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Abstract 

A predictive food microbiological model is a mathematical representation of mechanisms that 

describes the growth, survival, inactivation or biochemical process of an organism and are used 

in the food industry to predict food pathogen growth and to help in the evaluation of food 

safety. Furthermore, it reduces the number of expensive and time-consuming experiments; 

however, adequate statistical analysis is a crucial step during all phases of model development 

and validation. Therefore, present chapter is focused on the basic concept of mathematical 

modelling which can be applied to estimate the effects of natural antimicrobials as food 

preservatives. Initial section discusses about the importance of modelling in food preservation, 

brief introduction to types of modelling, model development and validation and the final 

section includes review of recent research in natural antimicrobials modelling. 

 

Key words: Food preservatives; Gompertz model; growth curve; mathematical models; natural 

antimicrobials 
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14.1 Introduction 

Food products are perishable by nature and require protection from spoilage during their 

preparation, storage and distribution to give them desired shelf life. Spoilage or other changes 

lead to loss of shelf life, which may occur in any stages of acquisition of raw materials and the 

eventual consumption of the finished products. The principal reactions that lead to spoilage, 

and that are therefore, also the principal targets for effective preservation and control, includes 

physical, chemical, enzymatic and microbiological factors. Because food products are now 

often sold in areas of the world far remote from their production sites, the need for extended 

safe shelf-life for these products has also expanded. Improvements in the cold distribution 

chain have made international trade of perishable foods possible, but refrigeration alone cannot 

assure the quality and safety of all perishable foods (Holley and Patel, 2005).  

The safety and quality of foodstuffs are paramount for consumer health and satisfaction. 

Preservatives are required to maintain the quality, extend shelf life, and ensure safety of food 

products. Recent regulations by the FDA have required processors to achieve a 5 log reduction 

in the numbers of the most resistant pathogens in their finished products. Therefore, most of 

the preservation techniques aim to control all the forms of spoilage. Synthetic preservatives 

form an essential part in food preservation. Chemicals such as butylated hydroxytoluene, 

butylated hydroxyanisole, sodium benzoate, sodium nitrite and potassium sorbate have been 

commonly used in food products. Recent research confirmed that synthetic preservatives are 

associated with some side effects (Botterweck et al., 2000); therefore, legislation has restricted 

their use in different foods (Brul and Coote, 1999). Furthermore, consumer preferences are 

moving towards foods that contain lower levels of chemical preservatives, exhibit 

characteristics of fresh or natural products and are microbiologically safe.  
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Application of heat is the most common method for food preservation, because of its ability to 

inactivate microorganisms and spoilage enzymes. However, no matter how minimal the heating 

source is, thermal processing can promote reactions that could affect overall quality of foods. 

Today, the demand for processed foods goes beyond the fundamental requirements of safety 

and shelf-stability. More emphasis is being placed on high-quality and value-added foods. Non-

thermal methods such as addition of natural antimicrobial agents in food, high pressure 

processing, ultrasound, ozone, pulsed electric field, and ultraviolet is increasingly gaining 

attention for food preservation. However, in recent years, the use of plant-derived naturally 

occurring antimicrobial agents to inhibit pathogen growth and prevent food spoilage has 

received special attention (Hayes et al., 2010). These compounds are naturally produced and 

isolated from various sources, including plants, animals and microorganisms, in which they 

constitute part of their host defence system (Juneja et al., 2012). Many naturally occurring 

compounds, such as polyphenols, glucosinolates, nisin and plant essential oils have been 

widely studied and are reported to be effective in their potential role as antimicrobial agents 

against spoilage and pathogenic microorganisms (Cleveland et al., 2001; Daglia, 2012; Jaiswal 

et al., 2011b; Solórzano-Santos and Miranda-Novales, 2012). 

  

14.2 Antimicrobial susceptibility assessment 

The antibacterial susceptibility test is used to determine the efficacy of potential natural 

antimicrobials against different bacterial species. However, one should keep in mind that 

antimicrobial susceptibility tests should be easy to do, reproducible (i.e. the ability to yield the 

same result on repeat testing), sensitive and specific (Lambert and Pearson, 2000). The 

usefulness of an antibacterial agent in combating food spoilage can be assessed by determining 

non-inhibitory concentration (NIC), the concentration above which the inhibitor begins to have 

a negative effect on growth, and the minimum inhibitory concentration (MIC), i.e. the 
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minimum dose of the antibacterial agent required to inhibit the growth of the test bacterium as 

compared to control (Jaiswal et al., 2013; Lambert and Pearson, 2000; Tiwari et al., 2009). 

However, MIC and NIC value of an antibacterial agent is dependent on experimental 

conditions which includes the incubation temperature, type of organism, and inoculum size 

(Lambert and Pearson, 2000; Lambert and Lambert, 2003). The standard antibacterial 

susceptibility test can be conveniently divided into qualitative (diffusion) and quantitative 

(dilution) methods. Common diffusion tests include agar well diffusion and  where target 

organisms embedded in an agar plate exposed to antibacterial agent using impregnated sterile 

disks of filter paper, or by placing the antibacterial agent directly on the surface or into 

preformed wells (Álvarez-Fernández et al., 2013; Kim et al., 2013; Vásconez et al., 2009). 

After an appropriate period of exposure (18-24 hours), the size of the zone of growth inhibition 

around the antibacterial delivery area is measured and considered as the indicator of 

antibacterial effectiveness. However, the agar diffusion assay is costly, time consuming, and 

the measurements tend to be more qualitative than quantitative. Dilution methods include agar 

dilution and broth micro/macro-dilution which reduces time and costs, and increase sensitivity 

for detection of antibacterial activity. However, most of these evaluations are based on only 

one endpoint and does not reflect the time-killing process. 

 

14.3 Mathematical modelling in food preservation 

A predictive food microbiological model is a mathematical expression that describes the 

growth, survival, inactivation or biochemical process of the foodborne organisms (Gonzales-

Barron, 2011). It is based on the fact that the responses of the micro-organisms to 

environmental factors are reproducible and that, by characterizing environments in terms of 

these factors. It is possible from past observation to forecast the responses of microorganisms 

in other similar environments; so, it can be useful to improve microbial food safety, quality and 
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are leading to the development of a quantitative understanding of microbial ecology of foods. 

While mathematical models are very useful decision analysis tools, it must be remembered that 

models are, at best, only a simplified representation of reality (Fakruddin et al., 2011). 

Traditional microbial enumeration techniques are time-consuming and therefore, mathematical 

microbial models are used to assess the potential for growth of micro-organisms in foods during 

preservation (Bovill et al., 2000) and can be very useful to reduce the number of expensive and 

time-consuming experiments. Furthermore, time-kill curve studies better describe the dynamic 

behaviour of antibacterial activity and from which a more accurate MIC value can be obtained 

(Andraud et al., 2011; Mueller et al., 2004). These curves are analysed using various 

mathematical models, usually based on the assumption that the relationship between 

antibacterial activity and antibacterial concentration has a sigmoid shape. Though, most of the 

modelling studies are primarily focused on the effect of temperature on growth and survival of 

bacterial or other factors, which have an impact on bacterial growth such as pH, water activity, 

etc. and the data on the use of natural antibacterial agents for inhibiting microbial growth and 

modelling the resulting kinetics are not very common, and most of the studies are based on an 

endpoint MIC determination (Diao et al., 2013; Jordán et al., 2013). This chapter focuses on 

basic concept of mathematical modelling which can be applied to estimate the effects of natural 

antimicrobials as food preservatives.  

 

14.4 Types of models 

In the last few decades, several mathematical models are developed to estimate the growth or 

inactivation of microorganisms in food and subsequently several classifications were proposed. 

Models can be classified, by the microbiological event into kinetic and probability models 

(Roberts, 1989); Empirical and Mechanistic ways; or by the variables considered into primary, 

secondary and tertiary (Whiting and Buchanan, 1993).  
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14.4.1 Kinetic and probability models 

Kinetic model explains the time taken for a specified growth/death response, in terms of 

environmental variables such as temperature, pH (Boekel, 1996) or relative humidity, nutrient 

content and antimicrobial properties. Kinetic models are useful in that they can be useful to 

predict changes in microbial counts with time. Typical example of a kinetic model includes the 

Gompertz and square root models which, describe the rates of response, such as specific growth 

rate, lag time, and maximum population density (McMeekin et al., 1993; Whiting and 

Buchanan, 1994) or inactivation/ survival models that describe destruction or survival over 

time (Xiong et al., 1999). It also includes polynomial models based on surface response 

methodology where experiments generally involved simultaneous estimation of the effect of 

several factors on microbial growth or death. 

Probability models take advantage of the possibility that a particular event will occur under 

specific environments. For example, it can be used to model spore forming bacteria such as a 

probability of Clostridium botulinum survival in canned corned beef (Buchanan, 1993). The 

basis for probability modelling is the relationship between the growth of microbial cells and 

the physico-chemical properties of the environment (Ross and McMeekin, 1995). Probability 

models specify only the probability of growth or toxin production and do not show the rate at 

which they occur (Roberts, 1989). 

14.4.2 Empirical and mechanistic models  

Another classification of models is mechanistic (i.e, explanatory, ‘white box’, or deductive) or 

empirical (i.e, descriptive, observational, ‘black box’ or inductive).  

Empirical models are data-driven and describe the interpretation without attempting to relate 

them to an underlying theory. Empirical models are concerned with practical consequence and 

simply describe data under experimental conditions in the form of a convenient mathematical 
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relationship (Gibson and Hocking, 1997). Polynomial equations are the common empirical 

models. Empirical sigmoidal type models such as the modified Gompertz and Logistic models 

have been used for fitting bacterial growth (Gupta et al., 2012). 

Mechanistic models are built up from theoretical bases and allow interpretation of the response 

in terms of known phenomena and processes (Krist et al., 1998). Mechanistic models are 

considered to be preferable than the empirical ones, as they usually contain fewer parameters, 

fit the data better and extrapolate more sensibly (Draper, 1988). Mechanistically derived 

models would be easier to develop further, as the quantity and quality of information from the 

analysed system increases and mechanistic models are inherently superior to empirical models 

(Van Impe et al., 1992; Van Impe et al., 1995; Zwietering et al., 1993). Semi-mechanistic model 

of Baranyi-Roberts have been used for fitting bacterial growth (Gupta et al., 2012). 

14.4.3 Primary, secondary and tertiary models  

Whiting and Buchanan (1993) proposed a three-level classification method described as 

primary, secondary and tertiary mathematical models. Among them, the concept of the primary 

model is fundamental for predictive food microbiology.  

Primary mathematical models estimate the response of the microorganism with time to a 

single set of conditions. The response can either be direct or indirect measures of microbial 

population density or products of microbial metabolism. Basically, it is aimed at describing the 

kinetics of the process with a few parameters as possible, while being able to accurately define 

different stages of growth. When the increase in population was plotted against time, the 

resulting curve usually has four stages; early stationary phase or lag phase, acceleration phase 

or log phase, stationary phase and decline or death phase.  

The objective of the primary model is to test the ability of a model to fit individual growth 

curves and estimates its various parameters. This then can generate information about the 



8 

 

microorganisms under investigation, such as lag phase duration (λ), generation time (GT), 

maximum population density (Nmax) and exponential growth rate (µmax) (Whiting and 

Buchanan, 1993; Whiting, 1995) (Figure 14.1). 

 

Figure 14.1. A typical growth curve and resulting parameters from the growth curves: lag 

phase duration (λ), maximum population density (Nmax) and exponential growth rate (µmax). 

The integral (area under the curve) is also used as growth parameter (Adopted from Isabelle 

and André (2006)). 

Generally, growth curves are figured on a log10 based cell density as a function of time, as 

microbial growth is an exponential phenomenon but sometimes a natural logarithm base is 

preferred. The exponential growth rate is defined as the steepest tangent to the exponential 

phase, so the tangent at the inflexion point, while the lag phase can be explained as the time at 

which that extrapolated tangent line crosses the inoculum level (McMeekin et al., 1993). The 
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rate of exponential growth of a bacterial culture is expressed as generation time, also the 

doubling time of the bacterial population and can be calculated from µmax (eq. 14.1): 

 Generation time (GT) = 
������
��	


        [14.1] 

First growth model was described by Monod and it was based on a pure empirical observation 

that bacteria grows exponentially.  

N = ��	���            [14.2] 

Where, N is the microbial density (CFU/ml), N0 is initial microbial population (CFU/ml), K is 

ln 2/GT (h-1) and t is time (h). However, it is limited as the only growth rate was considered 

for modelling and lag phase was also not modelled. Furthermore, important parameters such 

as maximum cell density was not taken into account. 

Later, Gibson et al. (1987) introduced a non-linear Gompertz model and which make possible 

to express log (CFU/ml) as a function of time using sigmoidal shape (eq. 14.3). 

log Nt = A + C × exp [−exp [− B (t−M)}]        [14.3] 

Where, Nt is the cell density at time t, A is the lower asymptotic line of the growth curve as t 

decreases to zero, N0, initial population level at time t=0 (log CFU/ml); C, the difference 

between the upper asymptotic line of the growth curve (maximum population level, Nmax) 

minus the lower asymptotic line (for example, Nmax − N0) (log CFU/ml); B, the relative 

maximum growth rate (h−1) at time M; and M, the time at which the growth rate is maximum 

µmax (h−1) (eq. 14.4) and lag phase duration (λ, h) (eq.14.5) can be calculated by the equations: 

e

CB ×
=maxµ           [14.4] 
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Where e = 2.7182 

B
M

1
−=λ             [14.5] 

Nmax = A + C           [14.6] 

In accordance with Gompertz model, a logistic model (eq. 14.7) was proposed by Gibson et al. 

(1987) to predict the microbial growth. 

( )[ ]MtB

C
AN t

−×−+
+=

exp1
        [14.7] 

 

where Nt , A, B, M, and C have the same meaning as specified in Gompertz equation. The µmax 

(eq. 14.8) and λ parameters (14.9) can be calculated as follows: 

4max

CB ×
=µ           [14.8] 

B
M

2
−=λ           [14.9] 

Model fitting results are similar in both the cases; however, Gompertz model was always 

preferred over the logistic model as the former is symmetrical models while most of the growth 

curves are not. 

In 1990s, the focal point moved from the static primary model to dynamic primary models. 

Van Impe et al. (1992) proposed first-order differential equation to predict microbial growth 

and inactivation. A second dynamic growth model was proposed by Baranyi and Roberts 

(1994). The model was based on first-order ordinary differential equation and is one of the 

most frequently used differential equation models to predict microbial growth. It can be 

described as in (eq. 14.10): 
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y(t) = y0 + μ����(�) – ln �1 +	 ���� �(�)	!"
�#�� $%� &       [14.10] 

where, F(t) = t + 
"
' ln (�!'� +	�!(� −	�!'�!(�)     [14.11] 

 

where y(t) is the loge (CFU ml−1) of cell concentration at time, t; y0 is the initial cell 

concentration in loge(CFU ml−1) units; ymax is the maximum cell concentration in loge (CFU 

ml−1) units; µmax is the maximum specific growth rate in terms of loge (CFU ml−1), which is 

equal to rmax loge 10 in 1 h−1; v is the rate of increase of the limiting substrate, assumed to be 

equal to µmax; h0 is equal to µmax × λ; and λ is the lag-phase duration in h (Baranyi et al., 1993). 

Table 14.1 summarizes most commonly used primary models that estimate the response of 

microorganisms. 

Secondary mathematical models are produced from the primary model parameters such as lag 

time, growth/inactivation rate, maximum population density. It indicates that how parameters 

of the primary models change with respect to one or more environmental or cultural factors 

such as atmosphere, pH, temperature; antimicrobial agent concentration applied and salt level. 

For example, if the effects of antimicrobial agent on the growth of microorganisms were being 

investigated, the organism would be grown at a number of antimicrobial concentrations for 

specific periods such as 24 to 72 hours. From each antimicrobial concentration, a generation 

time can be calculated by using a primary model. These data are then collated using a secondary 

model, so that the effect of antimicrobial concentrations is described by a mathematical 

equation. This allows the end user to determine what generation time will be observed at the 

respective antimicrobial concentrations. 
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Table 14.1. Most commonly used primary, secondary and tertiary models used in the literature (Adopted and modified from McDonald 

and Sun (1999) with permission). 

Primary models Secondary models Tertiary models 

Gompertz model1 Williams–Landel Ferry model13  USDA Pathogen Modelling Programme22 

Modified Gompertz2 Belehradek model (square-root model) 14  Microfit software23 

Logistic model3 Ratkowsky model (square-root model) 15 

 Seafood Spoilage and Safety Predictor 

(SSSP) software24 

Baranyi model 4 Arrhenius model l6  ComBase25 

First-order monod model 5 

Modified Arrhenius models (Davey or 

Schoolfield) 17 

 

Modified monod model6 Probability models18  

D values of thermal inactivation7 Artificial Neural Networks19  

Growth decline model of Whiting and Cygnarowicz 8 Z values20  

Three-phase linear model 9 Polynomial or response surface models21  

Richards model10   

Schnute model11   

Stannard model12   

1Gibson et al. (1987); 2Zwietering et al. (1990); 3Jason (1983); 4Baranyi et al. (1993); 5Monod (1949); 6Houtsma et al. (1996); 7Juneja et al. (2001); 
8Whiting and Cygnarowicz-Provost (1992); 9Buchanan et al. (1997); 10Richards (1959); 11Schnute (1981); 12Stannard et al. (1985); 13Williams et 
al. (1955); 14Běhrádek (1930) 15Ratkowsky et al. (1982); 16Arrhenius (1889); 17Davey (1993); 18Hauschild (1982); 19Marini (2009) 20Juneja et al. 
(1997); 21Khuri (2011); 22Juneja et al. (2011); 23Lee et al. (2014); 24Ólafsdóttir et al. (2006); 25Baranyi and Tamplin (2004).  
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Various secondary models have been applied to model growth and inactivation of 

microorganisms. These models can be simple linear regressions, or more complex polynomial 

models such as those based on response surface methodology that require sophisticated 

computational software (Khuri, 2011), squire root models (Ratkowsky et al., 1991) and 

Arrhenius equations. The z-value is another type of secondary model that describes the change 

in D-value as a function of temperature. Generally, lag time and growth rate have been 

modelled using square-root, gamma and cardinal methods. Applications comprise modelling 

microbial growth or inactivation interfaces, the length of the lag phase for microorganisms in 

formulated ready-to-eat foods, and the production of microbial toxins (Whiting, 1995). 

Recently, Artificial Neural Networks is also used to for modelling purposes (Marini, 2009). 

Some of the examples of secondary models used in the recent studies are given in Table 14.1. 

Tertiary mathematical model development involves expressing secondary model predictions 

through a primary model. This is normally done either with commercial spreadsheets or 

computer software. Computer software program provides an interface between the model’s 

mathematics and the end user, allowing the information to be entered into the model then the 

prediction to be viewed as a figure and tables. However, tertiary level mathematical modelling 

needs skilled personnel to interpret the information given by the models. The users should 

know the limits and condition of models application to avoid flawed predictions. There are 

various types of the model software packages such as a Pathogen Modelling Program (PMP), 

Growth Predictor, Pseudomonas Predictor which are used for the mathematical modelling. 

Some of the examples of tertiary models used in the recent studies are given in Table 14.1. 

The Institute of Food Research, UK has produced “Growth Predictor” 

(http://www.ifr.ac.uk/Safety/GrowthPredictor/default.html), set of model for predicting the 

growth of bacteria in microbiological broth as a function of temperature, pH, water activity, 
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carbon dioxide and acetic acid. The users can also input the inoculum level and a value for the 

physiological state of the bacteria. These factors allow the user control over the prediction of 

the lag phase.  

The “Pathogen Modelling Programme” was developed by the Food Safety Research Unit of 

the United States Department of Agriculture Research Services and can be downloaded at 

http://ars.usda.gov/Services/docs.htm?docid=6786. This model can be used to predict the 

growth, survival, inactivation and toxin production of the food-borne bacteria, primarily 

pathogens under various environmental conditions. This model allows users to input conditions 

for a variety of intrinsic and extrinsic environmental condition such as pH, temperature, water 

activity, atmosphere, the concentrations of various acidulants, irradiation dose. The program 

contains growth models for certain bacterial strains (Clostridium perfringens, B. cereus, E. coli 

O157:H7, L. monocytogenes, Salmonella etc) and specific environments (culture medium, food 

etc.).  

 “Microfit software” developed by the Institute of Food Research, UK, enable the estimation 

of growth rate, doubling time, initial cell number and lag time from challenge test data. The 

software facilitates the compares individual growth curves with predictions from software 

packages such as Food Micro Model and the Pathogen Modelling program.  

The “Seafood Spoilage and Safety Predictor” (SSSP) software package was developed as a 

time, temperature integration device that facilitates the use of different mathematical seafood 

spoilage models. The software package predicts the self-life and growth of specific spoilage 

organisms in seafood under constant or fluctuating temperature conditions. This software was 

developed at the National Institute of Aquatic Resources, Technical University of Denmark. 

“ComBase” (http://www.combase.cc/index.php/en/) is an international database mainly 

composed of thousands of microbial growth and survival curves. It is maintained by the 
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ComBase Consortium that is a collaboration between the Food Standards Agency and the 

Institute of Food Research (UK), and the USDA Agricultural Research Service and its Eastern 

Regional Research Centre (US).  

SymPrevius software (http://www.symprevius.org/) was supported by the French Departments 

of Research and Agriculture. It is a decision-making tool intended for the food industry and its 

partners, consisting of growth interfaces, growth simulation, growth curve fitting, thermal 

destruction simulation and bacterial survival simulation. The software was developed from a 

database that linked food, bacteria and environmental characteristics to the incidence and the 

behaviour of microorganisms. 

Recently, USDA Agricultural Research Service has developed a new user-friendly 

comprehensive data analysis tool, the Integrated Pathogen Modeling Model (IPMP 2013). This 

tool allows users, without detailed programming knowledge, to analyze experimental kinetic 

data and fit the data to known mathematical models commonly used in predictive microbiology 

(Huang, 2014).  

 

14.5 Model development  

Development and implementation of mathematical modelling, involves a series of steps such 

as identifying the key factors, experimental design, data collection and analysis, model 

validation etc.  

14.5.1 Recognising the key factors 

There are numbers of intrinsic, extrinsic and implicit factors which affects the growth and 

survival of the microorganism in the food. Generally intrinsic factors are the characteristics of 

the food itself, e.g. pH, water activity, preservatives. Extrinsic factors include the environment 

in which food is stored, e.g. temperature, relative humidity, gaseous atmosphere. Implicit 
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factors are the characteristics of the microorganism itself and how it behaves in the existence 

of intrinsic and extrinsic factors. Several factors may affect the growth and survival of a 

microorganisms present in food and it is important to consider these factors and included in the 

model. The intended use of the model is the prime consideration when defining the controlling 

factors to be included. 

14.5.2 Experimental design 

The range of condition over which the model is to function should be distinct because empirical 

models should not be applied beyond the area defined by the conditions used to generate the 

model (BlackBurn, 2000). An experimental design is requisite in which these factors can be 

altered easily; though, heterogeneity of food makes their use difficult for the generation of data 

for modelling (Maxcy and Wallen, 1983). Generally, microbiological mediums are used since 

it consists of all components which can be reproducible modified in the required condition. If 

the model is intended for a wide range of food, then the choice of factors should be incorporated 

such as specific organic acid, which avoid the slower bacterial growth than the actual one 

(BlackBurn, 2000).  

The inoculum size, microbial strain, culture condition all affects the outcome of the data and 

subsequent predictions. The inoculum size reflecting the microbial response, and it should be 

noted that large inoculum size needs higher concentration of antimicrobial agents. The standard 

inoculum concentration chosen by the NCCLS is 5 × 105 CFU/ml of broth medium. Changes 

in inoculum density as well as the absolute number (rather than concentration) of total 

organisms present in the test system can affect the outcome. A 5 × 105 CFU/ml inoculum 

provides an acceptable challenge dose for assessing the biological activity of antimicrobial 

agents and is large enough to provide statistically satisfactory data for determining a minimum 

bactericidal concentration endpoint. If the inoculum is too small, significant bacterial resistance 
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may not be detected (Peterson and Shanholtzer, 1992). All strains have diverse phenotypic 

responses so the type of strain selection and screening need to be carried out for modelling. 

Microbial growth condition, storage condition, including temperature and culture medium can 

affect the microorganism responses, so it should be carefully selected the likely condition of 

organism. Furthermore, sampling time is one of the important considerations for experimental 

design and these should be focused around most active phase of the bacterial growth such as 

lag phase and log phase of the bacterial growth (BlackBurn, 2000). 

14.5.3 Data collection and analysis 

Large amounts of experimental data are required to predict the effect of preservatives on 

growth, survival or inactivation of microorganisms. Such data have often been generated using 

liquid laboratory media. Quantification of microorganisms at selected time points is usually by 

standard colony count methods, but recently automated methods such as absorbance or 

conductance measurements can be used to facilitate the generation of data in liquid media. In 

some of the studies, in order to convert the optical density to log CFU ml−1, a relationship 

between the optical density at 600nm and viable count was established for the test bacteria 

(Gupta et al., 2012; Jaiswal et al., 2011a).  

The next step involves mathematical analysis of data to produce a model. However, this step 

is largely focused on the type of model to be utilized for modelling the data. For example, in 

the case of Modified Gompertz, Logistic model and Baranyi model, a plot of microbial count 

versus time for each antimicrobial concentration was used to calculate the starting values for 

the parameters, N0 and Nmax for the models evaluated (Gupta et al., 2012). However, 

advancement of computational software has facilitated the implementation of complex 

mathematical calculations which would be less time consuming for example, Statgraphics 

Centurion XV (StatPoint Technologies, Inc., Warrenton, VA) or Design-Expert Software 
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(Version 6.0.5, Stat-ease Inc., Minneapolis, MN, USA, 2001) which can be used to fit the data 

while for fitting the Baranyi model a program implemented in Microsoft Excel (DM-Fit; 

Institute of Food Research, Norwich, UK) can be used. The aim of the model fitting procedure 

is to find those values of the parameters which best describe the data by minimizing the sum 

of the squares of the differences between the model simulated and experimental values.  

 
14.5.4 Validation of mathematical models 

One of the most important aspect of model development is ensuring reliability of the models. 

The assessment of the reliability of mathematical models is only possible through the 

combination of several statistical analyses and proper investigation regarding the purposes for 

which the mathematical model was initially conceptualized and developed.  

Fakruddin et al. (2011) suggested that two step validation of a model once it has been 

developed. The first step is to test its accuracy with the new experimental data and new 

combinations of variables to determine if the model can describe the experimental data 

sufficiently. This is called internal validation or 'Curve fitting'. This will allow an estimation 

of the goodness of fit and will show if and where additional data is needed. Complex models 

tend to be very specific, which can be a limitation when testing new data. The quality of fit of 

a mathematical model can be expressed as the determination of coefficient (R2), which is an 

overall measure to evaluate the prediction obtained. The higher the value (0 < R2 < 1) is, the 

better is the prediction by the model. 

The second step is to compare model predictions with microbial responses in actual foods. This 

is called External Validation. This will show the model's limitations and may show if additional 

factors must be tested and included in the model. Errors in growth or survival should always 

tend towards faster growth rates or better survival, respectively, to make a conservative 

prediction (Whiting, 1995).  
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Statistical measures such as Mean square error (MSE) or Root mean square error (RMSE) is 

commonly used to evaluate the difference between the model estimated data and experimental 

data. The model with the lower value of MSE or RMSE (0 < MSE/RMSE) is more accurate in 

predicting model (Brocklehurst, 2003; Zhao et al., 2014). Mean square error (MSE) (eq. 14.12) 

can be defined by the following expression: 

*+, = 	∑ 	(/0�123��1!456�0'�1)�7!8         [14.12] 

Root mean square error (RMSE) (eq.14.13) can be defined by the following expression: 

9*+, =	:∑ 	(/0�123��1!456�0'�1)�
7!8        [14.13] 

where, n is the number of observations and p is the number of parameters to be estimated. 

Some authors also suggested the application of bias and accuracy factor to validate the model 

(Ross, 1996). The accuracy factor indicates the average deviation between the model 

predictions and observed results (Brocklehurst, 2003; Neumeyer et al., 1997). The accuracy 

factor (eq.14.14) is defined by the following expression: 

Accuracy factor = 10
∑ ;<=>?@ABCDEABFGHA@IAB J

K        [14.14] 

where n is the number of observations; “predicted” is a parameter under consideration such as 

the model predicted generation time and “observed” is experimentally observed generation 

time or specific growth rate or lag phase. The higher the value of accuracy factor, the lower in 

precision is the average estimate. An accuracy factor of 2 indicates that the prediction is on 

average different from the observed value by a factor of 2 (Ross, 1996). 
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The bias factor is used to indicate the structural deviations of a model (Zhao et al., 2014). It 

describes the observed values that lie above or below the line of equivalence and, if so, by how 

much. A bias factor >1 indicates a ‘fail safe’ model (Brocklehurst, 2003; Zhao et al., 2014; 

Zhou et al., 2008). Bias factor (eq.14.15) can be defined by the following expression: 

 

Bias factor = 10
∑ ;<=>FGHA@AIB?@ABCDEABJ

K        [14.15] 

14.6 Modelling the effects of natural antimicrobial agents  

Generally, the models that can be used for describing the kinetics of survival curves are either 

empirical or based on biological assumptions (Gupta et al., 2012). Primary mathematical 

models such as Gompertz or modified form of Gompertz model, Logistic and/or Baranyi-

Roberts model are the most commonly used mathematical model to analyse the delay or 

inhibition of growth of the organisms (Belda-Galbis et al., 2014; Gupta et al., 2012; Jaiswal et 

al., 2011a; Koutsoumanis et al., 1999; Pina-Pérez et al., 2009; Tornuk et al., 2014; Velázquez-

Nuñez et al., 2013; Yao et al., 1998). However, some authors have also used the fuzzy logic 

system and artificial neural network to model the antimicrobial activity of natural food 

preservatives (Sagdic et al., 2012). 

14.6.1 Plant extracts 

Plant extracts are rich in phenolic compounds and other secondary metabolites, and some have 

antimicrobial activity. In recent years, several studies were carried out to find the new source 

of antimicrobial agents from the plant parts which can be used as an alternative to synthetic 

preservatives (Jaiswal et al., 2011a; Pina-Pérez et al., 2009; Tornuk et al., 2014). Yao et al. 

(1998) monitored the disturbances in Proteus rettgeri growth using the acoustic wave bacterial 

growth sensor in the aqueous extracts of various tea samples such as green tea, Fuzhuan brick 

tea, Oolong tea, Kudin tea, and black tea. The Modified Gompertz model was successfully 
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applied to fit the growth kinetic concentration curves of P. rettgeri and the kinetic parameters 

such as asymptote, maximum specific growth rate, lag time, and generation time, accurately 

estimated by using the growth response model and these kinetic parameters have been used to 

characterize antimicrobial properties of tea. 

Jaiswal et al. (2011a) evaluated the antibacterial activity of York cabbage against several food 

pathogens, and the survival curve was mathematically modelled using the Baranyi model. The 

authors observed that cabbage extracts had an antagonizing effect on the selected food 

pathogens, showing a remarkable dose-response relationship with an increase in the lag phase 

duration and decrease in the maximum specific growth rate. Analyses of variance indicated 

that the maximum specific growth rate was significantly reduced with increasing extract 

concentration. The Baranyi model was capable of fitting the experimental data very reasonably 

and produced curves with an R2 value ranging from 87.5 to 99.6%. Pina-Pérez et al. (2009) 

conducted an experiment to extend the shelf-life and enhancing the safety of liquid whole 

egg/skim milk mixed beverages. Antibacterial activity of cocoa powder (CocoanOX 12% 

®Natraceutical S.A., Valencia, Spain) was estimated against the Bacillus cereus, which were 

inoculated in skim milk and liquid whole egg/skim milk mixed beverages. The beverages were 

also treated with Pulsed Electric Field in the presence and absence of cocoa powder. The kinetic 

results were modelled with the Bigelow model, Weibull distribution function, modified 

Gompertz equation, and Log-logistic models. It was reported that beverages supplemented with 

the antimicrobial compound showed higher inactivation levels reaching a 3.30 log10 cycle 

reduction as compared to Pulsed Electric Field treated sample under the same conditions. 

Among the model fitted the four-parameter Log-logistic model showed the best fit for all 

beverages.  
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While estimating the inhibitory effects of bay leaf, rosemary, sage, and thyme hydrosols on the 

growth of Staphylococcus aureus inoculated on fresh-cut apples, Tornuk et al. (2014) modelled 

the bacterial growth using modified Gompertz, logistic, Richards, Stannard, and Whiting and 

Buchanan were applied and compared to describe the inactivation of S. aureus. Validation of 

mathematical models were carried out using various statistical parameters such as mean 

percentage error, mean bias error, root mean square error and determination of coefficient. The 

modified Gompertz, logistic, and Stannard models exhibited better fits than Richards and 

Whiting and Buchanan models regarding these statistical parameters.  

In another studies, Belda-Galbis et al. (2014) estimated the antibacterial activity of Stevia 

rebaudiana Bertoni (Stevia) against the Listeria innocua, in a medium supplemented with a 

leaf infusion, a crude extract, and a purified extract and experimental data were fitted to the 

modified Gompertz model (Figure 14.2). Antibacterial activity of Stevia was determined based 

on the lag phase duration and the maximum specific growth rate reached. These authors did 

not observe a significant difference between the controls and samples containing the purified 

extract, therefore no bacteriostatic/bactericidal effect against L. innocua was documented. 

However, an increase in lag phase and a decrease in maximum specific growth rate were found 

for the crude extract and the infusion. The crude extract was able to multiply lag time by two 

fold. With the infusion, the lag time value was 10 times higher than the lag time value without 

Stevia. maximum specific growth rate was halved in both cases, both in the presence of the 

crude extract and in the presence of the infusion. Consequently, a statistically significant 

antimicrobial effect can be attributed to these Stevia extracts. 
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Figure 14.2. Inactivation curves for Salmonella enteritidis, fitted with the Baranyi and 

Gompertz models, in home-made taramosalad with initial pH 4.3, supplemented with 0.5% 

oregano essential oil and stored at 20°C. (Adopted from Koutsoumanis et al. (1999) with 

permission). 

14.6.2 Essential oils 

Essential oils are aromatic oily liquids obtained from plant material such as flowers, buds, 

seeds, leaves, twigs, bark, herbs, wood, fruits and roots. Several studies were carried out to 

exploit the potential of essential oils as a source of natural antimicrobial agents. Koutsoumanis 

et al. (1999) estimated the effect of oregano essential oil under different temperature and pH 

profile on taramasalad, a traditional Greek appetizer against Salmonella enteritidis and at each 

combination of the environmental factors, the bacterial counts were modelled as a function of 

time in order to estimate the kinetic parameters of the S. enteritidis. Several inactivation curves 

representing different combinations of essential oil concentration, pH and storage temperature 

were generated using the Baranyi model and the modified Gompertz equation. While 
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comparing the outputs of the two models, these authors reported that no lag phase was derived 

from the Baranyi model. On the contrary, the Gompertz equation gave a short lag phase in most 

cases (Figure 14.3). The comparative results obtained from the Baranyi and Gompertz models 

indicate that the Baranyi model, which is generally used for fitting growth data, may also be 

useful as an alternative model for describing the inactivation of bacteria under suboptimal 

environments such as the addition of natural antimicrobial systems. In another studies carried 

by Skandamis and Nychas (2000) evaluated the antibacterial activity of oregano essential oil 

together with different storage temperatures and pH against Escherichia coli O157:H7 NCTC 

12900 in homemade eggplant salad (a traditional Greek appetizer). For each combination of 

the environmental factors, the bacterial counts were modelled, using the Baranyi model, as a 

function of time to estimate the kinetic parameters of the pathogen.  

 

Figure 14.3. Growth rate (µ max; (log 10 (cfu/mL))/h) and lag time (λ ; h) distributions 

obtained from Monte Carlo simulation for Escherichia coli K12 (a-b) and Listeria innocua (c–

d) grown at 15°C, with and without carvacrol (ca) (Adopted from Belda-Galbis et al. (2013) 

with permission). 
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A similar studies were also carried out by Portillo-Ruiz et al. (2012); these authors evaluated 

the antifungal effect of Mexican oregano (Lippia berlandieri Schauer) essential oils fractions 

on the growth of Aspergillus, Penicillium, and Rhizopus sp and the growth curves were fitted 

using the modified Gompertz model. It was reported that Mexican oregano essential oils 

showed a linear reduction in specific growth rate, on the maximum mould growth at the 

stationary phase, and an increase in the lag time as the concentration of the oregano essential 

oils increased. Velázquez-Nuñez et al. (2013) compared the antifungal efficacy of orange peel 

essential oils, applied either by vapor exposure or direct addition on the growth of Aspergillus 

flavus and the radial growth rate and lag phase were calculated using the Gompertz equation. 

Significant differences in Modified Gompertz model parameters were observed in both the 

method studied. Maximum mould growth and maximum specific growth rate showed that 

increasing the concentration of orange peel essential oils decreases these parameters.  

Belda-Galbis et al. (2013) estimated the effect of carvacrol (an important component of 

Oregano oil) and citral (present in the essential oils of several plants such as lemon grass) at 

different storage temperatures against Escherichia coli O157:H7 and Listeria monocytogenes 

surrogates. The results were integrated into a stochastic model to perform probabilistic 

predictions of the final load. The study takes into account the variability in growth conditions 

by means of maximum growth rate and lag time duration kinetic parameters, using the Monte 

Carlo simulation. It was reported that for each strain, regardless of temperature, both lag phase 

and maximum specific growth rate proved to be dependent on the antibacterial concentration 

at non-inhibitory doses. The higher the concentration, the lower the maximum specific growth 

rate; consequently, both, carvacrol and citral showed a bacteriostatic effect on E. coli K12 and 

L. innocua growth in the temperature range studied. Figure 14.4 shows the lag phase and 

maximum specific growth rate distributions obtained from the Monte Carlo simulation for the 

two bacteria, in absence and in the presence of carvacrol. As can be seen in the figure, in general 
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terms, the antimicrobial addition increases the dispersion of the parameters' distributions. 

These results indicate that under stress conditions, such as the exposure to natural 

antimicrobials, enhanced the uncertainty of deterministic growth prediction results. 

 

 

Figure 14.4. (a) L. innocua (b) L. monocytogenes growth curves in the presence of different 

concentrations of carvacrol (µl/ml) in reference medium. The lines represent the fit of 

experimental data to the modified Gompertz model. The standard deviation associated with 

each average value is expressed by error bars. 



27 

 

Muñoz et al. (2010) applied a stochastic approach to evaluate the growth of heat damaged L. 

monocytogenes cells influenced by pH and presence of eugenol (essential oil found in cloves) 

using an individual-based approach of growth through OD measurements. Both the lag phase 

duration and the h0 parameter were derived from the growth curves obtained. Histograms 

showed a shift to longer lag phases and an increase in variability with high pH and the presence 

of eugenol. The authors observed that both Monte Carlo and regression analysis gave a good 

indication of the probability of a certain level of growth.  

14.6.3 Seaweed extracts 

Marine macroalgae, commonly known as seaweeds, are potential renewable resource in the 

marine habitat. Seaweeds are rich in several secondary metabolite, such as polyphenols 

(phlorotannins, fucoxanthin, flavonoids) and polysaccharides (fucoidan, laminarans). Recent 

studies showed that it is good source of antimicrobial agent. Gupta et al. (2012) used brown 

seaweed extract as a natural antimicrobial agent against several bacteria and growth kinetics 

was modelled using Baranyi, Modified Gompertz and Logistic model for describing the 

survival of organisms in the presence of different concentrations of the extract. The authors 

observed that in most of the cases, the R2 values for all the models were greater than 90% 

representing a good fit to the experimental data. All the parameters obtained for the three 

mathematical models were directly related to the extract concentration. Analyses of variance 

indicated that the maximum specific growth rate was significantly reduced (99-96.8%) while 

lag phase for all the three models increased (20-81%) with the extract concentration. These 

authors observed that all the three models were capable of fitting the experimental data very 

rationally and produced almost similar curves; however, no model could produce consistently 

best fit to all the growth curves. The models were statistically validated with the use of F-test. 

The calculated F-values were lower than the F Table values, indicating that there was no 

significant difference in the goodness of fit between the three models. 
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14.6.4 Others 

Guerrero et al. (2005) evaluate the resistance of Saccharomyces cerevisiae by the action of 

ultrasound at 45°C in Sabouraud broth containing 1000 ppm low weight chitosan and the 

experimental data were modelled using the modified Gompertz equation and Weibull 

distribution of resistances. These authors reported that addition of chitosan enhanced the 

inactivation by ultrasound. Lavermicocca et al. (2003) estimated the fungicidal activity of 

phenyllactic acid (organic acid, produced by many microorganisms, especially lactic acid 

bacteria) against 23 fungal strains belonging to 14 species of Aspergillus, Penicillium, and 

Fusarium that were isolated from bakery products, flours, or cereals. Optical density was 

recorded every 24 h from zero time to 120 h were used to generate growth curves for each 

fungal strain and the Gompertz model was used as a mathematical means of fitting growth 

curves to estimate microbial growth kinetics.  

In order to estimate the effect of interaction between two strains of Lactobacillus plantarum 

and two food-borne pathogens, Listeria monocytogenes and Escherichia coli, Aguilar et al. 

(2011) used whole UHT milk as experimental media at 37°C. To determine the type of 

interaction between the two bacterial populations in co-cultures and to evaluate the antagonistic 

activity of the lactic acid bacteria on the pathogenic bacteria, the growth curves, the kinetic 

parameters, and the pH profiles of mono and co-cultures were compared. These authors 

reported that the lactic acid bacteria reduced the growth of E. coli and of L. monocytogenes by 

4 and ∼5 log cycles, respectively, and influenced other growth kinetic parameters, such as 

maximum specific growth rate and lag phase, in the different binary combinations. Pena and 

de Massaguer (2006) evaluated the adaptation time of Alicyclobacillus acidoterrestris CRA 

7152 in orange juice, which was determined as a response to pH, temperature, soluble solids, 

and nisin (polycyclic antibacterial peptide, produced by lactic acid bacteria, especially L. lactis) 

addition. Results showed that the Baranyi and Roberts model was better than the modified 
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Gompertz model, considering the determination of coefficient (R2) as a measure to evaluate 

the prediction obtained. 

Zhou et al. (2013) evaluated the inhibition effects of vapor phase thymol, modified atmosphere, 

and their combination against Salmonella spp. on raw shrimp. Lag time and maximum growth 

rate of Salmonella spp. under each treatment were obtained using Baranyi and Roberts models. 

Combination treatments of vapor phase thymol and MA exhibited greater inhibition 

effectiveness than each individual treatment and a synergistic antimicrobial effectiveness could 

be observed on the lag time extension. To the maximum, at 12ºC, lag time of Salmonella spp. 

was extended 59.6% more by the combination treatment of 0.8 mg/L thymol + modified 

atmosphere (36.97 h) than those effects combined from 0.8 mg/L thymol treatment and MA 

treatment alone (23.16 h in total).  

 

14.7 Concluding remarks and Future trends 

Predictions of microbial behaviour are not 100% accurate. Variations and uncertainty are 

introduced through experimental error, strain variation, and other intrinsic, extrinsic and 

implicit factors which affect the growth and survival of the microorganism in the food. Efforts 

were made by mathematicians to develop new forms of model that provide more and more 

reliable estimates between model simulated data and experimental data. Consequently, plethora 

of growth models has recently been developed to model the growth, survival, inactivation or 

biochemical process of a foodborne organisms. However, primary mathematical models such 

as modified Gompertz model, Logistic and Baranyi-Roberts model is yet the most commonly 

used models to analyse the delay or inhibition of growth of the organisms and parameters 

normally include lag phase duration, growth rate and maximum population density.  
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During the last few years, increased attention has been given to quality and safety of food not 

only because of consumer’s perspective also due to governmental pressure. Recent regulations 

by the FDA have required processors to achieve a 5 log reduction in the numbers of the most 

resistant pathogens in their finished products. The ruling has accelerated the search for novel 

processing technologies, including application of preservatives from natural origin in food that 

can ensure product safety, yet maintain the desired nutritional and sensory characteristics. 

Consequently, most models were targeted towards elimination of food pathogens in order to 

help ensure microbiologically safe food products and as a result, there is likely to be increased 

research in the area of food microbiology and the application of predictive modelling to ensure 

that their applied processes are up to the very highest standards. 
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