
Technological University Dublin Technological University Dublin 

ARROW@TU Dublin ARROW@TU Dublin 

Doctoral Science 

2007-01-01 

Physiochemical Indicators of Single Walled Carbon Nanotube Physiochemical Indicators of Single Walled Carbon Nanotube 

Toxicity Toxicity 

Alan Casey 
Technological University Dublin, alan.casey@tudublin.ie 

Follow this and additional works at: https://arrow.tudublin.ie/sciendoc 

 Part of the Nanoscience and Nanotechnology Commons 

Recommended Citation Recommended Citation 
Casey, A. (2007). Physiochemical indicators of single walled carbon nanotube toxicity. Doctoral thesis. 
Technological University Dublin. doi:10.21427/D73P4J 

This Theses, Ph.D is brought to you for free and open access by the Science at ARROW@TU Dublin. It has been 
accepted for inclusion in Doctoral by an authorized administrator of ARROW@TU Dublin. For more information, 
please contact arrow.admin@tudublin.ie, aisling.coyne@tudublin.ie, vera.kilshaw@tudublin.ie. 

https://arrow.tudublin.ie/
https://arrow.tudublin.ie/sciendoc
https://arrow.tudublin.ie/scienthe
https://arrow.tudublin.ie/sciendoc?utm_source=arrow.tudublin.ie%2Fsciendoc%2F1&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/313?utm_source=arrow.tudublin.ie%2Fsciendoc%2F1&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:arrow.admin@tudublin.ie,%20aisling.coyne@tudublin.ie,%20vera.kilshaw@tudublin.ie


 
 
 

 

Physiochemical Indicators of Single Walled 

Carbon Nanotube Toxicity  

 

 

By 

Alan Casey, Dip App Sc, BSc 

 

 

A thesis submitted to the Dublin Institute of Technology, 

For the degree of Doctor of Philosophy (PhD) 

 

 

School of Physics 

Dublin Institute of Technology 

Kevin Street, Dublin 8 

2007



 ii 

Abstract 

Numerous toxicity studies have been conducted to date both in vivo and in vitro on 

refined and raw Single Walled Carbon Nanotubes (SWCNT). Differences in SWCNT 

toxicity and biocompatibility have been observed between these studies, and whilst 

these discrepancies have been attributed to factors such as varying percentages of 

remnant catalytic particles, differences in dispersion methods etc. the mechanisms 

underlying these inconsistencies have not been investigated. This study used standard 

spectroscopic and cellular techniques to elucidate the origins of these inconsistencies 

and also to estimate the validity of toxicological data evaluated form standard cytotoxic 

endpoints.  

Spectroscopic studies were conducted in order to demonstrate and elucidate the 

interactions of HiPco
®

 SWCNT with cell culture medium and its components, prepared 

both with and without foetal bovine serum. Upon addition of raw SWCNT to the 

medium a noticeable colour change was observed. UV/Vis absorption spectroscopy 

revealed a dramatic reduction in the absorption attributable to the phenol red, a pH 

indicator within the medium, without an associated change in pH. Reductions were also 

observed in absorbance features attributed to various components of the medium 

indicating an interaction with the SWCNT.  Fluorescence spectroscopy also revealed 

reductions in emission features associated with the components of the medium giving 

further support to an interaction. Concentration dependent studies of the fluorescent 

emission of the various components of the media were modelled to show a differing 

degree of interaction between the SWCNT and the various components. Finally, notable 

differences were observed between the behaviour with and without serum. Raman 

spectroscopy gave no indication of differences between raw SWCNT and those 
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deposited from the medium suspension indicating that no debundling of the SWCNT 

occurred. The results and their implications for toxicity and in vitro studies are 

discussed. 

To investigate if these interactions could induce a secondary toxicity by medium 

depletion, further spectroscopic and cytotoxicity studies were performed. SWCNT 

media suspensions were created, centrifuged and filtered (0.2µm cellulose acetate 

filters) to remove the SWCNT. Spectroscopic analysis was carried out on the filtered 

samples to verify the removal of the SWCNT from the suspension but also to assess the 

degree of alteration of the medium due to the aforementioned interactions. Cytotoxicity 

studies were performed on human alveolar A549 cells with the depleted media. Two 

cytotoxic endpoints were employed to evaluate cytotoxicity, namely Alamar blue and 

neutral red. Concentration dependant exposures over different time periods revealed low 

acute cytotoxicity after 72 and 96 hour exposure to the filtered samples, verifying the 

proposed notion of a secondary toxicity due to medium depletion.  

Finally the direct cytotoxicity of single walled carbon nanotubes was evaluated in the 

A549 human alveolar carcinoma cell line.  Cell viability was assessed using the 

following indicator dyes, Commassie Blue, Alamar Blue
™

, Neutral Red, MTT and 

WST-1. Exposure of the A549 cells revealed the nanotubes to have low acute toxicity. 

However considerable variation was found depending on the dye employed.  

Spectroscopic analysis of the nanotubes’ interactions with the dyes revealed interactions 

in all cases, resulting in the reduction of the associated absorption/fluorescent emission 

which is used to evaluate particle toxicity. In addition to being sensitive, simple, safe 

and cost-effective the ideal test for in vitro cell cytotoxicity must also not interfere with 

the compound to be tested.  The results therefore have comprehensively confirmed that 



 iv 

the indicator dyes used in this study were not appropriate for the quantitative toxicity 

assessment of carbon nanotubes highlighting the pressing need for the development of 

alternative screening techniques. 
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Chapter 1 

 

“Introduction” 

 

1.1 Nanotechnology. 

Nanoscience is defined as “the study of phenomena and the manipulation of materials at 

atomic, molecular, and macromolecular scales, where properties differ significantly 

from those at larger scale”, and nanotechnologies as “the design, characterization, 

production, and application of structures, devices, and systems by controlling shape and 

size at the nanometre scale” (The Royal Society, 2004). Richard P. Feynman was the 

first to mention the concept of nanoscience during his key lecture at the annual 

American Physical Society meeting in 1959 (Feynman, 1959). A Japanese researcher, 

Norio Taniguchi, spoke about nanotechnology in 1974 and gave this definition 

“Nanotechnology consists of the processing, separation, consolidation and deformation 

of materials by one atom or another” (Taniguchi, 1974). Although this description is 

over 30 years old it still encompasses the aims of many researchers working in the 

Nanotechnology field.  

 

Nanotechnology is widely perceived as one of the key technologies of the 21
st 

century 

and accordingly there have been huge advances and increased funding in global 

technological research on nanomaterials. Its incorporation into main stream scientific 

research understandably has had considerable effects. The development of a vast battery 

of engineered nanoparticles has resulted in an ever increasing range of potential 
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applications based primarily on their one common property-their size. 

 

1.2 The importance of carbon nanotubes. 

Within the family of nanomaterials, carbon nanotubes (CNT) have shown great 

potential, with a multitude of proposed applications in such disciplines as, for 

example, materials science (Guzmán de Villoria et al., 2006), electronics (Singh et al., 

2006), and biomedicine (Bianco et al., 2005; Pantarotto et al., 2004).  Of the CNT, 

single wall carbon nanotubes (SWCNT) are considered to have extensive commercial 

applications potential due to their excellent mechanical, electrical and magnetic 

properties (Paradise and Goswami, 2006).  The broad and increasing range of 

nanotechnological applications for SWCNT, many of which are biological, will 

almost certainly result in the increased potential for both human and environmental 

exposures to this nanomaterial.  It is, therefore, imperative that toxicological research 

to evaluate the biocompatibility and possible adverse effects on both the health of 

humans and the environment is conducted parallel with technological research and the 

development of nanomaterials (Dreher, 2004; Oberdörster et al., 2005; Thomas and 

Sayre, 2005).  

 

1.3 Societal impacts of nanotechnology. 

Nanotechnology has a huge number and variety of applications across many different 

sectors. Potentially it could lead to more efficient and sustainable use of resources and 

have a beneficial impact for the vast majority of people throughout the world. However, 

as with all technologies, there are also potential negative impacts on society. With an 

increasing range of engineered nanoparticles finding their way in to mainstream 

consumer products there will undoubtedly be societal impacts. The main issues include 
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social divide, communication, and risk. As with previous technologies such as 

information technology, nanotechnology could have the effect of widening the divide 

between the rich and the poor, or more specifically the developed and developing world. 

Primarily this can be through advances in healthcare, transport, energy supplies, etc. 

which may be more available to the wealthy. However, paradoxically, it may also come 

about through a decreased use of natural resources. Many of the precious metals and 

minerals that new nanomaterials are expected to replace, and thereby reduce our 

dependency on non-renewable sources, are mined in the developing world. The loss of 

this revenue without a strategy for its replacement will have a negative impact on the 

economy and development of these countries. Acceptance of new developments and in 

particular the wide-ranging effects of nanotechnology, can only be achieved through 

communication and dialogue between scientists, industrialists, governments and wider 

society. All too often in the past this has been ignored and resulted in misinformation 

and misunderstanding of the risks and benefits associated with the new development. 

This has been recognised by governments, research funding agencies and industry, and 

there are currently emerging many initiatives that actively explore dialogue with social 

scientists and interested citizens, allowing the implications of new developments to be 

explained, concerns explored, and opinions of different members of society 

incorporated into future planning.  

Nanomaterials are being developed because they offer advantages over conventional 

materials such as improved electronic properties, strength and optical properties. 

However, information regarding the health and safety of engineered nanoparticles has 

been slow to filter to the public. There are of course concerns regarding the safety of 

this every increasing range of nanomaterials which are slowly filtering into main stream 

consumer products such as cosmetics, sun creams and food packaging to name a few. 



 4 

With the shrinkage in size to the nano scale, the intrinsic properties can be significantly 

altered in comparison to that of the bulk material which may induce adverse effects to 

health. Also the nano scale dimensions are such that cellular and indeed intra cellular 

interactions of the nanoparticles are feasible.  Despite the increase in public exposures 

due to their use in a number of consumer products, toxicological information and risk 

assessments of many nanoparticles have been slow to emerge. This is primarily due to 

scientific difficulties in evaluating the potential health risks of a variety of different 

nanoparticles. 

 

1.4 Current Toxicological Knowledge. 

 

Very little is known about the long term effects of exposure to different nanoparticles. 

However toxicological studies do exist for a variety of different types of nanoparticles 

(Carero et al, 2001; Cedervall et al, 2007; Donaldson et al, 2002; Donaldson et al, 

2004; Duncan et al, 2005; Ghio et al, 1999; Kamat et al 2000; Lin et al, 2006; 

Monteiro-Riviere et al, 2006; Murphy et al, 1999; Oberdorster et al 2000; Pulskamp et 

al, 2007; Sayes et al 2005; Shvedova et al, 2005; Smart et al, 2006; Wang et al, 2007). 

Although some of these materials are considered to be biologically compatible in their 

bulk form, studies are showing that in the nano form they can induce adverse effects. 

This phenomenon is primarily due to the fact that reduction in size to the nano scale 

increases the surface area ratio of these particles increasing the potential for adverse 

interactions which are not possible in the larger form. Many mechanisms have been 

suggested as to how a nanoparticle induces a toxic effect. The different electronic 

properties of nanoparticles in comparison to their bulk form have been suggested as a 

potential contributing factor (Donaldson et al, 2002; Oberdorster et al, 2005). The 
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different surface chemistry of the nanoparticles (chemically active or inactive, 

hydrophobic or hydrophilic) (Cedervall et al, 2007; Nel et al, 206) can also contribute. 

Recently the generation of Reactive Oxygen Species (ROS) has been identified as a 

potential marker for a toxic response of carbonaceous nanoparticles (Shvedova et al, 

2005; Pulskamp et al, 2007). It is clear that both a full physio-chemical characterisation 

of these nanomaterials and an identification of the critical factors which affect a toxic 

response are required. 

 

This thesis will focus on the cytotoxicity of SWCNT. Although the number of research 

groups looking specifically at SWCNT toxicity both in vitro and in vivo (Huczko et al, 

2001; Kagan et al, 2006; Muller et al, 2006; Shvedova et al, 2005; Smart et al, 2006; 

Warheit et al, 2004) has increased dramatically over the last 5 years, there are 

conflicting reports in the literature regarding the toxicity profile and general 

biocompatibility of these materials. Due to the inconsistent toxicological profile of 

SWCNT which exists currently, this study will seek to address a number of factors 

which have been alluded to in literature as possible contributors. The study will employ 

both standard spectroscopic and microscopic techniques in conjunction with standard in 

vitro cytotoxicity protocols to verify the existence of these contributing factors and to 

assess their effects on the overall toxicological profile of SWCNT. 

 

 

1.5 Thesis Outline. 

 

In chapter 2 a brief account into the evolution of carbon nanotube fabrication methods 

focusing on the HiPco method will be described. Carbon nanotubes will be classified 
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according to their physical structure. The electronic properties of SWCNT will then be 

discussed.  The aggregative nature of ‘as produced’ SWCNT and the role it has played 

in SWCNT research will be discussed. Finally a review of SWCNT composite systems 

will be discussed highlighting the range of different molecules capable of interacting 

with SWCNT.  

 

Chapter 3 gives an introduction to nanotoxicology, in which the key properties of many 

engineered nanoparticles that may induce a toxic response will be discussed. The 

chapter then focuses on the mechanisms by which carbon based materials elicit toxicity. 

A review of the properties of SWCNT and the role they may play in the generation of 

toxicity is given. The chapter concludes with a review of SWCNT toxicity highlighting 

discrepancies in the current toxicological profile of SWCNT.  

 

Chapter 4 will detail the experimental techniques employed throughout this study. A 

characterisation of pristine SWCNT both spectroscopically and microscopically will be 

described using the outlined experimental techniques. The origins of the observed 

spectral features will be discussed. Chapter 5 will use spectroscopic analysis to study 

the interactions of SWCNT upon their dispersion within a cell culture medium. Chapter 

6 will employ both cytotoxicity and spectroscopic techniques to investigate the role the 

interactions discussed in chapter 5 play in SWCNT toxicity. Chapter 7 will again use 

cytotoxicity and spectroscopic techniques to evaluate SWCNT cytotoxicity. The 

validity of the cytotoxicity evaluation will then be assessed, for each cytotoxicity 

endpoint employed, by spectroscopic analysis. Chapter 8 will present a summary of the 

findings over the course of the research and detail some potential areas which warrant 

future study. 
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Chapter 2 

“Single Walled Carbon Nanotubes” 

 

2.1 Introduction to single walled carbon nanotubes. 

 

Carbon nanotubes (CNT) were first observed by Sumio Iijima (1991) and have sparked 

an abundance of research since their discovery. They are unique, one-dimensional 

macromolecules, comprising entirely of carbon. They consist of extended tubes of 

rolled graphene sheets with an axial symmetry and a diameter in the nanometre range 

and can grow up to microns in length (Saito, 1999). Two types of CNT can be 

differentiated by their structures (Figure 2.1); they can be single walled ( Iijima et al, 

1993) which are hollow tubes of carbon capped at either end with a hemi-fullerene, or 

multiwalled, consisting of concentric layers of graphene sheets rolled up, where smaller 

diameter tubes are encased in larger diameter tubes (Ebbesen et al, 1993).  

Figure 2.1 Left; schematic of a single-walled carbon nanotube (SWCNT), Right; schematic of a 

multi-walled carbon nanotube (MWCNT) (Royal Society, 2004). 
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Since their discovery, several production techniques have evolved. SWCNT were first 

synthesised primarily in an arc-discharge chamber using metal catalysts, such as Fe or 

Co during the synthesis process (Harris, 1999). The arc discharge chamber (Ebbesen et 

al, 1992) in essence consists of two graphite rods, which are separated by a distance 

typically of the order of millimetres. A current is then passed through the rods causing 

the formation of an arc which vaporises the carbon into a hot plasma and upon cooling 

the carbon nanotubes form. This method can produce both multi and single walled tubes 

and has a typical yield of approximately 30% nanotubes. The nanotubes produced by 

this method tend to be short and of varying size. Initial experiments showed varying 

diameter ranges and lengths with low yield and purity (Bethune et al., 1993; Iijama and 

Ichihashi, 1993, Saito et al., 1998). The impurities comprised of amorphous carbon and 

catalytic particles. Through experimentation, Journet et al, (1997) showed that high 

yields of SWCNT could be achieved using the arc technique. Yields of 70 % SWCNT, 

average diameter of 1.4 nm and lengths of many micrometers were obtained in gram 

quantities.  

 

A breakthrough in the synthesis of SWCNT, making significant amounts of material 

available for experimental study, was the laser vaporisation method developed by Rice 

University in 1996 (Thess et al., 1996). High yields with >70 % SWCNT and an 

average diameter of 1.4 nm were reported. The remaining 30 % consists of amorphous 

carbon and catalytic particles. The laser vaporisation technique was surpassed in 1999 

by high pressure decomposition of carbon monoxide, commonly referred to as the 

HiPco method, which can produce >90 % pure SWCNT with an average diameter of 1.1 

nm, the only impurity being iron particles (Nikolaev et al., 1999). This fabrication 

process will be discussed in detail in the next section as HiPco SWCNT were used 
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throughout this study. However mass production with a yield of 100 % SWCNT is yet 

to be achieved. Also, irrespective of the production technique, SWCNT are found to 

form hexagonal-packed bundles during the growth process with the properties of the 

bundle in general being inferior to those of individual SWCNT (Zhang, 2004). As a 

result of their tendency to aggregate into these bundles, substantial effort has been put 

into the dispersion and separation of bulk samples. 

 

2.2 High Pressure Carbon Monoxide Method (HiPco). 

 

As HiPco Carbon Nanotubes were predominantly used in this study, the production 

method will be discussed in depth (Nikolaev et al, 1999). It is a continuous gas flow 

synthetic method in which SWCNT are grown and separated in a furnace with a 

continuous flowing gaseous feedstock mixture (Figure 2.2). This technique uses a 

mixture of carbon monoxide (CO) and iron pentacarbonyl (Fe(CO)5). Carbon monoxide 

is used as a carbon feed stock gas and the Fe(CO)5 as an iron containing catalyst 

precursor. The yield and diameter distribution can vary substantially and are highly 

dependant on fabrication conditions, particularly heat and pressure. Inside the furnace, 

thermal decomposition of the Fe(CO)5 produces iron clusters, which then serve as sites 

upon which the SWCNT nucleate and grow. The solid carbon is produced by CO 

disproportionation through a reaction known as the “Boudouard reaction” (Nikolaev et 

al, 1999), 

 

CO + CO → C(s) + CO2     Equation 2.1. 

 

This reaction occurs catalytically on the surface of the iron particles. A model has been 
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proposed for the gas phase nanotube growth in which the metal clusters form first. The 

metal clusters form by aggregation of iron atoms from the decomposition of Fe(CO)5 , 

then grow by collision with other metal particles and eventually reach the size of a 

SWCNT diameter (0.7-1.4nm), which corresponds to approximately 50-200 iron atoms. 

 

Figure 2.2 Schematic of water cooled CO flow tube reactor (Nikolaev et al, 1999). 

 

When the iron atoms cluster to the required size the CO can disproportionate on the 

surface of the clusters via the “Boudouard Reaction” to yield solid carbon. The SWCNT 

will nucleate and grow from them by the ‘Yarmulke’ mechanism (Dai et al, 1996). That 

is, a hemi fullerene cap forms on the partially carbon-coated particle, lifts off, and 

additional carbon atoms are continuously added to the edge of the cap, forming a hollow 

tube of constant diameter which grows away from the particle. 

 

The size and diameter distribution of the SWCNT can be roughly selected by 

controlling the pressure of the CO in which the reaction occurs (figure 2.3). A study 

carried out by P. Nikolaev et al (1999) showed that the highest yield and narrowest 

tubes are produced at the highest accessible temperature and pressure, 1200
o
C and 
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10atm, (Nikolaev et al, 1999). Furthermore they showed that operating temperature in 

conjunction with operating pressure had a considerable effect on the production rate of 

tubes and ultimately on the percentage yield of SWCNT (see tables 2.1 and 2.2). 

 

 

 

Figure 2.3 Diameter distributions of SWCNT produced at 1200
o
C at various CO pressures 

(Nikolaev et al, 1999). 
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Table 2.1 Production rates and yield for varying temperatures at a CO pressure of 10atm 

(Nikolaev et al, 1999). 

Temperature (
o
C) Production Rate 

(mg/h) 

SWCNT Yield 

(mole%) 

SWCNT (wt.%) 

850 0.68 73 37 

1000 1.00 71 34 

1200 1.24 79 44 

 

Table 2.2 Production rates and yields for varying CO pressures at a temperature of 1200
o
C 

(Nikolaev et al, 1999). 

Pressure (atm) Production Rate 

(mg/h) 

SWCNT Yield 

(mole%) 

SWCNT (wt.%) 

1 1.16 61 25 

3 1.38 67 30 

10 1.24 79 44 

 

 

Another important issue is the mechanism by which nanotube growth ceases. The metal 

catalyst particles in the product material are 3–5 nm in diameter, substantially larger 

than SWCNT diameters of ~ 1 nm, suggesting that the particles continue to grow even 

after nucleating a tube. The additional aggregating Fe atoms could come from several 

sources: direct gas-phase collisions with other Fe atoms, Fe clusters, or Fe(CO)5 

molecules (by adsorption/decomposition), or by adsorption of Fe atoms, clusters or 

adsorption/decomposition of Fe(CO)5 molecules onto the growing nanotube followed 

by iron atom diffusion to the particle at the end. As a catalytic particle grows larger, 

more and more catalytically active surface area is created, and eventually a graphitic 
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shell or other structures not associated with the growing nanotube will begin to form on 

the particle. Eventually the particle will become covered with carbon, preventing the 

diffusion of additional CO to the particle’s surface and terminating further nanotube 

growth. Another potential contributing factor to cessation of growth of a nanotube is 

evaporation of its attached cluster. As discussed above, small iron clusters (fewer than 

10 atoms) will tend to evaporate quickly at temperatures where SWCNT growth is 

rapid. The cessation of growth of the nucleated nanotubes would thus derive from a 

combination of these two effects: some nanotubes would stop growing when their 

attached catalyst particle evaporates or grows too small, some would stop when their 

catalyst cluster grows too large. 

 

2.3 Physical properties of carbon nanotubes. 

 

Carbon nanotubes, as mentioned earlier, are cylindrical graphene sheets of sp
2
-bonded 

carbon atoms. These nanotubes are single molecules measuring a few nanometres in 

diameter and several microns in length. Carbon nanotubes come in a variety of 

diameters and length, depending on fabrication technique and growth process the length 

of the tube can be from approximately 100 nanometres to 1mm while the diameters can 

vary from less than 1 to 100 nanometres. Furthermore they can be metallic or 

semiconducting. The following sections will give a brief overview of their structural 

and electronic properties. 

 

2.3.1 Structure and types of SWCNT.  

As stated there are two types of carbon nanotubes Single walled carbon nanotubes 

(SWCNT) which consist of a single graphene sheet seamlessly wrapped into a 
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cylindrical tube and Multiwalled carbon nanotubes (MWCNT) comprising of an array 

of such nanotubes that are concentrically nested like rings of a tree trunk (Iijima, 1991). 

Despite the structural similarity to a single sheet of graphite which is a zero-bandgap 

semiconductor, SWCNT may be either metallic or semi conducting, depending on how 

the graphene sheet is rolled to form the nanotube cylinder (Dreselhaus et al, 1996).  

 

 

Figure 2.4 Schematic diagrams showing the different ways of rolling a sheet of graphite to make 

various types of single walled carbon nanotubes. 

 

Figure 2.4 shows three ways in which the graphene sheet can be rolled, in order to form 

a SWCNT. It can be seen in the graphene sheet (Figure 2.4) that the π - electron 

conjugation lies horizontally in a zigzag across the nanotube as highlighted by the 

darkened line.  If the tube is formed by rolling the graphene sheet along the line AB, 

then a tube is formed with this “zigzag” around its circumference and a confined radial 

π - conjugation. If however the sheet is rolled along the direction AD then we obtain an 

“armchair” nanotube, which is metallic in nature due to its longitudinal π - conjugation 
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and is often referred to as a 1-D conductor. Finally the last type of tube which can be 

formed is a “chiral” tube when the sheet is rolled along the line AC (where C is an 

arbitrary direction between B and D); this type of tube is often semi-conducting due to 

its π - electron configuration. 

 

Figure 2.5 Unrolled honeycomb lattice of a nanotube. When the sites O and A coincide as well 

as B and B’, a nanotube can be constructed. The rectangle OABB defines the unit cell for the 

nanotube. The vector R denotes a symmetry vector (Saito et al., 1998). 

 

The basic structure of a SWCNT is specified by a single vector called the chiral vector 

(Ch). In figure 2.5, this vector is defined as OA and this is the section of the nanotube 

perpendicular to the nanotube axis, which when rolled up is the circumference of the 

tube. Figure 2.5 shows the unrolled lattice of the nanotube, and in this case, the 

direction of the nanotube axis is given by the vector OB. The lattice can then be rolled 

to form a cylinder by lining up the points so that O is on top of A and B is on top of B. 

The chiral vector Ch is then determined by the real space lattice vectors a1 and a2, which 

are also defined in figure 2.5 and this leads to the following equation: 

 

Ch = na1 + ma2 ≡ (n , m)  Equation 2.2 

The main symmetry classification of a tube is defined as being either achiral or chiral. 
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An achiral tube is defined as one where the mirror image of the tube is identical to the 

original one. A chiral tube is then defined as a tube where the mirror image cannot be 

superposed onto the original tube and they show spiral symmetry. There are two types 

of achiral tubes, which are named armchair and zigzag nanotubes. These two types can 

be seen in figure 2.3 where (a) is an armchair tube and (b) is a zigzag tube. These two 

tubes get their names from the shape of the cross-sectional ring at the edge of the 

nanotubes. 

 

An armchair nanotube is then defined as the case where n = m in equation 1, a zigzag 

corresponds to the case where m = 0. All other chiral vectors correspond to the 

production of a chiral nanotube but this is subject to the constraint that m is less than or 

equal to n. While the structure and type of SWCNT, be they armchair, zigzag or chiral, 

are likely to be of lesser importance in terms of toxicity testing, it is these differing 

structural and electronic properties that have made them attractive for an array of 

applications, many of them being “Bio-based”, highlighting the need for the 

development of reliable screening techniques for the bio compatibility of these truly 

remarkable materials. 

 

2.3.2 Electronic properties of SWCNT. 

Rolled graphene (i.e. a nanotube) can be described as a “semi-metal” as it is metallic in 

some directions and semi-conducting in others. The condition for metallic nanotubes is 

that (2n + m) or equivalently (n – m) is a multiple of three. In particular the armchair 

tube denoted by (n = m) is always metallic and the zigzag tubes (n, 0) are only metallic 

when n is a multiple of three. Figure 2.6 shows carbon nanotubes which are metallic and 

semiconducting, denoted by open and solid circles respectively. It also shows that 



 22 

approximately one third of carbon nanotubes are metallic and the remaining two thirds 

are semiconducting. 

 

 

Figure 2.6 Schematic Diagram showing Carbon nanotubes (n, m) that are metallic and 

semiconducting, and are denoted by open and solid circles respectively on the map of chiral 

vectors (n, m) (Dresselhaus et al., 2001). 

 

Smalley et al, have experimentally shown the electronic structure of isolated carbon 

nanotubes. Figure 2.7 depicts an I-V curve obtained by STS (Scanning tunnelling 

spectroscopy) of isolated chiral carbon nanotubes. Curves 1-4 have well-defined energy 

gaps between 0.55 -0.65eV. These gap values coincide with theoretical energy gap 

values of the order of 0.5eV for semiconducting tubes. Curves 5-7 have significantly 

larger energy gaps of 1.7-1.9eV, which coincide with theoretical gap values for metallic 

tubes. 
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Figure 2.7, I-V curves of isolated carbon nanotubes (Smalley et al, 1998). 

 

 

Each carbon nanotube has its own signature band structure, and hence its own density of 

states.  The energy gap is inversely proportional to the diameter of the nanotube (Wilder 

et al, 1998). This can be understood as the curvature of the lattice induces a strain in the 

graphene sheet manifesting itself in the bandgap. The bandgap reduces with increasing 

tube diameter and as the diameter goes to infinity, the bandgap goes to zero. 

 

The experimentally determined bandgaps presented by Smalley et al, (1998) are based 

on isolated SWCNT, that is, they are not in bundles. As well as unwanted amorphous 

carbon, one of the main consequences of production methods to date is that tubes form 

ropes or bundles, which are difficult to dissociate (Nikolaev et al, 1999). Synthesis 
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techniques and related problems have been discussed earlier. All electronic properties 

that are discussed in this section are in relation to structurally sound isolated nanotubes. 

In reality this can be difficult to achieve in the laboratory. 

 

 

2.4 SWCNT interactions. 

 

As stated, all current fabrication techniques result in an “impure” sample, the type of 

impurities present being dependant on the fabrication process. Regardless of the purity 

levels of produced samples all fabrication techniques produce an inhomogeneous 

sample. In any given batch there are a variety of types of SWCNT, there are different 

diameters and lengths, the SWCNT can be metallic or semiconducting and they have a 

tendency to aggregate into large bundles or ropes of tubes of similar diameter (figure 

2.8).  

 

Figure 2.8 Schematic of a Nanotube Rope (left) High resolution TEM of SWCNT bundled 

nanotubes produced by the arc discharge technique (right) (Thess et al., 1996). 

 

The tube-tube interactions within SWCNT bundles are weak, similar to the coupling 

between adjacent graphene planes in 3D crystalline graphite or the inter-ball coupling 
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found in solid fullerene C60. This weak inter-tube coupling is dominated by the van der 

Waals interaction, but contains a nonzero covalent component that has been shown 

theoretically and experimentally to have significant influence on the vibrational and 

electronic states for carbon nanotubes. Most of the properties discussed in the previous 

sections are attributed to an individual nanotube and are not applicable to bulk samples 

due to the range of diameters, types and bundles of nanotubes which are currently 

available. As a result of this, substantial effort has been put into the development of 

methods to disperse and separate individual tubes from bulk samples. Composite 

systems and various other techniques have been comprehensively studied, with the 

result that the mechanisms of the interaction of SWCNT with a battery of different 

molecules is extensively documented (Bandyopadhyaya et al, 2002; Chambers et al, 

2003; Chen et al, 2001; Hedderman et al, 2006; Kawamoto et al, 2006; Keogh et al, 

2005; Moulten et al, 2005; Roman et al, 2006; Salvador-Morales et al, 2006; Yu et al, 

2003). The following subsections will give a brief summary of the interactions of 

SWCNT with various classifications of molecules and where applicable their relevance 

to this research will be discussed. 

 

2.4.1 Surfactants and solvents. 

A variety of different techniques is now routinely used for the dispersion of bulk 

SWCNT samples. These include acid washing (Lu et al, 1996), sonication (Lu et al, 

1996) and centrifuging and also the use of a variety of organic solvents (Gregan et al, 

2006). To date, the best solvents reported for generating SWCNT dispersions are 

amides, particularly, N-dimethylformamide (DMF), 1,2 dichloroethane (DCE) and N-

methylpyrrolidone (NMP) (Boul et al, 1999; Gregan et al, 2006; Lui et al, 1999; 

Giordani et al. 2006). However, the dispersions aggregate on a time-scale of days. With 
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the aid of surfactants, carbon nanotubes have been solubilised in water. Surfactants, 

such as SDS, can deposit on the surface of nanotubes (Lui et al, 1999) and help form 

stable colloidal dispersions of SWCNT (Krstic et al, 1998; Duesberg et al, 1998). The 

surfactant acts as a coupling agent and may introduce a steric repulsive force between 

the carbon nanotubes. The repulsive force overcomes the van der Waals attractive force 

between the carbon surfaces, i.e. the SWCNT bundles. However, removing the 

surfactant afterward is problematic although the intrinsic structure of the nanotube is not 

destroyed. 

 

2.4.2 Synthetic molecules. 

The use of conjugated polymers (Curran et al, 1998; Keogh et al, 2005) to isolate 

carbon nanotubes from bulk samples systems has been shown to hold good promise. 

However one inherent problem in using synthetic polymers is that they rely heavily on 

the use of harsh organic solvents (to initially solubilise the polymer) severely limiting 

biological applications. Notably, the interaction of the polymer with the nanotubes was 

characterised by a quenching of the polymer fluorescence, a phenomenon which 

becomes relevant to the analysis of the dispersion of nanotubes in the cell growth 

medium in this study.  

 

A similar study (Hedderman et al, 2006) using synthetic dye molecules to structurally 

select different types of SWCNT (metallic or semiconducting) was also shown to 

uniformly disperse and separate individual SWCNT, based on their structure, from bulk 

samples. However, the studied system again utilised harsh organic solvents limiting 

biological applications. Again the interaction was characterised according to quenching 

of the molecular fluorescence and indeed numerous studies exist in the literature 
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studying the interactions of SWCNT with various different dye molecules and other 

fluorescent species, showing a reduction in the associated absorption or emission upon 

interaction with SWCNT (Coleman et al, 2005; Hedderman et al, 2006; Keogh et al, 

2004. These studies are of great relevance in this research, as in cytotoxicity studies 

multiple endpoints are generally employed to evaluate toxicity, such as cell counts, cell 

morphology and cell apoptosis, the most common of which is the use of colorimetric 

indicator dyes. These dyes are added to the cell line under test following exposure to the 

suspected toxicant, and their binding, conversion or uptake (process is assay dependant) 

by the exposed cells is detected spectroscopically either by absorption or emission 

(detection process is assay dependant) and is then compared to unexposed controls. This 

raises obvious questions, given that SWCNT are known to interact with dye molecules 

(Hedderman et al, 2006), regarding to what degree SWCNT will interact with these 

dyes and more significantly will these interactions result in a false toxicity profile being 

evaluated. This will be explored in chapter 7. 

 

2.4.3 Biological Molecules. 

Composite systems are not solely limited to synthetic matrices and extensive studies 

have also been carried out employing more natural matrices such as proteins (Moulten 

et al, 2005; Salvador-Morales et al, 2006), enzymes (Yu et al, 2003), amino acids 

(Roman et al, 2006) and DNA (Kawamoto et al, 2006). Standard in vitro cytotoxicity 

protocol relies on the dispersion of a suspected toxicant within a cell culture medium 

followed by its exposure to a cell line under test for a set time period and cytotoxicity is 

then evaluated by comparison to unexposed controls. Cell culture medium is a complex 

mixture of many different components (see appendix 1) vital for cell growth, many of 

which SWCNT are known to interact to varying degrees. The potential for the SWCNT 
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to interact with these various components when dispersed in the medium will be 

discussed in chapter 5. It has been shown in the literature that functionalisation of 

SWCNT actually reduces observed toxicity; therefore it is plausible that if SWCNT 

interact with the various components of the medium these interactions may influence 

the recorded cytotoxic data. This will be discussed in chapter 6. 

 

2.4.4 Saccharide Systems. 

Saccharide systems have also been extensively studied (Bandyopadhyaya et al, 2002; 

Chambers et al, 2003; Chen et al, 2001). In an earlier study (Casey et al, 2005; see 

appendix 2) it was shown that using a composite system with starch, stable aqueous 

suspensions of SWCNT could be created. Such systems offer considerable advantages 

over polymer based composites due to their biocompatibility and noncovalent coupling 

which can potentially preserve the unique properties of the tubes.  The mechanism of 

interaction for such systems has been proposed to be dominated by hydrophobic and 

hydrophilic interactions along the surface of the tube. However efforts to characterise 

and rationalise such noncovalent interactions between the sugar-based materials and the 

carbon nanotubes were not evident in the literature.  In the aforementioned study (Casey 

et al, 2005) a composite system was formed using HiPco SWCNT and starch (extracted 

from rice). This composite was characterised using a range of spectroscopic techniques, 

which showed clear evidence of an intermolecular interaction between the SWCNT and 

starch. Although starch, a polymer of glucose, is not present in cell growth media its 

monomer glucose is present, and hence the possibility of an interaction is a realistic one 

upon their dispersion of SWCNT in the medium resulting in interferences in the 

toxicological evaluation of the SWCNT. 
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As a direct result of the drive to use composite systems to develop SWCNT technology, 

the process of the interaction between SWCNT with a battery of different molecules and 

solvents has been extensively documented (Bandyopadhyaya et al, 2002; Chambers et 

al, 2003; Chen et al, 2001;Greegan et al, 2005; Hedderman et al, 2006; Kawamoto et 

al, 2006; Keogh et al, 2004; Moulten et al, 2005; Roman et al, 2006; Salvador-Morales 

et al, 2006; Yu et al, 2003) the mechanism of these interactions is well understood as a 

reversible physisorption process and known to be dominated by van der Waals type 

interactions. The knowledge gained from these extensive studies will be utilised to 

assess a variety of systems and their potential to contribute to the toxicity evaluation of 

SWCNT in vitro. 

 

2.5 Chapter Summary. 

 

This chapter has given a brief account of the evolution of carbon nanotube fabrication 

methods focusing on the HiPco method. Carbon nanotubes were classified according to 

their physical structure, be they multi or single walled. SWCNT were then further 

classified structurally, zigzag, armchair or chiral. The electronic properties of SWCNT 

were then discussed showing that SWCNT can be metallic or semi-conducting.  The 

idealised picture of isolated SWCNT is deceptive, however, and the inhomogeneous, 

impure, aggregative nature of as produced SWCNT was highlighted. A variety of 

composite systems which are reported in literature were discussed highlighting the 

range of different molecules capable of interaction with SWCNT. The chapter has 

raised some questions that will be addressed throughout this thesis, namely: upon 

dispersion of SWCNT in cell culture medium what interactions occur (chapter 5), what 

effects can these interactions have on the quantitative evaluation of SWCNT 
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cytotoxicity (chapter 6), how do SWCNT effect common cytotoxic assay based 

endpoints (chapter 7) and what implications does the combination of the effects have for 

future toxicity evaluations of nanoparticles. The next chapter will give an overview of 

nanotoxicology, highlighting some of the intrinsic properties of nanomaterials which 

may elicit adverse health effects. Finally review of the toxicity of carbonaceous 

nanoparticles will be given focusing on SWCNT noting any observed inconsistencies. 
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Chapter 3 

“Nanotoxicology” 

 

3.1 Introduction. 

 

This chapter will give a brief introduction to the toxicity testing of nanoparticles in 

general, focusing on their intrinsic properties which may result in harmful effects. This 

will be followed by an overview of the toxicity of carbon based materials highlighting 

the differences in toxicity based on the structural state of the carbon. A summary of the 

intrinsic properties of SWCNT, physical and chemical, will be given, highlighting the 

potential role each property may play in the generation of a toxic response. Finally a 

review of SWCNT in vitro cytotoxicity studies summarising the main findings and 

highlighting the inconsistencies that have arisen in the literature is reported. 

 

“Nanotoxicology an emerging discipline” (Oberdorster et al, 2005) is one which has 

proven to be a challenge to nanotechnology researchers, when trying to conduct a 

comprehensive safety evaluation of nanomaterials. As the scale of production of 

nanomaterials increases, so does the potential of adverse health effects in humans and 

environmental damage. It is first necessary to assess what physical dimensions define a 

nanoparticle. Some publications have used the term to describe particles with a 

dimension of less than 0.1 µm (Colvin, 2003). Others used the term for particles with 

diameters below 45 µm. In 1996, the Environmental Protection Agency (EPA) used the 

term to characterize a particle distribution with mass median diameter (MMD) below 

0.1 µm.  
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Regardless of the definition of a nanoparticle, the main physical characteristic of 

nanoparticles is their size, which can fall in the transitional zone between individual 

atoms or molecules and the corresponding bulk materials. This can modify the physio-

chemical properties of the material as well as create the opportunity for increased 

uptake and interaction with biological tissues. For instance, shrinkage in size creates 

discontinuous crystal planes that increase the number of structural defects as well as 

disrupt the well structured electronic configuration of the material, so as to give rise to 

altered electronic properties (figure 3.1) (Donaldson et al, 2002; Oberdorster et al, 

2005). Also in parallel with the shrinkage in size there is a corresponding increase in the 

relative surface area.  A large surface area allows a greater contact area with cellular 

membranes as well as greater capacity for absorption and transport of toxic substances. 

This combination of effects can generate adverse biological effects in living cells that 

would not otherwise be manifest with the same material in larger particulate form.  

 

Nanoparticles can be hydrophilic or hydrophobic, lipophilic or lipophobic, or 

catalytically active or passive (figure 3.1) (Cedervall et al, 2007). An example of how 

such surface properties can lead to toxicity is the interaction of electron donor or 

acceptor active sites (chemically or physically activated) with molecular dioxygen (O2). 

Electron capture can lead to the formation of the super oxide radical (O2
–
), which 

through dismutation or Fenton chemistry can generate additional reactive oxygen 

species (ROS). Thus, several nanoparticles characteristics can culminate in ROS 

generation (Shvedova et al, 2005; Pulskamp et al, 2007). 
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Figure 3.1 Proposed mechanisms by which nanomaterials interact with biological tissue. 

Examples illustrate the importance of material composition, electronic structure, bonded surface 

species (e.g., metal-containing), surface coatings (active or passive), and solubility, including 

the contribution of surface species and coatings and interactions with other environmental 

factors (e.g., UV activation) (Nel et al, 2006). 

 

Other nanoparticle properties such as shape, aggregation, surface coating, and solubility 

may also affect the specific physio-chemical and transport properties, with the 

possibility of negating or amplifying the size effects (figure 3.1). Studies by Sayes et al 

(2004) showed that chemical alteration of the surface of a fullerene to a water soluble 

form resulted in the lowering of observed cytotoxicity when compared to its bulk 

unaltered form.  
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Another point of concern is the apparent ability of nanoparticles to redistribute from 

their site of deposition; studies have reported that inhaled and ingested nanoparticles 

can readily move from the entry portal to various other sites (Hillery et al, 1994; Jani et 

al, 1990; Kreuter et al, 2002; Oberdorster et al, 2004).  This further complicates the 

evaluation of their toxicity profile, as potentially the adverse effects of nanoparticles 

could occur in very different scenarios, dependant on nanoparticle type and portal of 

entry. 

 

3.2 Toxicity of carbon based materials. 

 

Toxicological studies involving various structural forms of carbon, primarily due to 

their potential applications in various biological systems, have been extensively 

reported in literature (Carero et al, 2001; Kamat et al 2000; Monteiro-Riviere et al, 

2006; Murphy et al, 1999; Oberdorster et al 2000; Sayes et al 2005; Yang et al 1999). 

The following sections will give a brief summary of the findings about two forms of 

carbon which are particularly relevant to this study, namely carbon black and the 

Buckminster fullerene C60. 

 

3.2.1 Carbon Black. 

Carbon black is a form of amorphous carbon that has an extremely high surface area to 

volume ratio, and as such it is one of the first nanomaterials to find common use, prior 

to the nanotechnology revolution, in everyday items such as inks and car tyres (It is 

similar to soot but with a much higher surface area to volume ratio). All carbon blacks 

have chemisorbed surface oxygen complexes (i.e., carboxylic, quinonic, lactonic, 

phenolic groups and others) to varying degrees depending on the conditions of 
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manufacture. Extensive studies both in vivo and in vitro have been carried out on carbon 

black.  

 

An in vivo study carried out by Yang et al (1999) exploring the effects of inhalation of 

various carbonaceous materials in rats showed that carbon black did induce pulmonary 

inflammation and the authors postulated that the inflammation may have resulted from 

the presence of organic compounds in the sample. A similar study by Oberdorster et al 

(2000), again on rats, showed that carbon black can induce a slight inflammatory 

response in the lungs, concluding that the increased surface area of the carbon black was 

key to its greater biological activity.  

 

Numerous in vitro studies have resulted in the conclusion that no significant toxicity 

was detectable for carbon black (Carero et al, 2001; Murphy et al, 1999).  However 

these studies did provide useful information. Murphy et al (1999) concluded the overall 

bio reactivity of carbon black was related to its size and therefore ultimately to its 

surface area and noted internalisation of the carbon black nanoparticles within the cells.  

Carero et al (2001) evaluated the cytotoxic and genotoxic potential of carbon black. 

They observed that although carbon black exhibited no significant cytotoxicity, DNA 

damage was noted and it was concluded that again the particle size, composition and 

structure may have played a key role in the damage. More recent studies exploring the 

dermal toxicity of carbonaceous materials (Monteiro-Riviere et al, 2006), including 

carbon black, noted that absorptive interferences with various commonly used 

cytotoxicity assays occurred resulting in inconsistent absorption/fluorescence data used 

to evaluate cytotoxicity. This raised questions about the validity of in vitro testing of 
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carbon black and advised caution even when performing standard in vitro testing 

protocols in the presence of fine quantities of carbonaceous materials. 

 

3.2.2 Buckminster fullerene C60. 

The Buckminster fullerene (C60) is a nanoparticle which is made up of sixty carbon 

atoms arranged in a cage like structure consisting of twelve pentagonal rings and twenty 

hexagonal rings, an icosahedral structure similar in appearance to that of a football. Its 

bonding structure is such that each carbon atom has a sp
2
 hybridised bonding 

arrangement which gives rise to sixty delocalised electrons around the carbon cage. 

 

Kamat et al (2000), using rat liver microsomes, explored the ability of C60 to induce cell 

membrane damage. The study indicated that C60 generated Reactive Oxygen Species 

(ROS) and induced significant lipid peroxidation/protein oxidation in the cell 

membranes, but it was shown that these effects could be prevented by natural 

antioxidants. Sayes et al (2004) showed a differential cytotoxicity of C60 in two 

different mammalian cell lines and the study clearly showed a marked increase in 

observed toxicity in the unprocessed form of C60 when compared to its water soluble, 

chemically altered, counterpart. The authors concluded that cell death was induced by 

oxidative damage upon exposure; the C60 generated oxygen radicals which then induced 

cell membrane damage which subsequently resulted in cell death. 

 

A later study by Sayes et al (2005) explored the biocompatibility of C60 in vitro, again 

using different mammalian cell lines (Human Dermal Fibroblasts [HDF], Neuronal 

Human Astrocytes [NHA] and Human Liver Carcinoma Cells [HepG2]), in an attempt 

to elucidate the mechanisms by which this nanoparticle exerts a cytotoxic effect. They 
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concluded that C60 was toxic to the cell lines tested. DNA and mitochondrial activity 

were not affected by the exposure as determined by the use of the DNA binding dye 

PicoGreen® and the MTT assay for mitochondrial activity. However it was shown that 

C60 disrupted normal cellular functions by lipid peroxidation evaluated by the 

Thiobarbituric Acid (TBA) assay. Furthermore, exposure resulted in the generation of 

ROS which were responsible for the observed cell membrane damage and ultimately 

cell death. 

 

The mechanisms proposed for C60 toxicity, which from literature are dominated by the 

generation of ROS, are expected to be of particular relevance to SWCNT toxicity as 

SWCNT are considered by many to be an elongated C60 molecule. The following 

section will discuss the potential role the intrinsic properties of SWCNT may play in the 

generation of a toxic response upon exposure. 

 

3.3 Factors contributing to SWCNT toxicity. 

 

Nanoparticles induce adverse effects as a result of two contributing factors. Firstly their 

reduced size increases the relative surface area of the nanoparticles therefore 

emphasising any intrinsic toxicity of the material (Duffin et al, 2002). Secondly the 

reactivity of the exposed surface area may play an important role in the generation of a 

toxic response. A relatively inert material can induce injurious effects primarily due to 

its increased surface area where alternatively a reactive surface can result in harm due to 

a combination of the increased surface area and the intrinsic toxicity of the reactive 

surface. 
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Figure 3.2 Proposed properties of SWCNT which may induce toxicity, diagram illustrates the 

importance of the increased surface are of SWCNT in comparison to other nanoparticles of 

similar diameter, surface reactivity due structural defects and chemical processing. The role 

aggregation of SWCNT may play as it greatly increases the size therefore reducing the surface 

area and finally the chemical composition highlighting the potential role of metal impurities in 

bulk SWCNT samples. 

 

SWCNT exhibit these characteristics (figure 3.2) in that their physical dimensions, 

small diameter and relative long length; result in a substantially increased surface area 

in comparison to nanoparticles of similar diameters. Although considered chemically 

un-reactive, they readily interact with a battery of different systems (Bandyopadhyaya et 

al, 2002; Chambers et al, 2003; Chen et al, 2001; Hedderman et al, 2006; Kawamoto et 

al, 2006; Keogh et al, 2004; Moulten et al, 2005; Roman et al, 2006; Salvador-Morales 
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et al, 2006; Yu et al, 2003) many of which (amino acids, proteins and DNA) are 

components of biological matter. These properties are likely to contribute significantly 

to observed toxicity. The following subsections will discuss the intrinsic properties of 

SWCNT and their potential role in the in the generation of a toxic response. 

 

3.3.1 Surface area. 

The increased surface area of SWCNT, as with other nanoparticles, is expected to be a 

leading contributor to any observed toxicity. The overall surface area of a SWCNT is of 

course larger than that of a nanoparticle of similar diameter. If a per particle basis is 

taken it then is expected that even a “short” SWCNT of 20nm (wide)  x 2000nm (long)  

for example, which is typical of SWCNT, would present ~100 times more surface area 

than that of a spherical particle of diameter 20 nm . Thus it is anticipated that SWCNT 

will have a pro-inflammatory potential that is driven by their surface area, as has been 

found for other graphitic nanoparticles such as carbon black.  

 

As discussed in chapter 2, SWCNT have a tendency to aggregate into bundles due to 

van der Waals forces and although SWCNT diameters can be sub nanometre these 

bundles typically consist of tens of SWCNT and can have considerably larger diameters 

than the SWCNT from which they are formed. This is a very important factor in 

modifying their toxicity; for example aggregates with a much larger diameter than a 

SWCNT could deposit in an organ with a different anatomic pattern when compared to 

a SWCNT. In terms of inhalation exposure, macrophages may very well be able to clear 

a larger aggregate of nanotubes as a single entity, where as an individual SWCNT may 

be more difficult to handle due to the increased surface area and the potential to travel 

further into the recesses of the lungs when compared to an aggregate. Recent in vitro 
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studies (Wick et al, 2007), using a lung cell model (Mesothelioma cell line MSTO-

211H), revealed that larger aggregates in comparison to smaller bundles of SWCNT had 

an increased toxicity as determined by the MTT viability assay and DNA analysis using 

the Hoechst 33258 assay. The authors proposed that the aggregates induced a toxic 

effect similar to that of asbestos which was employed as a reference material in the 

study. Morphological studies of the SWCNT and asbestos exposed cells revealed 

similarities between the larger aggregates and the asbestos reference material allowing 

the comparison to be drawn. The authors concluded that the degree of dispersion and 

hence aggregation will be a key contributing factor to any observed SWCNT toxicity. 

 

3.3.2 Length. 

Neglecting the obvious fact that the increased length of SWCNT will obviously further 

increase their surface area, in terms of pulmonary toxicity, SWCNT length relative to 

their diameter will significantly affect their toxicity. Fibre toxicity is a mature science 

and many fibres are known to induce different injurious effects upon instillation within 

the lungs. Literature suggests that some fibre types may possess surface reactivity that 

imparts added pathogenicity. As of yet it is unclear if SWCNT have this potential. 

However they do contain reactive sites along the backbone of the SWCNT due to 

structural defects. Carbon particles would not normally be anticipated to have especially 

active surfaces. However, due to their small size, nanoparticle carbon black, composed 

of degenerated graphitic crystallites, is able to generate more oxidative stress in vitro 

than fine carbon black (Wilson et al. 2002). It is therefore plausible that as SWCNT and 

carbon black essentially can be considered to be different structural orientations of 

graphite, SWCNT may induce oxidative stress by a similar mechanism as carbon black. 
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3.3.3 Chemical composition. 

SWCNT are generally considered chemically un-reactive; however there are points in 

the structure of SWCNT which are more reactive than others, such as defects due to 

missing carbon atoms and the more strained curved end-caps of the tubes (Lin et al. 

2003). These sites may prove toxic “hot spots” along the backbone of the SWCNT due 

to the discontinuity of the electronic configuration of the SWCNT resulting from the 

structural defect ultimately cumulating in the generation of ROS. Furthermore recent 

studies have shown that nanoparticles (Cedervall et al, 2007) due to their large surface 

area and the diversity of their surface characteristics have been shown to enhance the 

rate of protein fibrillation. As of yet it is unclear if SWCNT will induce similar 

scenarios. However it is plausible that this or a similar mechanism may occur, upon 

SWCNT exposure, given SWCNT’s tendency to readily interact with proteins (Moulten 

et al, 2005). 

 

As produced SWCNT, depending on the fabrication method, contain a number of toxic 

contaminant metal particles. These metals include cobalt, iron and nickel, the metal 

present being dependant on the fabrication process, all of which have documented toxic 

effects (Denkhaus and Salnikow, 2002; Ghio et al, 1999). Transition metals such as iron 

are important toxicants as they have the ability to undergo redox reactions and to cause 

oxidative stress (Denkhaus and Salnikow, 2002; Ghio et al, 1999). The presence of 

these metals is expected to play a significant role in the toxicity of bulk SWCNT 

samples.  

 

Much research on SWCNT focuses on modifying these as-produced tubes by the 

addition of different chemical groups, leading to a significant change to many of their 
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properties (Banerjee et al. 2003). Functionalisation with different groups has been 

shown to result in different toxicity (Sayes et al, 2005) since the particle surface is of 

great importance when interacting with biological systems. Chemical alteration of this 

surface therefore will obviously have an effect. Finally SWCNT, as discussed earlier, 

are known to interact with a variety of different molecular species (Bandyopadhyaya et 

al, 2002; Chambers et al, 2003; Chen et al, 2001; Hedderman et al, 2006; Kawamoto et 

al, 2006; Keogh et al, 2004; Moulten et al, 2005; Roman et al, 2006; Salvador-Morales 

et al, 2006; Yu et al, 2003) through van der Waals type interactions due to the 

electronic configuration of the SWCNT, used to process and purify. In some exposure 

scenarios these species may still be adsorbed to the tubes, in many cases they may also 

lead to a debundling of the tubes. Furthermore, the mechanism by which SWCNT 

interact with other molecular species may prove to be a significant contributor to 

generation of a toxic response at a cellular level. 

 

3.4 Toxicity of SWCNT. 

 

Due to their very light weight, SWCNT can easily become airborne and inhaled, 

hence the evaluation of their pulmonary effects has received a considerable amount of 

interest and a number of in vivo and in vitro studies have been performed to date.  

Several studies on the effects of both refined and raw SWCNT on the lung tissue of 

various animal models have been reported and there appears to be some inconsistency 

between the research findings (Huczko et al, 2001; Shvedova et al, 2005; Warheit et 

al, 2004).  These studies highlighted the inherent difficulty in testing SWCNT due to 

their agglomerative nature in aqueous solutions; indeed some of the observed 

mortality was attributed to mechanical blockage of the airways resulting in 
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asphyxiation (Warheit et al, 2004).  It is now recognised that in order to elucidate the 

mechanisms of the pulmonary toxicity observed, specifically for SWCNT, further, 

more realistic in vivo inhalation studies with aerosolised SWCNT need to be 

conducted (Muller et al, 2006; Smart et al, 2006; Warheit, 2006).  

 

Numerous in vitro studies have been performed on SWCNT with varying metal 

content and have evaluated different mechanistic endpoints.  Shvedova et al., (2003) 

tested iron-rich (30% wt iron) SWCNT on human epidermal keratinocytes (HaCaT) 

and following 18 hours exposure reported oxidative stress and loss of cell viability.  

They also observed that exposure resulted in ultra structural and morphological 

changes in these skin cells. The authors concluded that oxidative stress might be 

associated and greatly enhanced by the high levels of catalysts present in the SWCNT 

sample, which contained up to 30 percent iron residues per mass, and that the 

cytotoxicity observed might be due to the catalytic effects of iron (Shedova et al., 

2003). Recently, Kagan et al, (2006) also demonstrated that iron-rich SWCNT (26% 

wt iron) resulted in a significant loss of intracellular low molecular weight thiols and 

accumulation of lipid hydroperoxides in murine macrophages. Interestingly, a study 

by Sayes et al, (2005) evaluating the cytotoxicity of C60, concluded that the observed 

toxicity could be attributed to lipid peroxidation and it is plausible that, although of 

different physical dimensions, SWCNT elicit toxicity through a similar mechanism. 

Tian et al. (2006) evaluated the in vitro cytotoxicity of five carbon nanomaterials, 

namely SWCNT, active carbon, carbon black, MWCNT and graphite on human 

dermal fibroblasts. The effects of refined material on cell survival and attachment 

were investigated and the most toxic refined material, SWCNT, was compared to its 

unrefined versions.  
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Fiorito et al, (2006) investigated the effects of highly purified fullerenes and SWCNT 

on murine and human macrophages and found these materials did not stimulate the 

release of the inflammatory marker nitric oxide by murine macrophage cells in 

culture.  In addition, they also demonstrated the uptake of each material by human 

macrophages to be very low and that each possessed a very low toxicity against 

human macrophage cells.  Jia et al, (2005) exposed SWCNT (with trace amounts of 

metal catalysts) to alveolar macrophages isolated from guinea pigs for 6 h and found 

that the SWCNT elicited a more toxic response than multi walled carbon nanotubes 

(MWCNT), quartz and fullerene.  SWCNT have also been tested on human embryo 

kidney cells (HEK293) and were found to inhibit the proliferation of these cells by 

inducing cell apoptosis and decreasing cellular adhesive ability (Cui et al, 2005).  As 

with the in vivo studies discussed earlier, differences in SWCNT toxicity and 

biocompatibility have also been observed with the various in vitro tests. These 

discrepancies have been attributed to the varying percentages of catalysts and other 

impurities in the tested SWCNT (Kagan et al, 2006), to the different dispersion 

methods employed to date (Smart et al, 2006) and additionally the functionalisation 

state of the nanoparticle under test has been recently shown to affect its toxicity 

(Sayes et al, 2006).  

 

Recent literature has also revealed that the interactions of SWCNT and other carbon 

based nanomaterials with various commonly used cytotoxicity assays has resulted in 

interference with absorption/fluorescence data used to evaluated cytotoxicity 

(Montiero-Riviere et al, 2006; Worle-Knirsch et al, 2006). Furthermore, Hurt et al 

(2006) recently addressed this confounding issue and advised caution when 
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performing even established toxicity assays in the presence of significant quantities of 

fine carbon. While these studies highlighted the interference of SWCNT and other 

carbon based materials with cytotoxicity dyes, namely MTT and Neutral Red, no 

attempts to quantify these interferences have been realised to date although 

recommendations involving the use of various other cytotoxicity dyes have been 

made. 

 

3.5 Chapter summary.  

 

Although the number of research groups looking specifically at SWCNT toxicity both 

in vitro and in vivo has increased dramatically of the last 5 years, there are conflicting 

reports in the literature regarding the toxicity profile and general biocompatibility of 

these materials. Studies have pointed towards these discrepancies potentially originating 

from a number of different sources.  

 

Firstly the different dispersion techniques employed; testing with or without an 

intermediate dispersion step, such as a surfactant, to initially disperse the SWCNT in the 

cell culture medium, has been shown to have an effect (Smart et al, 2006). The chemical 

composition of the test medium itself has recently been noted to have an effect. A study 

by Davoren et al, (2007) noted an increase in cytotoxicity of SWCNT to A549 lung 

cells when exposed to SWCNT in a protein free medium indicating that the presence of 

an added protein supplement in cell culture medium, which is general practice in 

mammalian cell culture techniques, may have had a protective effect reducing any 

observed cytotoxicity. Moreover the purity level (Fiorito et al, 2006) and 

functionalisation state (Sayes et al, 2006) of the SWCNT tested also seems to greatly 
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influence any observed cytotoxicity. Several studies (Jia et al, 2005; Kagan et al, 2006; 

Shedova et al., 2003), have postulated the presence of remnant catalytic particles, from 

the relevant SWCNT fabrication techniques, may contribute significantly to SWCNT 

cytotoxicity. More alarming is the emergence of literature noting adsorptive 

interferences between SWCNT and cytotoxic assays (Montiero-Riviere et al, 2006; 

Worle-Knirsch et al, 2006) resulting in both false positive and negative cytotoxic effects 

being observed.  

 

The upcoming chapters (5, 6 and 7) will employ both standard in vitro testing and 

spectroscopic analysis to assess contributing factors to SWCNT cytotoxicity in an 

attempt to elucidate the origins of these observed inconsistencies and their potential 

impacts for future studies evaluating SWCNT in vitro cytotoxicity.  
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Chapter 4 

 

“Experimental” 

 

4.1 Introduction. 

 

This chapter will discuss the analytical techniques used throughout this research. In this 

study, spectroscopic and microscopic analysis was employed to probe the interactions 

of SWCNT with a variety of different molecules and biological systems; their 

implications for the quantitative evaluation of SWCNT cytotoxicity will be discussed in 

later chapters as well as the possible implications for nanoparticle cytotoxicity in 

general.   

 

4.2 Electronic Spectroscopy. 

 

Two electronic spectroscopic techniques, namely absorption and fluorescent emission 

spectroscopy were used in this research. These complementary techniques examine the 

electronic transitions within a molecule and hence provide information about the 

electronic structure of the molecule and its local environment. The absorption and 

emission of light by a molecule is depicted in the Jablonski diagram in figure 4.1. The 

act of absorption involves the interaction of electromagnetic radiation with the 

components of a molecule. The initial absorption step takes the molecule to an excited 

electronic state. Since electronic transitions take place on a much faster time scale than 

nuclear motion, most electronic transitions are completed before the nuclei can alter 
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their spatial relationships. Such a transition is denoted as a Frank-Condon transition and 

is indicated in Figure 4.1 by the solid lines.  

 
 

 

Figure 4.1 Jablonski diagram showing the sequence of steps leading to radiative decay. After 

initial absorption the upper excited vibrational states undergo non radiative decay by giving up 

energy to the surroundings. A radiative transition then occurs from the lowest vibrational level of 

the excited electronic state (Wayne, 1970). S0 is the singlet ground electronic state and S1 is the 

singlet excited electronic state; with T1 representing the triplet state. ISC and IC represent 

intersystem crossing of an electron from the S1 to T1 excited states or vice versa and internal 

conversion where the electron orients itself so that it may return for T1 to S0. 
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The Frank-Condon principle states that an electronic transition occurs so rapidly in 

comparison with vibration frequencies that no change occurs in inter-nuclear separation 

during the course of the transition. After excitation of the molecule to an upper vibronic 

state, the nuclear coordinates are not in their equilibrium configuration for the new 

electronic state and hence non-radiative relaxation between the vibrational states occurs. 

Generally after relaxing to the lowest vibrational state, the electron can return to the 

ground state by emitting the excess energy as a photon or by other radiationless 

channels of decay. The emitted photon is characteristically of longer wavelength than 

that of the exciting light. The crimped lines in figure 4.1 represent radiationless energy 

conversion: the vertical crimped lines within a particular electronic state indicate 

degradation of vibrational excitation, while the horizontal crimped lines indicate 

changes of state. The term internal conversion is applied to radiationless transitions 

between states of the same spin multiplicity, while intersystem crossing refers to 

transitions between states belonging to different spin systems.  

 

Deactivation through emission of radiation can happen in one of two ways. These two 

processes were originally distinguished in terms of whether or not there was an 

observable afterglow. Jablonski interpreted phosphorescence as being emission from 

some long lived metastable electronic state lying lower in energy than the state 

populated by the absorption of radiation (Wayne, 1970). This was in fact a triplet state 

of a species. The long lifetime of the emission is a direct consequence of the forbidden 

nature of a transition from an excited triplet to the ground state singlet. Hence, 

phosphorescence can be described as a radiative transition between states of different 

multiplicity. Fluorescence is then understood to be a radiative transition between states 

of the same multiplicity (Wayne, 1970). 
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4.2.1 Absorption Spectroscopy. 

Absorption spectroscopy probes the characteristic electronic absorption transitions of a 

molecule. The spectrometer used to probe the materials in this research was a Perkin 

Elmer Lambda 900 UV/VIS/NIR Spectrometer. The spectrometer is a double-beam, 

double monochromator ratio recording system with pre-aligned tungsten-halogen and 

deuterium lamps as sources.  The wavelength range is from 175 to 3,300 nm with an 

accuracy of 0.08 nm in the UV-Vis region and 0.3 nm in the NIR region.  It has a 

photometric range of ± 6 in absorbance. For all the experimental studies the absorption 

was measured at all times with a reference sample in a double beam arrangement.  
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Figure 4.2 Absorption Spectrum of HiPco Carbon Nanotubes drop cast on to spectral B quartz 

discs. Note the following highlighted anomalies in the spectrum are due to; (a) increase in 

spectrum due to instrumental lamp change (b) dip in spectrum due to Instrumental detector 

change (c) sharp peak observed at 1400nm is due to the absorption of the quartz disk that was 

used as a substrate. 
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A solution of SWCNT in toluene (1 mg/ml) was prepared from which thin films were 

drop cast onto a spectrosil B disc for analysis. Toluene was chosen as it evaporates 

rapidly at room temperature but it also leaves no detectable absorption in the UV-VIS-

NIR region (Hedderman, 2006) which is under examination here. Figure 4.2 shows the 

absorption spectrum of SWCNT. It can be seen that the spectrum consists of three broad 

absorption bands centred approximately at 1200nm, 800nm and 270nm. This spectrum 

agrees well with literature which also report three dominant absorbance features for 

HiPco SWCNT (Katura et al, 1999). The bands at 1200nm and 800nm are commonly 

agreed to be due to optical transitions between mirror image spikes in density of states.  

 

Figure 4.3 Schematic diagram of electronic density of states for (a) metallic and (b) 

semiconducting SWCNT. Arrows indicate the optically allowed interband transitions. 

 

These transitions in the Density of States (DOS) of SWCNT are optically allowed and 

create excited electronic states as indicated in figure 4.3. The interband transition 

energies, v1 → c1, v2→ c2, and v3→ c3 for semiconducting tubes ≈ 0.6eV, 1.2eV and 

2.4eV respectively, and that for v1→ c1 in metallic tubes are ≈ 1.8eV (Satio et al., 
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1998), are dependent on diameter and chirality of SWCNT (Bachilo et al, 2002; Kataura 

et al, 1999; Lian et al, 2005) and can be approximated by the following equations. 
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where ac-c is the nearest-neighbour carbon-carbon distance, which is taken to be 1.44Ǻ 

for a SWCNT. γo is the nearest-neighbour carbon-carbon interaction energy, and dt is 

the diameter of a SWCNT. E
S
 and E

M
 are the absorption (in eV) band positions for 

semiconducting and metallic tubes respectively. On the basis of this theoretical 

prediction, the absorption peak between 800nm and 1200nm can be assigned to the 

second inter-band transition v2→ c2 in semiconducting tubes, with an energy of 

approximately 1.2eV, whereas peaks around 650nm are ascribed to the first inter-band 

transitions v1→ c1 in metallic tubes with an energy of approximately 1.8eV. Using the 

previously mentioned equation and the absorbance of the SWCNT in the NIR region of 

the spectrum, an estimation of the tube diameter distribution for the semiconducting 

tubes as 0.8 – 1.36 nm can be made. The strong peak at 270nm is close to the π-plasma 

frequency of ~4.6eV in carbon materials and presumed to be of similar origin.  
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4.2.2 Fluorescent Emission Spectroscopy. 

A molecule that has absorbed a photon can discard its excess energy via radiative decay, 

in which an electron relaxes back into the lower energy levels of the ground electronic 

state and in the process generates a photon. This provides information with regards to 

the electronic and vibrational levels of the ground electronic state.  A Perkin Elmer 

LS55 luminescence spectrometer was used throughout this research. In this instrument, 

excitation is provided by a pulsed Xenon discharge lamp with a pulse width at half peak 

height of < 10 µs and pulse power 20 kW. The source is monochromated using a Monk-

Gillieson type monochromator and can be scanned over the range of 200-800 nm. The 

luminescence is passed through a similar monochromator, which can be scanned over 

the range of 200-900 nm. Due to the limited range of the spectrometer used, SWCNT 

fluorescence could not be investigated (O’Connell et al, 2002). A brief description of 

theemission behaviour of SWCNT is given below.  

 

The authors (O’Connell et al, 2002) verified that the absorption spectrum of SWCNT 

was dominated by the sharp inter band transitions within the DOS of SWCNT and was 

strongly dependant on diameter (figure 4.4). It was noted that upon 532nm excitation, 

the emission spectrum, although slightly red shifted, overlaid the absorption spectrum 

corresponding to the DOS of the SWCNT. 
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Figure 4.4 Absorption (Blue) and Fluorescent Emission (Red) spectra of HiPco SWCNT in SDS 

(O’Connell et al, 2002) 

 

The authors concluded that the detailed correspondence of the absorption and emissions 

features of the HiPco SWCNT indicated that the observed emission originated from 

bandgap emission from the DOS of SWCNT. They furthermore noted that aggregation 

of the tested samples greatly reduced the observed emission.  

 

While the direct emission of SWCNT was not carried out in this study, due to the 

limited spectral range of the instrument available, the effects of the incorporation of 

SWCNT into a fluorescent matrix have been extensively documented and SWCNT are 

now known to quench the emission of many flourophores (Curran et al, 1998; Coleman 

et al, 2005; Dalton et al, 2000; Giordani et al, 2006; Keogh et al, 2004; Hedderman et 

al, 2004; Hedderman et al, 2006). The mechanism is known to be dominated by π-π 

stacking between the electronic configurations of the SWCNT and the interacting 

species studies have shown these types of interaction to have a dramatic effect on both 
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the absorption and emission of flourophores. In this research the effect of the 

incorporation of SWCNT into a fluorescent matrix will be studied to elucidate 

information about the interaction between SWCNT and various fluorescent species.  

 

4.3 Vibrational spectroscopy. 

 

Vibrations can be excited by the absorption or scattering of electromagnetic radiation at 

appropriate frequency and analysis of the frequencies where resonance is observed 

yields information about the identity of the molecule and the normal modes of vibration. 

Molecules interact with radiation of frequencies which exactly match the frequencies of 

vibrations within the molecule. The frequencies at which the molecules vibrate depend 

on the forces between the atoms, the mass of the atoms and the geometry of the 

molecule. The stronger the forces between the atoms in the molecule, the higher the 

vibrational frequency while heavier atoms display lower vibrational frequencies. 

Traditionally, there are two techniques used to obtain a vibrational spectrum; infrared 

absorption (IR) and Raman spectroscopy. 

 

4.3.1 Infra Red spectroscopy. 

The energies associated with the vibrations in a molecule with respect to one another are 

quantised and absorption of electromagnetic radiation in the infrared region gives rise to 

transitions between these different vibrational states. Absorption results from the 

coupling of a vibration with the oscillating electric field of the IR radiation and this 

interaction can only occur when the electric dipole moment of the molecule changes 

during the vibration. Since vibrating atoms are linked together by chemical bonds it is 

usual to refer to the vibration as a bond deformation. The simplest bond deformations 
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are bending and stretching. Usually, the only significant absorptions correspond to 

promotion of the bond deformation from their ground state to the next highest energy 

level, as at room temperature the molecules are normally in their ground state. IR 

spectroscopy is based on bond deformation and hence the vibration which is related to 

the atoms involved. Thus by measuring the IR absorption spectrum over a range of 

energies a series of absorptions corresponding to characteristic vibrations of particular 

bonds is obtained. Analysis of the location of the frequencies of these absorptions can 

aid in the identification of the material composition. In complex molecules, the 

constituent bond vibrations overlap and the spectrum becomes complex, but is 

nevertheless a characteristic fingerprint of the molecular material. 

 

4.3.2 Raman Spectroscopy. 

Transitions between vibrational states can result from the inelastic scattering of 

radiation from molecules. In such scattering processes, the oscillating electric field of 

the incident optical wave should be of an energy that is greater than the energy 

difference between the vibrational states, for example UV or visible radiation. The 

oscillating electric field of the incident optical wave can be scattered off the molecule in 

two different ways. The scattered light induces an oscillating polarisation in the 

scattering molecule and when the oscillating electric field exchanges energy with the 

molecule, then the scattered radiation may have a higher (anti-Stokes) or lower (Stokes) 

frequency than the incident electric field. The difference in frequency corresponds to 

vibrational modes of the molecular structure and is referred to as Raman scattering. 

When the incident frequency equals the scattered light, the scattering is referred to as 

elastic or Rayleigh scattering. In Stokes Raman scattering, the molecule starts out in a 
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lower vibrational energy state and as a result of the scattering process ends up in a 

higher energy state. Thus the interaction of the incident light with the molecule creates a 

vibration in the material. In anti-Stokes scattering, the molecule begins in a higher 

vibrational energy state and after the scattering process ends up in a lower vibrational 

state. Thus the vibration in the material is lost as a result of the interaction. The 

frequency difference between Raman lines and the exciting lines are characteristic of 

the scattering molecule and are independent of the excitation frequency. In IR 

spectroscopy a change in dipole moment is required, whereas in Raman spectroscopy a 

change in polarisability is required. As polar bonds are not often very susceptible to 

polarisation, the two techniques are often mutually complementary. 

 

4.4 Infra Red (IR) Spectroscopy of Carbon Nanotubes. 

 

The first vibrational technique that was applied to the current study was that of Infrared 

spectroscopy. The spectrometer used in this research to carry out experimental work 

was the Perkin Elmer Spectrum GX. It is a single-beam, Michelson interferometer 

based, Fourier transform infrared spectrometer. It has a dual level optical module that is 

sealed and desiccated. The system is configured with a mid-infrared (MIR), single 

source. MIR and far infrared (FIR), beam splitters allow the range 7000 to 50 cm
-1

 to be 

covered with a maximum resolution of 0.3 cm
-1

. The spectrometer is configured with an 

AutoIMAGE microscope system which can operate in transmission and reflectance 

modes. All microscope operations including adjustments to aperture, focus and 

illumination are fully automated and the spectra are collected from the PC. The 

instrument includes a built-in 35W tungsten halogen illuminator, a motorised stage and 

a CCD video camera. The medium beam MCT detector covers the range from 5500 to 
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550 cm
-1

. An ATR attachment with a micro germanium crystal with a range from 5500 

to 600 cm
-1

 can be used for micro samples and ATR mapping for surface studies.  

 

Although theoretical studies of single walled carbon nanotubes have been carried out 

(Branca et al, 2004, Kuhlmann et al, 1998) and have predicted that there are 6 to 9 IR 

active modes for a single walled carbon nanotube, very little infrared spectral data has 

been reported in literature (Branca et al, 2004). . By comparison to the IR active modes 

of graphite, it is the spectral region below 1800cm
-1

, which is of interest when 

examining nanotube samples. Of particular interest is its IR active E1u mode at 1590  

cm
-1

 attributed to the stretching mode of C=C which forms the frame work of the 

grapheme plane or the carbon nanotube back-bone. Figure 4.5 shows the recorded IR 

spectrum of nanotubes using potassium bromide (KBr) discs. The E1u mode is present in 

the IR Spectra of single walled carbon visible but is shifted by 10cm
-1

 to 1600cm
-1

. Also 

in this region one would expect a contribution from the aromatic rings of the hexagonal 

array, potentially broadened slightly by the presence of C=C bending usually visible at 

1700cm
-1

.   
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Figure 4.5 Infrared Spectrum of HiPco Carbon Nanotubes carried out in transmittance with a 

KBr disc. 

 

Finally the two bands at 1400cm
-1

 and 1180cm
-1

 can be assigned to the C-C stretch, 

which are also part of the nanotube backbone, in the hexagonal array of the tube. The 

width of this feature may be attributable to the relative position of these bonds along the 

tube length. 

 

4.5 Raman Analysis of Carbon Nanotubes. 

 

Extensive studies have been carried out on the Raman effect in SWCNT (Brown et al, 

2001; Chen et al, 1998; Dresselhaus et al, 2002; Jorio et al, 2002; Jorio et al, 2003; 

Kukovecz et al, 2002; Kuzmany et al, 2001; Pimenta et al, 2001; Yu et al, 2001). The 

preference for Raman spectroscopy over IR is a result of the strong Raman activity of 

the highly polarisable π – conjugated backbone; Figure 4.6 shows the Raman spectrum 

obtained for raw HiPco SWCNT at 514nm excitation. For the purpose of clarity the 

spectrum has been separated into three regions, namely low (below 500cm
-1

), medium 
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(1200 – 1500cm
-1

) and high frequency (above 1500cm
-1

). The origins of the features 

present in each of the three regions will be discussed. 
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Figure 4.6 Raman Spectrum obtained for pristene HiPco SWCNT at 514nm excitation divided 

into characteristic Low, Medium and High Frequency Regions. 

 

4.5.1 Low Frequency Raman Spectra. 

In this region (below 500cm
-1

) the predominant feature is an in phase A1g mode present 

between 116 and 192cm
-1

. This feature is termed the radial-breathing mode (RBM) in 

which all the atoms undergo an equal radial displacement. This mode is strongly 

diameter dependant (Dresselhaus et al, 2002; Kukovecz et al, 2002; Kuzmany et al, 

2001). 
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 Figure 4.7 Schematic representations of RBM vibrations of SWCNT. 

 

Using Raman spectroscopy, diameter distributions of samples can be evaluated from the 

RBM region (figure 4.8). Experimentation and calculation has confirmed a 1/d 

dependence of the mode frequency, where d is the tube diameter. The RBM frequency is 

known to be up shifted due to tube-tube interactions within a bundle and calculations 

have estimated this shift to be between 8 and 12% (Chen et al, 1998, Kuzmany et al, 

2002). Further theoretical analysis confirmed that this up shift was dependent on the 

diameter and the number of tubes in the bundle. 
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Figure 4.8 Raman Spectra of the RBM region of pristine HiPco SWCNT (a) 514 nm excitation 

and (b) 633nm excitation. 

 

This relationship was modified to allow direct calculation of tube diameter (d(nm)) from 

the frequency of the RBM (ωRBM) as follows: 

 

5.8
)(
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)(
2

1 +=+=
nmd

c
nmd

c
RBMϖ    Equation 4.5  (Kuzmany et al, 2002) 

 

where, 

c1 is a factor of proportionality  

c2 is a function that describes tube-tube (or other environmental) interactions 

 

The values of c1 and c2 vary extensively in literature (224 – 248 cm
-1

 and 8 – 14 cm
-1

). 

In this study a c1 value of 239cm
-1

 and a c2 value of 8.5cm
-1

 was employed (Kuzmany et 

al, 2002).  
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4.5.2 Medium frequency Raman Spectra. 

In the intermediate region of 1200 – 1500cm
-1 

calculated results show almost no 

intensity for Raman modes. Experiments on single walled nanotubes have shown weak 

features, which have been attributed to armchair modes (Pimenta et al, 1998). However 

calculation does not explain the appearance of these low intensity features. 

Experimentally peaks are observed at 1347cm
-1

, which are known to be associated with 

symmetry lowering effects in graphite and carbon fibres for which a broad peak is 

observed at 1350cm
-1

 (Brown et al, 2001; Pimenta et al, 2001). The relative intensity of 

this peak in relation to a strong mode at 1582cm
-1

 is sensitive to the lowering of the 

crystal symmetry of graphite and it is therefore deduced that this feature is primarily 

associated with disorder in the sample and is termed the D-line (Brown et al, 2001). 

 

4.5.3 High Frequency Raman Spectra. 

In this region, otherwise known as known as the G-line region, strong Raman intensity 

modes from 1500 cm
-1

 to 1600cm
-1

 are seen (Bendiab et al, 2003; Jorio et al, 2001; 

Jorio et al, 2002;). The second feature in this region is termed the D*-line generally 

thought to be a second harmonic of the defect induced D-line found in the medium 

frequency region. The G-line region essentially consists of two A, two E1, and two E2 

phonon modes for chiral nanotubes and one A1g, one E1g and one E2g mode for achiral 

nanotubes (Bendiab et al, 2003). Highly orientated pyrolitic graphite shows a peak at 

1580cm
-1

, which dominates the Raman spectrum and is attributed to the optical phonon 

E2g mode. Nanotubes show multiple splitting of this peak, due to the dispersion curve of 

the optical phonon at 1580cm
-1

 where it splits into higher (longitudinal) and lower 

(transverse) energies, depending on curvature. Thus the allowed Raman lines appear as 

a series of doubly split peaks associated with the higher and lower energy sides of 
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1580cm
-1

, as seen in figure 4.8.  The Raman spectra for metallic nanotubes in bundles 

exhibit only two strong peaks, similar to isolated metallic nanotubes (Pimenta et al, 

1998).  In both tube types the peak frequency does not depend on the chirality of the 

tube, although the lower frequency mode is diameter dependant (Jorio et al, 2002).  

Using different excitation energies it is possible to study metallic and semiconducting 

nanotubes contained in both raw and composite materials (Hadjiev et al, 2001). 
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Figure 4.9 Raman Signal for Raw HiPco Carbon Nanotubes (a) 514.5nm Excitation and (b) 

633nm Excitation. 

 

Figure 4.9 shows the Raman signal obtained for the raw HiPco carbon nanotubes used 

in this study at two different excitation wavelengths namely 514 and 633nm. All the 

characteristic Raman modes, the Radial Breathing Modes (RBM), the D-line, the G-line 

and the D
*
-line are clearly visible. Another point of interest is the differences observed 

in the spectra due to the use of two different excitation energies (different excitation 

wavelength) (see also figure 4.8). This is in accordance with literature (Jorio et al, 2002; 

Jorio et al, 2003; Pimenta et al, 1998; Rao et al, 1997) In figure 4.9 the most obvious 
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difference between the two spectra is that of the G-line, clearly showing the different 

resonance effects due to excitation energy. There have been many reports on the 

dramatic effect of the Raman excitation wavelength on the distribution of the intensity 

and peak positions in the Raman spectrum. Figure 4.10 shows the Raman spectra of 

nanotubes (Rao et al, 1997) produced in the laser vaporization generator at a number of 

different excitation wavelengths. These span from the near infrared to the visible. It 

should be noted that for even a small change in excitation wavelength there is a marked 

change in the spectrum. As the wavelength increases towards the infrared, the peaks 

near 1580 and 180 cm
-1 

are enhanced by an order of magnitude and many other peaks 

become observable. Resonant Raman scattering occurs when the energy of the incident 

photon matches the energy of the strong absorption causing electronic transitions. 

However, in the case of nanotubes with smaller diameters the situation changes 

dramatically. In many cases, there is a large apparent shift in the position of the Raman 

bands upon variation of the laser excitation. As the diameter decreases, the energy 

separation between the singularities increases. Hence, the Raman resonance condition 

thus selects the particular carbon nanotube (n, m) which has a singularity in its 

electronic density of states at a specific laser frequency. This is most apparent upon 

careful examination of the A1g mode centred on 180 cm
-1

. 
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Figure 4.10 Raman Signals of SWCNT at various excitation wavelengths (Rao et al, 1997). 

 

Eklund et al, (1995) have performed a number of extensive calculations using an 

empirical force constant model on the position of these modes for different nanotubes. 

They report that because of the tube diameter dependence, the calculated frequency of 

the breathing mode spans a range 206 cm
-1 

(8,8) to 150 cm
-1

 (11,11). The peak position 

of the band identified with the A1g modes is observed to be 186 cm
-1

 for 514.5 nm 

excitation, a few wave numbers greater than the 183 cm
-1

 value predicted for the (9,9) 

nanotube. However, at 1064 nm excitation, the A1g band is centred at 180 cm
-1

, slightly 

greater than the value 165 cm
-1

 predicted for a (10,10) tube, and furthermore clear 

shoulders are observed at 184 cm
-1

 and 205 cm
-1

 which are near the breathing mode 
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frequencies predicted for (9,9) and (8,8) nanotubes, respectively. Thus the resonance 

effect is a quantum effect that can be explained in terms of both the electronic and 

phonon dispersion relations of the nanotubes. Since nominal single-wall carbon 

nanotubes samples consist of nanotubes with different diameters and chiralities, the 

resonant Raman effect may be seen in different nanotubes for different excitation 

frequencies. 

 

5.5.4 Radial Breathing Mode (RBM) analysis of pristine HiPco carbon nanotubes 

The radial breathing modes of carbon nanotubes are strongly diameter dependant 

(Dresselhaus et al, 2002; Kukovecz et al, 2002; Kuzmany et al, 2001), that is, their 

position (cm
-1

) is inversely proportional to the diameter of the tube. A number of spectra 

were examined in this region and the RBM’s were fitted with a combination of 

Lorentzian and Gaussian fits. An example of a fitted RBM region for the raw HiPco 

carbon nanotubes is given in figure 4.11, showing the individual fit components (dashed 

line) and the overall combined fit (grey line). 

 

 

Figure 4.11 Fitted Radial Breathing Modes for Raw HiPco Carbon Nanotubes 514nm excitation.  
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Using the outlined relationship (Kuzmany et al, 2001) a diameter distribution for the 

raw HiPco used in this study (figure 4.12) was calculated based on the position of the 

RBM peaks from multiple spectra using 514 and 632 nm excitation. 
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Figure 4.12 Diameter Distribution of pristine HiPco Carbon Nanotubes from RBM analysis at 

514 and 632nm excitation. 

 

Form this diameter distribution of 0.8 – 1.45nm was estimated which was in broad 

agreement with the distribution estimated from the UV/VIS/NIR spectrum as was seen 

in section 4.2. 

 

The preceding sections have presented the spectroscopic characterisation of SWCNT, 

outlining the origins of the observed spectral features and giving details of the 

instrument employed. These instruments were used extensively through out the course 

of this study, in later sections they will be used to probe a variety of different systems 

assessing the physiochemical indicators of SWCNT toxicity. 
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4.6 Transmission Electron Microscopy (TEM) of pristine HiPco Carbon 

Nanotubes. 

 

The TEM used to image the materials in this research was a Jeol 100 CX TEM, with an 

accelerating voltage of typically 100 keV applied. The substrates consisted of copper 

grids covered with an electron transparent polymer, 3 % Formvar resin in 1,2-

dichloroethan. Formvar resin is a synthetic film containing polyvinyl acetyl and phenol 

resins. 

 

To prepare the samples for imaging, 2 mg of untreated SWCNT were placed in 10 ml of 

ethanol and sonicated in the sonic bath (ULTRA sonick 57x, 230 V), for 30 minutes at 

medium power. The solution was then drop cast onto a copper grid with a 3% 

chloroform formvar polymer coating after which the samples were allowed to dry for 

approximately 24 hours.  

 

Figure 4.13 shows the TEM image obtained for the raw HiPco nanotubes used in this 

study. In this image an area of what is termed high density tubes i.e. bundles of varying 

lengths and diameters, can be clearly seen. Of interest here is that using this technique, 

which has a much higher resolution than AFM microscopy, individual tubes can be 

clearly seen and tube length calculated. Furthermore catalytic iron particles remnant for 

the fabrication process can be clearly seen. 
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Figure 4.13 TEM of Raw as Purchased HiPco® SWCNT (A) 20000 times magnification showing 

large aggregates (AG) and high density tubes (B) 200000 times magnification showing 

individual tubes and remnant catalytic iron (CI) particles. 

 

While microscopic studies of raw nanotube samples provide little information about the 

type of tubes (metallic or semiconducting) they do allow a visualisation of the 

morphology and aggregation state of the sample. Any changes in these which were 

incurred as a resulted of composite formation or sample processing can then be 

accessed. The average diameter noted for the batch of HiPco SWCNT used in this study 

A 

B 
CI 

AG 
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was 1.1nm which is in agreement with the spectroscopic estimation of SWCNT 

diameter in figure 4.12. Although it is difficult to assess the tube length from un- 

processed samples, TEM imaging suggests tube length in excess of 50nm (figure 

4.13B). In contrast, bundle diameter varies considerably from several nanometres up to 

tens on nanometres; rope lengths (figure 4.13A) appear to be in excess of 200nm. 

Variation in the bundle size and the tube distribution will be an important factor when 

considering the bio-integration or toxicity of SWCNT. It is expected that 

TEM will therefore be a useful tool in visualising the aggregation state of the tubes used 

in this study. 

 

4.7 SWCNT characterisation summary. 

 

This chapter has presented the characterisation of pristene SWCNT both 

spectroscopically and microscopically. Where applicable, the origins of observed 

spectral features were discussed. Electronic spectroscopy, namely absorption and 

emission, was shown to be dominated by the inter band transitions in the DOS of 

SWCNT, facilitating a diameter distribution of 0.8 – 1.36 nm for HiPco SWCNT 

employed in this study to be estimated. Infra red spectroscopy was seen to provide little 

information about the SWCNT present in the sample. Raman spectroscopy was seen to 

be a very useful tool in the analysis of SWCNT samples; it facilitated a diameter 

distribution to be estimated, by RBM analysis, of 0.8 – 1.45nm which was in broad 

agreement with that of the electronic spectroscopy. Transmission electron microscopy 

showed the aggregation state of the SWCNT sample, allowing bundle size to be 

estimated. The techniques presented in this chapter, and more precisely changes to the 

characteristic features observed, will be used to assess the interactions of SWCNT with 
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a variety of different molecules and biological systems; their implications for the 

quantitative evaluation of SWCNT cytotoxicity will be discussed later in chapters 5, 6 

and 7 as well as the possible implications for nanoparticle cytotoxicity in general.   

 

4.8 General Experimental. 

 

The following subsections will give a brief account of the common experimental 

techniques carried out including details of the test materials used, dispersion of these 

materials, spectroscopic analysis and cell culture techniques which will be used 

throughout the upcoming chapters 5, 6 and 7. Where necessary additional experimental 

information will be given in the relevant chapters. 

 

4.8.1 Test Materials and Reagents. 

HiPco
®

 SWCNT were purchased from Carbon Nanotechnologies, Inc. (Houston, TX).  

This material contained 10 wt % residual Fe catalyst particles. Arc Discharge 

SWCNT were purchased from Sigma Aldrich Ltd. (Dublin, Ireland). Printex 90 

(Carbon Black) were received from Degussa AG (Frankfurt, Germany). The 

following cell viability dyes MTT, Commassie Brilliant Blue (COMMASSIE), 

Neutral Red (NR) were all purchased from Sigma Aldrich Ltd. (Dublin, Ireland). 

Alamar Blue
™

 (AB) was purchased from Biosource (UK). The viability dye WST-1 

was purchased from Roche (UK). Cell culture media and supplements and the 

trypsinisation solution were purchased from Biosciences (Dublin, Ireland).  
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4.8.2 Dispersion of SWCNT. 

An ultrasonic tip (Ultra sonic processor VCX-750 watt) was employed to disperse the 

solutions prior to preparation of test concentrations. Minimal sample processing was 

employed to mimic exposure to raw nanotube powders as much as possible. The 

solutions were prepared by dispersing an initial concentration of 1 mg/ml of SWCNT in 

the solution under study by ultra sonication. Then by subsequent dilution and 

sonication, operating at 40% for a total time of 30 seconds carried out in 10 second 

sequential steps, the concentration of SWCNT was reduced over a wide range from the 

initial concentration down to a final concentration 9.7 x 10
-4

mg/ml.  

 

4.8.3 Spectroscopic Characterisation. 

For cytotoxicity evaluation, fluorescence and absorbance were all quantified using a 

microplate reader (TECAN GENios, Grödig, Austria). Absorption and fluorescence 

spectroscopy were performed on the dispersions of nanotubes in all solutions after a 

24 hour settling period after which they were characterised using the Perkin Elmer 

Lambda 900 Absorption and LS55B Luminescence spectrometers respectively. 

Raman Analysis was performed with the aid of the Instruments S.A. LabRam 1B 

Raman microscope using 514.5 nm laser excitation on drop cast samples. 

 

4.8.4 Cell Culture. 

The human alveolar carcinoma epithelial cell line A549 (ATCC, CCL-185) was 

employed for toxicity evaluation. Cells were grown in F-12K medium (Kaighn’s 

Modification, Gibco) supplemented with 10% foetal calf serum (FCS), 45 IU ml
-1

 

penicillin and 45 µg ml
-1

 streptomycin and grown in a humidified incubator at 37
o
C 

(5% CO2). For testing cells were seeded at a density of 1 x 10
5
 cells/ml for 24 hour 
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test, 7 x 10
4
 cells/ml for 48 hour test, 3 x 10

4
 cells/ml for 72 hour test and 2 x 10

4
 

cells/ml for 96 hour test in 96-well plates 

 

4.8.5 Cytotoxicity Assays. 

Five different assays were used through out the course of this research which were as 

follows: Alamer Blue (AB), Neutral Red (NR), Commassie Blue (COMMASSIE), MTT 

(3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) and WST-1 (2-(4-

iodophenyl)-3-(4-nitrophenyl)-5-(2,4-disulfophenyl)-2H-tetrazolium).  

 

Cells were seeded at a density of 1 x 10
5
 cells/ml in 96-well plates in at least 3 

replicates. After 24 hours, the cells were treated with the material to be tested and left 

for another 24 hours whereupon they were assessed for cell viability using the five 

assays. The AB, NR and COMMASSIE assays were conducted subsequently on the 

same set of plates.  The AB assay was performed first.  The bioassay was carried out 

according to manufacturer’s instructions.  Briefly, control media or test exposures were 

removed, the cells were rinsed with PBS and 100 µl of an AB/NR medium (5% [v/v] 

solution of AB and 1.25% [v/v] of NR dye) prepared in fresh media (without FBS or 

supplements) were added to each well.  The plates were then incubated for 3 hours.  The 

AB assay measures the innate metabolic activity of cells.  The oxidised indigo blue, 

non-fluorescing form of this chromogenic indicator dye is reduced by cellular 

dehydrogenases to a reduced pink fluorescent form, which can be easily monitored 

spectrophotometrically.  Following the 3 h incubation, AB fluorescence was quantified 

at the respective excitation and emission wavelength of 540 and 595 nm.  Wells 

containing medium and AB without cells were used as blanks.  The mean fluorescent 
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units for the six replicate cultures were calculated for each exposure treatment and the 

mean blank value was subtracted from these.  

 

Viability and protein determination of the cells following exposure to each chemical 

were then subsequently investigated using the NR and Commassie assays.  The 

incorporation of the NR dye by the lysosomes of living cells and the quantification of 

the total amount of cellular proteins were performed according to Liebsch and 

Spielmann (1995) with the modification of Coomassie Brilliant Blue dye being 

employed in place of Kenacid Blue R dye.  Briefly, after measurement of AB 

fluorescence, the AB/NR medium was discarded, the cells were washed with 100 µl 

PBS and then the NR dye was extracted with 100 µl of an acetic acid-ethanol solution 

(de-staining solution).  The addition of the acetic acid-ethanol solution also acts as a 

cell fixative step so that protein determinations can be conducted subsequently.  The 

plate was shaken at 240 rpm for 10 min and the fluorescence of NR was measured at 

excitation and emission values of 540 and 650 nm respectively with a microplate 

reader. Protein determinations were performed on the same plates immediately 

following NR determination.  Excess NR dye was removed from the cells by washing 

with 100 µl de-staining solution.  COMMASSIE dye was added to each well and the 

plate agitated for 10 min.  The dye was removed and the plate washed with an acetic 

acid-ethanol solution.  The wash solution was discarded and the dye extracted with 

measuring solution (1M Potassium acetate).  The plate was shaken at 240 rpm for 10 

min and the absorbance of the extracted dye was read at 570 nm (reference filter 340 

nm) using the microplate reader.   
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Using the MTT assay, cell viability was determined by measuring the reduction of 

yellow water-soluble MTT to a water-insoluble MTT-formazan. A MTT working 

concentration of 0.5 mg/ml was added to the cells and plates and incubated for 3h at 

37
o
C (5% CO

2
). Cells were washed with 100 µl of PBS and 100 µl dimethylsulfoxide 

(DMSO) was then added to each well to extract the dye. The plate was shaken at 240 

rpm for 10 min and absorbance was recorded at 550 nm. A second tetrazolium salt, 

WST-1, at a working concentration of 9.1 % was employed for measurement of cell 

viability after SWCNT treatment. For this assay, three replicate wells were used on 

each plate and cells were exposed to SWCNT concentrations of 0.00156 to 0.4 mg/ml. 

In contrast to the MTT assay, no extraction step was necessary due to the water 

solubility of the reduced form of WST-1 so that absorbance could be determined 

directly at 450 nm after conversion. 

 

 

4.8.6 Statistical Analysis. 

 At least three independent experiments were conducted.  Test results for each assay 

were expressed as percentage of the unexposed control ± standard deviation (SD).  

Control values were set as 100%. Differences between samples and the control were 

evaluated using the statistical analysis package Minitab14. Statistical significant 

differences were set at p<0.05. Normality of data was confirmed with Kolmogorov-

Smirnov tests to validate the assumptions found in one-way analysis of variances 

(ANOVA) and Dunnett’s multiple comparison tests.  
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Chapter 5 

 

“Nanotube medium interactions” 

Adapted from 

“Probing the interaction of single walled carbon nanotubes within cell culture medium as a precursor to 

toxicity testing.” Carbon 45, 34–40, 2007. 

 

 

5.1 Introduction. 

 

Understandably, for the area of bio-nanotechnology to advance, there has been a shift in 

current research towards more biologically compatible materials (Bandypadhyaya et al, 

2002; Chambers et al, 2003; Casey et al, 2005; Moulton et al, 2005; Salvador-Morales 

et al, 2006). The large surface area to volume ratio of nanoparticles renders them very 

attractive for a range of bio-related applications such as targeted drug delivery.  

SWCNT for example have been identified as potentially suitable candidates for targeted 

drug delivery as well as a range of bio sensing devices (Venkatestan et al, 2005). As a 

result of this drive to integrate nanotubes, in particular SWCNT, with biological 

systems, several calls have been made for a thorough assessment of the potential health 

risks of these materials to be carried out. Indeed there has been an increase in studies 

investigating the toxicity of SWCNT; however conflicting results seem to have 

emerged.  
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The in vitro cytotoxicity testing of SWCNT (Cui et al, 2005; Bottini et al, 2006) 

typically involves their dispersion within a cell culture medium, followed by their 

subsequent addition to a cell line of interest in the medium in which they have been 

dispersed. The degree of interaction between the SWCNT and the medium in which 

they are dispersed and the influence of such interactions on cell viability, however, has 

been completely uncharacterised in the literature. It is well established that SWCNT 

interact strongly with and can be made soluble by many molecular species including 

small organic molecules (Hedderman et al, 2004; Valeentini et al, 2006), organic 

polymers (Dalton et al, 2000; Keogh et al, 2004) polysaccharides (Bandypadhyaya et 

al, 2002; Chambers et al, 2003; Casey et al, 2005), amino acids, proteins (Salvador-

Morales et al, 2006) and DNA (Moulton et al, 2005). The mechanism is well 

understood as a reversible physisorption process (Keogh et al, 2004).  It is thus 

suggested here that the potential for such interactions to occur may be one source of the 

disparity in the current literature. 

 

This chapter will explore the interactions of SWCNT with the cell growth medium, 

which is a complex mixture of various different components vital for cellular growth 

(see appendix 2). Many of the components of the medium are known to interact with 

SWCNT to varying degrees. This chapter will use spectroscopic analysis to probe the 

interactions of SWCNT with the constituent components of the medium, highlighting 

the potential role that these interactions may play in the toxicity of these materials. 

UV/visible absorption and fluorescence spectroscopy were employed to examine the 

interactions and to differentiate between the effects on some of the constituent 

components of the medium, including the commonly employed foetal bovine serum 

growth supplement. Raman spectroscopy was employed to investigate whether the 
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SWCNT interactions with the constituent components resulted in debundling of the 

SWCNT aggregates (as produced) (Kukovecz et al, 2002), a critical consideration when 

evaluating the toxicity of these materials (Donaldson et al, 2006; Smart et al, 2006). 

 

5.2 Experimental. 

5.2.1 Dispersion of SWCNT. 

Stock solutions of SWCNT were dispersed (see section 4.8.2) both in medium (F12K) 

containing 5% FBS, as is typical in cell culture experiments and medium without the 

addition of serum (0%). An initial concentration of 1 mg/ml of SWCNT was dispersed 

in both the medium containing the added serum (5%-FBS-F12K), and the serum free 

medium (0%-FBS-F12K). Then by subsequent dilution with medium the concentration 

of SWCNT was reduced over a wide range from the initial concentration down to a final 

concentration of 9.7 x 10
-4

mg/ml.  

 

5.3 Results and Discussion. 

5.3.1 Initial Observations. 

Initially, it was visually noted that in the higher concentration region above 0.2 mg/ml 

both media (5%-FBS-F12K and 0%-FBS-F12K) lost their characteristic pink colour 

(see appendix 3). This characteristic pink colour originates from the presence of the pH 

indicator phenol red within the medium. However, pH testing of the different 

concentrations did not show any change in their pH. A further visual difference could be 

observed between the different media in that the amount of SWCNT staying in 

suspension seemed to be greater in the presence of the serum. This indicated that the 

serum might be playing an active role in the dispersion of the SWCNT and so strongly 

interacts with the SWCNT. To further investigate this, UV/visible absorption analysis 



 100 

was the first spectroscopic tool employed. Absorption spectroscopy was chosen as a 

starting point due to the aforementioned visual differences in the suspensions of 

SWCNT in the cell culture medium. 

 

5.3.2 UV/Visible Absorption Spectroscopy. 

The UV/visible absorption spectrum of 5%-FBS-F12K medium (figure 5.1.b) consists 

of four features at 270, 360, 410 and 560nm. The features at 270 and 410nm can be 

assigned to the added 5% FBS as they are not present in the serum free medium and 

indeed a spectrum of 5% (v/v) FBS in deionised water shows these features verifying 

that their origin is that of the FBS. Both the 5% and the 0% FBS-F12K share the 

features at 360 and 560nm. The feature at 360nm can be attributed to riboflavin 

(Posadaz et al., 2000, Zirak et al., 2005), a vitamin present in the medium, whereas the 

feature at 560nm can be assigned to the phenol red indicator within the medium.  
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Figure 5.1. Absorption Spectra of (a) 5%-FBS-F12K containing 0.7 mg/ml SWCNT (b) 5%-FBS-

F12K medium only. 
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Figure 5.1 compares the absorption spectrum of the 5%-FBS-F12K medium before (b) 

and after (a) the addition of 0.7 mg/ml SWCNT. The spectra have not been offset 

artificially and thus the increased baseline in (a) is a result of the addition of the 

SWCNT. As described in chapter 4, the absorption spectrum of SWCNT in water 

suspensions consists of three broad absorption features centred approximately at 

1200nm, 800nm and 270nm. The peaks at 1200nmn and 800nm are highly structured 

and are attributed to optical transitions between mirror image spikes in the diameter 

dependent density of states, with the feature at 270nm attributed to the π-plasma 

frequency of 5eV in π-conjugated carbon materials (Kataura et al., 1999). At the 

concentrations used here, there is no evidence of these SWCNT features in the 

absorption spectrum. In the absence of centrifugation, the spectrum of SWCNT in water 

has a considerable contribution from a broad scattering background due to larger 

nanotubes aggregates (Yu et al., 2001, Lian et al., 2005). At concentrations of ~1g/L 

this scattering contribution can be up to 99% of the visible transmission losses in 

SWCNT solution (Giordani et al., 2006). Although the SWCNT samples have been 

sonicated, allowed to settle for a 24 hour period and decanted, the addition of the 

SWCNT to the sample contributes to a significant background which can be attributed 

to scattering (Yu et al., 2001, Lian et al., 2005, Giordani et al., 2006). The observed 

spectral changes thus do not derive from additional nanotube absorption. 

 

Independent of this increase in scattering background, upon the addition of the SWCNT 

to the media the absorption spectrum undergoes significant changes. In both the 

medium based solutions (0% and 5% FBS-F12K) a reduction in the phenol red peak at 

560nm (figure 5.1.a) is seen, which is as expected due to the colour change observed in 

the high SWCNT concentration region (above 0.2 mg/ml). However, as stated above, no 
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change in pH was registered. Organic dyes such as p-terphenyl and anthracene 

(Hedderman et al., 2004, Hedderman et al., 2006) are known to interact with SWCNT 

via a π-π stacking van der Waals interaction along the carbon nanotube backbone 

resulting in changes to their absorption and/or fluorescence spectrum and therefore this 

absorption reduction is not surprising. In SWCNT solutions of phenol red alone in water 

a similar colour change with no associated pH change is observable. 

 

The feature at ~360nm attributed to the vitamin riboflavin is substantially reduced in 

both media solutions while the peak at ~ 410nm associated with the FBS serum is 

slightly reduced. The spectral changes indicate that the molecular components of the 

medium, both in the presence and absence of the serum, and indeed the serum itself, are 

interacting with the carbon nanotubes. Furthermore, the qualitatively different variations 

of the individual features indicate that the components are interacting to differing 

degrees.  The next section will use fluorescent emission spectroscopy to complement 

the absorption spectroscopy and elicit further information about the interactions 

occurring between the individual components of the medium and the SWCNT. 

 

5.3.3 Fluorescent Emission Spectroscopy. 

Fluorescence studies have been shown to aid in the elucidation of the interaction of 

nanotubes with different molecular species (Hedderman et al., 2006). Coleman et al 

(2004) constructed a model based on the adsorption/desorption of conjugated polymers 

in SWCNT composite solutions to explain the quenching of the fluorescence of the 

polymer when bound to the SWCNT. The analysis has more recently been extended to 

smaller organic molecules (Hedderman et al., 2006). The ratio of the maximum 

fluorescence intensity of the composite solution, which contains bound and unbound 
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molecules, and the maximum fluorescence of the pristine molecular solution, which 

comprises solely of unbound molecules, was plotted as a function of concentration of 

SWCNT, CNT. Equation 5.1 represents the dynamic equilibrium at which the adsorption 

rate equals the desorption rate, where NF is the number of free molecules, NB is the 

number of bound molecules, Flcomp is the fluorescence of the composite and Flmolecule is 

the fluorescence of the pristine solution which gives the fraction of free molecules in 

solution. The model was derived for 1:1 ratios by mass and so for all concentrations the 

partial SWCNT concentration, CNT, equals the partial molecular concentration, Cm. 

 

        Equation 5.1. 

 

C0 is a characteristic concentration associated with the interaction and is described by 

 

         Equation 5.2. 

 

where ν is a desorption pre-exponential frequency factor, ρbun is the bundle mass 

density, Abun is the bundle surface area, Eb is the binding energy between the nanotube 

and the fluorescent molecule, D is a diffusion co-efficient for fluorescent molecule and f 

is a space integral. C0 may be considered as a ratio of the desorption rate to the 

adsorption rate and thus equation 5.1 can be considered similar to that describing a 

Langmuir isotherm describing the adsorption of gases on a solid surface (Atkins et al).  

The system equates at equilibrium to the rate of adsorption of the molecules via van der 

Waals interaction onto a surface of area Abun as it diffuses through the solvent, to the 

desorption rate which is largely determined by the binding energy. Applied to the 

experimental data of (Coleman et al., 2004), deviation from the ideal behaviour was 
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shown to result from changes in the size of the SWCNT species, implying bundle size 

and as a result the model is able to elucidate concentration ranges in which the polymer 

interacts with the SWCNT individually and in bundles of varying diameter. For the 

purpose of this study this model will be employed to assess the degree of interaction 

between the SWCNT and a variety of different flourophores. Where applicable their 

emission behaviour was monitored as a function of SWCNT concentration and fitted to 

the model proposed by Coleman et al (2005) allowing characteristic concentrations (C0) 

to be estimated for the molecule under test. This C0 value was then used to estimate the 

degree of interaction between the SWCNT and the relevant molecule. According to 

equation 5.2 the C0 value is inversely proportional to the binding energy (Eb) the nature 

of this relationship would imply that a low C0 value would correspond to a higher Eb 

(higher degree of interaction) and similarly a high C0 value would correspond to a lower 

Eb hence a lesser degree of interaction. 

 

Concentration dependent fluorescent studies were thus employed to further elucidate the 

interaction between the medium (with and without serum) and the SWCNT. The 0% 

and 5%-FBS-F12K solutions have one absorption band in common, namely that of the 

riboflavin at 360nm, so this was chosen as the first excitation wavelength. Excitation at 

this wavelength yielded a broad emission spectrum centred at ~450nm in both serum 

free and containing medium (see appendix 4). 

 

Figure 5.2 shows the ratios of the quenching of emission at 450nm by 360nm excitation 

of the medium as a function of SWCNT concentration in serum free medium (●) and 

5% FBS (∆) containing medium.  
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Figure 5.2. Plot of the emission ratios at 450nm by 360nm excitation of (●) 0%-FBS-F12K C0 = 

0.135 ± 0.020mg/ml and (∆) 5%-FBS-F12K C0 = 0.125 ± 0.020mg/ml. 

 

A similar trend can be observed from the two plots, the ratio of fluorescence decreased 

as the concentration of SWCNT increased indicating an increased probability of 

adsorption of riboflavin onto the SWCNT surfaces with increased concentration. The 

plots were fitted with the model allowing a characteristic concentration value (C0) to be 

evaluated. The fits yielded values of 0.135 ± 0.020mg/ml (solid line) for the 0%-FBS-

F12K and a marginally lower value of 0.125 ± 0.020mg/ml (dashed line) for the 5%-

FBS-F12K. Within the experimental accuracy, this indicates that the presence of the 

serum does not significantly influence the interaction of the riboflavin with the 

SWCNT. 

 

Further fluorescence studies were carried out with the 5%-FBS-F12K, as the addition of 

the serum yielded new features in the spectrum at 268 and 410nm which were attributed 
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to the bovine serum. Both of these serum features gave rise to fluorescent emission, 

excitation by 268nm giving a maximum emission at 350nm (see appendix 5) and 410nm 

excitation giving a maximum emission at 470nm (see appendix 6). Figure 5.3 depicts 

the ratios between the intensity of emission at 350 nm (●) and 470 nm (∆) for 268nm 

excitation and 410nm excitation respectively in 5%-FBS-F12K cell culture medium 

with varying SWCNT concentration. The solid and dashed lines show fits of equation 

5.1. The quenching behaviour as a function of concentration is similar to that observed 

for 360nm excitation, yielding similar shaped curves and using the outlined model 

(Coleman et al., 2004) C0 values were calculated to be 0.145 ± 0.02mg/ml (solid line) 

and 0.2 ± 0.02mg/ml (dashed line) for 268 and 410nm excitation respectively in 5%-

FBS-F12K. 
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Figure 5.3. Plot of emission ratios against SWCNT concentration by (●) 268nm excitation C0 = 

0.145 ± 0.02mg/ml and (∆) 410nm excitation C0 = 0.2 ± 0.02mg/ml for 5%-FBS-F12K cell culture 

medium. 
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A similar concentration study of the FBS alone and the SWCNT was then carried out to 

further investigate the nature of this interaction. For this a concentration study was 

carried out by initially dispersing the SWCNT in 100% FBS at an initial concentration 

of 1000 mg/L which was then serially diluted with deionised water over the same 

SWCNT concentration range as used in the medium study. As the features at 268 and 

410nm originate from the FBS, these excitation wavelengths were chosen for the study 

of the serum’s interaction with the SWCNT. A similar trend was observed in the 

emission quenching ratio as for the medium (figure 5.4). C0 values were evaluated for 

both the excitation wavelengths, 268nm yielding a C0 value of 0.2 ± 0.02mg/ml (solid 

line) and 410nm yielding a similar C0 value of 0.275 ± 0.02mg/ml (dashed line).  
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Figure 5.4. Plot of emission ratios against SWCNT concentration for a 1:1 ratio dilution of FBS 

at (●) 268nm excitation C0 = 0.2 ± 0.02mg/ml and (∆) 410nm excitation C0 = 0.275 ± 0.02mg/ml. 

 

In comparison to other studies in which variations of C0 over several orders of 

magnitude are observable for different molecules (Coleman et al., 2004, Hedderman et 
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al., 2006), the C0 values derived show little variation for all the features examined. The 

similarities of the values for the 360nm peak with and without serum indicate that the 

serum has little effect on the interaction between the riboflavin and the SWCNT. The 

values for the serum emission features are consistently higher however. Indeed the 

values for the 470nm emission are consistently higher than those for the 350nm 

emission both in the serum containing medium and the serum solution, potentially 

indicating that they have origin in different components of the serum. The characteristic 

concentration is essentially a ratio of desorption and adsorption rates (equation 5.2). 

Included in the desorption rate is the binding energy, a large binding energy reducing 

the desorption rate and consequently the C0 value. The adsorption rate is critically 

dependant on the diffusion rate and thus the hydrodynamic radius of the adsorbing 

molecule. Large bulky molecules have slow diffusion rates and would be expected to 

yield large C0 values. The indications are therefore, that the large protein molecules of 

the serum are relatively weakly bound and are slow to adsorb. Equally however, they 

are slow to diffuse once desorbed and so likely to play a stronger role in the 

solubilisation of the SWCNT which would give support to the visual observation of the 

serum based medium retaining more SWCNT in solution. The similarity of the C0 

values of all species may be an indication that the rates of adsorption and desorption are 

regulated by the complex composition of the medium. That the C0 values of the serum- 

only solutions are higher may reflect a higher desorption rate in the purely water based 

solution. A direct comparison of the relative strengths of interactions should be through 

the calculated binding energies (Coleman et al., 2004, Hedderman et al., 2006). For 

such a comparison, however, parameters such as the hydrodynamic radius should be 

precisely known. In a complex mixture this may differ significantly from that in a 
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simple solution, measurements of the interaction of the individual will be discussed in 

section 5.4. 

 

In terms of processing for potential applications, the ability to debundle the as produced 

SWCNT aggregates is critical. Similarly, whether SWCNT are presented to cells in 

large bundles or as isolated tubes is expected to significantly influence their toxicology. 

Indeed recent studies have noted decreased cytotoxicity of large aggregates of SWCNT 

in comparison to smaller bundles (Wick et al, 2007). The original study by Coleman et 

al demonstrated that changes in the composite concentration could affect the degree of 

SWCNT bundling. A constant value of C0, arising from a good fit to the behaviour 

predicted by equation 5.1 indicated that the degree of bundling (or debundling) was 

constant over the concentration range studied. That a good fit to the model is observed 

here would imply that the nanotube bundling (or de-bundling) is constant over the 

concentration range studied here. Over the range of concentrations therefore, the 

SWCNT are present in solution in a concentration dependent dynamic equilibrium 

between adsorption and desorption. It is noted that such species will contribute 

significantly to the scattering of incident light across the visible spectrum as is 

suggested by the offset of the absorption spectrum in figure 5.1. 

 

5.3.4 Raman Spectroscopy. 

Raman spectroscopy was employed to probe the effect on the SWCNT upon interaction 

with the medium. Raman analysis was carried out on all samples at 514.5 nm laser 

excitation. As described in chapter 4, the Raman spectrum of pristine nanotubes consists 

primarily of three main features, the radial breathing mode (RBM), the D line and the G 

line (Dresselhaus et al., 2002). These modes are very sensitive to any perturbation to the 
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local environment of the nanotube and are therefore a good indication of complex 

formation and/or aggregate debundling (Curran et al., 1998, Hadjiev et al., 2001, Wise 

et al., 2004, Keogh et al., 2005). 
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Figure 5.5 G-line region for 514.5nm excitation (a) Raw SWCNT Soot. (b) 5%-FBS-F12K 

containing 0.1 mg/ml SWCNT. 

 

Firstly changes were observed in the G-line region of the spectrum positioned at ~1580 

cm
-1

 (figure 5.5a). Similar shifts were observed in nanotube deposits from the serum 

free medium. This mode involves tangential C–C bond stretching motions and stems 

from the E 2g mode at 1580 cm
-1

 in graphite (Dresselhaus et al., 2002). This mode 

exhibits a definite upward shift of ~7 cm
-1

 in the 5%-FBS-F12K (figure 5.5b). Similar 

up shifts in this mode have been reported before in SWCNT bundles and 

SWCNT/epoxy resin composites (Wise et al., 2004) and with composites involving 

gamma cyclodextrins (Chambers et al., 2003). In terms of the SWCNT/epoxy resin 

composites (Wise et al., 2004) it was reported that the G-line up shifted by 
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approximately 3cm
-1

 when the SWCNT were embedded in ‘Shell epoxy resin 862/EPI-

CURE W’
 
(Wise et al., 2004). In such studies it was noted that changes in both the 

RBM and G-Line were observed with changes in pressure and significantly shifts of 

~14cm
-1

 were observed in the G-line region with respect to increasing pressure. It was 

further suggested that these shifts under the influence of hydrostatic pressure are in fact 

governed by van der Waals type interactions and may be the result of a lowering of the 

cylindrical symmetry of the tube (Wise et al., 2004). The observed shifts are thus 

consistent with the coating of the SWCNT with molecular components of the medium 

and or the serum through van der Waals physisorption. 
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Figure 5.6 Radial breathing mode regions for 514nm excitation (a) Raw SWCNT Soot (b) 5%-

FBS-F12K containing 0.1mg/ml SWCNT. 

 

The frequency positioning of the RBM's of pristine nanotubes (figure 5.6a) are inversely 

related to the diameters of the nanotubes (Kukovecz et al., 2002, Yu et al., 2001) and 

using this relationship, a diameter range for the raw sample was calculated (Kukovecz et 

al., 2002) to be from 0.8nm-1.4nm. The RBM spectrum is also significantly influenced 
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by the local environment and incurred changes can be employed to interpret such effects 

as de-bundling or selective solubilisation (Kataura et al., 1999, Hedderman et al., 2004, 

Keogh et al., 2004,). Figure 5.6 depicts the radial breathing mode region at 514.5 nm 

excitation for (a) Raw SWCNT and (b) 5%-FBS-F12K with 0.1 mg/ml SWCNT, these 

RBM’s were fitted with a combination of Lorentzian and Gaussian fits with Lab spec 

Version 4.1 (fits not shown).The concentration of 0.1 mg/ml shown above is well below 

the C0 values estimated from the emission studies. As can be seen there are significant 

differences between the responses of the raw SWCNT (figure 5.6a) and that of the 0.1 

mg/ml complex with the 5%-FBS-F12K (figure 5.6b). There is no significant change of 

the diameter distribution which would be indicative of selective solubilisation or de-

bundling (Kukovecz et al., 2002). However there is a reduction in the relative intensity 

of some of the modes at lower wavenumbers in comparison to that of the raw sample 

(figure 5.6a), but they are still present within the spectrum of the 0.1 mg/ml 5%-FBS-

F12K media complex. This would suggest the SWCNT are present in the suspension as 

aggregates/bundles at all stages which would correlate well with conclusions drawn 

from the emission spectroscopy. Due to the nature of the quenching of emission 

observed, it was postulated that the same two species are interacting over the 

concentration range studied. It should be concluded therefore that the nanotubes, at all 

concentrations exist as bundles rather than individual tubes when dispersed in cell 

culture medium. 

 

5.4 Individual Components. 

 

To gain more information regarding the nature of the interactions of SWCNT within the 

cell culture medium the same spectroscopic techniques that were employed in section 
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5.3 will again be used, to assess the degree of interaction between the SWCNT and 

some of the medium’s individual components. As a spectroscopic study of the 

interaction between the SWCNT and added protein was carried out and discussed earlier 

(section 5.3.3) it will not be discussed in this section. Three individual components of 

the medium were studied which were as follows the B vitamin riboflavin, phenylalanine 

and glutamic acid, two amino acids present in the medium.  

 

In all tested components SWCNT containing solutions were prepared by dispersing, 

with the aid of a sonic tip, an initial concentration in a 1:1 mass ratio of the component 

under test, riboflavin/phenylalanine/glutamic acid and HiPco SWCNT in deionised 

water. The concentrations were then reduced over a wide range by serial dilution with 

deionised water and sonication. All solutions were then characterised spectroscopically 

after a 24 hour settling period. 

 

5.4.1 Riboflavin. 

Riboflavin, also known as vitamin B2, is an easily absorbed micronutrient with a key 

role in maintaining health in animals. It is required for a wide variety of cellular 

processes. Like the other B vitamins, it plays a key role in energy metabolism, and is 

required for the metabolism of fats, carbohydrates, and proteins. Its presence in the 

medium hence is vital for healthy cellular growth. 

 

Riboflavin is yellow or orange-yellow in colour and its absorption spectrum consists of 

a broad band centred at approximately 360nm (Posadaz et al., 2000, Zirak et al., 2005). 

Excitation by 360nm yields a broad emission feature centred at approximately 500nm. It 

is noted that the observed emission behaviour is different than that observed in the 
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medium study (section 5.3.3) which yielded an emission spectrum centred at 

approximately 450nm. The difference in emission may have resulted from the presence 

of the battery of different components present in the medium (see appendix 2) which 

may have resulted in a change in the emission behaviour of the riboflavin due to inter 

component interaction when in the medium, essentially a solvatochromatic shift. 

 

As expected, upon the addition of SWCNT to the solution of riboflavin, the emission 

feature was reduced. This quenching of emission was then monitored as a function of 

SWCNT concentration and plotted as a ratio (figure 5.7) of the emission of a dispersion 

of riboflavin and SWCNT in equal mass concentration divided by the emission of 

riboflavin of the same mass concentration. This ratio was then fitted with the earlier 

described model proposed by Coleman et al (2005) (equation 5.1) facilitating a 

characteristic concentration for riboflavin to be evaluated. 
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Figure 5.7 Plot of emission ratios at 500nm by 360nm excitation against concentration for a 1:1 

mass ratio dilution of Riboflavin and SWCNT in deionised water. C0= 0.0045 ± 0.002mg/ml. 
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The ratio plot in figure 5.7 was fitted with the model allowing a characteristic 

concentration value (C0) to be evaluated; the fit yielded a C0 value of 0.0045 ± 

0.002mg/ml. The nature of the ratio plot (figure 5.7) is in very good agreement with the 

original plot presented by Coleman et al (2005) from which the model was derived.  In 

the study, ratio points which correlated with the model fit (equation 5.2) where shown 

microscopically to be of constant size and deviation from the model in the higher 

concentration region was shown to be a result of changing aggregate size. Therefore the 

authors postulated that the use of the model could aid in the determination of 

concentration ranges in which individual tubes were present in the suspension and 

effectively with the visualisation of the concentration dependent debundling process.  

Deviation from the model fit seen here in the higher concentration region (figure 5.7) 

may give an indication that the aggregation state of the SWCNT is altered as a function 

of concentration by the riboflavin. The poor fit of the data to the model even at low 

concentrations indicates that even below the critical concentration the nanotubes are not 

fully debundled. 

 

Upon examination of the RBM region of the Raman spectrum of the riboflavin SWCNT 

suspension (figure 5.8b) no differences were detectable in the diameter distribution from 

that of the raw (figure 5.8a). However there are differences in the relative intensities 

between the raw SWCNT and suspension this may indicate that a degree of debundling 

occurred which remained constant over the concentration range studied here. 
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Figure 5.8 Radial breathing mode region for 514.5nm excitation (a) Raw SWCNT Soot (b) 

0.125mg/ml SWCNT in 0.125mg/ml riboflavin taken from a drop cast sample. 

 

When this vitamin was studied in the medium the fits yielded C0 values of 0.135 ± 

0.020mg/ml for the 0%-FBS-F12K and a marginally lower value of 0.125 ± 0.02mg/ml 

for the 5%-FBS-F12K (figure 5.2).  The difference between these values and the value 

evaluated here for the individual vitamin (C0 = 0.0045 ± 0.002mg/ml) may suggest that 

in the presence of the other components of the medium there are conflicting interactions 

between each component and the SWCNT resulting in the differing C0 values being 

obtained.  

 

5.4.2 Amino Acids (Phenylalanine and Glutamic Acid). 

The amino acids phenylalanine and glutamic acid were examined in this study. They 

were chosen as they are present in the medium and, as amino acids are the basic 

structural building units of proteins, it was hoped their examination would provide 

further information into the interaction of the added protein supplement and the 
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SWCNT and the medium mixture itself. Amino acids form short polymer chains called 

peptides or longer chains either called polypeptides or proteins. In chemistry, an amino 

acid is a molecule that contains both amine and carboxyl functional groups. They can be 

divided into two classes; essential and standard amino acids. Essential cannot be 

synthesized by organisms whereas standard can be synthesized by organisms from other 

molecules and used to form proteins. Phenylalanine is an essential amino acid where as 

glutamic acid is a standard amino acid. 

 

Absorption spectroscopy revealed phenylalanine and glutamic acid to have absorption 

bands centred at 255nm and 260nm. 255nm excitation for phenylalanine yielded an 

emission band centred at 420nm whereas 260nm excitation for glutamic acid yielded an 

emission band centred at 425nm. 
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Figure 5.9 Plot of emission ratios at 420nm against SWCNT concentration for a 1:1 mass ratio 

dilution of Phenylalanine in deionised water. C0 = 0.15 ± 0.02 mg/ml. 
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These emission features were again seen to be quenched upon the addition of SWCNT. 

The quenching of emission was then monitored as a function of SWCNT concentration 

and plotted as a ratio as before (figure 5.9 and 5.10). A similar trend to that of the 

riboflavin was observed and fitting the ratio plots with the previously described model 

(Coleman et al, 2005) yielded C0 values of 0.15 ± 0.02 mg/ml for phenylalanine and 

0.008 ± 0.002mg/ml for glutamic acid. These values were much lower than those 

obtained for the added FBS protein supplement when it was studied both in the medium 

and individually in section 5.3.3. Again, deviation from the model fit was noted in the 

higher concentration region for both amino acids tested, which as stated previously 

gives an indication that the aggregation state of the SWCNT present is changing as a 

function of concentration. 
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Figure 5.10 Plot of emission ratios at 425nm against SWCNT concentration for a 1:1 mass ratio 

dilution of Glutamic Acid in deionised water. C0 = 0.008 ± 0.002mg/ml. 

 

Raman spectroscopy was utilised to examine the RBM region of the SWCNT present in 

the sample.  As can be seen in figure 5.11, differences are noted between the RBM of 
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the suspensions (figure 5.11 b and c) when compared to that of the pristine SWCNT 

(figure 5.11a). There is no reduction in the diameter distribution of the suspensions, 

based on the relationship between RBM position (cm
-1

) and tube diameter, as described 

in section 4.5.1, to that of the pristine SWCNT However as can be seen (figure 5.11), 

there are differences in the relative intensity of the RBM’s present when compared to 

that of the pristine SWCNT sample. Furthermore a definite up shift in wavenumber 

position of the present RBM’s can be observed when compared (see dashed lines on 

figure 5.11) to that of the pristine SWCNT spectrum This decrease in relative intensity 

coupled with the observed up shift in RBM position is indicative of a debundling effect 

on the SWCNT samples (Heller et al, 2004, Lian et al, 2005) indicating that in the 

absence of the other medium components the two amino acids studied, phenylalanine 

and glutamic acid, have the capability to alter the aggregative state of the tested 

SWCNT samples. 
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Figure 5.11 Radial breathing mode region for 514.5nm excitation (a) Raw SWCNT Soot (b) 

0.125mg/ml SWCNT in equal concentration glutamic acid (c) 0.0315mg/mg SWCNT in equal 

concentration phenylalanine, taken from a drop cast sample. 
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While not giving any direct insight into the interaction occurring between the SWCNT 

and the added FBS protein in the medium the study has shown that amino acids, which 

combine to form proteins, unquestionably interact to varying degrees with SWCNT. 

The measurements give support to the data presented in section 5.3 that the various 

medium components and the added FBS protein supplement interact with SWCNT upon 

their dispersion. The potential implications of these, previously unrecognised 

interactions, for the in vitro toxicity of SWCNT will be discussed in chapter 6. 

 

5.5 Chapter Summary. 

 

This chapter has demonstrated clearly that upon the dispersion of nanotubes within a 

cell culture medium there are considerable interactions, which have been previously 

uncharacterised. The interaction is most likely a physisorption through van der Waals 

forces. Both the intrinsic components of the medium and the added FBS protein growth 

supplement are seen to interact with the SWCNT. The presence of the FBS serum was 

seen to aid the dispersion of the nanotubes.  

 

Over the concentration range studied, the fluorescence quenching behaviour indicated 

that the aggregation state of the nanotubes did not vary and Raman spectroscopy 

verified that they are present as bundles similar to those of the as produced samples. 

Further spectroscopic studies were carried out with three of the individual components 

of the medium. Riboflavin, a vitamin found in the medium and the origin of the 

absorbance peak at 360nm in the medium, was shown to interact individually with the 

SWCNT. The characteristic concentration value (C0) evaluated for riboflavin on its own 

was two orders of magnitudes lower than when studied in the medium and it was 



 121 

postulated that this difference in C0 values was a result of conflicting interactions 

between the medium components and SWCNT. Two standard amino acids, namely 

phenylalanine and glutamic acid, were examined to further elucidate information to the 

interaction of the added protein supplement and the SWCNT. These amino acids both 

yielded C0 values two orders of magnitude less than that of the added protein 

supplement. The characteristic concentration is essentially a ratio of desorption and 

adsorption rates (equation 5.2). Included in the desorption rate is the binding energy, a 

large binding energy reducing the desorption rate and consequently the C0 value. The 

adsorption rate is critically dependant on the diffusion rate and thus the hydrodynamic 

radius of the adsorbing molecule. Large bulky molecules, such as the added protein, 

have slow diffusion rates and would be expected to yield large C0 values. The 

indications are therefore, that the large protein molecules of the serum are relatively 

weakly bound and are slow to adsorb, in contrast the amino acids which are smaller 

molecules and yield substantially lower C0 values. According to the original model 

(Coleman et al, 2005) these molecules are expected to have a higher binding energies 

than that of the protein. 

 

Minimal processing of the SWCNT samples was employed to mimic exposure to the 

raw, as-produced powder. This has shown that although the nanotubes are dispersed 

by the medium, they remain as larger diameter bundled aggregates. Thus, the 

likelihood of toxicity as a result of internalisation within the cell walls is reduced. 

More recent studies have shown a reduced toxicity for SWCNT aggregates (Wick et 

al, 2007) which is expected to originate from the decrease surface area in aggregates 

in comparison to individual tubes. A number of studies have shown that cellular 

internalization of various nanoparticles can occur (Stearns et al., 2001, Monteiro-
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Rivere et al., 2005, Rouse et al., 2006) with endocytosis being the most probable 

mechanism of uptake.  However, transmission electron microscopy has confirmed that 

there was no intracellular localization of the tested SWCNT in A549 cells following 

24 h exposure (Davoren et al., 2007).  

 

Finally it should be noted that although spectroscopic studies in this chapter indicated 

that the SWCNT remained as bundles when dispersed in the medium, if increased 

processing of the SWCNT samples to isolate the tubes was carried out, this would 

potentially result in an increased surface area per weight of SWCNT increasing the 

possibility for further interaction with the growth medium prior to cellular exposure. 

The interaction of these bundles with the growth medium and supplement, it is 

postulated, may result in a reduction in the availability of the constituents to the cells, 

potentially resulting in a secondary rather than primary toxicity of the SWCNT; this 

proposed notion of an indirect toxicity by medium depletion will be explored in 

chapter 6.  
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Chapter 6 

 

“Can interactions induce medium depletion?” 

Adapted from 

“Single walled carbon nanotubes induce indirect cytotoxicity by medium depletion in A549 lung cells”  

Manuscript in Preparation 

 

6.1 Introduction. 

 

SWCNT interact strongly with a large range of molecular species from dyes to 

polysaccharides and bio-molecules (Bandypadhyaya et al., 2002, Chambers et al., 

2003, Casey et al., 2005; Dalton et al., 2000; Hedderman et al., 2004; Keogh et al., 

2004; Moulton et al, 2005; Valeentini et al., 2006; Salvador-Morales et al., 2006). 

Close examination of a commercial cell culture medium, commonly used in toxicity 

studies, revealed significant interaction of the constituent components with SWCNT. 

It was shown in chapter 5 that on dispersal of in the cell culture medium significant 

colour changes were observed in the medium. These changes indicated a degree of 

molecular interaction between the SWCNT and the constituents of the medium. 

Spectroscopic analysis confirmed the presence of these interactions with a loss of the 

associated absorption and fluorescent emission of the medium components. The 

question is thus raised that if the SWCNT interact with the medium and its constituent 

nutrients, does the medium still have the same capability to maintain healthy cells? 

Furthermore, can the toxicological data collected on experiments performed in this 

way (dispersion of SWCNT in a cell culture medium) be affected?  So it is postulated 
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that SWCNT may induce an indirect/secondary toxicity due to the reduction in the 

availability of the medium components to the cells due to interaction with the 

SWCNT. 

 

This chapter will investigate this hypothesis of indirect/secondary toxicity by medium 

depletion. In vitro cytotoxicity studies were thus carried out on A549 lung cells with 

various carbon nanoparticles for comparative purposes, namely HiPco SWCNT, Arc 

Discharge (AD) SWCNT and Printex 90 (carbon black), which is made up of largely 

graphitic carbon nanoparticles of size ~14nm. Various concentrations of the carbon 

based nanoparticles were dispersed in cell culture medium and then removed by a 

process of centrifugation and filtration. Healthy confluent cells were then exposed to 

this filtered medium and cellular viability was estimated using two cytotoxic indicator 

dyes, namely Alamar Blue (AB) and Neutral Red (NR). Spectroscopic analysis was 

performed on all test media samples to firstly verify the complete removal of the 

nanoparticle in question from the suspension and secondly to investigate the effect of 

the removal of the nanoparticles on the constituents of the medium itself. 

 

6.2 Experimental. 

 

6.2.1 Preparation of test samples. 

The solutions were prepared by dispersing an initial concentration of 0.8 mg/ml of 

both types of SWCNT and carbon black in 5% serum medium with an ultrasonic tip. 

Each stock concentration was then serially diluted with 5% serum medium and 

sonicated as before to prepare test concentrations. As discussed in chapter 5, the 

addition of the serum had an effect on the dispersion behaviour of the SWCNT and 
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the recommendation of working in the absence of serum in toxicity studies was made. 

Despite this, test concentrations were prepared in 5% serum media to facilitate the 72 

and 96 hour exposure tests. After dispersion, the test concentrations were refrigerated 

for 24 hours and then underwent a process of centrifugation (3000RPM/1800G for 20 

minutes) and filtering (using 0.2µm cellulose acetate filters) to remove the dispersed 

nanoparticles. Cells were then exposed to a concentration range (0.00156 - 0.8 mg/ml) 

of filtered medium. 

 

6.2.2 Cytotoxicity Assay. 

Cells were seeded at a density of 1 x 10
5
 cells/ml for the 24 hour test, 7 x 10

4
 cells/ml 

for the 48 hour test, 3 x 10
4
 cells/ml for the72 hour test and 2 x 10

4
 cells/ml for the 96 

hour test in 96-well plates in three replicates for AB and NR assays. After 24 hours, 

the cells were treated with centrifuged and filtered medium (previously containing test 

nanoparticle concentrations of 0.00156 to 0.8 mg/ml) and incubated for the required 

time period (24, 48, 72 and 96 hours) whereupon they were assessed for cell viability 

using the two assays. AB and NR assays were carried out sequentially on the same 

plate, as described in section 4.8.5. 

 

6.3 Spectroscopic Analysis. 

 

In this chapter spectroscopic techniques will be used to verify the removal of the 

SWCNT from the medium prior to cellular exposure. Secondly they will be used to 

show that upon interaction with the SWCNT the medium is altered as a result of the 

incorporation of SWCNT.  
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6.3.1 Initial Observations. 

As seen in chapter 5, upon the dispersion of the SWCNT within the medium, there was 

a resultant colour change in the higher concentration regions (0.4 – 0.8 mg/ml). This 

colour change was observed again here in all test samples (HiPco SWCNT, AD 

SWCNT and Carbon Black). Visual differences were observed between the dispersion 

behaviour of the three test samples. Both type of nanotube suspensions (HiPco and AD) 

began to settle out of solution after a matter of hours. In contrast the carbon black 

remained completely dispersed after 24 hours. After centrifugation (3000RPM for 20 

minutes) all SWCNT (both HiPco and Arc Discharge) had precipitated out of solution 

whereas the carbon black remained suspended. Upon filtration, the carbon black 

solution in the higher concentration region (above 0.1mg/ml) retained a light grey 

colour indicating that not all carbon black was removed. Filtration was repeated a 

number of times but this colour remained. 

 

6.3.2 Raman Spectroscopy. 

In order to investigate the proposed mechanism of a secondary rather than a direct 

toxicity of SWCNT, it is vital that the removal of the nanoparticle in question be carried 

out. For the purpose of this study Raman spectroscopy was employed to verify the 

removal of nanoparticles from the medium after centrifugation and filtration. Raman 

analysis was carried out on all samples at 514.5 nm laser excitation. As discussed in 

chapter 4, the Raman spectrum of pristine nanotubes consists primarily of three main 

features, the radial breathing mode (RBM), the D line and the G line (Brown et al, 

2001; Chen et al, 1998; Dresselhaus et al, 2002; Jorio et al, 2001; Jorio et al, 2002; 

Kukovecz et al, 2002; Kuzmany et al, 2001; Pimenta et al, 2001; Yu et al, 2001). The 

dominant feature in the Raman signal of SWCNT is the G line situated between 1450 
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cm
-1

 and 1650cm
-1 

the absence of this feature from the recorded spectra would indicate 

that the SWCNT were successfully removed from the medium. 
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Figure 6.1 Raman Spectra by 514.5 nm excitation of (a) Unfiltered 5% FBS Medium containing 

HiPco SWCNT 0.8mg/ml (b) Unfiltered 5% FBS Medium containing HiPco SWCNT 0.00156 

mg/ml (c) Arc Discharge SWCNT Filtrate 0.8mg/ml (d) Carbon Black Filtrate 0.8mg/ml (e) HiPco 

SWCNT Filtrate 0.8mg/ml. 

 

Figure 6.1 displays the recorded spectra for unfiltered medium containing HiPco 

SWCNT (figure 6.1 a and b), and for all filtered media, HiPco SWCNT (figure 6.1 e), 

AD SWCNT (figure 6.1 c) and carbon black (figure 6.1 d). The pre-filtration spectra of 

HiPco SWCNT treated media suspensions (figure 6.1 a and b) were recorded from drop 

cast slides. In these spectra the dominant nanotube features can be clearly seen at both 

tested concentrations (0.1 (a) and 0.003 (b) SWCNT mg/ml). Close examination of 
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these spectra, in the RBM region; again shows that there was minimal alteration to the 

aggregative state of the SWCNT. This correlates well with the results present in chapter 

5 that the tested SWCNT remained as bundles in all concentrations tested.  Further more 

the difference in concentrations of these two samples gives a good representation of the 

fine quantities of SWCNT that can be detected spectrally by the Raman method. The 

absence of these features in the filtered samples would therefore provide a good 

indication of their removal by centrifugation and filtration. Figure 6.1 c to d displays the 

Raman spectra obtain by 514.5 nm excitation of the filtered samples (HiPco, AD 

SWCNT and Carbon Black) of the highest test concentrations (0.8 mg/ml) recorded 

from drop cast slides. As can be seen there is a complete absence of SWCNT and 

carbon black (see appendix 7) features from the spectra obtained. This is a strong 

indication that the nanoparticles have been essentially removed from the medium by 

centrifugation and filtration the proposed hypothesis of a secondary toxicity by medium 

depletion to be investigated. 

 

6.3.3 UV-Vis Absorption Spectroscopy. 

As discussed in chapter 5, the UV/visible absorption spectrum of 5%-FBS-F12K 

medium, consisting of four features at 270, 360, 410 and 560nm, was seen to undergo 

considerable changes upon the addition of SWCNT. The features at 270 and 410nm 

were assigned to the added 5% FBS, whereas the two remaining features at 360 and 

560nm originate from the components of the medium itself. The feature at 360nm can 

be attributed to riboflavin (Posadaz et al., 2000, Zirak et al., 2005), a vitamin present in 

the medium whereas the feature at 560nm can be assigned to the phenol red indicator. 

The absorption spectrum of SWCNT in water suspensions, as previously described in 

chapter 4, consists of three broad absorption features centred approximately at 1200nm, 
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800nm and 270nm. The peaks at 1200nmn and 800nm are highly structured and are 

attributed to optical transitions between mirror image spikes in the diameter dependent 

density of states, with the feature at 270nm attributed to the π-plasma frequency of 

~4.6eV in π-conjugated carbon materials (Kataura et al., 1999). 

 

In all test solutions, a reduction in the phenol red peak at 560nm was observed (figures 

6.3, 6.4 and 6.5) which was as expected due to the colour change observed in the high 

SWCNT concentration region. However, as previously mentioned in chapter 5, no 

change in pH was registered. This was highlighted as evidence that the SWCNT altered 

the chemical “composition” of the medium by interaction. Further reductions were 

observed of the features attributed to the added FBS supplement, at 410 and 270nm, in 

all tested filtered samples (figures 6.3, 6.4 and 6.5). 
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Figure 6.3 UV-Vis Absorption Spectra of (a) HiPco SWCNT Filtered medium 0.8mg/ml and (b) 5 

% FBS medium. 
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Figure 6.4 UV-Vis Absorption Spectra of (a) Arc Discharge SWCNT Filtered medium 0.8mg/ml 

and (b) 5 % FBS medium. 
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Figure 6.5 UV-Vis Absorption Spectra of (a) Carbon Black Filtered medium 0.8mg/ml and (b) 5 

% FBS medium. 

 

The feature at ~360nm, attributed to the vitamin riboflavin, was reduced in all tested 

filtered samples (figures 6.3, 6.4 and 6.5). The spectral changes correlate well to those 

observed in chapter 5. While again providing little insight into the type of interaction 
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between the SWCNT and the medium components, such reductions do give an 

indication that the molecular components of the medium and indeed the added serum 

are interacting with both types of SWCNT (HiPco and AD) and with the carbon black.  

 

Finally it can be observed in all the absorption spectra obtained that there is 

considerably more scatter present, as evident by the increased absorbance baseline 

(figures 6.2a, 6.3a and 6.4a) when compared to the pristine medium (figures 6.2b, 6.3b 

and 6.4b). In SWCNT studies, increases of scatter of this nature are attributed to 

SWCNT being present in the suspension. As Raman spectroscopy yielded no spectral 

evidence of their presence in the sample it is justifiable to say that the observed increase 

in scatter here is not due to the presence of SWCNT. This raises questions about the 

origin of this increased scatter. One possible origin may be that the initial dispersion of 

the nanoparticles (Carbon Black, HiPco and AD SWCNT), which has been shown to 

interact with the various medium components in chapter 5, resulted in local aggregation 

of the components due to interaction with the dispersed SWCNT. Upon centrifuging 

and filtration these localised medium aggregates may have remained after the removal 

of the nanoparticles under test. It is of course plausible that impurities present in the 

samples upon their dispersion were not totally removed by centrifugation and filtration. 

Irrespective of the scatter, the observed spectral reductions in the absorption 

characteristics of the medium give supportive evidence to the alteration of the medium’s 

composition by interaction with the SWCNT and indeed the carbon black. The effect of 

this on cellular growth will be explored in section 6.4.  
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6.3.4 Fluorescent Emission Spectroscopy. 

As demonstrated in Chapter 5, fluorescence quenching studies have been shown to aid 

in the elucidation of the interaction of nanotubes with different molecular species 

(Coleman et al, 2005; Hedderman et al., 2004; Keogh et al., 2004). The model of 

Coleman et al. was described and employed to assess the degree of interaction between 

the SWCNT and the various components of cell culture medium and it will also be used 

here to assess the effect of the removal of the various carbon based nanoparticles from 

the medium post dispersion/interaction in the cell culture medium.  

 

As described in section 6.3.3, reductions in absorbance were observed in the 

characteristic medium features so it was expected that there would be a reduction in 

their associated emission. As discussed in chapter 5, excitation of 5% FBS medium by 

three wavelengths, namely 268, 360 and 410 nm, each corresponding to the absorbance 

of an individual component of the medium, yielded emission spectra (see appendices 4, 

5 and 6). These excitation wavelengths were again used here to study the filtered 

medium to assess the effect of SWCNT and carbon black removal. In all tested samples 

the emission, by excitation with the aforementioned wavelengths, was reduced. Again 

here the quenching of emission was monitored as a function of initial particle 

concentration, and plotted as a ratio (figure 6.6) as outlined in chapter 5.  

 

As can be seen in figure 6.6 the emission ratio plots do not correlate with the model 

(Coleman et al, 2005) to the degree that was seen in chapter 5. Further examination of 

the model may provide an explanation for this deviation from the behaviour seen in 

chapter 5. Equation 5.1 represents the dynamic equilibrium at which the adsorption rate 

equals the desorption rate, in terms of NF, the number of free molecules, and NB, the 
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number of bound molecules. In essence the model is a ratio of the fluorescence of the 

free and bound molecules in the SWCNT containing solution, to that of the free 

molecules found in the pristine solution. The nature by which these samples were 

prepared for test, dispersion of SWCNT followed by their removal by centrifugation 

and filtration, would also remove any molecules bound to the SWCNT upon their initial 

dispersion. This would result in the ratio studied here becoming one between the 

remaining free molecules in the medium after SWCNT removal and the free molecules 

in the pristine solution explaining the deviation from the behaviour observed in chapter 

5.  

 

Despite the inability to reliably fit the data to the model proposed by Coleman et al 

(2005) it can be clearly seen in the ratio plots of figure 6.6 that the incorporation and 

removal of the carbon based nanoparticles into the medium altered its emission 

characteristics giving further supportive evidence for the alteration of the medium upon 

interaction with the SWCNT.  
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Figure 6.6 Plot of emission ratios of 5%-FBS-F12K filtered cell culture medium against (a) HiPco 

SWCNT (b) Arc Discharge SWCNT (c) Carbon black concentration (initial)  by excitation at  (□) 

268nm excitation, (●) 360nm excitation and (∆) 410nm excitation. 
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Differences were observed in the C0 values estimated from the fits for each nanoparticle 

tested, which would suggest differing degrees of interaction between the medium and 

each of the nanoparticles. To study the indirect/secondary toxicity induced this could be 

interpreted as differing degrees of alteration of the medium which may play a 

significant role in the generation of any adverse effects observed. Both carbon black 

(0.35 – 0.45 mg/ml) and the AD SWCNT (0.45 – 0.55 mg/ml) were noted to yield lower 

C0 values than that of the HiPco SWCNT (0.6 - 0.8 mg/ml).  According to the original 

model (Coleman et al, 2005) a lower C0 value would imply a higher binding energy 

between the SWCNT and the tested species, so here it would suggest a greater degree of 

interaction/alteration of the medium which may result in higher cytotoxicity being 

observed. This will be further explored in section 6.5. 

 

 

6.3.5 Spectroscopic analysis summary. 

The previous section has described the use of spectroscopic analysis to firstly verify 

nanoparticle removal from the medium prior to cellular exposure. Raman analysis of all 

samples showed no evidence of nanoparticle features suggesting they had been removed 

during centrifugation and filtration. Electronic spectroscopy, namely absorption and 

emission, were employed to assess the degree of alteration of the medium as a result of 

the removal of the nanoparticles. Reductions in the associated absorbance and emission 

verified that the medium was altered upon the dispersion and removal of the SWCNT. 

Fluorescent emission studies showed varying degrees of interaction between the 

medium and the various nanoparticles tested as could be seen by the different C0 values 

estimated. The next section will investigate the notion of a secondary toxicity by 

medium depletion upon interaction with SWCNT as was proposed in chapter 5. 

 



 143 

6.4 Indirect Cytotoxicity of SWCNT by medium depletion. 

 

In this section an in vitro cytotoxicity study using the filtered medium for various 

exposure times (24, 48, 72 and 96 hours) to explore the concept of secondary or 

indirect toxicity due to medium depletion will be described. Two cytotoxicity indicator 

assays were employed, namely Alamar Blue and Neutral Red. The following sections 

will present the results for both cytotoxicity indicator dyes for HiPco and arc discharge 

SWCNT as well as carbon black. 

 

6.4.1 Neutral Red (NR). 

The first cytotoxicity endpoint that was employed was the Neutral Red, 3-amino-m-

dimehtylamino-2-methyl-phenazine hydrochloride (NR) assay. The operation of this 

cytotoxicity assay is based on the ability of viable cells to incorporate and bind neutral 

red, a weak cationic dye that readily penetrates cell membranes by non-ionic diffusion. 

It accumulates in the lysosomes of cells where it binds to the sensitive lysosomal 

membrane. Cells damaged by xenobiotic action have a decreased ability to take up and 

bind NR, so that viable cells can be distinguished from damaged or dead cells. The dye 

can be extracted from intact cells using a solution of 1 % (v/v) acetic acid and 50 % 

(v/v) ethanol and the absorbance or fluorescence of solubilised dye can be determined. 

The test is very sensitive, specific, and readily quantifiable (Babich and Borenfreund, 

1990) and has been extensively used in the literature as a cytotoxicity indicator. 
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Figure 6.7 Cytotoxicity of HiPco SWCNT filtered medium to A549 cells after 24, 48, 72 and 96 

hour exposures determined by the NR assay. Data are expressed as percent of control mean ± 

SD of four independent experiments *Denotes significant difference from control (P≤ 0.05). 
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Figure 6.8 Cytotoxicity of Arc Discharge SWCNT filtered medium to A549 cells after 24, 48, 72 

and 96 hour exposures determined by the NR assay. Data are expressed as percent of control 

mean ± SD of three independent experiments *Denotes significant difference from control (P≤ 

0.05). 
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Figures 6.7 and 6.8 display the obtained cytotoxicity response curves for HiPco and arc 

discharge SWCNT respectively using the NR assay. Concentrations in the 

aforementioned figures are those of the nanoparticles in the medium pre-filtration. 

Although significant cytotoxicity was observed for both types of SWCNT with this 

assay a number of difficulties were encountered as evidenced by the large error bars on 

the presented figures and the relative plateaux that can be seen in figures 6.7 and 6.9. 

The distinct lack of observed toxicity and the plateaux nature of the curves (figures 6.7 

and 6.8) would seem to suggest that there is no decrease in the viability of the A549 

cells upon exposure to the filtered medium which previously contained both types of 

SWCNT. In a study by Davoren et al (2007), upon the exposure of A549 cells to HiPco 

SWCNT, significantly more lamellar bodies were observed by TEM analysis post 

exposure, in comparison to the unexposed controls. In this study it was postulated that 

this increase in lamellar bodies was a defence mechanism of the cells in response to 

exposure to the SWCNT. In essence lamellar bodies are secondary lysosomes and as 

stated lysosomes are the region of the cell which incorporates the NR assay.  It is 

possible that a similar effect, an increase of lamellar bodies upon exposure, is occurring 

here. This possible increase in lamellar bodies would account for the lack of observed 

toxicity upon exposure to the filtered medium. However TEM analysis would be 

required to verify this. 

 

In the case of carbon black, significant toxicity was observed at the highest test 

concentration, 0.8mg/ml, after 48 hours and in 0.4mg/ml after 72 hour exposure (figure 

6.9). This might suggest that carbon black has more potential to induce an 

indirect/secondary toxicity than both the tested SWCNT samples (HiPco and AD 

SWCNT) based on the use of the NR assay. However, the presence of residual carbon 
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black in the filtered medium, as evidenced by the residual grey colour, implies that a 

primary toxic mechanism cannot be ruled out. 
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Figure 6.9 Cytotoxicity of Carbon Black filtered medium to A549 cells after 24, 48, 72 and 96 

hour exposures determined by the NR assay. Data are expressed as percent of control mean ± 

SD of three independent experiments *Denotes significant difference from control (P≤ 0.05). 

 

Due to the inconsistencies observed between the nanoparticles tested here, the ability of 

the SWCNT samples to induce an indirect/secondary toxicity by means of medium 

depletion seems questionable. Examining the cytotoxic response curves of HiPco and 

AD SWCNT (figures 6.7 and 6.8) there would appear to be no change in cellular 

viability. For this reason a second cytotoxic endpoint was chosen to further study the 

effect of the filtered medium, namely the AB assay. This assay is known to be a more 

sensitive cytotoxic endpoint than that of the NR. 

 

6.4.2 Alamar Blue (AB). 

The Alamar Blue™ (AB) assay is a relatively new method to measure cell viability. 

The internal environment of viable, proliferating cells is more reduced than that of 
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damaged, necrotic or apoptotic cells, resulting in higher ratios of NADPH/NADP, 

FADH/FAD, FMNH/FMN, and NDH/NAD. The oxidation-reduction potential of AB, 

E0 is +380 mV at pH 7.0 and 25 
o
C. Therefore, NADPH (E0 = - 320 mV), FADH (E0 = 

- 220 mV), FMNH (E0 = - 210 mV), NADH (E0 = - 320 mV), and cytochromes (E0 = - 

290 mV to + 80 mV) can reduce the dye. AB reduction is accompanied by a 

measurable colour shift from non-fluorescing indigo blue to fluorescent pink. 

Measurements may be made by absorption spectroscopic monitoring of AB 

supplemented culture media, or alternatively, fluorometric analysis. The absorption 

spectra of the oxidized and the reduced forms of AB overlap. Therefore absorption has 

to be measured at the two absorption maxima, 570 nm and 600 nm respectively. 

Fluorescence measurements can be made by exciting at 530 to 560 nm and measuring 

emission at 590 nm (Biosource, 2006). 

 

In contrast to the other cytotoxic indicator dyes where conversion by healthy cells 

occurs, such as the MTT assay, the AB dye has the advantage of being water soluble, 

stable in the culture medium and non-toxic, so that continuous monitoring of cell 

cultures is permitted, and viability of cells is not altered. The MTT assay’s oxidation-

reduction potential is only + 10 mV, so can only be reduced by NADPH, FADH, 

FMNH, and NADH, and not by cytochromes. Thus, MTT does not substitute for 

molecular oxygen as an electron acceptor, while AB does. At present, the actual site of 

AB reduction has not been evaluated. Mitochondria have been suggested as one site of 

AB reduction, but cell cytoplasm has been reported to be another possible site where 

the reaction may take place (Biosource, 2006). It further has been suggested that there 

may actually be multiple sites of conversion of this assay by the cells (Biosource, 
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2006), which is not the case with the NR assay which only probes lysosomal activity, a 

more decisive impression of general cellular health when the AB assay is employed. 

 

Figures 6.10, 6.11 and 6.12 display the cytotoxicity response curves obtained for HiPco 

SWCNT (figure 6.10), arc discharge SWCNT (figure 6.11) and carbon black (figure 

6.12) using the AB assay following exposure to the filtered medium. Again 

concentrations in the aforementioned figures are those of the nanoparticles in the 

medium pre-filtration. 
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Figure 6.10 Cytotoxicity of HiPco SWCNT filtered medium to A549 cells after 24, 48, 72 and 96 

hour exposures determined by the AB assay. Data are expressed as percent of control mean ± 

SD of four independent experiments *Denotes significant difference from control (P≤ 0.05). 

. 

Figure 6.11 displays the cytotoxicity response curve obtained for filtered medium which 

previously contained HiPco SWCNT. As can be seen, from a concentration of 0.4mg/ml 

upwards after 48 hours, toxicity can be noted. However significant toxicity was only 

observed after 48 hours for the highest concentration tested, namely 0.8mg/ml. This 

would suggest that SWCNT can induce an indirect toxicity by means of medium 
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alteration at high concentrations after 48 hours, which was not observed with the NR 

assay in section 6.4.1. 

 

A slightly different behaviour was observed for the arc discharge SWCNT filtered 

medium (figure 6.11). Significant toxicity was observed at a concentration, lower than 

that of the HiPco, of 0.4 mg/ml upwards after 48 hours, significant toxicity being 

observed after 24 hours for the highest test concentration of 0.8 mg/ml. Although arc 

discharge SWCNT are similar to HiPco in terms of physical attributes such as size, 

electronic properties and length, the fabrication method does result in differences 

between the bulk samples. Arc discharges SWCNT are typically less pure and contain a 

higher percentage impurity level containing substantially more amorphous carbon than 

HiPco SWCNT.  
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Figure 6.11 Cytotoxicity of Arc Discharge SWCNT filtered medium to A549 cells after 24, 48, 72 

and 96 hour exposures determined by the AB assay. Data are expressed as percent of control 

mean ± SD of three independent experiments *Denotes significant difference from control (P≤ 

0.05) 
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As stated in section 6.3.4 differences were noted between the emission characteristics of 

the medium after filtration, dependant on the nanoparticle which had originally been 

dispersed. By modelling the emission properties of the filtered media, C0 values were 

estimated, for each nanoparticle tested a different C0 value was obtained, AD SWCNT 

yielded a slightly lower C0 value (0.45 – 0.55 mg/ml)  than that of the HiPco SWCNT 

(0.6 - 0.8 mg/ml). According to the original model (Coleman et al, 2004) and other 

studies which have employed it to study the interaction with various fluorescent species 

(Hedderman et al, 2004; Keogh et al, 2006) a lower C0 value would indicate a higher 

degree of interaction between the two species under study. In a study of this nature this 

could be interpreted as a higher degree of alteration of the medium by interaction with 

the nanoparticles dispersed. The differing C0 values from section 6.3.4 undoubtedly 

indicate that the medium was altered to varying degrees and resulted in a higher level of 

indirect/secondary toxicity being observed as can be seen in figures 6.10.and 6.11 

where, AD SWCNT (with a lower C0 value of 0.45 – 0.55 mg/ml) showed increased 

indirect/secondary toxicity when compared to that of the HiPco SWCNT (with a higher 

C0 value of 0.6 - 0.8 mg/ml). Supportive evidence for this can be seen in figure 6.12 

which displays the obtained cytotoxicity response curve, using the AB assay, for carbon 

black.  
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Figure 6.12 Cytotoxicity of Carbon Black filtered medium to A549 cells after 24, 48, 72 and 96 

hour exposures determined by the AB assay. Data are expressed as percent of control mean ± 

SD of three independent experiments *Denotes significant difference from control (P≤ 0.05). 

 

For the carbon black filtered medium significant toxicity was observed at 

concentrations of 0.1mg/ml upwards after 24 hours (figure 6.12).  In section 6.3.4 

carbon black was seen to yield the lowest C0 value based on the fluorescent emission of 

the medium post filtration. This suggests that the medium was altered to a greater 

degree by carbon black when compared to that of the two tested SWCNT samples 

(HiPco and AD) and resulted to the increased indirect/secondary toxicity observed in 

figure 6.12. This result is of great significance as several studies evaluating the toxicity 

of carbon based nanoparticles have employed carbon black as a reference material. 

This study has shown that like nanotubes, carbon black has the potential to induce an 

indirect/secondary toxicity by the alteration of the medium making it usage as a 

reference material questionable.  
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6.5 Chapter Summary. 

 

This chapter has used spectroscopic analysis and cytotoxicity analysis to verify the 

proposed notion of an indirect or secondary toxicity as a result of the interaction of 

SWCNT, within cell culture medium as described in chapter 5. To confirm this effect, 

spectroscopic analysis was performed to verify the removal of the SWCNT from the 

medium by centrifugation and filtration. Raman spectroscopy gave no indication of the 

presence of SWCNT or carbon black in the filtered samples suggesting they were 

sufficiently removed during the test sample preparation process. Reductions in the 

associated absorbance and emission verified that the medium was altered upon the 

dispersion and removal of the SWCNT. By modelling the emission characteristics of the 

filtered media differing degrees of alteration were noted as evident by the different C0 

values estimated. According to these C0 values is was suggested that carbon black with 

the lowest C0 value resulted in the greatest degree of alteration followed by the AD 

SWCNT and HiPco with the highest C0 value altered the medium to a lesser extent than 

the carbon black and the AD SWCNT. 

 

Cytotoxicity studies were thus conducted with the altered medium, using two 

cytotoxicity end points namely the NR and AB assays. The assays showed that SWCNT 

did induce an indirect/secondary toxicity by means of medium depletion as seen in 

figures 6.7 to 6.11,. Differences were noted in the cytotoxicity responses of the different 

nanoparticles tested. Carbon black was seen to induce significant indirect/secondary 

toxicity after 24 hours at a pre-filtration concentration of 0.1 mg/ml upwards, followed 

by AD SWCNT with significant indirect/secondary toxicity observed after 48 hours at 

0.4 mg/l upwards, determined by the AB assay. In the HiPco filtered medium 
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significant indirect/secondary toxicity was observed after 48 hours only at a pre-

filtration concentration of 0.8 mg/ml. This was in agreement with the fluorescent 

emission studies in which the degree of alteration of the medium was seen to follow the 

same trend. The AB was noted to be more sensitive than that of the NR assay. Indeed 

literature does indicate that the AB assay is a more sensitive and reproducible cytotoxic 

endpoint when compared to that of the NR assay (Davoren et al, 2005; Davoren and 

Fogarty, 2006).  

 

The two assays used to evaluate the indirect toxicity in essence are a measure of cellular 

viability but the mechanisms by which this is evaluated is different for both assays. The 

NR assay is only incorporated into the lysosomes of viable cells and gives a good 

indication of general cellular viability post exposure. The AB assay’s operation is more 

complicated and its conversion is expected to be an indicator of a number of 

contributing factors (proliferation, metabolic and mitochondrial activity and also the cell 

cytoplasm have all been suggested as possible converters) (Biosource, 2006). Indeed 

studies have employed this assay to monitor the proliferative capacity of cells following 

a variety of cell treatments (Ahmed et al, 1994; Abuodeh et al, 1996; Qureshi et al; 

2001). If this assay is a potential measure of cellular proliferation it may be an 

indication that, in the presence of the filtered medium, cellular proliferation is reduced 

as apparent by the cytotoxicity response curves of the AB assay (figures 6.10, 6.11 and 

6.12) and cellular viability is retained, as evident by the plateaux cytotoxic response 

curves of the NR assay (figures 6.7, 6.8 and 6.9). However further experimental studies 

would be required to verify this hypothesis. A recent study carried out by Herzog et 

al.,(2007) to develop a clonogenic assay to evaluate SWCNT cytotoxicity directly, has 

shown that upon exposure colony number remains largely unaltered but colony size is 
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greatly reduced which would support the hypothesis that the proliferation rate is 

reduced but cellular viability is retained in the presence of the depleted medium. 

 

Nevertheless it is without question that upon their dispersion and subsequent removal 

all the nanoparticles tested in this chapter did alter the composition of the medium, as 

evidenced by the spectroscopic analysis. This in turn did result in an adverse effect on 

cellular growth as verified by the cytotoxic data presented for the AB assay and may 

contribute to a false positive toxic effect being observed in the evaluation of the direct 

cytotoxicity of SWCNT due to medium depletion by interaction. 

 

As literature has recently noted adsorptive interferences between SWCNT and some 

standard cytotoxicity endpoints (Hurt et al., 2006; Montiero-Riviere et al., 2006) 

resulting in both false positive and negative toxic effects being evaluated in the presence 

of SWCNT, the next chapter will evaluate the direct cytotoxicity of SWCNT with a 

battery of cytotoxicity assays. This will facilitate an estimate of the direct toxicity of 

SWCNT. The validity of the evaluated cytotoxicity data will be then assessed by 

spectroscopic analysis of the cytotoxicity assays interactions with the tested SWCNT. 
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Chapter 7 

 

“SWCNT interfere with cytotoxicity endpoints”  

Adapted from 

 “Spectroscopic analysis confirms the interactions between single walled carbon nanotubes and various 

dyes commonly used to assess cytotoxicity”  

Carbon 45, 1425-1432, 2007. 

 

7.1 Introduction. 

 

While there have been great advances in the technological research of SWCNT 

(Pantarotto et al., 2004; Venkatestan et al., 2005; Singh et al., 2006; Harrison et al., 

2007), direct toxicological evaluations lag somewhat behind in comparison. Several 

studies both in vivo and in vitro have been carried out on refined and raw SWCNT (Cui 

et al., 2005; Donaldson et al., 2006; Muller et al., 2006; Warheit et al., 2006). In both 

the in vivo and in vitro studies, differences in SWCNT toxicity and biocompatibility 

have been observed. These discrepancies have been attributed to the varying 

percentages of remnant catalytic particles and other impurities in the samples tested and 

the different dispersion methods of the SWCNT (Cui et al., 2005; Donaldson et al., 

2006; Muller et al., 2006; Warheit et al., 2006). Furthermore, as is evident from 

chapters 5 and 6, the interaction of SWCNT with the medium and any added protein 

supplements may have also contributed to these inconsistencies. 
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Recent literature has indicated that the interactions of SWCNT and other carbon based 

nanomaterials with various commonly used cytotoxicity assays results in interference 

with absorption/fluorescence data used to evaluated cytotoxicity (Hurt et al, 2006; 

Montiero-Riviere et al., 2006; Worle-Knirsch et al., 2006). While these studies 

highlighted the interference of SWCNT and other carbon based materials with 

cytotoxicity dyes, namely MTT and Neutral Red, no attempts to quantify these 

interferences have been realised to date although recommendations involving the use of 

various other cytotoxicity dyes have been made (Worle-Knirsch et al., 2006).  

 

Chapter 6 explored the ability of SWCNT to induce an indirect/secondary toxicity by 

means of medium alteration. This chapter will present a direct cytotoxic evaluation of 

HiPco SWCNT, evaluated after 24 hour exposure using the following assays, 

Commassie Blue (COMMASSIE), Alamar Blue™ (AB), Neutral Red (NR), 3-(4,5-

dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and 2-(4-iodophenyl)-3-

(4-nitrophenyl)-5-(2,4-disulfophenyl)-2H-tetrazolium (WST-1). A corresponding 

spectroscopic study will be carried out with the aforementioned assays and the tested 

SWCNT to assess any interactions occurring between the two species. The results from 

the spectroscopic analysis will be used to estimate the validity of the cytotoxicity data 

presented. Finally the spectroscopic analysis will be used to make recommendations for 

the use of cytotoxicity indicator dyes in the quantitative evaluation, in this and future 

studies of SWCNT toxicity. 
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7.2 Experimental. 

 

7.2.1 Dispersion of SWCNT.  

The test solutions were prepared by dispersing an initial concentration of 0.8 mg/ml of 

HiPco SWCNT in serum free medium, no FBS (protein supplement) was used in test 

concentrations as in chapter 5 strong interactions with the serum were highlighted. 

Each stock concentration was then serially diluted on a 96-well plate with each type 

of medium to prepare test concentrations.  Cells were then exposed to a concentration 

range (0.00156 - 0.8 mg/ml) of SWCNT. 

 

7.2.2 Cytotoxicity Assays. 

Cells were seeded at a density of 1 x 10
5
 cells/ml in 96-well plates in six replicates 

(for AB, NR, COMMASSIE, MTT assays) or triplicate (for the WST-1 assay). After 

24 h, the cells were treated with SWCNT suspensions in concentrations of 0-00156 to 

0.8 mg/ml (0.00156 to 0.4 mg/ml for WST-1 assay) and left for another 24 hours 

whereupon they were assessed for cell viability using five assays AB, NR, 

COMMASSIE, MTT and WST-1. All assays were performed according to the 

manufacturer’s instructions as detailed in section 4.8.5. Cytotoxicity data was 

recorded using a microplate reader (TECAN GENios, Grödig, Austria). 

 

7.3 Results and Discussion. 

 

In the following subsections, for each cytotoxicity assay employed, the direct 

cytotoxicity of SWCNT based on the use of the aforementioned assays will be 

estimated. Secondly, spectroscopic analysis will be presented to assess the degree of 
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interaction between the SWCNT and the dye under test, thus evaluating the validity of 

cytotoxicity data evaluated. 

 

7.3.1 COMMASSIE Blue. 

The protein content of cells after exposure to a suspected toxicant is often used as a 

measure of cytotoxic effects in vitro. Different spectroscopic methods are routinely 

available for determination of protein concentrations, including measurement of protein 

intrinsic UV absorbance, namely the Lowry assay, and methods generating a protein-

dependent colour change, the Smith copper/bicinchoninic assay. The simplest and most 

sensitive is the Bradford assay (Bradford, 1976), introduced in the mid 1970s, and 

based on the equilibrium between three forms of Coomassie Brilliant Blue-G250 

(COMMASSIE) dye, which bind specifically to tyrosine side chains of protein 

molecules but not to other cellular constituents. Under strongly acidic conditions, the 

dye is most stable in its double protienated red state. When bound to protein, the un-

protienated blue form becomes more stable. Within the linear range of the assay 

(approximately 5 to 25 µg/ml), the more protein present, the more Coomassie binds due 

to hydrophobic and ionic interactions (Bradford, 1976). 

 

The main disadvantage concerning this assay is the possibility to record some protein 

based material although no viable cells are present. The assay is very prone to 

influences from non protein sources, particularly detergents, and becomes progressively 

more non-linear at high protein concentrations (Borenfreund, 2006).  The main 

advantage for multi-endpoint cytotoxicity studies is that after the absorbance/ 

fluorescence of another dye has been established, total cell protein can be measured on 

the same test cells using COMMASSIE dye. 
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A concentration response cytotoxicity (figure 7.1a) curve for the COMMASSIE assay 

was obtained and significant toxicity was observed at concentrations at and above 0.4 

mg/ml. A spectroscopic study was carried out to investigate if there was an interaction 

between the SWCNT and the COMMASSIE dye. For this, an absorbance concentration 

study was carried out with two sets of samples, the first containing only the 

COMMASSIE dye and the other containing the COMMASSIE dye and SWCNT in 

equal concentrations, starting with an initial concentration of 0.4 mg/ml which was then 

serially diluted by half with an acetic acid buffer solution to a final concentration of 

2.34 x 10
-3

 mg/ml. These solutions were allowed to settle for 24 hours and then 

decanted before any spectroscopic analysis was carried out.  

 

The COMMASSIE absorbance was then plotted as a function of concentration with and 

without SWCNT and as expected, a linear relationship was observed in both cases 

(figure 7.1b). However, noticeable differences existed between the two linear plots. A 

reduction in the COMMASSIE associated absorbance was noted at all SWCNT 

concentrations. Furthermore the associated slope of concentration versus absorbance 

was seen to be reduced, from 2.5 to 1.4 upon the addition of SWCNT to the 

COMMASSIE. 
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Figure 7.1 (a) Cytotoxicity of SWCNT to A549 cells after 24 hour exposure determined by the 

COMMASSIE assay. Data are expressed as percent of control mean ± SD of six independent 

experiments. *Denotes a significant difference from the control (P ≤ 0.05); (b) Plots of 

COMMASSIE absorbance at 615nm versus concentration mg/ml (●) COMMASSIE and (○) 

COMMASSIE and SWCNT in a 1:1 mass ratio. 

 

While the reduction in an absorbance feature of this nature provides little information 

about the type of the interaction between the two species, it undoubtedly verifies the 

existence of an interaction. In the spectroscopic studies it should be noted that a 

reduction in absorbance of the COMMASSIE was observed at all SWCNT 

concentrations, with significant reductions being observed at concentrations above 

0.025 mg/ml. Given that it has been demonstrated that significant numbers of SWCNT 
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remain adhered to the cells even after washing this interaction could potentially have an 

adverse effect on the evaluation of toxicity of the SWCNT based on the absorbance of 

protein bound COMMASSIE. 

 

7.3.2 Alamar Blue
™

. 

The Alamar Blue
™

 (AB) assay is designed to quantify the proliferation of various cell 

lines and is as stated widely utilized to measure cytotoxicity. Viable proliferating cells 

cause a reduction of the dye causing a colour change from a non-fluorescing indigo blue 

(oxidised) to a fluorescent pink species (reduced). One main advantage of this assay lies 

in its water solubility. It therefore requires no solvent extraction step and hence cellular 

viability is unaffected allowing multiple tests to be carried out on the cells. 

Measurements may be made by absorbance monitoring of AB supplemented cell culture 

medium or alternatively fluorescent measurements can be made (Biosource Inc, 

O’Brien et al., 2000). The absorbance spectra of the oxidised and the reduced forms 

overlap. Therefore the absorbance measurements must be made at the absorbance 

maxima of each form, namely 570 nm and 600 nm. Fluorescent measurements can be 

made by exciting from 530 to 560 nm and recording emission at 590 nm (Biosource Inc, 

O’Brien et al., 2000). A concentration response cytotoxicity (figure 7.2a) curve for the 

AB dye was obtained and again, as with the COMMASSIE dye, significant toxicity was 

observed at concentrations above 0.4mg/ml.  
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Figure 7.2 (a) Cytotoxicity of SWCNT to A549 cells after 24 hour exposure determined by the 

AB assay. Data are expressed as percent of control mean ± SD of six independent experiments. 

*Denotes a significant difference from the control (P ≤ 0.05); (b) Plot of emission ratios at 595nm 

by 540nm excitation for the AB assay against SWCNT concentration mg/ml. 

 

To study the interaction of the reduced form of AB, confluent cells were exposed to an 

AB solution and it was allowed to undergo the oxidation process to the fluorescent pink 

species. This was then decanted off the cells and centrifuged to remove any remaining 

cells. SWCNT were then added to the solution at an initial concentration of 0.4 mg/ml 

and serially diluted down. The pink AB solution immediately lost its characteristic 

colour (see appendix 8) and total quenching of fluorescent emission at 595nm by 540nm 
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excitation was observed. The procedure was then repeated and a much lower initial 

SWCNT concentration of 0.08 mg/ml (10 % of highest toxicity test concentration) and 

serially diluted with the reduced form of AB to a final SWCNT concentration of 3.9 x 

10
-5 

mg/ml. Fluorescent measurements of all solutions were then recorded after a 24 

hour settling period. At the initial concentration of 0.08 mg/ml the solution again lost its 

characteristic pink colour and became transparent and a total quenching of emission at 

595nm was observed. This quenching was then monitored as a function of SWCNT 

concentration and plotted as a ratio of the SWCNT free AB solution’s emission by 

540nm excitation, figure 7.2b depicts this ratio. 

 

As described in Chapter 5, fluorescence studies have shown to aid in the elucidation of 

the interaction of nanotubes with different molecular species. SWCNT are known to 

interact with a wide variety of different molecular species. These interactions have been 

extensively documented, (Moulton et al., 2005; Zhou et al., 2001; Georgakilas et al., 

2002; Valeentini et al., 2006; Keogh et al., 2005) are well understood and are known to 

result in quenching of the emission of many fluorescent species (Hedderman et al., 

2004; Keogh et al., 2004). Coleman et al constructed a model based on the 

adsorption/desorption of conjugated polymers in SWCNT composite solutions to 

explain the quenching of the fluorescence of the polymer when bound to the SWCNT 

(Coleman et al., 2004). In chapter 5 this model was employed to assess the degree of 

interaction between the SWCNT and the various components of cell culture medium 

and will be also used here to assess the interaction between the SWCNT and the 

fluorescent dyes used to measure cytotoxicity. 

 

The model described by equation 5.1 was applied to the data of figure 7.2b and a 

characteristic concentration value (C0) was evaluated yielding a value of 0.015 ± 0.002 



 170 

mg/ml. In a study of this nature the ability to use this value to estimate a binding energy, 

for which the model was originally derived is limited. This is primarily due to the nature 

of the dilution process, in which the AB concentration was kept constant and it was 

assumed 100% of the initial AB concentration exposed to the cells was reduced to the 

pink fluorescent form. However that the experimental data fits well to this model and 

that the AB emission is quenched would indicate that the two species are undoubtedly 

interacting to a degree. It should be noted that at the lowest SWCNT concentration of 

3.9 x 10
-5

 mg/ml, fluorescent quenching was observed with a reduction to 

approximately 68% from AB solution to that containing SWCNT. This has severe 

implications for toxicity evaluations using this assay, potentially resulting in false 

positive toxicity evaluations being made as a result of the interaction of the SWCNT 

with the AB assay itself, as it has been previously noted that bundle residues of 

SWCNT irreversibly bind to cell surfaces during exposures so that SWCNT are present 

during all steps of the AB assay and therefore are able to interact with the dye even after 

cell washing steps (Davoren et al., 2007).   

 

7.3.3 Neutral Red. 

The NR cytotoxicity assay is based on the ability of viable cells to incorporate and bind 

neutral red, a weak cationic dye that readily penetrates cell membranes by non-ionic 

diffusion (Borenfreund et al., 1984, Borenfreund et al., 1988). It accumulates in the 

lysosomes of cells where it binds to the sensitive lysosomal membrane. Cells damaged 

by xenobiotic action have decreased ability of taking up and binding NR, so that viable 

cells can be distinguished from damaged or dead cells. The dye can be extracted from 

intact cells using a solution of 1 % (v/v) acetic acid and 50 % (v/v) ethanol and the 

absorbance or fluorescence of solubilised dye can be determined (Borenfreund et al., 



 171 

1984; Borenfreund et al., 1988). The test is very sensitive, specific, and readily 

quantifiable. Recent literature has highlighted absorptive interferences between carbon 

black and cellular viability markers such as NR resulting in false readings (Montiero-

Riviero et al., 2006) as in the absence of human epidermal keratinocytes, a false 

negative signal was generated, inaccurately indicting the presence of viable cells. The 

carbon black was found to adsorb to the NR dye and trigger a signal in the dye implying 

high cell viability when in fact the cells were not even present.  

 

Throughout the toxicity studies carried out here, inconsistent fluorescent readings were 

acquired when using the NR dye suggesting an interaction between the SWCNT and the 

NR dye. Figure 7.3a depicts the concentration response cytotoxicity curve obtained for 

the NR dye. Large variations were experienced throughout the study, as can be seen 

from the error bars in the data presented. A curve of this nature could be interpreted as a 

hormesis effect but more likely as a false negative effect caused by interference by the 

SWCNT with the NR dye, similar to that reported by Monteiro-Riviere et al.  In a study 

by Davoren et al (2007) to evaluate the cytotoxicity of SWCNT, TEM analysis of A549 

cells post exposure to SWCNT showed a discernible increase in lamellar bodies in the 

exposed cells in comparison to unexposed controls. It was postulated that the increase 

of lamellar bodies may have been a defence mechanism of the cells upon exposure to 

the SWCNT; it is also plausible that this increase in lamellar bodies contributed to the 

inconsistencies shown here with the NR dye, as secretion vacuoles like lamellar bodies 

are secondary lysosomes (Achterrath et al., 2005).  

 

To elucidate the extent of this interaction a concentration fluorescent study was carried 

out. SWCNT were dispersed in a NR deionised water solution in an initial 1:1 
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concentration ratio of 0.0625 mg/ml and were then serially diluted down with deionised 

water, to reduce both the NR and the SWCNT concentration equally to a final 

concentration of 9.5 x 10
-7 

mg/ml. Fluorescent measurements were recorded, the 

quenching of the NR emission was monitored as a function of SWCNT concentration 

and this quenching was then plotted as a ratio between the SWCNT containing solution 

and SWCNT-free solutions (figure 7.3b). Using the model described above, a C0 value 

was estimated to be 0.0095 ± 0.002 mg/ml. The ability to fit the data to this model and 

evaluate a C0 value coupled with the inconsistent cytotoxicity data obtained, verifies 

that there is an interaction occurring between the two species and severely limits its 

potential use in toxicity studies involving SWCNT. 
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Figure 7.3(a) Cytotoxicity of SWCNT to A549 cells after 24 hour exposure determined by the NR 

assay. Data are expressed as percent of control mean ± SD of six independent experiments. 

*Denotes a significant difference from the control (P ≤ 0.05); (b) Plot of emission ratios for the 

NR assay against SWCNT concentration mg/ml. 

 

 

7.3.4 MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide ). 

The MTT colorimetric assay determines the ability of viable cells to reduce the soluble, 

yellow tetrazolium salt [3-(4,5-dimehtylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] 

(MTT) into an insoluble, purple formazan precipitate which can be solubilised by the 
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addition of an organic solvent and quantified spectroscopicaly. Tetrazolium salts accept 

electrons from oxidized substrates or enzymes, such as NADH and NADPH. Reduction 

of MTT takes place at the ubiquinone and cytochrome b and c sites of the 

mitochondrial electron transport chain due to succinate dehydrogenase activity 

(Mosmann, 1983). 

 

Applications for the MTT assay include drug sensitivity and cytotoxicity. The assay is 

considered as rapid, safe, versatile, quantitative, and highly reproducible with an intra-

test variation between data points of only +/- 15 percent. For each cell type, a linear 

relationship between cell number and absorbance can be established, enabling accurate 

quantification (Supino, 1998). The main disadvantage to the use of tetrazolium salts are 

their cytotoxicity. To solubilise the formazan crystals, solvents such as 

dimethylsulfoxide (DMSO) or HCl/isopropanol have to be used. This treatment results 

in destruction of investigated cells, allowing only a single time point measurement 

(Biosource, 2006). Addition of DMSO destroys the cell membrane and results in 

liberation and solubilisation of the crystals. The number of viable cells is thus directly 

proportional to the level of the initial formazan product created and can be quantified 

by measuring the absorbance at 570 nm (Magrez et al., 2006). 

 

Recent literature has demonstrated that the reduced formazan precipitate binds to the 

SWCNT and the resultant decrease in absorbance is due to interference of the dye with 

the SWCNT and not toxicity as had previously been reported when using the MTT 

assay (Worle-Knirsch et al., 2006). The likelihood of the curve shown here being a true 

representation of SWCNT toxicity is therefore questionable and could originate from 

adsorptive interferences caused by the interaction of the SWCNT with the MTT assay. 
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Figure 7.4 (a) Cytotoxicity of SWCNT to A549 cells after 24 hour exposure determined by the 

MTT assay. Data are expressed as percent of control mean ± SD of six independent 

experiments. *Denotes a significant difference from the control (P ≤ 0.05); (b) Plot of the 

absorbance ratio of the converted MTT formazan against SWCNT concentration mg/ml. 

 

To verify that the MTT assay was potentially giving a false positive toxicity for the 

SWCNT, confluent cells were exposed to an MTT solution (0.5 mg/ml) and the system 

was allowed to undergo the reduction process to form the purple formazan precipitate. 

This was then extracted with 0.04N HCl prepared in isopropanol and then decanted and 

centrifuged to remove any remaining cells. SWCNT containing solutions were then 

prepared with this at an initial concentration of 0.8 mg/ml and serially diluted down to 
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reduce the SWCNT concentration.  The samples had to be allowed to settle for 48 hours 

(double the sedimentation period of all other assays tested) before they were 

characterised spectroscopically. Visual differences were observed between the 

solutions; at SWCNT concentrations above 0.05 mg/ml the solutions underwent a 

colour change from the characteristic purple of the converted form of MTT to a pale 

yellow similar to that of the unconverted MTT. This colour change may indicate the 

presence of unconverted MTT, which was not converted by the cells and did not interact 

with the SWCNT. Wörle Knirsch et al, (2006) showed microscopically that the 

converted formazan crystals bound to the nanotubes and resulted in a false positive 

toxic effect being concluded.  

 

In this study, absorbance spectra were recorded and the reduction of the formazan 

feature at 570nm was monitored as a function of SWCNT concentration. This was then 

plotted as a ratio (figure 7.4b). There were no noticeable spectroscopic differences at 

concentrations below 0.00625 mg/ml. Above this, a reduction in absorption was 

observed and this reduction was seen to increase with increasing SWCNT 

concentration. The reduction in the MTT associated absorbance combined with the 

visual differences observed at concentrations above 0.05 mg/ml (colour change from 

purple to pale yellow) undoubtedly verified the presence of an interaction between the 

two species. This supports the notion proposed by Wörle Knirsch et al, (2006) that the 

formazan precipitate of the MTT assay binds to the SWCNT. Figure 7.4b shows 

spectroscopically that this proposed binding process induces a reduction in the 

associated absorbance resulting in a false positive toxic effect being evaluated as was 

observed in the cytotoxicity curve presented. 
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7.3.5 WST-1 (2-(4-iodophenyl)-3-(4-nitrophenyl)-5-(2,4-disulfophenyl)-2H-

tetrazolium). 

The WST-1 assay is very similar to the MTT assay. The tetrazolium salt WST-1 is 

reduced by cellular mitochondrial hydrogenases at the same structural position when 

compared to MTT (Tan et al., 2000, Ranke et al., 2004). The resulting product, in 

contrast to the MTT assay, is water-soluble and can be spectroscopically quantified at 

450 nm without any required extraction step (Tan et al., 2000, Ranke et al., 2004). Its 

water-solubility is also the reason why this dye was recommended by Wörle Knirsch et 

al as no binding of crystals to SWCNT could be observed microscopically so the 

authors concluded no interaction would take place. A concentration response 

cytotoxicity (figure 7.5a) curve for the WST-1 assay was obtained in our study and 

significant toxicity was observed at 0.4 mg/ml. 

 

A similar spectroscopic study was carried out on the WST-1 dye as performed with the 

AB and MTT dyes. The WST-1 dye was allowed to undergo the conversion process by 

exposing it to confluent cells for a period of three hours followed by decanting and 

centrifugation to remove any remaining cells. This was then used to form SWCNT 

containing solutions by dispersing an initial concentration of 0.4 mg/ml SWCNT. The 

SWCNT concentration was sequentially reduced by serial dilution with the converted 

WST-1 dye. Upon examination of the absorbance spectra of the solutions, differences 

were observed. A reduction in the WST-1 associated absorbance was noted at 

concentrations above 0.0125 mg/ml. This reduction was then seen to increase with 

increasing SWCNT concentration. The absorbance of the WST-1 dye was then 

monitored as a function of SWCNT concentration and again plotted as a ratio (figure 

7.5b).  This plot was then fitted with the described model (Coleman et al., 2004) and a 
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C0 value of 0.185 mg/ml was obtained. The original model was derived for emission 

quenching of a fluorescent species and that a good fit is observed here confirms the 

presence of an interaction between the WST-1 dye and the SWCNT. This therefore has 

implications for the use of this assay in the evaluation of toxicity as the interaction 

between the WST-1 dye and the SWCNT may result in a false positive toxic effect 

being observed similar to that of the MTT assay.  

 

 

Figure 7.5 (a) Cytotoxicity of SWCNT to A549 cells after 24 hour exposure determined by the 

WST-1 assay. Data are expressed as percent of control mean ± SD of three independent 

experiments. *Denotes a significant difference from the control (P ≤ 0.05); (b) Plot of the 

absorbance ratios for the WST-1 assay against SWCNT concentration mg/ml. 
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7.4 Chapter Summary. 

 

This chapter has highlighted difficulties encountered in the evaluation of the in vitro 

cytotoxicity of SWCNT. The spectroscopic characterisation revealed interactions of 

varying degrees between the SWCNT and all the tested indicator dyes employed in this 

study to assess particle toxicity as evident by the differing C0 values determined for 

each assay. This undoubtedly raises questions about the validity of the cytotoxicity data 

presented in this chapter and other studies based on the absorption/fluorescent emission 

of these dyes.   

 

Table 7.1 displays a list of all cytotoxic dyes tested, the spectroscopic property from which 

cytotoxicity data is evaluated, the SWCNT concentration at which toxicity was observed and the 

lowest SWCNT concentration at which absorptive interferences were detected. 

Indicator Dye Property Toxicity Observed 

Conc. mg/ml 

 Interference Observed 

Conc. mg/ml 

Comassie Absorption 0.4 2.25 x 10
-2

 

NR Fluorescence 0.8 1.95 x 10
-2

 

AB Fluorescence 0.4 3.9 x 10
-5

 

MTT Absorption 0.003 6.25 x 10
-3

 

WST-1 Absorption 0.4 1.25 x 10
-2

 

 

 

Examining the data presented in table 7.1 it can be clearly seen that in the presence of 

fine quantities of SWCNT absorptive interferences were noted, this raises questions 

about the validity of the cytotoxicity data presented. In a study by Davoren et al, (2007) 

it was noted that SWCNT remain bound to the surface of the cells post exposure after 
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several washes with PBS. Their presence and the possibility of interference with the 

tested assays is therefore a realistic scenario when carrying out in vitro cytotoxicity 

studies of this nature. With the exception of the NR assay the interferences noted, by 

spectroscopic analysis, would undoubtedly contribute to a false positive toxic effect 

being evaluated in the presence of fine quantities of SWCNT. The ideal test for in vitro 

cell cytotoxicity must not interfere with the compound to be tested.  The results 

presented in this chapter therefore have comprehensively confirmed that the indicator 

dyes used here namely, Commassie Blue, AB, NR, MTT and WST-1 were not 

appropriate for the quantitative toxicity assessment of carbon nanotubes.  
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Chapter 8 

 

“Conclusions” 

8.1 Summary of findings. 

 

Over the course of this thesis, a number of issues previously unaddressed in the 

literature, relating to the evaluation of SWCNT toxicity in vitro have been highlighted. 

In chapter 5 it was shown that upon the dispersion of SWCNT within commercial cell 

culture medium, considerable previously uncharacterised interactions occurred. The 

origins of these interactions were determined spectroscopically. Absorption 

spectroscopy revealed that the observed colour change in the higher SWCNT 

concentration regions was attributed to an interaction of the SWCNT with the phenol 

red component of the medium. The function of the phenol red is as a pH indicator 

within the medium. However no significant change in pH was noted as a function of 

SWCNT concentration. Furthermore absorption spectroscopy revealed reductions in the 

associated absorbance of the components of the medium and the added FBS protein 

supplement. 

 

SWCNT concentration dependant fluorescent studies were then employed to assess the 

degree of interaction occurring between the SWCNT and the medium components. This 

was done by excitation of the SWCNT medium suspensions by three wavelengths, 

namely 268, 360 and 410nm, each corresponding to a medium component. The 

emission characteristics of each of these components were then monitored as a function 
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of SWCNT concentration. Using a model (Coleman et al, 2004) originally derived to 

study the interactions and aggregation state of SWCNT within a polymer matrix; 

characteristic concentrations were calculated for each medium component. In the 

original study these values were used to further calculate the binding energy between 

the SWCNT and the polymer. In this study it was not feasible to do this due to the 

nature in which the suspensions were prepared. Despite the inability to estimate binding 

energy the ability to fit the data to such a model and calculate different characteristic 

concentrations for each medium components interaction with the SWCNT, undoubtedly 

verifies the presence of considerable interactions upon the dispersion of SWCNT within 

cell culture medium.  

 

The model was also used to monitor the aggregation state of SWCNT as a function of 

concentration. In this study the nature of the obtained emission ratio plots presented in 

chapter 5 would imply that the aggregation state of the SWCNT remained constant over 

the concentration rage studied, Raman spectroscopy and TEM analysis (see appendix 9) 

verified this. It was therefore shown that the SWCNT tested remained as aggregates 

rather than individual tubes. Thus, the likelihood of toxicity as a result of internalisation 

within the cell walls would be reduced. A number of studies have shown that cellular 

internalization of various nanoparticles can occur (Stearns et al., 2001, Monteiro-Rivere 

et al., 2005, Rouse et al., 2006) with endocytosis being the most probable mechanism of 

uptake.  However, transmission electron microscopy in a study performed by Davoren 

et al., (2007) confirmed that there was no intracellular localization of the tested 

SWCNT bundles in A549 cells following 24 hour exposure. 
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The addition of the FBS protein supplement was noted to visually affect the dispersion 

behaviour of the SWCNT in the medium. Using fluorescent emission spectroscopy the 

interaction of the FBS was studied and a characteristic concentration for the added 

protein calculated. It was postulated that the large bulky protein molecules would be 

relatively slow to adsorb onto the surface of the nanotube aggregates but subsequently 

would also be slow to desorb off the surface. Hence they played and active role in 

retaining the SWCNT in the medium suspension. Recommendations were made that 

future toxicity studies evaluating the direct cytotoxicity of SWCNT should culture and 

expose cells in the absence of an added protein supplement. Its presence is expected to 

have adverse effects in the evaluation of SWCNT cytotoxicity. This was verified in a 

study by Davoren et al, (2007) evaluating the direct cytotoxicity of SWCNT in which it 

was noted that in the absence of the added protein supplement increased cytotoxicity 

was observed. 

 

As a result of these interactions it was postulated that SWCNT may induce an 

indirect/secondary toxicity by means of medium depletion due to interaction with the 

SWCNT. This proposed notion was investigated and verified in chapter 6. 

Spectroscopic analysis confirmed that all SWCNT dispersed within the cell culture 

medium were removed by centrifugation and filtration, as no evidence of their presence 

could be detected spectroscopically. Absorption and emission spectroscopy confirmed 

that the composition of the medium had been altered due to the dispersion and removal 

of the SWCNT, as evidenced by reduction in the associated absorbance and emission of 

the medium components.  

 



 190 

The human alveolar carcinoma epithelial cell line A549 was then employed for toxicity 

evaluation. The indirect cytotoxicity of SWCNT was then evaluated by 24, 48, 72 and 

96 hour exposures to the filtered medium and evaluated using two cytotoxic indicator 

dyes namely Alamar Blue and Neutral Red. These cytotoxicity studies did show that 

SWCNT could induce significant toxicity indirectly at high concentrations after a period 

of 48 hours. Differences in the observed cytotoxicity were noted between the different 

fabrication methods of SWCNT as determined by the AB assay. Differences in the 

observed cytotoxicity between the two cytotoxic assays employed were also noted. 

Alamar blue appeared more sensitive than the neutral red, as the obtained cytotoxicity 

data for neutral red was not as consistent when compared to that of the alamar blue. It 

was postulated that these differences may have arisen from a reduction of the 

proliferative capacity of the A549 cells in the filtered medium as determined by the AB 

assay but with little or no effect on cellular viability as determined by the neutral red 

assay. However the results of this chapter did conclusively confirm that SWCNT could 

induce an indirect/secondary toxicity by means of medium depletion and this 

mechanism could therefore contribute to a false positive toxic effect being observed 

when evaluating SWCNT toxicity. 

 

Chapter 7 employed standard techniques to evaluate the direct cytotoxicity of SWCNT 

with a battery of cytotoxicity indicator dyes which had been used in the literature to 

previously evaluate SWCNT cytotoxicity. A549 lung cells were again used and were 

cultured and exposed to SWCNT in serum free medium. The validity of this 

cytotoxicity data was then tested using spectroscopic analysis to investigate the effect of 

SWCNT on the effective operation of each cytotoxicity indicator dye employed. The 

spectroscopic characterisation revealed interactions of varying degrees between the 
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SWCNT and all the tested indicator dyes employed in this study to assess particle 

toxicity which was evident by the differing C0 values determined for each assay. While 

the calculation of a characteristic concentration provides very relevant information 

about the degree of interaction between the assays and the SWCNT in terms of cellular 

laboratory practice it could be difficult to interpret.  

 

This undoubtedly raises questions about the validity of the cytotoxicity data presented 

in this and other studies based on the absorption/fluorescent emission of these dyes.  

The ideal test for in vitro cell cytotoxicity must not interfere with the compound to be 

tested.  The results in this thesis therefore comprehensively confirmed that the indicator 

dyes used in this study (CB, AB, NR, MTT and WST-1) were not appropriate for the 

quantitative toxicity assessment of carbon nanotubes. The question of how toxic are 

SWCNT remains unanswered and will remain questionable until new screening 

techniques are developed which do not involve the uses of such indicator dyes that 

interfere with the carbon nanomaterial.  

 

 

8.2 Further work.  

 

 

The additional or continual research in this area should focus predominately on the 

development of an alternative interdisciplinary screening technique. However there are 

some other issues which need to be addressed.   

 

Due to the various fabrication techniques there are a large amount of SWCNT with 

differing properties (diameter, length, and surface reactivity, impurity level, metallic or 

semi-conducting) and indeed there can also be substantial differences between samples 

produced from the same process batch to batch. This leads to a large range of materials 
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which can have differing properties classified as SWCNT. It is therefore vital that key 

contributing factors that could induce toxicity be evaluated and classified in order of 

their toxicological importance specifically for SWCNT. If this type of mechanistic 

approach was taken in future studies it is plausible that the key contributing factors of 

SWCNT toxicity would be applicable to a much wider range of engineered 

nanoparticles and be of great benefit to the research area. 

 

In chapter 6 differences were noted between the AB and NR assays and it was 

postulated that these differences may have arisen due to a reduction in proliferation and 

retention in cellular viability in the depleted medium. As such this is an area which 

could be further explored. By using a more basic approach involving cell counts and 

clonogenic studies this hypothesis could be verified and could further contribute to 

elucidating the origins of the inconsistent cytotoxicity data that exists in current 

literature. 

 

Recent studies have employed the use of trans-scriptomics and proteomics as a way to 

“fingerprint” cellular responses to perturbation, for example by the presence of 

nanoparticles. The principle is that all cells have a characteristic mRNA and protein 

expression profile, which can be mapped. The introduction of nanoparticles (or other 

stimuli or perturbation) will result in changes to these characteristic expression profiles. 

The up- and down- regulation of mRNA and proteins can thus be used to “fingerprint” 

the response of the cells to the presence of the nanoparticles. 

 

Raman and infra red spectroscopy can also be used to “fingerprint” cells, and this 

technique been shown to be able to monitor changes in cellular behaviour, such as cell 
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proliferation. Thus, vibrational spectroscopy could be used to fingerprint responses of 

cells to nanoparticles, and the results could be correlated with the trans-scriptomic and 

proteomic data to provide the fullest description of the effects of interaction with 

nanoparticles on cells.  

 

Such data would feed directly into the development of a risk assessment method for 

nano-safety, as well as helping to validate alternative toxicity screening methodologies 

which could reduce the cost and complexity of nanoparticle safety screening, reducing 

the reliance on animal tests and enabling high-throughput screens to emerge. 

 

8.3 Concluding remarks. 

 

Over the course of this thesis a number of contributing factors, which have hindered the 

development of the toxicological profile of SWCNT, have been highlighted. SWCNT 

were shown to interact with a commercial cell culture medium, these interactions were 

seen to affect the evaluation of SWCNT toxicity, in the case of the serum reducing the 

observed direct cytotoxicity of SWCNT resulting in a false negative toxic response. 

These interactions were further shown to induce an indirect toxicity which would 

contribute to a false positive toxic response being observed. Finally absorptive 

interferences were shown for all the cytotoxic dyes tested again creating a false positive 

toxic response. The presented studies have effectively shown that classical in vitro 

protocols and endpoints need to be adapted if the potential health risks of SWCNT are 

to be truly assessed. As a result of this the development of an alternative screening 

technique is of paramount importance. 
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The results presented have raised a very important question; does nanotoxicology 

necessitate a new toxicological science? The answer to this question undoubtedly, like 

nanotoxicology, is complicated. It is the general consensus of researchers in the field of 

nanotoxicology, that if it is to move forward as a discipline and reach the overall goal of 

providing reliable toxicological data on the ever increasing range of engineered 

nanoparticles then it will rely heavily on the collaboration of materials and biological 

scientists. Collaborations of this manner should facilitate all contributing factors, from 

both physical/chemical and biological viewpoints, to be identified and classified in 

order of toxicological relevance. Nanotoxicology does not necessitate a new 

toxicological science as such but it does demand the communication between different 

disciplines of science as was seen through out this thesis which employed both 

physical/chemical and biological techniques to assess contributing factors to SWCNT 

toxicity. 
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Appendix 1 

 

The appended paper details research carried out in the initial stages of my PhD research 

in composite SWCNT systems with saccharides. Inclusion complexes of starch were 

utilised to create aqueous dispersions of SWCNT these suspensions were then 

subsequently characterised spectroscopically. 
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Appendix 2 

COMPONENTS Molecular Weight Concentration (mg/L) Molarity (mM) 

Amino Acids 

Glycine 75 15 0.200 

L-Alanine 89 18 0.202 

L-Arginine hydrochloride 211 422 2.00 

L-Asparagine-H2O 150 30 0.200 

L-Aspartic acid 133 26.6 0.200 

L-Cysteine hydrochloride-H2O 176 70 0.398 

L-Glutamic Acid 147 29 0.197 

L-Glutamine 146 292 2.00 

L-Histidine hydrochloride-H2O 210 45.8 0.218 

L-Isoleucine 131 7.88 0.0602 

L-Leucine 131 26.2 0.200 

L-Lysine hydrochloride 183 73 0.399 

L-Methionine 149 8.96 0.0601 

L-Phenylalanine 165 9.92 0.0601 

L-Proline 115 69 0.600 

L-Serine 105 21 0.200 

L-Threonine 119 23 0.193 

L-Tryptophan 204 4.1 0.0201 

L-Tyrosine disodium salt dihydrate 181 13.5 0.0746 

L-Valine 117 23 0.197 

Vitamins 

Biotin 244 0.07 0.000287 

Choline chloride 140 14 0.1000 

D-Calcium pantothenate 477 0.5 0.00105 

Folic Acid 441 1.3 0.00295 

i-Inositol 180 18 0.1000 

Niacinamide 122 0.037 0.000303 

Pyridoxine hydrochloride 206 0.06 0.000291 

Riboflavin 376 0.04 0.000106 

Thiamine hydrochloride 337 0.3 0.000890 

Vitamin B12 1355 1.4 0.00103 

Inorganic Salts 

Calcium Chloride (CaCl2) (anhyd.) 111 102 0.919 

Cupric sulfate (CuSO4-5H2O) 250 0.002 0.0000080 

Ferric sulfate (FeSO4-7H2O) 278 0.8 0.00288 

Magnesium Chloride (anhydrous) 95 49.7 0.523 

Magnesium Sulfate (MgSO4) (anhyd.) 120 192 1.60 

Potassium Chloride (KCl) 75 285 3.80 

Sodium Bicarbonate (NaHCO3) 84 2500 29.76 

Sodium Chloride (NaCl) 58 7530 129.83 

Sodium Phosphate dibasic (Na2HPO4) anhydrous 142 115.5 0.813 

Sodium Phosphate monobasic (NaH2PO4) anhydrous 139 59 0.424 
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Zinc sulfate (ZnSO4-7H2O) 288 0.144 0.000500 

Other Components 

D-Glucose (Dextrose) 180 1260 7.00 

Hypoxanthine Na 131 4 0.0305 

Lipoic Acid 206 0.21 0.00102 

Phenol Red 376.4 3 0.00797 

Putrescine 2HCl 161 0.32 0.00199 

Sodium Pyruvate 110 220 2.00 

Thymidine 242 0.7 0.00289 

 

 

Technical Resources - Media Formulations 

F-12K Nutrient Mixture Kaighn's Modification (1X) liquid  

Contains L-glutamine.  

 

Catalogue Number: 21127022  
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Appendix 3 

 

 

 

Appendix 3 displays a photograph showing the observed colour change in the medium 

upon the dispersion of SWCNT (0.4 mg/ml) following a 24 hour settling period. This 

observed colour change was attributed to the interactions of SWCNT with a phenol red 

pH indicator within the medium. 
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Appendix 4 
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Appendix 4 displays the emission spectra obtained for (a) the tested cell culture medium 

by 360nm excitation (b) the quenched emission of this feature upon the addition of 

SWCNT. As was discussed in chapter 5 excitation of the medium by 360nm yielded an 

emission spectrum centred at 450nm. The origin of this feature was attributed to that of 

riboflavin a B vitamin found in the medium. 
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Appendix 5 
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Appendix 5 displays the emission spectra obtained for (a) the tested cell culture 

medium, containing 5% FBS (protein supplement)  by 268nm excitation (b) the 

quenched emission of this feature upon the addition of SWCNT. As was discussed in 

chapter 5 excitation of the medium by 268nm yielded an emission spectrum centred at 

360nm. The origin of this feature was attributed to that the added protein supplement 

(FBS). 
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Appendix 6 
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Appendix 6 displays the emission spectra obtained for (a) the tested cell culture 

medium, containing 5% FBS (protein supplement)  by 410nm excitation (b) the 

quenched emission of this feature upon the addition of SWCNT. As was discussed in 

chapter 5 excitation of the medium by 410nm yielded an emission spectrum centred at 

450nm. The origin of this feature was attributed to that the added protein supplement 

(FBS). 
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Appendix 7 
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Raman Signal of unprocessed Carbon Black (Printex 90) by 514nm laser excitation. As 

can be seen Carbon Black exhibits one dominant feature consisting of a broad band 

centred at approximately 1500 cm
-1

 originating from graphene. 
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Appendix 8 

 

Photograph shows the observed colour change upon dispersing SWCNT within a 

solution of the converted form of the alamer blue assay. 

 

Photograph shows the observed colour change upon dispersing SWCNT within a 

solution of the converted form of the WST-1 assay previously thought not to interact 

with SWCNT. 
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Appendix 9 

 

 

Appendix 9 displays a Tem image of HiPco SWCNT dispersed in cell culture medium. 

As can be clearly seen the SWCNT remained as large aggregates. This verifies the 

conclusion draw from the emission and Raman spectroscopy of chapter 5 that due to the 

nature of the obtained ratio plots (figure 5.2 and 5.3) and radial breathing mode analysis 

(figure 5.6) no debundling of SWCNT sample occurred. 
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