruption of funding, as the major risks. Scaling a 
VIDA system to the needs of the stakeholder can partially mitigate this risk. For example, a 
system utilizing only free satellite data, with limited geographic and near-real-time scope 
would be significantly less expensive than a global system with multiple data sources. 
Nevertheless, it is expected that initial development and start-up costs would be significant. 
 
Access to data is another significant risk. A well-defined and rigorous security plan would 
need to be clearly established and implemented in order to give confidence to countries that 
shared data would only be used for acceptable purposes. Losing this credibility would have a 
large negative impact on the system. 
 
False alarms are the final major risk identified in the analysis. If a VIDA system incorrectly 
activates an emergency response scenario, the cost and liability may be significant. Therefore, 
the final decision to activate any emergency response must be made by a human end-user. 
This would increase the lag time for an emergency response, but would be a necessary 
safeguard. 

6.5 Cost Analysis 
An accurate cost analysis of a system applying the VIDA framework is unrealistic without 
having a tailored system design. However, for cost estimation purposes, the system can be 
compared to Google Earth, Global Earthquake Model (GEM), and GEOSS. Google Earth 
provides maps and satellite images for regions all around the world, and is used by over 400 
million people [McIntyre, 2008]. It is similar to VIDA in the sense that it must accept, store, 
and output various forms of satellite data. It utilizes very complex software that provides 
multiple features including the 3D rendering of buildings and swoop navigation. The 
approximate cost of running and maintaining Google Earth is upwards of $150 million 
annually [McIntyre, 2008]. However, the total amount of Google Earth users, both 
commercial and public, is significantly larger then the amount of users expected to be 
involved with a VIDA system. 
 
GEOSS, as was explained in Chapters 3 and 5, is a system being built by GEO. Its goal is to 
develop a comprehensive, coordinated, and sustained Earth observation system in order to 
improve Earth monitoring, increase understanding of Earth processes, and elevate prediction 
capabilities of Earth’s behavior. While funding for a program of this magnitude is substantial, 
a limited amount of cost will be allocated to the system itself. Most of the system’s resources 
are being provided by either national and international mechanisms or voluntary 
contributions [GEO, 2005]. This system is a prime example of how international 
government cooperation is essential for global systems. 
 
GEM aims to be a global, open-source model for seismic risk assessment. GEM will be 
integrating science and engineering into hazard, risk, and economic modules. In addition to 
assessing earthquake risk, the system will also raise awareness, promote mitigations and 
insurance use, and stimulate risk transfer. The projected start-up costs of this system are 
approximately $50 million over the next five years. Sources of this funding include both 
public and private institutions [GEM, 2008]. 
 
A VIDA system would be able to function similarly to systems like GEOSS and GEM. 
Funding for a VIDA system would be required from both the public and private sector, 
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similar to GEOSS and GEM. The VIDA system is intended to be scalable to meet the needs 
and budget of the funding organization, therefore rough cost estimates are difficult. 
However, the estimated cost of a fully functional system with global coverage may be similar 
to that of the GEM. Additional costs must be assumed for obtaining near-real-time data 
from satellites and air-based resources, as well as costs associated with standardizing 
multiple-source data. With this in mind a start-up cost of $10 million to $15 million per year 
for the next five years has been estimated. This results in a total start up budget of  
$75 million. Once established the annual cost to operate and maintain the system will depend 
on the number of sites monitored as well as the number and cost of data sources. 

6.6 Funding and Business Opportunities 
It is expected that funding would come from one or more governments from developed 
nations that are willing to participate in an international collaborative project. It is also 
foreseeable that a private company such as an international insurance agency or tourism 
company could fund a VIDA system. However, the full humanitarian benefits as focused on 
in this report lend themselves better to a government-run system, and as such, are 
investigated here. The costs and benefits of private ownership should be the subject of 
future research. 
 
The participating members would be responsible for the initial development phase and the 
maintenance of a VIDA system. They would also participate in the financing steps of 
collecting, processing, and sharing data and information for the different users identified in 
section 4.4. Once established, a VIDA system would likely have a source of funding and 
functionality within GEOSS. While the public would have free access to a limited amount of 
data, specialized companies that want to derive a product from the VIDA system could 
obtain a license to access and manipulate the greater database. Revenues will be generated 
from these license agreements and spin-off potentials. 
 
Spin-off potentials exist in software development for many markets, including civil aviation, 
insurance, tourism, real estate sales and development, risk mitigation, and more. Specialized 
software companies would be able to develop better tools for forecasting and tracking other 
hazards, as well as generate natural hazard simulations. Insurance companies could be 
interested in having access to these and other products to evaluate the risk from volcanic 
activities. Software could also be developed to meet the specific needs of the civil aviation 
industry, tracking and predicting ash plumes and suggesting alternate flight paths. Tourism 
companies and real estate companies could also develop or change business strategies based 
on information derived from a VIDA system. 
 
While a VIDA system is currently intended to address hazards from volcanoes, it is capable 
of being expanded to be beneficial in other situations. The system could include data to 
support other types of hazards, the transport sector, water resource monitoring and 
management, air quality monitoring, biodiversity conservation, public health, the 
development of energy sources, agriculture, and management and protection of terrestrial, 
coastal and marine ecosystems. All of these areas provide platforms for future revenue from 
licensing agreements and spin-offs. 

Different humanitarian organizations could be interested in such a system to improve their 
operations management and their intervention efficiency during an emergency and during 
the reconstruction phase. Another area of opportunity involves the educational potential of a 
VIDA system. Organizations such as UN Educational, Scientific and Cultural Organization 
(UNESCO) could use such a system as a tool to promote and educate people about volcano 
hazards. It is intended that the system would provide programs and data to these types of 
organizations for free, since part of the mandate of VIDA is to improve hazard monitoring 
and response. Therefore, revenues would not be directly generated from these activities. 
However, promoting the capabilities of VIDA to a larger audience, and promoting a 
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standardized system may assist in strengthening existing markets, and establishing future 
markets.  

6.7 Mount Pinatubo Example 
The eruption of Mount Pinatubo that occurred on June 15th 1991 is a good example of the 
benefits of monitoring volcanic activity. The USGS and PHILVOLCS observatories 
forecasted the eruption, allowing early evacuation that ultimately saved at least 5,000 lives. It 
further prevented property losses valued at more than $250 million [USGS, 2005]. Military 
equipment from the US bases in the area was moved to secure areas, which prevented 
between $200 and $275 million in damages. Similar actions undertaken by commercial 
airlines saved between $50 and $100 million in damage to aircrafts. Tracking of the ash 
clouds allowed for both military and commercial aircraft trajectory corrections. The total 
amount of money spent, including previous studies, putting in place an emergency plan and 
the actual evacuation operation, was evaluated to be $56 million. The monitoring and 
forecasting costs were significantly less than the money saved. 

6.8 Results of Financial Analysis 
It is likely that VIDA will not be a standalone system, but instead an integrated component 
of a larger program such as GEOSS, and require both public and private sources of funding. 
In addition to the obvious benefits this system will provide to humanity, it is conceivable to 
begin implementation of a VIDA system from a business and financial standpoint. 
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______________________________________Chapter 7 

7 Potential Benefits of a VIDA 
System 

Implementation of the VIDA framework will have substantial benefits for society as a whole. 
The motivation for developing a system for early warning of volcanic eruptions and tracking 
of their hazards is ultimately to save lives, but numerous educational benefits also exist. This 
chapter discusses some of the ways in which a VIDA system could support the international 
emergency management framework, and explores its educational potential. 

7.1 Impact on International Organizations 
Often the responsibility to support those affected by the hazards caused by volcanic eruption 
falls to international organizations. The work they do relies on the information they have 
about a given emergency situation. The needs of different international organizations vary 
widely; therefore the integrated system proposed by the VIDA framework could support 
them by providing different types of data in a timely manner. Previously, the Charter was 
given as an example of an international organization that could benefit from a VIDA system. 
This section will focus on the benefit of other organizations. 

7.1.1 Aid Organizations 
Organizations like the International Red Cross and Red Crescent Movement regularly 
mobilize to bring aid to regions affected by volcanic hazards, but they cannot do it alone. Aid 
organizations require detailed maps of an affected region, not only to determine where 
survivors might be located, but also to understand the evolving nature of the hazards 
resulting from the initial eruption. When Mount Karthala erupted in 2005, thousands of 
villagers were forced to leave their homes because the ash plume had contaminated their 
water supply [The Charter Executive Secretariat, 2008]. Images generated within a VIDA 
system could have shown aid workers how the ash plume was propagating, thereby allowing 
them to better organize the evacuation process.  
 
The UN Platform for Space-Based Information for Disaster Management and Emergency 
Response (UN-SPIDER) has been envisioned as a web-based knowledge portal for 
emergency management. While the system is not yet operational, the VIDA framework 
would be of prime use to SPIDER, which would in turn help the aid organizations whose 
activities are critical to the disaster and relief management cycle. 

7.2 Impact on Regional and National Emergency 
Management Agencies 

As was described in Chapter 3, regional approaches to monitoring and responding to 
volcano hazards vary widely. Some countries have a stronger infrastructure for emergency 
management than others, but every agency could benefit from the implementation of the 
VIDA framework. Depending on the particular situation it is likely that the information 
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needs will differ, but these differences can be accommodated if a centralized framework such 
as the one proposed herein is implemented. 
 
The USGS Volcano Hazards Program provides detailed information on volcanic hazards in 
the US and its territories [USGS, 2008b]. The web-based interface is a great asset for those 
living within the US; however it could be improved by the existence of a VIDA system. 
Updates to the website could come more regularly, and the information that feeds the 
website would be much richer. Currently, the program relies on US monitoring capabilities 
[USGS, 2008b], and VIDA would greatly increase that existing knowledge base. 
 
In contrast to the US, Chile does not have a volcano early warning system in place 
[Edronkin, 2008]. Whereas some countries would draw upon information from a VIDA 
structure to support their established systems, Chile could use it as the foundation for its 
national system. The South Andes Volcano Observatory would obviously be a key element 
to any early warning system the government chooses to establish, but the higher level of 
coordination and data processing provided by the VIDA framework could be its critical 
component. 
 
In the Asia Pacific region, there are many organizations that would greatly benefit from the 
implementation of the VIDA framework. The Asian Disaster Reduction Center (ADRC), the 
Asian Disaster Reduction and Response Network (ADRRN), and the Pacific Disaster Center 
(PDC) focus on reducing the effects of natural hazards by increasing communication and 
availability of various information products. Because of their regional nature, these 
organizations can be limited in the amount or quality of data or information available to 
them, and access to services provided by a VIDA framework could increase their capacities. 
Apart from this, VIDA could help to greatly increase the efficiency of Sentinel Asia – a 
voluntary initiative to share disaster data in the region using web-based GIS tools – that 
currently is limited to using data from a Japanese Aerospace Exploration Agency (JAXA) 
satellite. 

7.3 Education and Outreach 
Research into education about volcanoes has shown that many resources exist all over the 
world, primarily on the Internet. Some websites, such as that of the USGS Volcano Hazards 
Program [USGS, 2008b] are very exhaustive in their information about volcanoes, while 
others like the ESA Kids Portal [ESA, 2008b] are very minimal. ESA does have the 
advantage of making their information available in as many as six languages on its websites 
[ESA, 2008b], but few other organizations even attempt this level of diversity. Despite the 
risks posed by eruptions, little has been done to standardize volcano education efforts. For 
this reason, attention should be given to improvement of the educational framework 
surrounding volcano hazard management. 

7.3.1 Potential Educational Benefits of VIDA 
Information gathering and sharing is the crucial benefit of a VIDA system. It would 
incorporate useful data and provide various information products that would contribute to a 
better knowledge of volcanoes and the hazards they can cause. The open and uniform 
standard framework is particularly helpful to the educational field: to acquire personal 
knowledge, to educate those active in relevant national entities, or to support international 
frameworks in their activities. Functions that the VIDA framework defines allow educators 
and students to obtain relevant information on a range of subjects, including basic volcano 
geology and the hazards of eruption events. 
 
The UN Educational, Scientific, and Cultural Organization (UNESCO) is the UN specialized 
agency for education. In its Medium Term Strategy 2008-2013 document (the Strategy), 
UNESCO states that the mobilization of science knowledge and policy for sustainable 
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development, and the contribution to disaster preparedness and mitigation constitute its 
strategic program objectives. Considering that “natural events, such as …volcanic eruptions 
…are increasingly resulting in disastrous consequences for humankind”, UNESCO “will 
seek to harness knowledge and technology and promote education for building effective 
capacities to foster prevention and reduce vulnerability” [UNESCO, 2008]. The Strategy 
declares that education and information systems will lay the basis for interdisciplinary 
platforms to manage disaster risks [UNESCO, 2008]. Data sharing principles of VIDA 
would help to achieve these objectives, at least within the field of volcanology, early warning, 
and hazard tracking, as it would improve efficiency of information search and delivery, 
thereby contributing to disaster preparedness and mitigation. 

7.3.2 Future Educational Efforts 
While it is beyond the scope of this report, the authors feel that a VIDA system could prove 
to be a valuable educational tool, and further work should be done to leverage its educational 
possibilities. The mission of the UN International Strategy for Disaster Reduction (ISDR) is 
to create of disaster resilient communities throughout the world by promoting increased 
awareness [UN-ISDR, n.d.]. Their current world disaster reduction plan is targeted at 
educating children about the risks of natural hazards [UN-ISDR, 2007]; interfaces that the 
VIDA framework defines, would support this effort. 
 
ISDR has targeted school children as the primary audience of their campaign and has 
developed various activities that bring disaster education into the regular curriculum [UN-
ISDR, 2007]. If implemented, the VIDA framework could support this initiative by acting as 
an information resource. ISDR curricula could be developed on topics ranging from basic 
volcano geology and geophysics to the hazards of eruption events by making use of a VIDA 
system tools. It has often been shown that engaging students in specific activities can better 
support their learning [Ronan, 2001], and tools that will be available through a VIDA system 
foster this process. Furthermore, a VIDA system could provide information needed to 
increase general awareness of the volcanic hazards, which could improve actions in the event 
of an eruption.  
 
It is likely that, if implemented, a VIDA system will be most beneficial as an educational tool 
in countries with a strong Internet infrastructure. For instance, it could complement a 
website operated by US FEMA that presents disaster information and educational games for 
the benefit of young children [FEMA, n.d.]. For the countries without such a system in 
place, VIDA’s capability to meet the needs of different users could be used as a helpful 
framework. It should be noted that in developing parts of the world, schools are one of the 
few places to be equipped with an internet connection, so the internet-based educational 
framework discussed in this chapter would still be appropriate. 

7.4 Summary 
Implementation of the VIDA framework could increase the ability of both national and 
international organizations to obtain useful information that integrates space, airborne and 
terrestrial data, depending on their needs and the field of expertise. A VIDA system could 
become a useful educational tool. Information this system would generate and disseminate 
could support primary school hazard education, university level research, and professional 
training. Many governments and international organizations have made attempts at educating 
a large segment of their population about the hazards of volcanoes, and a VIDA system 
could facilitate and improve these projects. 
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______________________________________Chapter 8 

8 Conclusion 

Volcanoes are an extremely complicated natural phenomenon. Volcanic eruptions are the 
result of the interactions of many different processes, some of which the scientific 
community only now begins to fully understand [Sparks, 2003]. The methods used to 
characterize, and eventually predict behavior of a given volcano require a lot of data. This 
data can come in many different forms from an array of sources, sometimes with varying 
degrees of processing. In response to the need for a centralized, user-friendly repository of 
volcano monitoring data, the VIDA system framework has been defined. Within a VIDA 
system users from around the world will be allowed to access useful information from 
ground-, air-and space-based assets. The information products of a VIDA system will be of 
relevance not only to the scientific community, but to governmental agencies, airline 
industry, emergency relief agencies, and educators as well. 

8.1 The VIDA Framework 
VIDA is a framework for the design of a system capable of integrating data from global 
providers, standardizing that data, processing it into useful information, and disseminating 
both data and information to the end-users. They would obtain data and information 
through web-based, GIS tool-based, and network-based interfaces. By disseminating 
information in near-real-time, a VIDA system could provide advanced warnings to end-
users, enabling them to avoid the hazards of volcanic activity. In the same way, such a system 
could allow end-users to track volcanic hazards and to mitigate their effects. 
 
There exists a multitude of Earth observing satellites, volcano observatories, and in situ 
sensors that could provide important data, but the task of sifting through it to produce 
information and knowledge is a challenging one. According to the VIDA framework the 
outputs received by interested parties will be standardized not by a new hardware, but by 
integrating existing ones.  
 
Many organizations have done important work to create a universal, user-friendly data access 
system. One challenge that almost all of these systems have struggled with is the formatting 
of data. If standard formats for specific data types (such as InSAR images) could be agreed 
upon, then emergency management agencies around the world would know what sort of 
information to expect when they call for help. The gap between data, and information and 
knowledge can sometimes be large, and a VIDA system could provide for an interface to 
help bridge it. By providing a repository of easily accessible data that is commonly 
understood, a VIDA system could become an invaluable tool for furthering knowledge 
about volcano phenomena. 

8.2 The Threat of Ash Plumes 
As was described in Chapter 3, ash plumes represent a real threat to aircraft. The region of 
air space surrounding Alaska is one of the most heavily traveled in the world, yet Alaska 
contains some of the world’s most active volcanoes. Despite the substantial attention that 
has already been given to this matter, fundamental issues still cannot be solved in a timely 
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manner. In the event of a volcanic eruption, how quickly can a commercial aircraft be 
notified of an ash plume and then be re-routed? Given a specific eruption event, what 
percentage of aircraft utilizing specific airspace will need to be grounded? Because of the 
environmental implications of ash plumes created by volcanoes, much study has been done 
and all that data would be accessible through the application of a VIDA system. The 
elegance of this system is in its ability to address the interests of a wide range of end-users, 
not just concerns of a limited technical audience. In the case of risks ash plumes pose for 
aircraft, a VIDA system might represent a way to reduce the time delay between volcanic 
eruption and aircraft notification, and could certainly help to provide deeper understanding 
of the behavior of ash plumes. 

8.3 Additional Benefits 
There are many examples of large data repositories throughout the world, and often the 
distinguishing feature of these repositories is the manner in which they are used. It has 
already been stated that information products generated by a VIDA system can play an 
important role in our understanding of the nature of volcanoes, which will in turn support 
better knowledge of the precursors to an eruption event. Of equal importance, however, is 
the potential for the data to be used beyond the volcanology community. 
 
The data that will be accessible in this framework could help developing nations better 
understand how to manage land use near a volcano, or could be used to educate school 
children about basic geophysics. Many countries with volcanoes develop emergency action 
plans, but then let those plans fall out of date. Because a VIDA system would continually be 
updated by Earth observation data, countries could draw upon those products to update and 
improve their emergency response scenarios. In many ways, the data collected by a given 
satellite or observatory would increase in value due to their access to a VIDA system, 
because the audience with the ability to access that data would increase substantially. 
 
The basic structure of the VIDA framework allows for it to be expanded and used to 
monitor and track other natural events such as: earthquakes, tsunamis, hurricanes, tornados, 
and forest fires. The integration of different ground-, air-, and space-based sensors can allow 
for a centralized warehouse for collected information. Tailored user interfaces can enable 
different experts to extract the information pertaining to their specialty. They would also be 
able to see how the data from their area of interest is dependent on other natural processes 
on Earth. This can allow for the creation of more robust algorithms in order to understand 
and create more accurate models of Earth dynamics.  

8.4 Implementation Challenges 
The development, analysis, and dissemination of volcano data products cannot occur 
without numerous organizations incurring costs. Many consortia that produce products 
similar to those a VIDA system would produce, (such as the Charter) do so on a ‘best-effort’ 
basis, and the member organizations are under no obligation to produce their products if it is 
not fiscally feasible. A major risk to successful implementation of the VIDA framework is 
finding a continuous and reliable funding source. The system defined by the VIDA 
framework would not be sustainable if, after an initial investment period, funding was then 
lost, and those relying on its products were left without assistance. 
 
Another substantial implementation challenge is that of governance. The framework defined 
in this report could bring substantial benefits to many organizations throughout the world. 
Also, proper data formatting must be considered a high priority in order to meet the users’ 
need for timely information. A consortium of interested government agencies and remote 
sensing organizations has successfully governed similar systems, and that same model could 
be applied to this framework.  
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Provided that funding can be secured and governance of the system can be settled upon, the 
next major challenges will be collection and standardization of data and dissemination of the 
information products. Standardization will require particular attention, because the goal set 
out by the VIDA framework is to provide users with easily accessible and useful information. 
Many international organizations have taken on the challenge of developing international 
standards, and a VIDA system could closely follow the lead of these groups. Proper data 
formatting must be considered a high priority in order to meet the users’ need for timely 
information 
 
The VIDA framework is intended to leverage enabling technologies that are becoming more 
widely used. They can be classified in three different areas: communication interfaces, 
computing and modeling services, and collaborative work tools. A VIDA system can use 
novel infrastructures and protocols to transmit information such as RSS feeds, blogs, and 
MMS. Integrating computing and data providers such as ESA’s GPOD, DEISA, and 
TERAGRID projects serve to strengthen the system. The utilization of collaborative work 
tools, such as wikis, portfolios, and twitter, will facilitate the dynamic flow of knowledge. 
Communication and computing technologies are continuously evolving. Incorporating these 
technologies into the VIDA framework means that such a system will also evolve, allowing 
more effective dissemination of early warning and hazard tracking information. 

8.5 Future Work 
As has been stated, VIDA is only a framework. Substantial work must be done in order for 
this concept to move from paper to reality, but the work is feasible. Implementation of a 
framework like VIDA requires coordinated efforts between data providers, data processing 
organizations, the companies that store produced information products, and finally, the 
companies that distribute them. Interested parties must be educated about the VIDA system 
framework as a whole, and work must be done to encourage interaction between these 
groups. 
 
User requirements have been proposed in this report, but there was not enough time to have 
those requirements vetted by the interested parties. The system requirements, as they have 
been defined, must be verified by end-user in order to move the VIDA framework into the 
design phase. There have been many instances in the history of global initiatives that did 
incorporate the needs of end-users properly; the VIDA framework is intended to meet the 
needs of its potential end-users. 
 
A chief concern of many organizations within the UN is to educate populations around the 
world who are at risk of being affected by natural phenomena such as volcanoes. Numerous 
tools have been developed to support these educational goals, and a VIDA system could be 
one of them. The VIDA framework, as defined, provides a clearinghouse of data from a 
wide range of sources, and information produced should be distributed as widely as possible. 
Additional work should be done to develop a web-portal or some other form of mass data 
distribution by which larger communities can benefit from the products. 
 
The novelty of the VIDA framework is its unification of already existing technologies and its 
ability to expand to include other natural phenomena. Such a system would contribute to the 
process of transforming the immense amount of data already being gathered into knowledge 
that can be used by decision makers to save lives. It is hoped that the VIDA framework will 
prevent natural events, such as volcano eruptions, from becoming disasters. 
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____________________________________ Appendix A 

A High-Level System Requirements 

 
Figure A-1: System requirements breakdown 

 
In light of the gaps identified in Chapter 3, this appendix strives to outline the requirements 
for a VIDA system. These requirements will be classified into four categories: end-user, early 
warning, hazard tracking, and general system requirements (core processes). A suggested 
system outline can be seen in Figure A-1, where these requirements groups are illustrated.  
 
The system core processes block can be considered the brain of the system It shall be 
capable of collecting, processing, and delivering data from different sources to satisfy end-
user requirements. The data providers block represents all data sources, such as space 
agencies, volcano observatories, and research groups. This is the main input to the system in 
terms of data, and bidirectional communication between the system core processes and data 
providers is needed to guarantee information flow. Functional requirements represent 
different tasks that the system shall be able to carry out, so it is necessary to distinguish 
between early warning subsystem requirements and hazard tracking subsystem requirements. 
Finally, the user-interfaces block represents different communication technologies needed to 
deliver information to different end-users. Note that the end-user requirements have been 
written according to reference documents and not in coordination with any specific end-user. 
As was noted in Chapter 1, user consultation is a necessary next step before the 
implementation of a VIDA system. 
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Requirements relating to the end-user are prefaced with a ‘U’; requirements relating to early 
warning are prefaced with an ‘E’; requirements relating to hazard tracking are prefaced with 
an ‘H’; requirements relating to the general system requirements are prefaced with an ‘S’. 
Additional comments and clarifications are italicized. 

End-User Requirements 
U. The system shall provide information to at least five classes of end-users: 

Aviation User Requirements 
U.1. The system shall promptly notify air traffic control centers of the 

magnitude of potential and current ash plumes.  
U.1.1. ‘Promptness’ shall be considered as less than five minutes of volcanic 

activity [ESRIN, 2008; Hufford, 2000]. 
U.1.2. ‘Magnitude’ shall include location and height of the ash plume, 

particulate density, and composition (e.g. mixed ash and ice, mixed ash, 
and liquid water aerosols) of the ash plume, visibility through the ash 
plume (horizontal and vertical boundaries), the direction and velocity of 
ash plume regions, and the temperatures inside the ash plume 
[ESRIN, 2008]. 

U.1.3. ‘Potential’ shall include event probability forecasts of ash plumes, 
direction, and velocity forecasts of ash plumes. 

U.1.4. ‘Current’ shall include tracking and monitoring of ash plumes with a 
quality figure of merit of the tracking and monitoring accuracy. 

U.1.5. Notifications shall be directed through existing national assets in the 
affected areas, including VAACs and national weather agencies, unless 
unavailable. 

These are analogous to weather reports/forecasts received by air traffic control 
centers and airlines. 

Private Citizen Requirements 
U.2. The system shall provide information about volcanic activity to private 

citizens through a web-based platform that is updated as the information 
becomes available, at least every 12 hours, with a goal of hourly updates. 
[Davey, 2003] 

U.2.1. The system shall provide the location of volcanic activity. 
U.2.2. The system shall provide a description of the intensity and types of 

volcanic activity. 
U.2.3. The system shall provide a safety risk estimate based on the nature of 

the hazard, consistent with current international protocols (e.g. used by 
USGS, ICAO, INGV, PHIVOLCS, VAACs). 

This should be on a scale, such as from one – negligible or minimal possibility 
of physical danger, to ten – high possibility of hospitalization and/or death. 

U.2.4. The system shall provide safety risk estimates as a gradient function of 
the radius from the volcanic activity based on the nature of the 
hazard(s) and consistent with international protocols. 

For example, zero to 50m has a safety risk estimate of eight, while >25 km 
has a safety risk estimate of one. 

U.2.5. The system shall make available information about the possible hazards 
associated with the volcanic activity in question. 

Hazards include but are not limited to landslides, earthquakes, dangerous 
aerosols (e.g. SO2, sulfuric acid), lava flows, pyroclastic clouds, mobility 
restrictions (unable to leave/get to the area via plane, train, car), lahars and 
volcanic ash. 
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Emergency Crew Requirements 
U.3. The system shall provide information about volcanic activity to 

emergency crews via mobile platforms (radio, portable satellite phones) or 
web-based platforms that do not solely rely on ground infrastructures 
[European Commission, 2007]. 

U.3.1. The system shall meet all requirements under U.2. 
U.3.2. The system shall provide the location of the population and areas in 

greatest risk that require immediate rescue/evacuation to emergency 
crews via mobile/web-based devices, updated by the minute. 

U.3.3. The system shall make available maps of possible routes of entry and 
evacuation via mobile/web-based devices, updated by the minute. 

U.3.4. The system shall make available topographic maps and changes. 
U.3.5. The system shall make available up-to-date information on 

infrastructure.  
Infrastructure includes, but is not limited to roads, bridges, railways, air and 
sea ports, medical facilities, and water and electricity plants. 

U.3.6. The system shall provide information regarding potential and current 
locations of humanitarian assistance operations. 

U.3.7. The system shall make available:  
U.3.7.1. Disaster scenarios based on simulated events and on estimations 

of the population vulnerability.  
U.3.7.2. Knowledge of past volcanic episodes, potentially hazardous 

areas, different types of eruptions, and hazards, as presented 
previously.  

U.3.8. The system shall provide a multi-dimension map to emergency crews 
via mobile/web-based devices containing, but not limited to:  

U.3.8.1. Safety risk estimates as a function of area/location, hazard 
warnings and description as a function of area/location, 
prioritization of areas that need rescue/evacuation, areas that 
should be avoided or are too dangerous for rescue, types of 
hazards in the area in question.  

U.3.8.2. Topography and its influence on prospective development of 
hazards influenced by topography (e.g. lava flow routing, low 
altitude airborne ash routing around/over significant terrain). 

U.3.8.3. Possible entry/evacuation routes. 
U.3.9. The system shall make known potential volcanic activities to emergency 

crews so that they are prepared (in terms of resources and man-power) 
for a disaster scenario. 

Authority Requirements 
U.4. The system shall provide information regarding volcanic activity to local, 

national, and international authorities to aid in disaster risk management 
and response. 

U.4.1. The system shall make available requirements under U.3 as needed. 
U.4.2. The system shall provide updated and detailed maps including security 

zones for the population (e.g. refuge locations). 
U.4.3. The system shall provide simulated damage scenarios with probabilities 

of occurrences to identify the current weaknesses in the response 
mechanisms.  

U.4.4. The system shall provide risk and vulnerability maps.  
U.4.5. The system shall address the risk of volcano-triggered tsunamis. 

U.4.5.1. The system shall identify locations at risk of volcano-triggered 
tsunamis. 

U.4.5.2. The system shall be capable of issuing early warning information 
about volcanic eruption to tsunami monitoring stations.  
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U.4.6. The system shall be able to allow information exchange and sharing 
between the different international actors involved in disaster risk 
management and emergency management (local governments, the UN 
and its agencies, NGOs such as the International Red Cross and Red 
Crescent Movement) [IFRC, 2007]. 

System development and design activities will include active solicitation of local 
requirements from potential end-users, with special attention to volcanic 
hazards, notification formats, and notification requirements. 

Scientific Community Requirements 
U.4.7. The system shall make available volcano-related raw data and processed 

information to academic and scientific communities for research, 
system analysis and model validation. 

U.4.8. The system should enhance mutual awareness between the space 
agencies and the volcano observation community [Salichon, 2007]. 

U.4.9. The system shall facilitate the task of attaining relevant imagery in the 
event of a major episode of volcanic activity.  

U.4.10. The system shall be able to accept data streams from multiple satellites 
and other platforms to:  

U.4.10.1. Provide finer temporal resolution. 
U.4.10.2. Reduce obscuration by clouds and moisture [Tralli, 2005]. 
U.4.10.3. Increase observational capability of satellites at night 

[European Commission, 2007]. 
U.4.11. The system shall provide access to both raw data and processed 

information.  
U.4.12. The system shall provide documented and open data access interfaces.  

Early-Warning Functional Requirements 
E. The system shall have access to data that can be used to forecast volcanic eruptions 

shortly before they occur and promote the early warning of individuals at risk from 
volcanic hazards. The system shall have access to devices confirming the occurrence 
of an eruption, or its imminent onset. 

E.1. The system shall have access to data on the various precursors of volcanic 
eruptions. 

E.2. The system shall have access to data on associated changes in thermal flux 
(positive or negative) from potential eruption sites (e.g. summit and flank 
craters, fracture networks, fumarolic systems, volcanic lakes, groundwater 
temperature and level). 

E.3. The system shall have access to data on gas emissions. 
E.3.1. The system shall have access to data regarding “sulfur dioxide, water 

vapor, and CO2 variations” [Bobroski, 2007; ESRIN, 2008; 
Julian, 1998]. 

Variations in SO2, water vapor, and CO2 concentration have been found to be 
predictive indicators for impending volcanic activity. 

E.4. The system shall have access to data regarding vegetation changes 
[Julien, 2006]. 

E.4.1. The system shall have access to data on “surrounding crop and 
vegetation health” [Houlié, 2006]. 

Pre-eruptive volcanic activity can alter water source availability, cause toxic gas 
emissions, acid rain from SO2, soil acidity, etc. All of this can have measurable 
effects on vegetation.  

E.5. The system shall have access to data regarding hydrological changes 
[Barclay, 2006]. 
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E.5.1. The system shall have access to data on “pH readings, ice and water 
volume, humidity, and temperature of lakes or rivers surrounding 
volcanoes” [Barclay, 2006; Rowe, 1992]. 

Hydrological changes can be associated with volcanic precursors such as 
subterranean thermal and gas emissions that can influence pH readings of 
surrounding bodies of water. 

E.6. The system shall have access to data regarding underground magma 
flows. 

E.6.1. The system shall have access to data regarding the presence and/or 
flow of magma (sensors would include geomagnetic, geo-electric, and 
gravimetric measuring devices) [Johnston, 1997; Williams-Jones , 2002; 
Currenti, 2007; Ueda, 2005; Rymer, 2000]. 

E.7. The system shall have access to data regarding geomagnetic changes 
[Johnston, 1997].  

E.7.1. The system shall have access to geomagnetic measurements with a 
precision of 0.1 nT within +/- 15 nT of background range  
[Lagios, 2006]. 

E.8. The system shall have access to data regarding geo-electric changes. 
E.8.1. The system shall have access to geo-electric measurements with a 

precision of 0.1 Ω between 0.1 Ω and 10000 Ω [Bryant, 2005; 
Elming, 1997]. 

E.9. The system shall have access to data regarding gravitational changes.  
E.9.1. The system shall have access to gravimetric measurements with a 

precision of 0.3 gu between -300 and 500 gu [Bryant, 2005; 
Elming, 1997]. 

Tectonic plate shifts and changes to magma reservoirs can affect geomagnetic, 
geoelectric, and gravitational measurements that are informative in volcanic 
activity forecasting.  

E.10. The system shall have access to data regarding ground deformation.  
E.10.1. The system shall be capable of continuously monitoring ground 

deformations by processing data from GPS ground receivers in fixed 
locations (e.g. network of 12 or more GPS receivers in the neighboring 
area of the volcanoes) [Fernandez, 2005; Trota, 2006]. 

E.10.2. The system shall be able to provide at least centimeter accuracy of the 
vertical component by means of improved algorithms and techniques 
for GPS positioning. [Currenti, 2007; Trassatti, 2008]. 

E.10.3. The system shall have access to ground deformation data (from 
tiltmeters, extensometers, theodolites) and shall be capable of 
combining its data with GPS data [Fernandez, 2005; Rymer, 2000; 
Ueda, 2005]. 

E.10.4. The system shall be able to integrate geodetic observations from GPS 
and InSAR (where available) in order to compute high resolution 
DEMs [Vassilopoulou, 2002; Pavez, 2006; Tralli, 2005]. 

GPS and InSAR allow accurate tracking of ground deformation and elevation 
changes due to subterranean volcanic activity. 

E.10.5. The system shall be extendable so as to incorporate data from future 
satellite-based sensors. 

Having the ability to integrate data from many data-gathering sources including 
future satellite-based sensors will aid in the forecasting capabilities of the system. 

E.11. The system shall have access to data regarding seismic activity [Aki, 2004]. 
E.11.1. The system shall have access to seismic data related to volcanic tremors 

(e.g. sustained seismic signals) during both quiescent and eruptive stages.  
E.11.2. The system shall be able to conduct spectral analysis of seismic data to 

discard other sources and path/site effects. 
E.11.3. The system shall be able to identify dramatic amplitude increases in 

seismic data.  
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E.11.4. The system shall have access to acoustic signal data [Helffrich, 2006; 
Seyfried, 1999]. 

Seismic activity data is important in the understanding of the subterranean 
arrangement of the volcanic activity progression. 

Hazard Tracking Functional Requirements 
H. The system shall have access to data that can be used to track hazards associated 

with volcanic activity. 
H.1. The system shall have access to data indicating occurrences of pyroclastic 

flows. 
H.1.1. The system shall have access to data pertaining to lava domes, including 

height, temperature, location, and volume [USGS, 1999a]. 
With the correct data, the system will be able to identify growing lava domes 
that might collapse and induce a pyroclastic flow. 

H.1.2. The system shall have access to data that supports the prediction of 
volcanic ash fountain collapse [USGS, 1999a]. 

H.1.3. The system shall support pyroclastic flow prediction. 
Data about previous pyroclastic flow deposits and up-to-date elevation maps of 
volcanic sites will help in predicting lava flow.  

H.2. The system shall aid in the tracking of lahars. 
H.2.1. The system shall have access to data that can indicate the formation of 

a lahar and its flow velocity [Lockhart, 2003; Lavigne, 2000]. 
H.2.1.1. The system shall have access to the data from trip wires to 

indicate lahar formation. [Lockhart, 2003] 
H.2.1.2. The system shall have access to data from different acoustic 

flow monitor sensors at different locations around volcanic sites 
to measure the lahar flow velocity [Lavigne, 2000]. 

H.2.2. The system shall have access to data including satellite and airborne 
images that indicates the direction of lahars. 

H.2.3. The system shall have access to data that indicates the status of crater-
lake dams on volcanoes. 

The breakout region of the dam would help in forecasting the direction of the 
lahar flow. 

H.2.4. The system shall incorporate rainfall forecasting. [Lavigne, 2000]. 
Rainfall is also a major trigger factor for lahars. Rain forecast information 
would be helpful in assessing the probability of lahar formation if an eruption 
occurs and also assess the magnitude of the lahar. 

H.2.5. The system shall have access to data that indicates ash cloud position, 
velocity, density, SO2 concentration, and temperature [Watson, 2004; 
Seftor, 1997]. 

H.2.5.1. The system shall have access to data from satellite-based 
systems such as AVHRR channels and systems based on split-
window technique [Watson, 2004]. 

H.2.5.2. For SO2 detection, the system shall have access to data from 
satellite based 340 nm and 380 nm channels (e.g. OMI)  
[Seftor, 1997]. 

H.2.5.3. The system shall have access to data available from in situ high 
altitude platforms and unmanned aerial vehicle (UAV) 
[Pieri, 2003]. 

H.2.6. The system shall predict ash plume location and its direction  
[Searcy, 1998; Univ. Of Alaska Fairbanks, 2008]. 
 

H.2.6.1. The system shall use 3D dispersion models based on satellite 
and ground sensors to predict ash plume location and direction. 
[Searcy, 1998]. 
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H.3. The system shall have access to data indicating hot features, including lava 
flow, lava tubes, hotspots, fumaroles, and summit craters.  

H.3.1. The system shall have access to data from previous lava flows and up to 
date elevation maps of the volcano site [Tralli, 2005]. 

The data from previous lava flows and elevation maps would be helpful in 
predicting lava flow route. 

H.4. The system shall have access to data indicating landslides and debris 
flows, including snowmelt-driven flows [Temesgen, 2001]. 

H.4.1. The system shall allow future expansion to include landslide models 
and monitoring data.  

H.4.2. The system shall have access to data from satellite images that indicate 
land deformation, which could be a precursor to landslides. 

Core System Requirements 
S. To satisfy end-user requirements for volcano monitoring, early warning, and hazard 

tracking activities, the system will be capable of collecting, processing, and delivering 
data from different sources. To achieve this, requirements are described in the 
following order: ‘Data Acquisition’, ‘Data Storage’, ‘Data Processing’, ‘Data Delivery 
& System Interface’, and ‘System Extendibility & Scalability’. 

The provided data will be transformed into a standardized, documented, and open 
format by the system regardless of its origin and provider. The provided data will be 
archived within the system. Pre-existing external databases will be enriched by 
feeding them the processed information. To let end-users to interact with the system 
correctly, easily, and efficiently, end-users will be provided with guidelines, 
procedures, and help files. 

Data Acquisition 
S.1. The system shall translate provided data into a standardized, documented, 

and open format, regardless of its origin and provider. 
This will help to unify procedures for data processing, data storage, and data 
dissemination throughout the system and its subsystems.  

Storage 
S.2. The system shall be capable of archiving provided raw data. 

The raw data, obtained from data providers, will be archived within the system 
for further processing.  

S.3. The system shall be capable of storing converted data for further retrieval 
by subsystems. 

S.3.1. The raw data shall be converted to an XML-based format and saved 
within the system. 

S.4. Processed information shall be used to augment pre-existing external 
databases (e.g. GIS). 

Doing this will allow external GIS databases to remain up-to-date. 

Processing 
S.5. The system shall possess a ‘Monitoring Mode’, during which data is 

received from providers and processed. 
In this mode, the system will receive data from data providers and process it to 
analyze volcanic activities. 

S.6. The system shall change state from ‘Monitoring Mode’ to ‘Early Warning 
Mode’. The triggers and thresholds for this state change will be specific 
for each country and volcano, which will be determined by the end-user. 
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S.6.1. The system shall be capable of establishing baseline information and 
identifying quantifiable, statistically meaningful deviations from the 
baseline in order to start the early warning processes. 

S.6.2. The system shall establish threshold values for specific events, 
precursors, and hazards from the information stored and processed, to 
identify input deviations and initiate early warning processes. 

S.7. The system shall change state from ‘Early Warning Mode’ to ‘Hazard 
Tracking Mode’. The triggers and thresholds for this state change will be 
specific for each country and volcano, which will be determined by the 
end-user. 

S.7.1. The system shall be capable of establishing baseline information and 
identifying quantifiable statistically meaningful deviations from the 
baseline in order to start the hazard tracking processes. 

S.7.2. The system shall identify the deviations in the data input that indicate 
precursors (seismic activity, gas emissions, etc.), events (eruptions), and 
hazards connected with the event (lahars, landslides, tsunami, storms, 
etc.). The system shall be able to find indicators or critical data to 
identify collateral hazards. 

S.8. When deviations in the data streams with respect to baselines become 
more frequent (indicating volcanic activity), the system shall redistribute 
resources automatically in order to collect more raw data from the data 
providers and meet the demand for more information from the end-users. 

The system shall be capable of adapting its resources to handle the increasing 
amount of data produced during an event, by increasing incoming, internal and 
outgoing data flows, and processing capacities. 

S.9. The system shall assure data reliability and integrity. 
S.9.1. The system shall have an embedded procedure that is able to assure 

integrity and reliability of the input data. 
S.10. The system shall provide a means of minimizing the false alarm rate. 

S.10.1. When the system identifies a quantifiable statistically meaningful 
deviation in one data stream with respect to the baseline, it shall be 
crosschecked against data coming from different data providers. 

S.10.2. The system shall use human intervention to achieve an acceptable false 
alarm rate in the absence of reliable algorithms. 

To reduce risk of false positive alarms and increase probability of event 
detection, the system will use human oversight monitoring and intervention when 
necessary. 

Delivery / Interface 
S.11. System will provide guidelines, procedures, and help files to let end-users 

interact with the system correctly, easily, and efficiently. 
S.12. The system shall provide clear information about itself and the features 

available to the end-user. 
S.13. The information shall be made accessible through at least three different 

interfaces: internet, a specific analytical tool, and a network for early 
warning.  

S.13.1. The network for early warning shall include mobile telephony, 
broadcast networks, and satellite-based systems to guarantee data 
accessibility. 

S.14. The system shall have an embedded authentication system in order to 
recognize, identify, and differentiate end-users connected to the system 
without ambiguity. 

S.15. Output information disseminated via internet and analytical tools shall be 
in a standardized, documented, and open format. 

S.15.1. Any information disseminated from the system to any end-user will be 
formatted following the rules stated in S.15.  
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S.16. The status of ‘data providers interacting with the system’, ‘communication 
times’, and ‘progress of computations’ shall be displayed by the system 
and be visible to all end-users. 

The system shall display the status of the system process to improve monitoring 
and controllability. 

Extendibility and scalability 
S.17. The system shall offer the ability to define groups of routine procedures 

that will process data in a workflow manner. 
‘Routine procedures to analyze concrete aspects of data’ means that authorized 
categories of end-users can use the system for data processing. 

S.18. The system shall be extendable so as to integrate new knowledge 
providers and new computing capabilities. 

S.18.1. The system shall be flexible to extend and enhance it by integrating new 
providers for data input and data processing and computing. 

S.19. The system shall be scalable to accommodate increasing demand for the 
monitoring of new volcanoes. 

S.20. The system shall be flexible to extend the number of monitored items for 
early warning and hazard tracking in terms of processing capability and 
new monitoring items. 

S.21. The system shall be scalable to accommodate increasing processing 
demands. 

Closing Comments 
This list of requirements is by no means an exhaustive list of requirements for such an early-
warning and hazard tracking system, but rather a high level consolidated list on which the 
preliminary design of such a system can be founded. The requirements presented in each of 
the four categories are idealistic, but achievable with current spaced-based and terrestrial 
technologies and resources. It is encouraged that the development or fine-tuning of any early 
warning and hazard tracking system related to volcanic activity should strive to satisfy these 
requirements. 
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____________________________________ Appendix B 

B SWOT Analysis Results 

 
 
 

This appendix outlines the results of the SWOT analysis done for identified VIDA 
stakeholders. This analysis first identifies the strengths and weaknesses of the VIDA system 
in relation to stakeholder needs as identified in Table 6-1. Then, the list of strengths is used 
to identify possible opportunities, while the list of weaknesses is used to identify possible 
threats and risks. 

Civil Aviation 
The civil aviation industry would be interested in improved ash plume detection and 
tracking, in particular, more rapid data dissemination. The strength of the VIDA framework 
is that it addresses this need. However, because VIDA establishes a new design, it lacks the 
credibility of previous successes. Furthermore, the possibility of false alarms, leading to the 
unnecessary re-routing of planes, remains. The threats are then smaller less-complex ground-
based systems that may be more cost effective for the industry. There is also the possibility 
that the time requirements to be effective for planes may be too short for the VIDA system 
to achieve. 
 

Strengths Weaknesses 
• Short response time 
• Increased accuracy 
• Increased temporal resolution due to multiple 

sources 
• Improved access time to data 
• Scalable to meet different users (ATCs and 

pilots) 
• Global coverage 
• Improved ash prediction 

• Possibility of false alarms from system errors 
• Novel system, no previous experience 
• Lots of data that needs to be converted to useful 

information in a short time 
• Time lag from acquiring data and delivering 

information 
• Limited coverage with existing infrastructure 
• Overall structure is very big 

Opportunities Threats 
• Need for volcanic eruption warning system 
• Need for volcanic hazard warning system 

(focusing on ash plumes) 
• Potential to integrate with other systems 

• Competition with other data providers (non-space 
based) 

• Time window for data delivery to aircrafts is very 
short 

Academics 
The academic sector would be interested in data archives, access to new data and new 
projects, so again, there is an opportunity for a VIDA system. The weaknesses of VIDA for 
this sector include the cost of the system and potential issues with identifying and protecting 
IPRs. Also, without access to previous data archives the system would take a few years to 
compile a useable data archive. 
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Strengths Weaknesses 

• Implementation of new technology 
• Data sharing 
• Barter (less costs) 
• Creating a community  
• Joint projects 

• Lower reliability 
• Less financial support 
• Patent rights 
• Need time to build up archive 

Opportunities Threats 
• New projects and publications 
• Future consultants / employees 
• Publicity for academic institution  
• Conferences 

• Cost 

• Confidentiality issues 
ctual property  • Intelle

 

World Bank 
The World Bank would be interested in the ability of VIDA to save human lives and to 
encourage economic growth and hazard response capabilities in developing countries. There 
may be funding opportunities available for VIDA, however the complexity and cost of the 
ystem maybe a threat, particularly with competition. s

 
Strengths Weaknesses 
• Save lives 
• Global 
• Scalable 
• Improved disaster response – resolution 

lexity 

• Lack of credentials 

• Comp
• Cost 

Opportunities Threats 
• Financial aid 
• Developing economies  
• Improved emergency response to humanity 

• Competition from GEOSS 

Space Agencies 
While space agencies are generally government bodies, they are listed separately from 
governments as stakeholders due to their particular involvement and interests in the space 
industry. Their interests would be developing space technologies, having access to 
information to assist with launching and re-entry of spacecraft, and developing research 
capabilities. There are therefore opportunities for collaboration in new projects, as well as 
public awareness. However, this was ultimately not considered crucial for space agencies to 

eet their mandates, so the cost of the system may be a threat. 
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trengths Weaknesses 
• Commercial spin-offs 

Faster access to data may assist with situatio• nal 
ch and reentry decision 

 research paradigm 

ontrol 
• Security 

awareness, and laun
support 

• Data overlay  
• Free information 
• Unique – new
• Compartmentalization of data handling 

• Political conflict 
stem • Size of sy

• Lack of c

O rpportunities Th eats 
• Future collaboration between agencies 

New spac• e related projects 
ndition analysis and decision 

support 
• Public recognition 

• Conflict of interests 
• Nice to have, not a need • Launch & reentry co

• Costs 
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Governments 
Governments have been identified as the major potential source of funding for VIDA. There 
are several strengths, and the largest opportunity for VIDA is the potential to save human 
lives. Governing VIDA as an international collaboration would maximize the humanitarian 
potential, and still allow for development of profit generating spin-offs. Weaknesses 
identified include the need for security of data for reasons of national defense, the possibility 
of false alarms and the resulting liability. A major threat is the continual change in 
governments, which can disrupt the continuity of funding. 
 

Strengths Weaknesses 
• Faster response 
• Temporal resolution  
• More information 
• Disaster response coordination 
• Identification of escape routes for disaster 

response teams 
nd reduce damages • Save insurance money a

dded  • Spin-offs, value a
• Public relations 
• Standardization 

• Large amou
• Scalable 

nts of data 

• Limited near real time images available 
• Security 
• Liability 
• False alarms 

Opportunities Threats 
• Save lives 
• Save money 
• Support industries  
• Economic growth 
• Emergency and disaster response – cascade effect  
• Exchange of information 

es 

• Funding - lack of guarantee, continuity 

• Start up costs 
• Legal issu
• GEOSS 
• Rights in data  

Remote Sensing Companies 
Remote sensing companies would be most interested in developing new markets and profit 
potential. The opportunities exist for spin-offs, value-added services, and increasing public 
awareness of their capabilities. Some companies may see the new technology of VIDA as a 

reat, with negativ heir profit. 
 

ths Weaknesses 

th e impact on t

Streng
• Public image 
• New customers 
• Technology push 
• Produce, develop, sell configurable software 

Acces• s to larger datasets 
 processing, standardization of 

data 

ge paradigm 
• Credibility 

• Handling, storage,

• Flexible, scalable 

• Cost – chan

Opportunities Threats 
• Business opportunities 
• Money 
• New markets – global 
• Public image 

• Unknown impact on competition – income loss  
• Rights in data 

• Legal issues and liability 
• GEOSS 
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arted with access to an archive, it may 
a year or two to be compiled. 

 
Strengths 

Insurance Companies 
Insurance companies would be interested in reducing damage, money paid out in claims, and 
making better risk estimates. There is an opportunity for VIDA since such a system is 
capable of providing large quantities of useful data. The possible risks involve the size and 
complexity of the system, which may exceed the needs of an insurance company, and the 
possibility that a false alarm may result in new claims or liability. Insurance companies would 

e interested in archive data, so unless the system stb
take  for a enough data 

Weaknesses 
• Data 
• Save Lives 
• Reduce Damage 

on of claims 
ney 

• Scalable 

 data archive 
 

• Complexity, size, cost 
• False alarms – novel claims • Verificati

• Save mo

• Global 

• Take time to build up a
• Do not need massive archive

Opportunities Threats 
• Data archiving 
• Save money  

 

• Reduce risk  
• Don’t pay out 

• Legal issues – precedence of claim verification 
• Competition 
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