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CHAPTER 4

Raman Microscopy:
Complement or Competitor?

HUGH J. BYRNE,a GANESH D. SOCKALINGUMb

AND NICK STONEc

a Focas Institute, Dublin Institute of Technology, Kevin Street, Dublin 8,
Ireland; bUnite MeDIAN, CNRS UMR6237-MEDyC, UFR Pharmacie,
Université de Reims, 51 rue Cognacq-Jay, 51096 Reims Cedex, France;
c Biophotonics Research Group, Gloucestershire Royal Hospital,
Great Western Road, Gloucester GL1 3NN, UK

4.1 Introduction

The objective of this chapter is to provide an introduction to Raman spec-
troscopic microscopy and its potential for biochemical analysis and clinical
diagnostic applications, such that it can be compared and contrasted to the
techniques of synchrotron and bench-top mid-FTIR spectroscopy discussed
elsewhere in this book. Raman spectroscopy is a complementary technique to
mid-IR absorption spectroscopy with established capabilities for materials and
process analysis. As a bioanalytical and diagnostic technique, similar to FTIR
spectroscopy, its potential has been demonstrated although there are many
differing technical considerations to be addressed. Raman has potentially sig-
nificant advantages as well as drawbacks compared to FTIR techniques. Here
we endeavour to outline these benefits and pitfalls and project the com-
plementary and competitive usage of Raman techniques.
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4.2 Raman Spectroscopy – a Brief History

The Raman effect was proposed and demonstrated by Sir C. V. Raman in
1928,1 and independently by G. Landsberg and L. Mandelstam.2 Inspired by
the accepted inelastic scattering of X-rays, Raman proposed a ‘‘new type of
secondary radiation’’ or ‘‘modified’’ scattering which resulted from the effect of
the fluctuations from the normal state of atoms and molecules associated
with vibrations. He demonstrated that in addition to elastic (Rayleigh or
Mie) scattering in which radiation scattered by a material has the same
energy (frequency/wavelength), light can be inelastically scattered through a
gain or loss of photon energy to the molecular vibrations of the material.
The spectrum of the inelastically scattered radiation represented a fingerprint of
the molecular vibrations within a material. The observation of the Raman
effect gave rise to the field of Raman spectroscopy, a versatile alternative
to IR (IR) absorption spectroscopy and now a common analytic laboratory
tool. C. V. Raman was awarded the Nobel Prize in physics in 1930 for his work,
and in 1998 the Raman effect was designated an ACS National Historic
Chemical Landmark in recognition of its importance in materials and process
analysis.
The Raman effect is extremely weak, and the evolution from its discovery to

a laboratory technique is principally one of technological development. In their
original work, Raman and Krishnan used sunlight and narrow band optical
filters. Mercury arc discharge lamps subsequently became the source of choice,
the scattered radiation being recorded on photographic plates. The use of
spectroscopic detection followed, but Raman spectroscopy remained largely a
curiosity until the advent of the laser in the 1960s, providing monochromatic
sources of significant brightness and intensity and variable wavelength such
that the intrinsic limitation of the low efficiency of the scattering process could
be overcome. Apart from being a weak process, Raman spectroscopy in the
ultraviolet (UV)–visible regions suffered greatly from sample fluorescence,
scattering and photodegradation, which made the technique less attractive for
coloured samples. Nevertheless, Raman spectroscopy became a very popular
research tool, for example in the analysis of phonons, electrons, and electron–
phonon interaction in high Tc superconductors.

3 In the mid 1980s Raman went
through a renaissance with FT-Raman set-ups that operated with near- IRIR
lasers such as Nd31:YAG emitting at 1064 nm, and detection was done via
In:Ga:As detectors. This system benefited from the same advantages as Fourier
transform IR spectroscopy, viz. high throughput and multiplex advantages and
high precision in the frequency scale. Some FT-instruments were built to
accommodate both IR and Raman systems using the same interferometer. In
the case of FT-Raman, the scattering sample acts as a polychromatic source. By
exciting at high wavelength, both sample fluorescence and degradation could be
circumvented but at the expense of a lower scattering process. The low sensi-
tivity of the FT-Raman systems was a drawback for biological samples. Dis-
persive Raman came back into play with the revolution in charged coupled
detector (CCD) arrays in the 1980s and 1990s, which added to the benefits of
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high laser source intensities. In addition to this, the development of narrow
band laser line rejection filters meant that the huge losses in signal from
traditional triple monochromator systems could be overcome with the
combination of a filter set and a single spectroscopic grating. Furthermore,
the significant reductions in acquisition time with multichannel signal
detection enabled significant improvements in signal to noise ratio.4 The
combination of technology developments led to a new range of Raman
spectroscopic microscopes in the 1990s, establishing Raman spectroscopy as a
relatively inexpensive bench-top laboratory tool to rival conventional IRIR
spectroscopy.
Raman is a scattering technique and can be induced in any wavelength region

of the optical electromagnetic spectrum. Whereas IRIR absorption spectro-
scopy measures transitions in the low energy IRIR region of the spectrum,
Raman spectroscopy can be carried out using UV, visible or near- IRIR
sources, avoiding the need for non-conventional sample mounting in, for
example, potassium bromide (KBr) disks or on calcium fluoride (CaF2) win-
dows as required for FTIR, although for thin samples contributions to the
signal from the substrate can be significant. Its adaptability to common silica
fibre probes could lead to in vivo diagnostic tools, although this is beyond the
scope of this chapter.
Raman spectroscopy is viewed as a complementary technique to IR spec-

troscopy but has significant advantages for many applications, specifically
biological. As will be outlined below, Raman is relatively insensitive to
water, whose absorption bands often swamp IR spectra, and therefore has
potentially significant advantages for in vivo diagnostics. The application of
Raman spectroscopy to biomolecules and even tissues was first demonstrated
as early as the 1960s,5–7 and by the mid 1970s biomedical applications were
explored.8 Whole cell and tissue studies have been carried out on a range of
pathologies,9–13 and in vivo studies have demonstrated the potential use in
diagnostic applications.14–16 Very recent developments have included devel-
opments of Raman technologies to probe tissue biochemistry at a depth of
many millimetres, leading to the prospect of in vivo diagnostics in harder to
reach areas of the body.17 Further developments in probe and other technol-
ogies as well as signal processing techniques will undoubtedly see the fulfilment
of this potential.
For a detailed description of the basic principles of Raman spectroscopy, the

associated instrumentation and potential for spectroscopic imaging, the reader
is referred to some of the many excellent texts in the literature.18–22 This chapter
provides an introduction to Raman spectroscopy and how it is measured. It
outlines some experimental considerations specific to biospectroscopy and
explores applications from molecular through cellular to tissue imaging for
biochemical analysis and disease diagnostics. The complementarities and
potential advantages over IRIR spectroscopy [Fourier Transform (FTIR) and
Synchrotron Fourier Transform (S-FTIR)] are described. Finally, the future
potential of the development of Raman spectroscopy for biochemical analysis
and in vivo disease diagnostics are projected.
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4.3 What is Raman Spectroscopy?

Rayleigh or Mie scattering (elastic scattering) occurs when light scattered from
a material is of the same frequency (or energy) as the incident light. Raman
scattering (inelastic scattering) is a result of light that is scattered off a molecule
or solid such that its frequency (or energy) differs from that of the incident light
as a result of the interaction. In Raman scattering the energy increase (anti-
Stokes) or decrease (Stokes) from the excitation is related to the vibrational
energy spacing in the ground electronic state of the molecule, and therefore the
shifts in energy of the scattered radiation from the incident frequency are a
direct measure of the vibrational energies of the molecule. In Stokes Raman
scattering, the molecule starts out in a lower vibrational energy state and after
the scattering process ends up in a higher vibrational energy state. Thus the
interaction of the incident light with the molecule creates a vibration in the
material. In anti-Stokes scattering, the molecule begins in a higher vibrational
energy state and after the scattering process ends up in a lower vibrational
energy state. Thus a vibration in the material is annihilated as a result of the
interaction. The frequency (or energy) differences between the Raman lines and
the incident line are characteristic of the scattering molecules and are inde-
pendent of the frequency of excitation. The process is often depicted as in
Figure 4.1 with the aid of a virtual or polarized electronic state. It should be
noted however that no electronic transition or ‘‘absorption’’ process is
required. The Raman effect arises from the coupling of the induced polarization
of scattering molecules (which is caused by the electric vector of the electro-
magnetic radiation) with the molecular vibrational modes.
Figure 4.2 shows a typical Raman spectrum for crystalline silicon. The

parameter of interest is the frequency shift (directly proportional to the energy
captured by or donated to the molecule of interest) from the laser illumination,
and therefore the incident laser frequency is set to zero, the Stokes line being
represented as a positive shift. The Stokes (positive) and anti-Stokes (negative)

Figure 4.1 Schematic illustration of the transition states during Rayleigh and Raman
scattering in a material, in comparison to IR absorption.
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Raman lines corresponding to the optical phonons can be seen symmetrically
shifted from the incident laser line. For ease of comparison to IR spectroscopy,
frequency shifts are expressed in wavenumbers (cm�1). The Stokes shift is most
commonly measured at room temperatures, as from simple thermodynamics
using Boltzmann’s equation, there are very few vibrations in most materials at
room temperature which can contribute to anti-Stokes scattering.
At room temperature, the number of molecules in an excited vibrational state

will be low. This can be shown by using Boltzmann’s equation:

NV

N0
¼ exp �EV

kT

� �
ð4:1Þ

where NV/N0 is the fraction of molecules in the vibrational state; EV is the
energy of the vibrational state; k is Boltzmann’s constant and T is the absolute
temperature. For example the C¼C stretch oscillation (1612 cm�1 shift) of a
benzene ring requires 1.99�10�20 Joules of energy to excite the oscillation from
the ground state. Using the above equation, the fraction of benzene molecules
in the excited vibrational state at 20 1C is 0.0078. Hence it is obvious that, at
room temperature, incident photons are much less likely to encounter mole-
cules in an excited state. Therefore the likelihood of Stokes radiation, whereby
the molecule captures a portion of the incident photon’s energy, is that much
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Figure 4.2 Raman spectrum of a silicon crystal showing, from left to right, anti-
Stokes, Rayleigh, and Stokes linesAQ1 . The frequency scale is expressed as the
Raman shift with respect to the excitation wavelength; this is why the
Rayleigh scattering is at 0 cm�1.
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greater than the alternative anti-Stokes, since the anti-Stokes radiation can only
occur if the molecule is in an excited vibrational or rotational state. The relative
signal strengths of the Stokes to anti-Stokes scattering will change with the
temperature of the probed material, and indeed can be used as a measure of
temperature.
The Raman effect can be induced by light of all frequencies. However, the

cross-section for an inelastic scattering process is proportional to l� 4
in , where

lin is the wavelength of the incident photon. For example, photons of 300 nm
wavelength have a cross-section of scattering sixteen times greater than photons
at 600 nm, assuming that there are no resonance effects, which may occur for
incident photons having energy near an electronic absorption line of the
molecule.
In a simplified diatomic molecule, in the harmonic oscillator approximation,

as in the case for IRIR spectroscopy, the frequency of vibration is given by:

ok ¼ ðk=mrÞ1=2 ð4:2Þ

where ok is the frequency of the vibration, mr is the reduced mass, calculated by
m1m2/m1þm2, where m1 and m2 are the masses of the bonded atoms respec-
tively, and k is the force constant of the vibration, related to the bond energy.
In a complex molecule, the vibration of each bond can couple to the incident
photons generating a vibrational spectrum on both the Stokes and anti-Stokes
sides. As in IR spectroscopy, the frequency positioning of a Raman band is
characteristic of a molecular bond or group vibration and the combination of
bands represents a characteristic fingerprint of that molecule. It follows that
any changes to the fingerprint can be used to monitor or characterize physical
or chemical changes at a molecular level.
Not all vibrational modes are ‘‘Raman active’’, however, and the strength of

the scattering or the scattering cross-section is governed by selection rules.
Whereas electric dipole transitions of IRIR (and UV–visible) absorption
require a change of the dipole moment of the material as a result of the tran-
sition, Raman scattering requires a change in the polarizability of the bond as a
result of the transition. Thus, while Raman spectroscopy is based on a very
different photophysical process to the more frequently used FTIR spectro-
scopic technique, the two vibrational spectroscopic techniques are, in fact, very
complementary. Thus, one has access to molecular level information via two
different physical processes. In a molecule with a centre of symmetry, a change
in dipole is accomplished by loss of the centre of symmetry, while a change in
polarizability is compatible with preservation of the centre of symmetry. In a
centrosymmetric molecule, asymmetric stretching and bending will be IR active
and Raman inactive, while symmetric stretching and bending will be Raman
active and IR inactive. In this case, IR and Raman spectroscopy are mutually
exclusive. For molecules without a centre of symmetry, each vibrational mode
may be IR active, Raman active, both, or neither. Symmetric stretches and
bends, however, tend to be Raman active. Vibrations that are strong in an IR
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spectrum, those involving strong dipole moments, are usually weak in a Raman
spectrum. Likewise, those polarizable but non-polar vibrations that give very
strong Raman bands usually result in weak IR signals.
As a crude rule of thumb, those modes that are not Raman active tend to be

IR active. By extension, symmetric modes tend to be stronger in Raman than in
IR spectroscopy and vice versa. For example, hydroxyl or amine stretching
vibrations, and the vibrations of carbonyl groups, are usually very strong in an
FTIR spectrum, and usually weak in a Raman spectrum. However, the
stretching vibrations of carbon double or triple bonds and symmetric vibra-
tions of aromatic groups are very strong in the Raman spectrum. In terms of
biochemical analysis, Raman has the particular advantage of minimal inter-
ference from the highly polar water vibrations so is a good choice for biological
samples with a view to live conditions and in-vivo measurements.
Figure 4.3 shows, for example, the Raman spectrum of the amino acid

phenylalanine with illustrative band assignments. Particularly strong in the
spectrum is the stretch of the highly polarizable aromatic ring at 1004 cm�1,
also called ring breathing mode. This feature is seen prominently in all Raman
spectra of cells and tissue. Figure 4.4 shows the Raman spectra of the amino
acids arginine and lysine, and the dipeptide formed between them. Notable is
the emergence of the band at B1650 cm�1, the so called Amide I band, com-
mon to all peptides and proteins.
Since its discovery in 1928, Raman spectroscopy has evolved in terms of the

fundamental understanding of the process, instrumentation and applications.
More advanced techniques such as Resonant Raman Spectroscopy (RRS)22–24

Figure 4.3 Raman spectrum of phenylalanine powder.
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have found many applications in photophysics and photochemistry. As sub-
strates and media for Surface Enhanced Raman Spectroscopy (SERS)25,26 are
becoming more reliable and reproducible, the technique is finding increased
applications for biological, chemical and bioanalytical characterization with
high sensitivity and hence low detection limits.27,28 More advanced techniques
such as Coherent Anti-Stokes Raman Spectroscopy (CARS)AQ6 ,29 Stimulated
Raman Spectroscopy (SRS),30 and Hyper Raman Spectroscopy (HRS)31 have
evolved. Although these are extremely powerful techniques in their own right,
their increased technical complexity renders them, at present, beyond the realm
of routine diagnostic applications, and therefore they are considered beyond
the scope of this chapter. In the following sections the basic instrumentation,
applications to biospectroscopy and diagnostics and the underlying advantages
and drawbacks of Raman spectroscopic microscopy will be discussed.

4.4 How is Raman Scattering Measured?

In its most simple form, Raman spectroscopy is implemented using a mono-
chromatic light source, a dispersion element and a light detector (Figure 4.5a).
Modern day instruments utilize a laser source, either gas (e.g., Helium–Neon,
Argon Ion) or increasingly the more easily miniaturizable solid state lasers
(semiconductor diode, titanium sapphire). Depending on the wavelength,
powers of 10’s to 100’s of mW are typically employed. Particularly in the case

Figure 4.4 Raman spectrum of a A) arginine powder, B) lysine powder, C) dipeptide
formed between arginine and lysine.
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of gas lasers, it is imperative that the background plasma emission in the region
of the laser line is minimized such that the weak Raman scattering can be
observed and so a dielectric interference filter is used to clean up the excitation
line.
The laser is directed onto the sample via a focusing lens, which in modern day

systems is usually a microscope objective, often that of a commercially man-
ufactured instrument (e.g., Olympus, Leica, Nikon). Such an instrument allows
a selection of objectives from the turret with varying magnification and
numerical aperture and, for example, long working distances. With an objective

(a)  

(b)

Interference or 
Dielectric Filter 

785 nm 633 nm 

Optical Density
filter 

Mirror

Notch Filter 

Microscope 

CCD Detector 

Dispersive Grating 
Confocal Hole 

Mirror

Sample 

Raman
Spectrum

PC

Light 
Source 

Sample presentation 
Dispersion 

element 
Detector 

Figure 4.5 a) Typical set-up for Raman spectroscopy. b) Schematic optical layout of
a Raman microspectrometer.
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of �100, small spotsizes and micron level spatial and axial resolutions are
achievable. The spot size is diffraction limited in a similar way to FTIR
microspectroscopy, although the significantly shorter wavelength used in
Raman spectroscopy leads to significantly higher spatial resolution than those
available with IR radiation. The lateral resolution in the diffraction limit is
given by:

Dx ¼ Dy ¼ 0:61l=NA ð4:3Þ

where l is the wavelength of the light and NA is the numerical aperture of the
objective employed. Increased spatial resolution is therefore achievable with
shorter wavelengths (UV) and high numerical aperture objectives.
In commercial microspectrometers, the Raman signal is generally collected in

a backscattering geometry (Figure 4.5b); the microscope objective which deli-
vers and focuses the laser also acts as the collection lens and collimates the
reflected, Rayleigh and Raman scattered light. The collection efficiency is
dependent on the numerical aperture of the objective. High numerical aperture
is associated with high magnification objectives and therefore small spotsizes
and high spatial resolution. Typically, spatial resolution can range from 0.5 mm
to 1–2 mm when going from visible to near-IR lasers. Scattered light is collected
from the focal depth of the objective and thus the choice of objective also
governs the sampling depth in transparent materials. A high magnification
objective gives a surface sensitivity (in transparent materials) ofB1 mm, while a
longer focal length �10 objective can be used to sample the depth of a trans-
parent liquid or solid (Figure 4.6).
The resolution in the z-direction is given by:

Dz ¼ ln=ðNAÞ2 ð4:4Þ

where n is the refractive index of the medium between the lens and the sample.
Raman microscopes commonly operate in a confocal mode. Confocality has

the advantage of providing improved z-resolution and better discrimination of
the Raman signal from diffusely scattered radiation in inhomogeneous mate-
rials such as tissue. Before entrance to the spectrometer, the collimated radia-
tion is imaged onto a variable aperture. The imaged spotsize is typicallyB100–
200 mm, and radiation not emanating from the focal region of the microscope
objective, or which is diffusely scattered by the sample, is blocked by the
confocal hole, providing better depth resolution and discrimination of the
Raman signal from other radiation.
Once collected, it is important to remove the strong contributions from the

reflected or Rayleigh scattered laser light. This is commonly achieved using a
holographic Notch filter or a dielectric stack (Figure 4.7) which has a spectrally
narrow reflection band centred on the laser wavelength. The element acts as an
almost 100% reflector of the laser radiation, which directs it into the micro-
scope for illumination. The collimated backscattered radiation is incident on
the element on its return, whereupon the reflected and Rayleigh scattered
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radiation is reflected, while the frequency shifted Raman bands are transmitted
into the spectrometer. The spectral width of the element can be tailored to
differing specifications but typically the Raman signal can be recorded to within
50–100 cm�1 shift from the laser line. This routine specification is a significant
improvement over the spectral responses of commercial FTIR systems in the
far-IR region which typically have a lower limit of B400 cm�1.
The transmitted radiation is spectrally dispersed using a diffraction grating.

The grating can be optimized for the operating wavelengths but typical gratings
cover the entire optical range.
Commonly, instruments are fitted with two or more interchangeable gratings

to allow for low or high resolution measurements, covering the spectral range
of interest in a single image or multiple images which can then be ‘‘stitched’’
using the instrument software. Operating at low resolution allows more rapid
spectral recording and improves the signal to noise ratio by increasing the
signal per wavenumber interval. Higher dispersion gratings can be employed
where the fine structure of spectral features is to be resolved (e.g., the Amide I
band of proteins which gives information on secondary structure and
conformation).
Spectrometer lengths are typically 300 mm for medium resolution or 800mm

for high resolution systems. The dispersion per pixel is thus typically 1 cm�1 for
a 300mm length spectrometer with an 1800mm�1 grating operating at 633 nm
and can be as low as 0.25 cm�1 for a high resolution system. The resolution of

Spectral contributions from optics at 830 nm
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Figure 4.6 Collection optics for Raman spectroscopy in the backscattering geometry.
A comparison of spectral contributions from different illumination/col-
lection optics. The spectra were excited from a clean chromium surface at
830 nm excitation (32mW) and with an integration time of 30 s.
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W-filament lamp spectrum measured with each filter set.
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Figure 4.7 a) Comparison of white light spectra measured with a spectrometer fitted
either with an edge filter set or a holographic notch filter set. Spectra were
acquired for 60 s. The y-axis has arbritary units of intensity, whereas the x-
axis represents the spectral energy in cm�1 relative to 830 nm (0 cm�1). b)
Comparison of sulfur spectra measured at 830 nm, with a Raman spec-
trometer fitted either with edge filter or holographic notch filter sets. c)
Spectral contributions from some typical optical substrates at 830 nm,
with 32mW laser power at the sample, �80 objective, t¼ 10 s.
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the spectrometer is of course additionally determined by the entrance optics,
and commonly instruments are fitted with a variable entrance slit. For com-
parison, commercial FTIR instruments commonly operate at 2–16 cm�1 reso-
lution and high resolution systems can achieve resolution for gas spectroscopy.
The spectral resolution depends mainly on the displacement of the moving
mirror of the interferometer.
The Raman signal is commonly collected using a charge coupled detector

(CCD) device. Many different CCD options are available on commercial sys-
tems, including Deep Depletion CCDs which are required for the near-IR region,
Back Thinned CCDs which can increase sensitivity, and electronic amplified
CCDs which can increase the signal but also the noise. Recent improvements in
CCD sensitivities mean that sufficient signal to noise can be achieved using
electronic Peltier cooling, avoiding the inconvenience of cryogenic coolants. The
Peltier effect is a thermoelectric effect whereby heat is displaced from a con-
ducting material to another in the presence of an electrical current.
A further feature of modern Raman spectroscopic microscopes is that the

laser is polarized, allowing determination of, for example, depolarization
ratios, and molecular orientation in crystals or liquid crystals. Care must be
taken to account for the polarization response of the vertically ruled diffraction
grating however. To date, there have been few or no polarization dependent
studies of biological materials although recent studies have demonstrated that
polarization dependent Raman can detect structural changes in the extra-
cellular matrix associated with basal cell carcinoma.32

Spectral contributions from backing substrates at 830 nm
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Figure 4.7 Continued.
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The above describes the commonly utilized instrumentation required for
dispersive Raman spectroscopic microscopy. In the past, Fourier transform
Raman spectroscopy provided an alternative for coloured and fluorescent
samples but the use of near-IR lasers at 1.064mm together with In:Ga:As
detectors reduced the sensitivity. Recent developments in laser rejection filters
and CCD technologies have rendered dispersive techniques the preferred option.
Similar to conventional IR microscopy (mapping in opposition to recent

imaging array detectors), Raman spectroscopic microscopy is usually per-
formed as a point measurement, the sample area and depth being determined
by the choice of the objective. Because it is an intrinsically weak phenomenon,
relatively high power densities are required and simultaneous illumination over
large areas and detection by multiple detector arrays, as can be performed with
FTIR and Focal Plane arrays, is not easily achieved. To date, therefore, Raman
imaging per se has been performed as a stepwise mapping process. Average
collection times to achieve acceptable signal to noise ratios for materials such as
tissue sections can be between ten and several tens of seconds (from low to high
excitation wavelengths). Mapping a significant area of even 10�10 mm, with a
1 mm diameter spot, can therefore be a time consuming exercise. Significant
effort has therefore been devoted by the instrument manufacturers towards
improving sampling rates and mapping capabilities. Line mapping and con-
tinuous scanning modes have been introduced in many commercial systems
although the weakness of the signals derived from biological samples remains a
limiting factor.33

4.5 System Calibration

In a dispersive Raman set-up, the spectral dispersion is achieved by the action
of a diffraction grating which distributes the light onto the multidetector CCD
array. The system software keeps a record of which pixel of the CCD corre-
sponds to which wavenumber of the spectrum. The process of assigning spec-
tral positions to pixel number is one of calibration. The calibration can however
change from day to day as the dispersion depends on the optical pathlength
(distance times refractive index) between the grating and the detector. Small
changes in temperature and/or humidity can thus affect the spectral calibration
on a day to day basis and it is important to ensure that a rigorous calibration
procedure is adhered to if direct inter-comparison of results is required. It is
also important to note that the system sensitivity (intensity response) can vary
depending on the laser line employed, the angle of the laser line rejection filter,
the grating, the objective, the detector, and many other system parameters.
Whereas FTIR spectra are taken as a ratio of the sample spectrum to a
reference, no such facility is available in conventional Raman spectroscopy.
Contributions due to sample substrate can also influence the results sig-
nificantly (see Figure 4.7c for the contribution of different optical substrates).
Thus, for intra- and inter-laboratory comparison, it is important to calibrate

the intensity axis also. Recommendations from manufacturers vary, and
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therefore the DASIM Raman Working Group has devised a calibration pro-
tocol based on a consensus of best practice. This protocol is outlined in
Addendum A and shown schematically in Figure 4.8. In general, it is important
to record the spectrum of the dark response and substrate to be used for the
measurements in advance of a measurement set. Figures 4.9a and 4.9b show,
respectively, the flowchart and an example of the Raman pre-processing
procedures.

1. zero order measurement (nm)
2. zero, laser & reference peak verification (cm–1)

3. dark current acquisition
4. spectrum of intensity standard
5. reference spectrum acquisition

6. signal correction

Postcalibration
target (signal)

Precalibration
target (instrument)

Preanalysis
target (signal)

Figure 4.8 Raman calibration procedure.

Shift adjustment

Machine response
 adjustment

Intensity adjustment
Zero position

reference peak 
position 

Dark current 
intensity

Raw signal

Corrected 
Raman signal

Intensity standard

Reference peak 
position

(multiple peaks)

Figure 4.9 (a) Flow-chart showing Raman pre-analysis procedure. (b) Step 1 showing
the subtraction of dark current from the raw Raman spectrum and the
white light signal and the ration of the former to the latter to give a first
corrected spectrum. (Courtesy of C. Gobinet.) (c) Step 2: starting from the
corrected spectrum in step 1, the spectrum is smoothed, then the substrate
and background are subtracted to give the final spectrum corrected for
both instrument response and substrate contribution. (Courtesy of
C. Gobinet.)
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Figure 4.9b and 4.9c show a two-step procedure. Step 1 shows the subtrac-
tion of the dark current from both the raw Raman spectrum and the dark
current spectrum. The former is then divided by the latter to give in the first
instance a Raman spectrum corrected for dark noise and white light. Step 2
considers the latter spectrum and includes a Savitsky–Golay smoothing, fol-
lowed by subtraction of the substrate (here quartz) and the background con-
tributions (here a fourth order polynomial). The final Raman spectrum is thus
corrected for instrument response and substrate contribution.

4.6 Raman Spectroscopy for Diagnostics and

Biochemical Analysis

Raman (micro)spectroscopy has the advantage of finding applications going
from isolated molecules, complex systems like macromolecules, cells, tissues, to
humans. Applications of Raman spectroscopy to disease diagnostics and bio-
logical analysis are numerous and varied. The following outlines one study as
an example.34

FFPPAQ2 cervical tissue sections were characterized by the Registrar, National
Maternity Hospital, Holles St, Dublin; the samples consisted of 20 normal and
20 invasive carcinoma sections from 40 individuals. Of the 20 carcinoma
samples, 10 samples were identified as having various grades of cervical
intraepithelial neoplasia (CIN), which were also marked for examination.
Figure 4.10 shows the different cell types seen in normal cervical tissue in an
unstained FFPP tissue section together with the Raman spectra recorded from
basal cells, epithelial cells, and connective tissue. Spectra were recorded from a

Shift adjustment

Machine response
 adjustment

Intensity adjustment
Zero position

reference peak 
position 

Dark current 
intensity

Raw signal

Corrected 
Raman signal

Intensity standard

Reference peak 
position

(multiple peaks)

Figure 4.9 (c) Continued.
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single sample and each spectrum represents a different spot within the sample.
The spectra of the three different cell types do have a degree of similarity as seen
previously for different tissue types. However, there are also many spectral
features differentiating the different cell types. The spectra of basal cells show
strong bands at 724, 779 and 1578 cm�1 which are characteristic of nucleic acids
(Figure 4.10A). The same contributions were observed in the spectrum of

Figure 4.10 Left: Photomicrograph of unstained cervical tissue section, with different
cell types identified. Right: Micro-Raman spectra recorded from basal
cells (A), epithelial cells (B), and connective tissue (C) in cervical tissue
sections. The main spectral features associated with each cell type are
highlighted.
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DNA. The morphology of basal cells consists of a single line of tightly
packed cells, with large nuclei in relation to the compacted surrounding
cytoplasm. In addition, these cells are constantly dividing, providing cells
to the parabasal layer. For both of these reasons, a high concentration of DNA
would be expected in the basal cells. Spectra of epithelial cells have char-
acteristic glycogen bands at 482, 849, 938, 1082 and 1336 cm�1 (Figure 4.10B)
as observed in the spectrum of glycogen. Collagen contributions can be
clearly seen in the spectra of connective tissue at 850, 940 and 1245 cm�1

(Figure 4.10C).
Figure 4.11a compares the Raman spectra collected from normal epithelial

cells and invasive carcinoma from a selection of different patients. Glycogen
contributions are clearly visible in the spectra from the normal epithelial tissue.
The most obvious bands arise at 482, 849 and 938 cm�1 and are due to
glycogen skeletal deformation, CCH aromatic deformation and CCH defor-
mation respectively. However, there are also other glycogen contributions
not as apparent, including a CC stretching band at 1082 and CH3CH2 wagging
at 1336 cm�1. These glycogen bands (482, 849 and 938 cm�1) are absent in the
spectra from invasive carcinoma, as well as a reduction in the intensity of the
CC stretching mode (1082 cm�1). Glycogen is known to be linked with
cellular maturation and disappears with the loss of differentiation during
neoplasia.35 This agrees with the findings in other Raman and FTIR studies of
epithelial tissues. The spectra of invasive carcinoma also show characteristic
nucleic acid bands. These include prominent bands at 724, 779 and 1578 cm�1,
but also at 829, 852, 1098 and 1240 cm�1. Distinct bands were also seen at
1366 cm�1, a shoulder at 1484 cm�1 and a band at 1578 cm�1. An increase in the
intensity of the Amide I band (1655 cm�1) was also observed in the spectra of
carcinoma samples compared to the normal tissue samples. The increased
nucleic acid and protein bands are a result of the increased proliferation of
these tumour cells.
To investigate whether pre-malignant changes could be highlighted using

Raman spectroscopy, 10 areas of neoplasia (CIN) from 10 different
patients were marked by a pathologist and a selection of the resulting
Raman spectra are shown in Figure 4.11b. A number of the spectral features
identified in the invasive carcinoma samples were also observed in the CIN
samples, such as the nucleic acid bands at 724, 779, 852, 1366 and 1578 cm�1.
This indicates that early biochemical changes can be identified using Raman
spectroscopy.
Principal components analysis was used to reduce the number of para-

meters needed to represent the variance in the spectral data set. The principal
components were then used to generate a linear discriminant model. All three
tissue classes were successfully discriminated as shown in Figure 4.12.
The classification model was tested using a leave one out cross-validation in
which all but one spectrum were used to build the model. This model was then
used to predict the remaining spectrum. This was repeated for all 498 spectra.
Of 498 tissue spectra, 492 were correctly classified as normal, invasive
carcinoma or CIN. The cross-validation misclassified six spectra, two of which
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Figure 4.11 Raman spectra of a) normal cervical epithelial cells and invasive carci-
noma cells, and (b) Raman spectra of cervical intraepithelial neoplasia
(CIN) tissue. Assignments of the main Raman vibrational modes are
detailed in Table 4.1, below.
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were normal samples assigned as invasive carcinoma. The other four were
either invasive carcinoma or CIN misclassified as either CIN or invasive car-
cinoma respectively. Importantly, no abnormal samples were classified as
normal. Based on the cross-validation results, sensitivity and specificity values
were calculated as 99.5% and 100% respectively for normal tissue, 99% and
99.2% respectively for CIN and 98.5% and 99% respectively for invasive
carcinoma.
The results show the ability of Raman spectroscopy to classify cervical cancer

and pre-cancer with high sensitivity and specificity. These classifications are
based on biochemical changes known to accompany cervical cancer such as loss
of differentiation and increased proliferation. This study shows the capability
of Raman microspectroscopy to investigate not only the tissue but also the cells
within the tissue, as it is known that a tumour can contain a heterogeneous
population of cells.

Table 4.1 Peak position and assignments of main Raman vibrational modes.

Peak position (cm–1) Assignment

622AQ3 C–C twisting
724 CH2 deformation
746 CH2 rocking
754 Symmetric ring breathing
779 Ring vibration
832 CCH deformation aliphatic
853 CCH deformation aromatic
873 CC stretch
922 C–C stretching
1004 CC aromatic ring breathing
1034 C–C stretching
1065 C–N stretch
1096 C–C chain stretching
1098 CC stretch
1102 CC stretch
1124 CC skeletal stretch trans
1214 CC stretch backbone carbon phenyl ring
1236 CN stretch, NH bending Amide III band
1240 CN stretch, NH bending Amide III band
1314 CH deformation
1337 CH2 deformation
1335 CH2 deformation
1366 CH2 bending
1440 CH2 scissoring
1484 CH2 deformation
1548 NH deformation; CN stretch Amide II band
1578 C¼C olefinic stretch
1585 C¼C stretching
1602 CO stretching
1660–1665 C¼O stretch Amide I a-helix
2930 CH2 stretching (2930 cm�1)
2932 CH3 symmetric stretch (2932 cm�1)
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4.7 Raman Microscopy and Imaging at Cellular and

Subcellular Levels

The possibility of probing events at the single cell level is of great importance in
disease diagnostics, in particular for cancer. Single cell analysis is an important
issue both on a fundamental level, for understanding biological processes such
as cell differentiation and proliferation, cell division and cell death, and on a
clinical level for rapidly assessing cell phenotype or how a patient will respond
to a given drug treatment. Very often, in real life samples, only a few cells are
available for diagnostic purposes. Given the importance of developing non-
invasive, cell-specific detection and monitoring methods, researchers are
encouraged to develop low-cost, widely accessible, real-time detection and
sensing technologies for living systems. Thus there is a real need for techniques
capable of probing single cells. However, there are not many existing methods
that can give access to high biomolecular information with cellular and sub-
cellular resolution. Raman and IR microspectroscopies have such potential, as
they can give spatially resolved biochemical information without the use of
extrinsic labels and without being invasive or destructive to the studied system.
Both IR and Raman techniques are truly label-free since the inherent vibra-
tional signatures of the biochemical components of a cell are being observed.
A significant advantage of Raman spectroscopic microscopy over FTIR
microscopy is that of lateral spatial resolution. The micron- or submicron-level
spatial resolution obtained with lasers and adapted optics helps to interrogate
subcellular compartments. Furthermore, Raman techniques can be readily
applied to single live36 and fixed37 cells.

Figure 4.12 Linear discriminant analysis of the principal components of the first
derivative, normalized, 10 point averaged spectra, over the entire spectral
range. C¼CIN, N¼ normal and T¼ invasive carcinoma.
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Raman spectroscopy has proven its potential for the analysis of cell con-
stituents and processes. However, sample preparation methods compatible with
clinical practice must be implemented for collection of accurate spectral
information. Micro-Raman spectroscopy as a non-invasive and non-destruc-
tive tool can therefore probe single living cancer cells while preserving
cell integrity and functions, such as adhesion and proliferating capacities.36

Figure 4.13 shows an example of micro-Raman spectra recorded from the
nucleus and cytoplasm of a single live cancer cell using a 785 nm laser excitation
and a �100 water immersion objective. It highlights the differences in the
biochemical and molecular composition between the cytoplasmic and nuclear
cell compartments. Such spectral data are then compared in order to identify
spectral signatures of the main macromolecules such as nucleic acids, lipids and
proteins. Table 4.2 shows the main Raman bands observed when exciting the
cells with a 785 nm laser. Based on these signatures and using multivariate
statistical approaches, Raman maps of a single living cancer cell can thus be
produced. Thus, Raman spectral imaging at the single living cell level repre-
sents a potential avenue for probing various cellular processes and monitoring
for example cell–drug interactions. It can be developed into a rapid, high
throughput, and automated diagnostic tool for screening cells from patients.
On a fundamental research basis, and as a complement to FTIR spectro-

scopy, Raman spectroscopy can be used to understand the processes underlying
cancer cell migration (metastasis) in model systems mimicking the extracellular
matrix or the cancer cell’s microenvironment.
Efforts to measure single cells in aqueous media by synchrotron IR micro-

scopy in a flow system have been attempted but remain challenging.38 However,
in a study to monitor the response of cancer cells to an antitumour drug, it was
shown that results obtained using synchrotron FTIR microscopy of fixed single
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Figure 4.13 Photomicrography showing a single live cancer cell growing on a quartz
window and the cellular compartments such as the nucleus and cyto-
plasm. Micro-Raman spectra corresponding to these compartments
measured with an �100 water immersion objective, 50mW of a 785 nm
laser, and a collection time of 20 s. (Courtesy of F. Draux.)
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cells gave comparable results to bench-top FTIR measurements of cell popu-
lations.39 More recently, ATR-FTIRAQ4 imaging was used to monitor cancer cell
compartments in natural aqueous media.40 The latter mode may also reach
higher spatial resolution down to 2–3mm when using a high refractive index
element like germanium. Combined with a synchrotron source and new imaging
detectors, these modalities will open new avenues for applications in cytology as
the performances are expected to be comparable to Raman microspectroscopy.
It must be noted that with modern micro-Raman systems, live or fixed cells can
now easily be probed with green lasers operating at low powers without
damaging them and with little or no parasitic fluorescence background.
An increase in the number of applications for single cell analysis is therefore

foreseen and this will undoubtedly foster the development of Raman and IR as
innovative approaches for spectral cytology. They can be automated into
techniques for earlier detection of diseases with enhanced resolution, sensitivity
and specificity.

4.8 Comparison to FTIR – Pros and Cons

4.8.1 Physical Principles

Fundamentally, Raman scattering is of different physical origin from IR
absorption spectroscopy and many of the pros and cons in terms of applica-
tions stem from this fundamental difference and how it impacts on the regions
of the spectrum probed, the sample response and the technological implications
and limitations. A fundamental difference lies in the fact that Raman is a
scattering process originating from a change in the molecule’s polarizability
whereas IR absorption is an electric dipole transition resulting in the absorp-
tion of a photon. The two processes are governed by different selection rules
and thus while the two techniques can be considered complementary, the
molecular fingerprint of a material obtained from Raman spectroscopy is dif-
ferent from that obtained from IR absorption spectroscopy. Figure 4.14

Table 4.2 Some of the major peaks that can be observed in the Raman
spectrum (excitation at 785 nm) of single cells.

Wavenumbers Assignments

787 DNA/RNA: ring breathing (C)
809 RNA: O-P-O stretching
1003 Prot: ring breathing Phe
1092 DNA/RNA: O-P-O stretching
1264 Prot: Amide III
1451 Prot: (C–H) bending
1486 DNA/RNA: ring mode (G,A)
1553 Prot: c¼C stretching (Trp)
1575 DNA/RNA: ring mode (G,A)
1660 Prot: Amide I
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compares the mean Raman and FTIR spectra of oesophageal lymph nodes,
and Table 4.3 lists the peak assignments.
While both are rich in the so-called fingerprint region, it is clear that the

Raman spectrum intrinsically contains significantly more information. There

Figure 4.14 Mean Raman (left) and FTIR (right) spectra obtained from oesophageal
lymph nodes. Both figures cover the ‘‘fingerprint’’ spectral range, which
is the region of both spectra where most spectral features are found.
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are many molecules such as amino acid residues, S–S disulfide bridges, C–S
linkages from proteins, and nucleic acid signals that are more highlighted in
Raman spectra. This may also result from the significantly higher resolution
(B1 cm�1) of typical research grade Raman spectrometers compared to FTIR
instruments (B2–8 cm�1). The FTIR spectrum exhibits broad features due to
overlapping bands. However, it is known that increasing the spectral resolution
in IR does not significantly improve the band width. This higher biochemical
information content, associated with a higher resolution, affords an ease of
differentiation between for example normal and cancerous tissue for diagnostic
applications (Figure 4.15). The wealth of information is often highlighted
through the use of first or second order derivative spectra.
The key advantage of Raman for in vivo diagnostics is the low contribution

of water to the Raman signal. Most human tissues contain around 70–80%
water. Furthermore, the illumination and scattered light for Raman is usually
of ideal wavelengths for transmission through optical fibres. This is certainly
not the case for mid-IR light as overcoming the water signal with IR fibre
probes is a real challenge.

4.8.2 Spatial Resolution

The spatial resolution of either measurement is determined by the diffraction
limit and therefore the wavelength of the light used in the spectroscopic tech-
nique, as well as the imaging optics. For visible light (wavelength E0.5 mm),
this implies that spot sizes as low as 1 mm diameter are easily attainable whereas

Table 4.3 Key peaks and their assignments observed in Raman and FTIR
spectra of lymph nodes.

Biomolecule Raman peaks (cm�1) Biomolecule FTIR peaks (cm�1)

Protein 1659, 1451, 1319, 1246,
1207, 1174, 1128,
1103, 1058, 1002, 959,
936

Protein 1662, 1646, 1550, 1532,
1516, 1471, 1453,
1403, 1387, 1238,1171,
979

Nucleic acids 1666, 1574, 1483, 1459,
1414, 1377, 1336,
1304, 1291, 1253,
1215, 1194, 1099,
1066, 1011,957, 913

Nucleic acids 1712, 1662, 1643, 1602,
1576, 1527, 1493,
1406, 1370, 1327,
1238, 1212, 1088,
1050, 1011, 962, 917

Fatty acids 1636, 1464, 1441, 1423,
1375, 1298, 1175,
1129, 1099, 1064,
1029, 1011, 977

Fatty acids 1705, 1689, 1464, 1431,
1408, 1311, 1295,
1271-1187, 1098, 940

Triglyceride 1747, 1653, 1439, 1300,
1267, 1117, 1079, 1038

Triglyceride 1747, 1466, 1380, 1243,
1164, 1118, 1096

Carbohydrates 1461, 1382, 1337, 1261,
1207, 1125, 1084,
1049, 939

Carbohydrates 1201, 1153, 1080, 1055,
1020, 994
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in the mid-IR (wavelength E5–10 mm) apertured spot sizes of 25 mm are typical
with bench-top instruments. At such spatial resolution, subcellular detail is
impossible to determine. The DASIM project has helped to advance synchro-
tron FTIR microscopy at cell and tissue levels. The high brilliance of the source
enables apertures to be as low as 10�10 mm2 or even 6�6 mm2, making whole
cell and intracellular measurements feasible (see Chapters 3 and 7). During the
course of this project, much progress has also been made in terms of stan-
dardization protocols and understanding the contribution of scattering phe-
nomena such as Mie scattering (refer to Chapter 8). In Raman spectroscopy,
the diffraction limit applies to the incident monochromatic light source. In the
case of FTIR, however, the incident light is not monochromatic, and operating
at the diffraction limit can imply reduction of spectral range, as shown in
Chapter 2. In terms of spatial resolution, synchrotron IR sources perform
significantly better than conventional bench-top instruments due to the

Figure 4.15 Plot of Raman (0th derivative) vs. FTIR (inverse 2nd derivative) mean
spectra for non-cancerous and cancerous lymph nodes (numbers in
purple indicate peaks shared in both Raman and FTIR while numbers in
blue are only selective for Raman and those in red only selective for
FTIR).
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increased beam collimation. Attenuated total reflection imaging techniques
have reported spatial resolutions of as low as 2 mm, although this is a sig-
nificantly more specialized and complex technique.
In terms of axial resolution, for transparent samples, Raman microscopy is

governed by the focal depth of the objective, whereas IR microscopy is gov-
erned by the thickness of the sample (in simple transmission mode). For a 100�
objective, this is typicallyB1–2 mm and the axial resolution can be improved by
taking advantage of confocal imaging conditions. An important consideration,
however, is that whereas in the visible region the majority of cellular compo-
nents are transparent, many are strongly absorbing in the mid-IR. Thus the
nucleus of a cell is optically very dense whereas the cytoplasm is sparse. This
has led to many anomalous results indicating that the nucleus is deficient in, for
example, nucleic acids compared to the surrounding cytoplasmAQ5 .42 The varia-
tions in optical density across cells and tissue have led to many confusing
results, and effects such as the ‘‘dispersion artefact’’ have entered the vernacular
of FTIR spectroscopy. This phenomenon is a direct result of the fact that FTIR
is an absorbance technique applied to samples of significant inhomogeneity of
optical density and is not manifested in Raman spectroscopy. This stresses the
importance of pre-processing FTIR spectra of cells and tissues to avoid such
pitfalls and misinterpreting the spectral information, which is not only com-
posed of the sample’s biochemical information but also information of physical
origins. The physical origin of some of these effects in both transmission and
transflection mode have recently been elucidated,43,44 and a reliable method to
remove these artefacts has been proposed (see also Chapter 8).45

4.8.3 Fluorescence and Scattering

While operating at visible wavelengths in Raman has the advantage of spatial
resolution and optical transparency, there are also disadvantages. In general,
Raman scattering is inherently a weak process and it suffers from the problem of
fluorescence background. If the sample of interest is resonant with the illumi-
nating wavelength, even a low efficiency luminescent emission can be sufficient
to swamp the weak Raman signal on the Stokes side. The spectrum of thyroid
tissue section in Figure 4.16 was recorded using 514.5 nm irradiation and the
background registers in the spectrometer region B525–630nm (400 cm�1 to
3500 cm�1 Raman/Stokes shifted from 514.5 nm) and beyond. This background
is commonly assumed to be fluorescence and this assumption has entered the
biomedical spectroscopy literature.46–49 Fluorescence from biomaterials has also
been reported at irradiation wavelengths of 785 and even 830nm.48,49 It is
important to remember, however, that for a material to fluorescence, it must
absorb at the irradiating wavelength. Fluorescence spectroscopy has been
explored as a potential probe of malignancies in for example skin, the principle
chromophores being nicotinamide adenine dinucleotide (NADH), collagen,
elastin, tryptophan, flavins and porphyrins.50 However, excitation wavelengths
are typically less than 400nm and while some chromophores such as
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haemoglobin absorb at visible wavelengths, there is significantly less fluores-
cence higher than B600nm. It must be argued therefore that the large and
problematic background to the Raman spectra commonly observed at visible
wavelengths may have contributions from a different physical origin.
The background to the Raman spectrum at visible wavelengths can have its

origin in stray light fromMie scattering, such that sample morphology can play
an important role and the spectral signal to background ratio can be improved
by employing a true confocal configuration. Mie scattering occurs upon the
interaction of radiation with particles of similar or larger dimensions compared
to the incident radiation. Tissue sections have cellular and subcellular features
of the order or 1–10 mm. This is in the realm of Mie scattering of visible
radiation and gives the sections a white diffuse appearance. It is not surprising
therefore that these inhomogeneous samples give rise to a broad background to
the Raman spectra. Mie scattering is an elastic process and, since the scattered
radiation is of the same frequency as the laser, it should be removed by the
holographic notch filter and prevented from entering the spectrometer. The
transmission spectrum of the notch filter is however strongly angular depen-
dent. Diffusely scattered radiation is not well collimated by the microscope
objective and is thus incident on the notch filter at non-optimized angles.
Although it is not well understood, it is assumed that this radiation is trans-
mitted by the notch filter and enters the spectrometer as stray light where,
although monochromatic, it appears dispersed across the CCD.

Figure 4.16 Unprocessed Raman spectra of thyroid tissue obtained at an excitation
wavelength of 514.5 nm with varying confocal hole.
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The problems of Mie scattering can be reduced by utilizing the confocality of
the microscope configuration. The Mie scattered radiation is not collimated
and thus is not transmitted by the confocal hole. Improvements of signal
to background of a factor of B10 have been demonstrated in this way (see
Figure 4.16).
The measurements reported do not imply that resonant excitation of biolo-

gical or other materials cannot give rise to fluorescent emission. While the
background to the Raman spectra can be viewed as an inconvenience which can
be removed either instrumentally or by background removal post spectral
recording, fluorescent emission by definition implies a resonant excitation of a
chromophore which, when present, through their emission or resonantly
enhanced Raman signals could in themselves be valuable as diagnostic or
analytical markers. However, as fluorescent efficiencies are in most cases sub
unity, any excited state can give rise to local heating and/or photo-oxidative
chemistry. With operating powers of 10mW, this implies a power density of
B104Wm�2, and while these powers are required given the low efficiency of the
Raman effect they can potentially cause significant sample degradation, espe-
cially at shorter wavelengths, where the photon energy is high.

4.8.4 Photodegradation

Reports of photodegradation in Raman spectroscopy are indeed numerous. In
many cases, however, these are due to multiphoton resonances at high inten-
sities in Optical tweezers or CARS experiments. In a study of photodegradation
in Raman spectroscopy of living cells and chromosomes Puppels reported that
while significant degradation was observable at 514.5 nm, no degradation was
observable at 660 nm [51].51 It should be noted, however, that even at 514.5 nm,
the photon energy (2.4 eV) is not sufficient to cleave a covalent bond. Such a
spectral dependence of the photodegradation process is reminiscent of that
observed for conjugated organic polymers. In this case the mechanism is one of
photo-oxidation whereby a photoexcited species transfers its energy to an
oxygen molecule which now in its highly reactive singlet state attacks the
donating species causing bond cleavage. In addition to photo-oxidative
mechanisms, high power density and absorption can combine to produce
thermal damage.52–54

It is often necessary to compromise collection efficiency in order to reduce the
spotsize and therefore power density while maintaining illumination power to
avoid sample degradation. In general in Raman spectroscopy, many intrinsic
problems can be avoided by use of near-IR radiation, however. In this way the
likelihood of photoexcitation of constituent molecules giving rise to photo-
emission or photochemistry is reduced. Rayleigh and Mie scattering are simi-
larly reduced. Commonly available near-IR sources supplied with commercial
Raman spectrometers are 785 nm and 830 nm laser diodes. On the Stokes
shifted side of the Raman spectrum, the ‘‘CH’’ region of the spectrum at
3000–3500 cm�1 is already shifted beyond the sensitivity range of silicon based
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CCD systems and therefore 785 nm illumination is accepted as the preferred
choice for most biological applications.

4.8.5 Signal to Noise

Ultimately, the Raman effect is intrinsically weak and a limit of the technique is
the signal to noise achievable. Raman spectroscopy for the measurement of
biochemical changes in tissue depends as much upon the signal to noise (S/N)
ratio as the magnitude of the measured Raman signal alone. The S/N ratio is a
useful measure describing the quality of the spectrum; its inverse is the relative
precision of the measurement, or the relative standard deviation from the true
signal. This section aims to quantify the contributions to the Raman spectrum
of each common component of noise or source of erroneous signal.
Shot noise is the dominant source of noise in dispersive Raman measure-

ments. It is caused by the random probabalistic nature of light and matter. If
the intensity of light is measured with a perfect noise-free detector, the standard
deviation of the number of detected photons will be equal to the square root of
detected photons.55 Using an optimized Renishaw System 1000 Raman spec-
trometer to measure Raman scattering in oesophageal biopsy samples with
830 nm light, the strong C–H stretch band intensity at 1455 cm�1 was
approximately 4500 counts in 30 s. Therefore the uncertainty of the measure-
ment, due to shot noise, is 67 counts or � 1.5%. If the time of acquisition were
reduced to 10 s, the measurement would yield 1500� 39 counts or � 2.6%
uncertainty; a further reduction to an integration time of 1 s would give
150� 12 counts or � 8% uncertainty. This example shows the effect of redu-
cing acquisition time leading to a reduction in the S/N ratio and the certainty of
the measurement.
It must be noted that the shot noise will not only originate from the Raman

scattering signal but also background signal originating from stray light and/or
fluorescence. Therefore even if these signals can be subtracted, the shot noise
contribution will remain superimposed on the measurement, sometimes com-
pletely obscuring the Raman spectrum. For example if the background induced
in a sample produces 1000 counts per second at a particular wavenumber of a
Raman scattering band that produces 100 counts per second, then the com-
bined signal at the band position will be 1100 counts � 33 counts from shot
noise. Following subtraction of the background signal of 1000 counts the
Raman band has intensity of 100 photons � 33 photons or � 33% uncer-
tainty. At 830 nm, tissue scattering/fluorescence background has been shown to
contribute around 100 counts per second (in this example), whereas the Raman
signal can be between 5 and 50 counts per second.
The variation in pixel sensitivity and thermal noise across the CCD detector

will superimpose a fixed pattern noise on the Raman spectrum. The effects of
these can be reduced by binning several illuminated pixels in the intensity
direction; or they can be corrected by collecting a spectrum of light that changes
slowly with wavelength and dividing the Raman spectrum by the source
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spectrum. (This procedure has been outlined elsewhere.56) CCDs have an
inherently low dark noise that will depend upon the pixel location, as there will
be a temperature gradient from the centre to the edge of the chip, yielding fixed
pattern noise plus random noise. CCD detectors are therefore commonly Pel-
tier cooled to � 70 1C to minimize thermal noise contributions.
The contribution to the signal in this example from the CCD [Renishaw

RenCam (1998)] readout noise was approximately seven electrons per readout.
Read noise is a random noise and therefore increases with the square root of
the number of readouts per channel. In the case where an active region of
576�20 pixels is used, when reading out 20 pixels separately then the read noise
would be around 32 electrons per wavenumber channel (this equates to
approximately 6 counts with the Renishaw system in high gain mode). How-
ever, if the 20 pixels are binned and digitized together the read noise would be
about seven electrons per channel.
Cosmic rays passing through the photosensitive region can produce

thousands of photoelectrons. This effect results in a very strong sharp signal in
the Raman spectrum. Quantification of spike noise is difficult due to the
random nature of its occurrence. However, it is usually quite obvious to the
observer when a spectrum of biological tissue contains a contribution from
spike noise. These spikes can be erased from the spectrum or the whole
spectrum can be discarded. They can also be circumvented by averaging
several scans.
The effect of ambient lighting, another source of fixed pattern noise, on tissue

Raman spectra should also be considered.
Source noise is caused by fluctuations in the irradiance of the incident light,

which inherently causes fluctuations in the Raman scattering. Simultaneous
measurement of all spectral components across the CCD array reduces the
effect of this noise in an individual spectrum. However, comparison of one
spectrum to the next for quantification of biochemical changes is complicated
by source noise. The fluctuation in intensity and wavelength of the laser source
should also be quantified. This is why the use of stable diode lasers is preferred.
An often neglected source of fixed pattern noise is that caused by instrument

alignment and calibration errors. Unwanted information about the perfor-
mance of the Raman instrument is added to the Raman spectrum. Calibration
drift errors should therefore also be considered.
In summary, a typical Raman spectrum of fresh tissue, measured at 830 nm

for 30 s with a laser power of 32mW at the sample, will include a C–H stretch
peak at 1445 cm�1. If the intensity at this peak is for example 4500 counts then
a contribution of 67 counts will be due to shot noise. The total signal of 4500
counts is made up of approximately 3000 counts of fluorescence/stray light
signal and 1500 counts of inelastic scattering signal. The contributions from
fixed pattern noise sources can be minimized by multiplying the spectra by
correction files. Readout noise contributes about 6 counts and the dark current
or thermal noise in the CCD contributes approximately 4 counts in the 30 s
integration time. Hence measurement repeatability due to quantifiable noise
contributions is approximately � 5% for the 1445 cm�1 peak measured in 30 s.

136 Chapter 4



This can be converted to a quantifiable S/N ratio of 20. The theoretical noise
contributions agree well with the measured S/N ratio at 830 nm of 18.5.

4.9 Conclusions

Early detection of disease is critical to successful treatment and reduction of its
impacts, i.e., reduced morbidity and mortality. There have been significant
advances in Raman technologies that could be exploited for the detection and
tracking of molecules, signals or dynamic cellular events in living systems. The
challenge is to advance these technologies further to enable the early detection
of disease and to monitor disease progression and therapeutic efficacy. Its main
advantages lie in the fact that it is chemical-free, offers high spatial resolution
and is minimally invasive. It is readily amenable as a novel sensor for diag-
nostics in whole organisms as well as for miniaturized systems for point-of-care
diagnostics. Raman therefore holds promise for bench-top and clinical
applications.
Raman analysis holds inherent advantages over FTIR and synchrotron

FTIR methodologies. These include higher spatial and spectral resolution and,
for biological systems, the weak response of water. Operating at optical or
near-IR wavelengths lends further advantages for fibre based in vivo applica-
tions. Although, in terms of spatial resolution, synchrotron-FTIR is compar-
able, cost and accessibility is an obvious issue. However, the combination of
modalities, i.e., synchrotron-FTIR microscopy with new imaging devices like
focal plane arrays (see Chapter 7) or with an ATR imaging should in the future
largely improve the potential of IR microscopy in both cell and tissue research.
One of the biggest challenges to moving Raman spectroscopy, as a diagnostic

technology, from the laboratory to the health care system is the high compu-
tational burden of transforming measurements into some meaningful infor-
mation that health care providers can use. This also applies to FTIR cell and
tissue imaging. Therefore, a very important aspect will be the development of
computational techniques and analytical tools for signal extraction/processing
and computational modelling of living systems as a predictive tool for therapy,
and dealing with large amounts of real-time diagnostic data coming from living
systems. The main objective will be to find ways of providing meaningful
diagnostic and monitoring information that can be captured efficiently, reliably
and in real time (intelligent diagnostic). Such advances will make health care
services more efficient, improve patient care and safety, reduce health care costs
and/or create opportunities for remote care.
Among the future Raman based techniques, CARS, first reported by Duncan

et al.,57 can provide molecular specific contrast,58,59 with 3D signal localization,
due to the fact that multiphoton interactions are required to induce CARS
signals in the volume of interest from highly focused, pulsed laser beams.60 Due
to its coherent signal generation it has an advantage over spontaneous Raman
scattering microscopy, in that the signals are observed at higher energies rela-
tive to the excitation wavelengths. Therefore any fluorescence background from
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the sample will not interfere with the signal collected.60 The most likely
applications of this technology will be as a research tool for understanding
carcinogenesis processes in ex vivo tissue specimens by optically dissecting the
sample. It is already capable of rapidly providing high contrast molecular
images at the cellular level and should be able to investigate intracellular
pharmacokinetics by giving the distribution map of a specific molecule such as
a drug.
Surface Enhanced Raman Spectroscopy can provide molecule specific

enhancement of Raman signals,61 by bringing the target molecule into close
proximity with a roughened (nanometre scale) noble metal surface. Huge
enhancement factors of the order of greater than 109 are possible and single
molecule detection has been reported.62 However, it has proved difficult with
SERS to achieve reliable and reproducible results, a key requirement for clin-
ical use. Improvements have been made with recent developments of novel
substrates such as encapsulated nanoparticles that may overcome some of these
difficulties.63 They can be easily tagged with antibodies and photonic crys-
tals,64,65 which by careful manufacture can provide reliable substrates that can
be tuned to specific resonance with excitation wavelengths. The use of antibody
tags to enable molecule specific detection of disease has been demonstrated.
Further developments have included the use of SERRS, a resonance SERS
technique pioneered by Graham et al., which is able to provide equivalent
detection limits to fluorescence labelled dyes.66 In the cancer environment,
tagged nanoparticles enhancing specific signals from malignant markers are
either being used in vivo (safety issues to be resolved)67–69 or as molecular
specific stains for histopathology;70–72 with the possibility of numerous multi-
plexed SERS/SERRS stains providing hyperspectral images of locations of
molecules of interest from the same spectral acquisition and tissue section.73

The application of SERS for intracellular imaging and for monitoring drug
distribution at physiological conditions has also been demonstrated.74
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34. F. M. Lyng, E. Ó Faoláin, J. Conroy, A. Meade, P. Knief, B. Duffy,

M. Hunter, J. Byrne, P. Kelehan and H. J Byrne, Exp. Molec. Pathol.,
2007, 82, 121–129.

35. T. R. Chowdhury and J. R. Chowdhury, Acta. Cytol., 1981, 25(5),
557–565.

36. F. Draux, P. Jeannesson, A. Beljebbar, A. Tfayli, N. Fourré, M. Manfait,
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Addendum A – Raman Calibration Procedure

(a) Spectral Calibration

Generally instrument software is based on a linear calibration and thus two
reference points are sufficient. In the software, adjustment of the Zero (straight
line intercept) and Co-efficient (straight line slope) is possible.
The grating should be tuned to the zero order and the zero point adjusted to

ensure agreement. The grating should be tuned to the laser wavelength and the
software calibration adjusted accordingly (in cases where the laser line is fixed
rather than tuneable, this step is performed upon installation).
The instrument should be focused on a reference sample and the Raman

response recorded. Silicon is often recommended as the reference material
because it is stable and has a single strong narrow Raman mode at 520.7 cm�1

(see Figure 4.2). The Co-efficient parameter should be adjusted to ensure
agreement. This can be performed most accurately by fitting a Gaussian/Lor-
entzian band to the peak.
These steps can be repeated a number of times to ensure a good calibration.
It is recommended at this point also to measure a multiline spectrum from a

reference sample (PET, 1,4 Bis (2-methylstyryl) benzene, neon light) so that any
nonlinearities of the calibration can be adjusted for in the final data.
(b) Intensity Calibration

The intensity calibration can be achieved via the following steps.
Record the dark current response of the detector over the region of interest.
Record the spectrum of a broadband intensity standard. Although white

light sources such as halogen or tungsten lamps can be employed, the illumi-
nation geometry does not mimic that of the Raman collection well as it does not
act as a point source. Thus the use of fluorescent standards (where they exist)
such as those provided by the American NIST is recommended, although there
are sometimes point to point variations in the signal found from these
standards.
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