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ENDOMORPHISM RINGS AND AUTOMORPHISM

GROUPS OF SEPARABLE TORSION-FREE

MODULES OVER VALUATION DOMAINS

B. Goldsmith and P. Zanardo

Introduction

In recent work Corner and Goldsmith [CG] have shown that the automorphism
group of a reduced torsion-free p-adic module (p �= 2) determines the module, i.e. if
G, G′ are such modules with isomorphic automorphism groups, Aut(G) ∼= Aut(G′),
then G and G′ are isomorphic as p-adic modules. Their result is but one of a number
of results relating the structure of the endomorphism ring or automorphism group
of a module to the structure of the module itself: see [K], [H], [Li], [Le], [R] and
[W] for related results on various classes of modules.

The present work seeks to generalise the results in [CG] and [W]: the ring of
p-adic integers is replaced by a more general valuation domain. However, one re-
alizes that extensions of results may be achieved only if one confines oneself to a
particular, important class of valuation domains, the so-called totally branched dis-
crete valuation domains (see [Z] and §1). The price to be paid for such a significant
generalisation is that it is necessary to restrict attention to torsion-free separable
modules. Recall that a torsion-free module M over a valuation domain R is said to
be separable if every element of M is contained in a direct summand of M of rank
one (which is necessarily isomorphic either to an ideal or to the field of fractions of
R). It is well known that torsion-free p-adic modules are automatically separable
(see [K]).

In §1 we focus attention on endomorphism rings of separable modules over valu-
ation domains. Our principal result in this section is that totally branched discrete
valuation domains are characterised by the property that their separable torsion-
free modules are endomorphically unique, i.e. if M , M ′ are separable torsion-free
modules with EndRM = EndRM

′, then M ∼= M ′.
In §2 we focus on automorphism groups and, inevitably, we have as a blan-

ket hypothesis that 2 is a unit of the base ring R. The results obtained are,
not surprisingly, weaker that the corresponding results on vector spaces or p-
adic modules. Specifically we need to replace isomorphism between R-modules
by semi-isomorphism. Recall that R-modules M , M ′ are semi-isomorphic if there
is a ring automorphism g of R and an additive bijection φ : M → M ′ such that
φ(rx) = g(r)φ(x) for all r ∈ R and x ∈M .

Our main theorem in the second section extends Theorem 1 of [CG]. Some restric-
tions on the hypotheses naturally arise. We have to consider separable torsion-free
modules over a totally branched discrete valuation domain R satisfying the further
property that the the rank-one R-modules are determined by their automorphism
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groups (otherwise our approach is doomed: see Proposition 2.5). Let G, G̃ be two
such R-modules and suppose that there is an isomorphism Φ : Aut(G) → Aut(G̃).
Let RJ be the largest localization of R such that G, G̃ are RJ -modules. Then Φ
determines an automorphism g of RJ such that G is g-semi-isomorphic to either G̃
or to Hom(G̃, RJ), as RJ -modules.

The notion of semi-isomorphism occurs in the analogous classical problem for
vector spaces (see [B]), but for vector spaces (or more generally free modules) it
is easy to see that semi-isomorphism always implies isomorphism. We are unable
to determine whether such an implication is valid in our general context. We can
however recover isomorphism for modules over the discrete valuation rings of rank
one which lie between Zp and Ẑp (Theorem 2.3).

§1. ENDOMORPHISM RINGS

In what follows, unless stated to the contrary, R will denote a valuation domain,
P its maximal ideal, and U(R) the multiplicative group of the units of R. For
general definitions and results on valuation domains and their modules we refer to
the book by Fuchs and Salce [FS]. Our notation is standard, in accord with [F] and
[FS].

The endomorphism ring of a R-module M will be denoted by E(M), or ER(M)
if there is danger of ambiguity.

A valuation domain R is said to be totally branched discrete if the following two
conditions are satisfied:

i) Spec(R) is well-ordered by the reverse inclusion, that is Spec(R) = {Pα : α ≤ λ}
where λ is an ordinal and Pα ⊃ Pβ for α < β ≤ λ; note that P0 = P , Pλ = {0}.
ii) if J ⊃ H are two consecutive prime ideals of R, then RJ/H is a DVR.

We refer to [Z] for various characterisations of totally branched discrete valuation
domains. We just recall the following ones, which we shall need in the sequel: R is
totally branched discrete if and only if, for every J ∈ Spec(R), JRJ is a principal
ideal of the valuation domain RJ or, equivalently if every ideal of R is isomorphic
to a prime ideal.

It is worth noting a consequence of the second characterisation above: a totally
branched discrete valuation domain R is maximal if and only if R/J is complete (in
its valuation topology) for every J ∈ Spec(R) (this last property is often referred to
by saying that R is complete by stages). In fact, a valuation domain R is maximal if
and only if R/I is complete for every ideal I of R; on the other hand, by Proposition
2.2. of [SZ], if I1 and I2 are isomorphic ideals of R, then R/I1 is complete if and
only if R/I2 is also, and thus the above assertion follows.

We shall also use the following property of a totally branched discrete valuation
domain: for all nonzero prime ideal Pα of R, we have RPα

∼= Pα.
The next two lemmas hold for any (commutative) ring R. Thus we state them

in the general form.

Lemma 1.1. Let R be any ring, and let M , N be R-modules with isomorphic
endomorphism rings; let Φ : E(M) → E(N) be such an isomorphism. If M =
M0 ⊕M1 and π : M → M0 is the canonical projection, then N0 = Φ(π)N is a
direct summand of N and we have E(M0) ∼= E(N0).

The proof of the above lemma is straightforward.
2



Lemma 1.2. Let R be any ring, and let M , N be R-modules with isomorphic
endomorphism rings; let Φ : E(M) → E(N) be such an isomorphism. Suppose that
M = M0 ⊕M ′, where M0 is free of rank one; let π : M → M0 be the canonical
projection and suppose that Φ(π)N = N0 is free. Then M ∼= N .

Proof. First note that the hypotheses and Lemma 1.1 imply thatE(N0) ∼= E(M0) =
R, so that N0

∼= R, since N0 is free. We have M0 = Rx0, N0 = Ry0, for suitable
x0 ∈ M , y0 ∈ N . For each x ∈ M , let us consider the endomorphism fx of M
defined by

fx : rx0 +m′ 	→ rx, r ∈ R, m′ ∈M ′;

note that fxπ = fx for all x ∈ M . The map M → E(M), x 	→ fx is an R-
homomorphism, since it is easily checked that fx+x′ = fx + fx′ and frx = rfx, for
all x, x′ ∈M , r ∈ R. Let us define a map ψ : M → N by

ψ(x) = Φ(fx)(y0), x ∈M.

Since x 	→ fx is a homomorphism, it follows that ψ is a homomorphism, too. To
complete the proof, we have to show that ψ is injective and surjective. Suppose
that ψ(x) = 0. By Lemma 1.1, N0 is a summand of N , say N = N0 ⊕ N ′; let
sy0 + n′ (s ∈ R, n′ ∈ N ′) be an arbitrary element of N . From fx = fxπ we get

Φ(fx)(sy0 + n′) = Φ(fx)Φ(π)(sy0 + n′) = sΦ(fx)(y0) = sψ(x) = 0.

We deduce that Φ(fx) = 0, whence fx = 0, since Φ is injective. Finally fx = 0
implies fx(x0) = x = 0, and we conclude that ψ is injective. Let us now pick any
y ∈ N ; let g ∈ E(N) be defined by g : sy0 + n′ 	→ sy (s ∈ R, n′ ∈ N ′). Note that
gΦ(π) = g. Let f = Φ−1(g) ∈ E(M); then fπ = f implies that f = fx, where
x = f(x0). We conclude that

ψ(x) = Φ(fx)(y0) = g(y0) = y,

so that ψ is surjective, as desired. �
Lemma 1.3. Let M be a separable torsion-free module over the totally branched
discrete valuation domain R. Then there exists a prime ideal J of R such that M
has a rank-one direct summand isomorphic to RJ , and J is maximal with respect
to this property; moreover RJ is the largest localization of R such that M is a
RJ -module.

Proof. Let Spec(R) = {Pα : α ≤ λ}. Let us first suppose that M is divisible.
In this case every rank-one summand of M is isomorphic to Q = R{0}, and M is
naturally a Q-vector space. Assume now that M is not divisible. Then it must
contain a reduced direct summand of rank one. Every rank-one reduced R-module
is isomorphic to an ideal of R, whence it is isomorphic to some Pα �= 0, since R
is totally branched discrete; recall also that RPα

∼= Pα. Choose β minimal such
that M has a summand isomorphic to Pβ , and set J = Pβ . Then, whenever Pα

is isomorphic to a summand of M , we have β ≤ α, whence J ⊇ Pα, so that J
is maximal with respect to the property that RJ

∼= J is isomorphic to a direct
summand of M . If now RPα

� RJ , then RJ is not a RPα
-module, and so neither

is M . It remains to show that M is an RJ -module. We have to verify that, for any
3



given x ∈M and q ∈ RJ , we have qx ∈M . In fact, since M is separable, x belongs
to a rank-one summand L of M , isomorphic to Pα, say. Since J ⊇ Pα, then Pα

∼= L
is an RJ -module. We conclude that qx ∈ L ⊆M , as desired. �

Modifying the terminology introduced by May [M], we say that a class of modules
is endomorphically unique if, for any modules M and N in the class, E(M) ∼= E(N)
implies M ∼= N .

We are now in the position to prove the main result of the first section.

Theorem 1.4. Let R be a valuation domain. The separable torsion-free R-modules
are endomorphically unique if and only if R is totally branched discrete.

Proof. (⇒) Assume that R is not totally branched discrete. Then there exists
J ∈ Spec(R) such that JRJ is not a principal ideal of RJ . It is known that
ERJ

(JRJ) ∼= ERJ
(RJ) ∼= RJ , so that we also have ER(RJ) ∼= ER(JRJ). On the

other hand, RJ and JRJ are not isomorphic R-modules, otherwise there would exist
s ∈ R such that JRJ = sRJ , which implies that JRJ is a principal ideal of RJ ,
contrary to our assumption. We conclude that the class of separable torsion-free
R-modules is not endomorphically unique.
(⇐) Let M and N be separable torsion-free modules over the totally branched
discrete valuation domain R, and assume that there exists a ring isomorphism
Φ : E(M) → E(N). Our end is to show that M ∼= N . Let Spec(R) = {Pα : α ≤ λ}.
By Lemma 1.3, there exist β ≤ λ, minimal such that M has a summand isomorphic
to RPβ

, and β′ ≤ λ, minimal such that N has a summand isomorphic to RPβ′ . Then
β = β′. In fact, we may assume, without loss, that β ≤ β′. Then we may write
M = X⊕Y , where X ∼= Pβ . Let π : M → X be the canonical projection. In view of
Lemma 1.1, X ′ = Φ(π)N is a summand of N such that E(X ′) ∼= E(X) ∼= E(RPβ

).
Then X ′ is indecomposable, whence X ′ has rank one, since it is separable. It follows
that X ′ ∼= RPβ

, and so β = β′, by the minimality of β′. Then, from Lemma 1.3,
we see that M and N are both RPβ

-modules. Further, in view of torsion-freeness,
the R-endomorphisms of M coincide with its RPβ

-endomorphisms, and the same
holds for N . Since we have X ∼= RPβ

∼= Φ(π)N = X ′, we are in the position to
apply Lemma 1.2 to the RPβ

-modules M and N ; we conclude that M and N are
isomorphic as RPβ

-modules, and so also as R-modules. �

§2. AUTOMORPHISM GROUPS

Let us introduce a property of a valuation domain R. We say that the automorphism
groups determine the rank-one R-modules if, for all J1, J2, R-modules of rank one,
Aut(J1) ∼= Aut(J2) implies J1

∼= J2.
Of course, the above property makes sense only if R is totally branched discrete,

otherwise, as we have seen in the proof of Theorem 1.4, there exists a prime ideal
J of R with J �∼= RJ , but E(J) ∼= E(RJ), whence, a fortiori, Aut(J) ∼= Aut(RJ).
Let us also note that when R is a DVR, then the automorphism groups determine
the rank-one R-modules, since these latter are isomorphic either to {0}, R, or Q.

The following example shows that there exist totally branched discrete valuation
domains which are not DVR yet enjoy the above property, and others which do not
satisfy it.

EXAMPLE 2.1. Let D be a complete DVR of characteristic 0, with maximal ideal
tD and field of fractions K, and let X be an indeterminate over K. Let us consider

4



the following valuation domain

R = D +XK[[X]],

consisting of formal power series over K, with constant term lying in D. R is a
totally branched discrete valuation domain of Krull dimension 2; the prime ideals
are P ⊃ J ⊃ {0}, where P = tR and J = XK[[X]] (the verifications of these
facts are standard). Then any rank-one R-module is either isomorphic to one of
R, RJ = K[[X]] or Q. We have that Aut(R) ∼= U(R), Aut(RJ) ∼= U(RJ) and
Aut(Q) ∼= U(Q). Observe that every unit of RJ may be written in the form

a(1 +Xf(X)), where a ∈ K \ {0}, f(x) ∈ K[[X]],

while every unit of R may be written in the form

b(1 +Xg(X)), where b ∈ U(D), g(x) ∈ K[[X]].

Finally, any nonzero element of U(Q) is of the form Xmθ for suitable θ ∈ U(RJ)
and m ∈ Z. Let G = {1+Xf(X) : f(X) ∈ K[[X]]}. Since K has zero characteristic
it follows from Hensel’s Lemma that for every η ∈ G, n ∈ N, there exists δ ∈ G
such that δn = η. We deduce that the multiplicative group G is divisible and
torsion-free, whence G is isomorphic to the additive group Q(ρ) where ρ = |K|ℵ0 .
We conclude that Aut(R) ∼= Aut(RJ) if and only if U(K) × Q(ρ) ∼= U(D) × Q(ρ).
Moreover we have Aut(Q) ∼= Z × Aut(RJ).

Let us now set D = Ẑp (the p-adic integers, with p �= 2), so that K = Q̂p. It is
known (see [F], Theorem 127.5) that

U(Q̂p) ∼= Z × U(Ẑp) ∼= Z × Z(p− 1) × Ẑp.

Then we have U(Q̂p) × Q(ρ) �∼= U(Ẑp) × Q(ρ), since Z(p − 1) × Ẑp × Q(ρ) has no
free summands. Moreover U(Q) ∼= Z×U(RJ) �∼= U(RJ) (to see this it is enough to
tensor by Zq with q �= p) and U(Q) �∼= U(R). This shows that if R = Ẑp+XQ̂p[[X]],
then the automorphism groups determine the rank-one R-modules.

On the other hand, if we set D = Q[[Y ]] (Y another indeterminate, algebraically
independent of X), we get U(K) = {Y mg : m ∈ Z, g ∈ U(D)}, whence U(K) ∼=
Z × U(D). Since any element of U(D) is of the form q(1 + Y h(Y )), q ∈ Q \ {0},
h(Y ) ∈ D, we have U(D) ∼= U(Q)×H, where H = {1+Y h(Y ) : h(Y ) ∈ D}. Since
U(Q) is a free Z-module of countable rank, we see that

U(D) ∼= U(Q) ×H ∼= Z × U(Q) ×H ∼= U(K).

We conclude that, when R = Q[[Y ]] +XQ((Y ))[[X]], the rank-one R-modules are
not determined by their automorphism groups. Note that in this situation we also
have U(Q) ∼= Z × U(RJ) ∼= U(RJ) ∼= U(R).

Let us remark that all the valuation domains constructed in Example 2.1 turn out
to be maximal, since they are “complete by stages” (cf. the first section). Similar
examples may be constructed without using maximality.

From now on we shall adopt a notation reminiscent of that in [CG], to facilitate
comparison with that paper.

Let g be an automorphism of R; a g-semi-isomorphism from the R-module G
onto the R-module G̃ is an additive bijection from G onto G̃, semi-linear with
respect to g. In such case, G is said to be g-semi-isomorphic to G̃.

In what follows we assume that 2 is a unit of R; equivalently, the residue field
R/P has characteristic �= 2.

5



Theorem 2.2. Let R be a totally branched discrete valuation domain, with Spec(R) =
{Pα : α ≤ λ}. Let us suppose that 2 is a unit of R and that the automorphism groups
determine the rank-one R-modules. Let G, G̃ be separable torsion-free R-modules
such that there is an isomorphism Φ : Aut(G) → Aut(G̃). Then the following hold:
a) if β, β′ ≤ λ are, respectively, minimal such that G has a summand isomorphic
to RPβ

and G̃ has a summand isomorphic to RPβ′ , then β = β′;
b) G and G̃ are RPβ

-modules;
c) Φ determines an automorphism g of RPβ

such that either G is g-semi-isomorphic
to G̃ as RPβ

-modules, or G is g-semi-isomorphic to Hom(G̃, RPβ
) and G̃ is g−1-

semi-isomorphic to Hom(G,RPβ
), as RPβ

-modules.

Proof. Let us write G = L⊕H, where L is rank-one and L ∼= RPβ
with β minimal.

Since 2 is a unit of R, the mapping ε 	→ (1 + ε)/2 is a bijection from the set
of all involutions in Aut(G) to the set of all idempotents in E(G). This means
that L = Ker(1 − ε) for a suitable involution ε ∈ Aut(G) (cf. [CG]); ε is said
to be extremal , when, as in the present case, the corresponding summand L is
indecomposable.

Corresponding to the decomposition G = L⊕H, every automorphism of G has
a matrix representation (

ξ11 ξ12
ξ21 ξ22

)
with ξij ∈ Hom(Gi, Gj), where we have written G1 = L, G2 = H. In particular,
absorbing a sign into ε if necessary, we have

ε =
(−1 0

0 1

)
.

With respect to the fixed decomposition let Δ and ∇ denote respectively all lower
and all upper unitriangular matrices(

1 0
σ 1

)
and

(
1 τ
0 1

)
.

As remarked in [CG], the image of the extremal involution ε is an extremal involu-
tion ε̂ ∈ Aut(G̃), so we have a corresponding direct decomposition

G̃ = L̃⊕ H̃

where L̃ has rank 1; Δ̃ and ∇̃ now have the obvious meaning in Aut(G̃).
We now proceed by steps.

STEP 1: Z(AutG) (and similarily Z(AutG̃)) consists of the matrices of the form(
a 0
0 a1

)
where a ∈ Aut(L) = U(RPβ

).

In fact, let
(
a b
c d

)
∈ Z(AutG). Since 2 is a unit of R, the matrix

(
2 ξ
0 1

)
lies

in Aut(G), for every ξ ∈ Hom(L,H). The equality(
a b
c d

) (
2 ξ
0 1

)
=

(
2 ξ
0 1

) (
a b
c d

)
6



gives rise to the following equalities

2c = c, aξ + b = 2b+ ξd;

these at once yield c = 0 and b = 0 (for ξ = 0). Then aξ = ξd for all ξ ∈ Hom(L,H);
our end is to prove that d = a1. Since automorphisms are represented by matrices,
we make the maps operate on the right of the elements of G, G̃. By contradiction,
let us suppose that there exists x ∈ H such that xd = x′ �= ax. Recall that
L = RPβ

x0 for a suitable x0 ∈ G. By Lemma 1.3 G is an RPβ
-module, so that

there exists an RPβ
-homomorphism ξ : L → H such that ξ : x0 	→ x. But then

x0aξ = ax �= x′ = xd = x0ξd; this gives our required contradiction.

STEP 2: L ∼= L̃.

In view of the hypothesis on R, it is enough to show that Aut(L) ∼= Aut(L̃).
STEP 1 implies that the isomorphism Φ induces a map Z(AutG) → Z(AutG̃)
given by

Φ :
(
a 0
0 a1

)
	→

(
ρ(a) 0
0 ρ(a)1

)
.

It is then clear that the map a 	→ ρ(a) is an isomorphism of Aut(L) onto Aut(L̃),
as desired.

From STEP 2 and by the symmetry between G and G̃, we get that β is also the
minimal ordinal such that G̃ has a direct summand isomorphic to RPβ

, that is, in
our notation, β = β′. It follows that G, G̃ are both RPβ

-modules, and this settles
points a) and b) of our statement.

Since G, G̃ are torsion-free, we also have that the endomorphisms of G as an
R-module and those as an RPβ

-module coincide, and the same for G̃. It follows
that Aut(G) ∼= Aut(G̃) when G, G̃ are viewed as RPβ

-modules. It is then clear
that we may thus assume, without loss, that L ∼= L̃ ∼= R. This assumption will be
standing for the rest of the proof. In particular, we emphasize that if G is divisible,
then β = λ, RPλ

= R{0} = Q and G, G̃ will be regarded as Q-vector spaces.
The following step, proved in [CG], is crucial.

STEP 3. Either (i) Φ(Δ) = Δ̃ and Φ(∇) = ∇̃, or (ii) Φ(Δ) = ∇̃ and Φ(∇) = Δ̃.

The above result is proved in [CG] (Lemma 3) in the case of Ẑp-modules, but
their proof is purely group-theoretical, and so it goes through also in our case. All
they need of module theory is that the centre of the endomorphism algebra of a
torsion-free separable R-module containing a free summand, consists of the scalar
multiplications: this fact can be verified arguing as in STEP 1.

STEP 4. The image under Φ of an automorphism of the form
(
u 0
0 1

)
, u ∈ U(R),

has the form
(
r(u) 0

0 s(u)1

)
, r(u), s(u) ∈ U(R). Moreover, the map f : u 	→

r(u)/s(u) is a multiplicative homomorphism of U(R).

Since
(
u 0
0 1

)
belongs to ZC(ε), then Φ

(
u 0
0 1

)
belongs to ZC(Φ(ε)), and

therefore it has the required form, as proved in [CG]. Since Φ is multiplicative, for
u, v ∈ U(R) we have r(uv) = r(u)r(v), s(uv) = s(u)s(v), whence f(uv) = f(u)f(v).

7



Let us now consider any element
(

1 σ
0 1

)
∈ Δ, where σ ∈ Hom(L,H). Now,

if we are in the situation of case (i) of STEP 3, its image under Φ will have the

form
(

1 φ(σ)
0 1

)
, with φ(σ) ∈ Hom(L̃, H̃). Otherwise, if we are in case (ii) of

STEP 3, the image will be of the form
(

1 0
ψ(σ) 1

)
, where ψ(σ) ∈ Hom(H̃, L̃). It

is immediate to see that

φ : Hom(L,H) → Hom(L̃, H̃); ψ : Hom(L,H) → Hom(H̃, L̃)

are additive maps. In view of STEP 3, φ, ψ turn out to be bijective.

STEP 5. Let f be the map defined in STEP 4. The map g : R → R defined by
g(u) = f(u), for u ∈ U(R) and g(r) = f(r − 1) + 1 for r ∈ P is an automorphism
of R.

Let us assume to be in case (i) of STEP 3; the argument for case (ii) is similar.
We have the additive map φ defined above; let us first see that φ(rσ) = g(r)φ(σ),
for all r ∈ R and σ ∈ Hom(L,H). In fact, let us first assume that r ∈ P ; applying
Φ and recalling STEP 4, we get

(
1 rσ
0 1

)
=

(
r − 1 0

0 1

) (
1 σ
0 1

) (
1/(r − 1) 0

0 1

) (
1 σ
0 1

)(1)

	→
(

1 f(r − 1)φ(σ)
0 1

) (
1 φ(σ)
0 1

)
=

(
1 (f(r − 1) + 1)φ(σ)
0 1

)
.

In a similar, slightly simpler, way, we see that φ(uσ) = g(u)φ(σ) for all u ∈ U(R),
and we are done. Let us now show that g is additive. Let 0 �= σ ∈ Hom(L,H);
for all r, s ∈ R we have rσ + sσ 	→ g(r)φ(σ) + g(s)φ(σ), since φ is additive. From
(r + s)σ 	→ g(r + s)φ(σ), we get g(r + s) = g(r) + g(s), since σ �= 0, φ is injective,
and G, G̃ are torsion-free. To see that g is multiplicative, it is enough to note
that rsσ 	→ g(r)φ(sσ) = g(r)g(s)φ(σ), for all r, s, σ. It remains to show that g is
bijective. For a fixed σ �= 0, from g(r) = g(s) it follows φ(rσ) = φ(sσ); since φ is
injective, we get rσ = sσ, whence r = s. We conclude that g is injective. Now pick
t ∈ R; since φ is surjective, for any fixed σ there exists τ such that φ(τ) = tφ(σ).
Applying Φ−1 to tφ(σ) we see, as in (1), that τ = rσ, for a suitable r ∈ R; it follows
that tφ(σ) = g(r)φ(σ), whence t = g(r). We conclude that g is also surjective.

For an R-module M , we use the standard notation M∗ = HomR(M,R). The
next STEP 6 will end our proof.

STEP 6. If we are in case (i) of STEP 3, then G is g-semi-isomorphic to G̃; if we
are in case (ii), then G is g-semi-isomorphic to G̃∗ and G̃ is g−1-semi-isomorphic
to G∗.

We have seen in the proof of STEP 5 that in case (i), φ is a g-semi-isomorphism
from Hom(L,H) ∼= H onto Hom(L̃, H̃) ∼= H̃. In a similar way, one can see that, in
case (ii), ψ is a g-semi-isomorphism from Hom(L,H) onto Hom(H̃, L̃) ∼= H̃∗. Since
L ∼= L̃ ∼= R, L is automatically g-semi-isomorphic to L̃. The desired conclusions
follow easily. �

We have a corollary of the preceding theorem, which essentially extends the main
result in [CG].
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Theorem 2.3. Let D be a DVR contained in Ẑp. Let G, G̃ be separable torsion-
free D-modules such that Aut(G) ∼= Aut(G̃). Then either G ∼= G̃ or G ∼= G̃∗ and
G̃ ∼= G∗.

Proof. From D ⊆ Ẑp it follows that pD is the maximal ideal of D, the p-adic
topology on D coincides with the topology induced by the p-adic topology on Ẑp,
and D is dense in Ẑp, since it necessarily contains Zp. Let us also note that, since
D is a DVR, it satisfies the hypothesis of Theorem 2.2. If G is divisible, then G̃ is
divisible too, by Theorem 2.2, so they are both vector spaces and our claim follows
from the classical result by Rickart [R]. Assume now that G is not divisible. Then
G contains a free summand. Since the identity is the unique ring automorphism of
Ẑp, then also D has only the trivial automorphism. An application of Theorem 2.2
gives the desired conclusion. �

In the notation of Theorem 2.2, one may ask if the case when G is not g-semi-
isomorphic to G̃ (as RPβ

-modules) can actually happen. The answer is affirmative,
as shown by the next example.

EXAMPLE 2.4. Consider the two separable Zp-modules Π =
∏

ℵ0
Zp and Σ =⊕

ℵ0
Zp. Of course Π �∼= Σ, so that E(Π) �∼= E(Σ). However, Charles has proved in

[C] that the rings E(Π) and E(Σ) are anti-isomorphic, so that the groups Aut(Π)
and Aut(Σ) are anti-isomorphic. But then Aut(Π) ∼= Aut(Σ) (this follows from the
fact that the map x 	→ x−1 is an anti-isomorphism of any group). Applying our
Theorem 2.2 and recalling that Zp has no nontrivial ring automorphisms, we see
that Π ∼= Σ∗, Σ ∼= Π∗, and Π �∼= Σ.

It is also interesting to show that the hypothesis in Theorem 2.2 that the auto-
morphism groups determine the rank-one R-modules cannot be avoided.

Proposition 2.5. Let R be a totally branched discrete valuation domain which
contains a non-maximal prime ideal J such that U(J) ∼= U(R). Then, for any
automorphism g of R, there are no g-semi-isomorphisms from R onto J (nor onto
J∗, which is isomorphic to J).

Proof. First of all, let us note that J ∼= J∗. In fact, J∗ ∼= RJ (this is true for
any prime ideal of an arbitrary valuation domain), and RJ

∼= J , since R is to-
tally branched discrete. Assume for a contradiction that φ : R → J is a g-semi-
isomorphism, for a suitable g ∈ Aut(R). Let φ(1) = a ∈ J . Choose d ∈ R\J which
is not a unit. Then a/d ∈ J , since J is a prime ideal. Let u = φ−1(a/d) ∈ R. Then
φ(g−1(d)u) = gg−1(d)φ(u) = da/d = a implies that g−1(d)u = 1, whence dv = 1,
where v = g(u). It follows that d is a unit of R, impossible. �

Let us remark that the valuation domain R, constructed in Example 2.1, such
that the automomorphism groups do not determine the rank-one R-modules, fulfills
the hypotheses of the above proposition. In fact R is of the form R = D+XK[[X]],
where J = XK[[X]] is such that U(R) ∼= U(J). Then Proposition 2.5 shows that
the conclusions of Theorem 2.2 do not hold if we set G = R and G̃ = J .

We end our paper with a discussion of the limitations of the method employed
in the proof of Theorem 2.2.

REMARK 2.6. We shall adopt the notation of Theorem 2.2. We start exhibiting
an example of an automorphism g of RPβ

such that g(R) �⊂ R.
9



Let T = K[[X]], where K is the field K = Q(y, z) (y, z are indeterminates). Let
D = Q[y, z](y); then D is a valuation domain of K (discrete of rank one). Let us
now consider the valuation domain

R = D +XK[[X]].

Note that T = RJ , where J = XK[[X]]. Let ϕ : K → K be the automorphism
which extends the assignments y 	→ z and z 	→ y. Then the map g : T → T defined
by

g :
∑

aiX
i 	→

∑
ϕ(ai)Xi

is an automorphism of T . However, note that ϕD = Q[y, z](z) �⊂ D, since, for
instance, y is a unit in ϕD but not in D. It follows that

g(R) = ϕD +XK[[X]] �⊂ R;

in other words, g|R is not an automorphism of R.
Let us now apply the procedure in the proof of Theorem 2.2 to the following

situation: R is the above defined valuation domain; G = T⊕T = G̃ (T as above); Φ
is the isomorphism of Aut(G) onto Aut(G̃) which maps the 2× 2 matrix, invertible

over T ,
(
a b
c d

)
(a, b, c, d ∈ T ) to

(
g(a) g(b)
g(c) g(d)

)
, where g is the above defined

automorphism of T .
Here, in the notation of Theorem 2.2, Pβ = J , T = RPβ

, and, following the
proof, the automorphism of RPβ

, determined by Φ, turns out to be the same as the
g defined above, whose restriction to R is not an automorphism of R. From the
theorem we just conclude that G is g-semi-isomorphic to G̃, as RPβ

-modules, but
not as R-modules.

Thus a straight application of the method in Theorem 2.2, based on the map
Φ, is unable to show not only that G ∼= G̃, but even that there is a semi-linear
isomorphism from G to G̃ as R-modules.

In the general situation, we have a stronger result if G satisfies the following
property:

(*) for every f ∈ Aut(RPβ
) there exists a f -semi-isomorphism from G onto G,

as RPβ
-modules.

With such a property available, we could apply it, in Theorem 2.2, setting f =
g−1, to obtain G ∼= G̃ or G ∼= Hom(G̃, RPβ

), as RPβ
-modules, and so also as

R-modules. Note that G satisfies property (*) if it is a product of copies of R.

We are not able to say if property (*) is satisfied by any separable torsion-free
R-module, or, more generally, if Theorem 2.2 can be improved replacing semi-
isomorphism with isomorphism.
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