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Chennupati, Hazem Rashed, Jonathan Horgan, Ciaran Hughes and Senthil Yogamani

Valeo Vision Systems, Ireland

Abstract

Automated Parking is a low speed manoeuvring scenario which is quite unstructured and complex,
requiring full 360° near-field sensing around the vehicle. In this paper, we discuss the design and implemen-
tation of an automated parking system from the perspective of camera based deep learning algorithms. We
provide a holistic overview of an industrial system covering the embedded system, use cases and the deep
learning architecture. We demonstrate a real-time multi-task deep learning network called FisheyeMultiNet,
which detects all the necessary objects for parking on a low-power embedded system. FisheyeMultiNet runs
at 15 fps for 4 cameras and it has three tasks namely object detection, semantic segmentation and soiling
detection. To encourage further research, we release a partial dataset of 5,000 images containing semantic
segmentation and bounding box detection ground truth via WoodScape project [ Yogamani et al., 2019].

Keywords: Automated Parking, Visual Perception, Embedded Vision, Object Detection, Deep Learning.

1 Introduction

Recently, Autonomous Driving (AD) gained
huge attention with significant progress in
deep learning and computer vision algorithms
[Rezaei and Klette, 2017]], where it is consid-
ered one of the highly trending technologies all
over the globe. Within the next 5-10 years, AD
is expected to be deployed commercially. Cur-
rently, most of the automotive original equip-
ment manufacturers (OEMs) over the world
such as Volvo, Daimler, BMW, Audi, Ford,
Nissan and Volkswagen are working on devel-
opment projects focusing on AD technology
[Ro and Ha, 2019]]. The complexity of the sys-
tem must be acceptable for the purpose of producing commercial cars which adds limitations to the hardware
used for production. Fisheye cameras offer a distinct advantage for automotive applications. Given their ex-
tremely wide field of view, they can observe the full surrounding of a vehicle with a minimal number of sensors.
Typically four cameras is all that is required for full 360° coverage of a car (Figure[T). Nevertheless, this advan-
tage comes with some drawbacks in the significantly more complex projection geometry that fisheye cameras
exhibit. This advantage comes with a cost in the significantly more complex projection geometry exhibited by
fisheye cameras.

Convolutional neural networks (CNNs) have became the standard building block for the majority of visual
perception tasks in autonomous vehicles. Bounding boxes for object detection is one of the first successful
applications of CNNs for detecting not only pedestrians and vehicles, but also their positions. Recently se-
mantic segmentation is becoming more mature [Siam et al., 2017] [Siam et al., 2018al], starting with detection

Figure 1: Images from the surround-view camera network
showing near field sensing and wide field of view.




of roadway objects like road surface, lanes, road markings, curbs, etc. CNNs are also becoming competitive
for geometric vision tasks like depth estimation [Kumar et al., 2018]], Visual SLAM [Milz et al., 2018]], etc.
Despite rapid progress in the computational power of embedded systems and of specialized CNN hardware
accelerators, real-time performance of semantic segmentation is still challenging. In this paper, we focus on
deep learning architecture for an automated parking system which is relatively less explored in the literature
[Heimberger et al., 2017]].

The rest of the paper is structured as follows. Section [2] provides an overview of parking system use
cases and necessary visual perception modules. Section [3] details a concrete implementation of efficient multi-
task architecture with results and discusses how it fits into the overall system architecture. Finally, Section f]
summarizes the paper and provides potential future directions.

2 Automated Parking System

2.1 Parking Use cases

Parallel parking: The system attempts to align the vehicle in parallel to the curb or the road as illustrated in
). In such a strategy, the vehicle usually parks in one maneuver, and further maneuvers are required for align-
ment with curb and the vehicles around. Robust object detection and curb classification has to be implemented
to minimize the distance between the vehicle and the curb and ensure the vehicles in front and behind are
avoided. Conventional ultrasonic sensors are capable of detecting curbs, however fusion with cameras greatly
enhances the classification and position accuracy.

Perpendicular parking: The system tries to find a lateral parking slot, where the width of the slot is
sufficient for the vehicle, with additional room for opening the doors and safety distances. If the slot is found
to fit the required size, then a trajectory that minimizes the number of maneuvers necessary is planned to reach
the slot target. This parking strategy can be performed in backward direction as illustrated in Figure 2(b) or
forward direction as shown in Figure [J(c). Ultrasonic sensors are quite unreliable in the detection of other
vehicle’s corners due to missing and incorrect reflections of the ultrasonic waves,resulting in the multiple re-
measurements to improve the detection. This may result in some additional maneuvers to overcome the error
introduced from using ultrasonic sensors only. As well as this ultrasonics are only useful in parking between
two objects, being unable to detect road markings. Fusion with a camera sensor provides improved performance
in multiple aspects. For instance, computer vision techniques can provide complementary information for depth
estimation using Structure from Motion (SFM). Cameras are also able to detect the white line markings which
allow for detection of slots where there are multiple empty slots in a group.
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Figure 2: Classification of Parking scenarios - (a) Parallel Backward Parking (b) Perpendicular Backward Park-
ing (c) Perpendicular Forward Parking (d) Ambiguous Parking and (e) Fishbone Parking with roadmarkings.

Ambiguous Parking: This parking scenario is neither parallel or perpendicular. The orientation must be
detected from the surrounding vehicles as in Figure[2(d). Due to the increased detection range, and the complete
sensor coverage around the vehicles that cameras provide, computer vision provides a more appropriate reaction



of the ego-vehicle in such situations. For instance, ultrasonic sensors do not provide information about the ego-
vehicle’s flank, objects have to be tracked blindly in that area using the vehicles motion, while this information
is provided in a 360 surround-view while using fisheye cameras. By using the complementary color information
provided by cameras, systems will also be able to detect any suddenly occurring objects with higher confidence
and thus react in a more timely manner compared to ultrasonics alone.

Fishbone Parking: Figure [2[e) shows an example of fishbone parking where there is a huge limitation
in ultrasonic sensors. To be able to detect the slot orientation using ultrasonic sensors only, the vehicle has
to drive inside the slot to detect the orientation from the surrounding vehicles, as the density of reflections is
too low when the vehicle is outside the slot. Therefore, detection of such a slot during the search phase is
not possible. Fusion with camera enables an increased range of detection using both object detection and slot
marking detection. This use case cannot be covered using ultrasonic sensors solely.

Home Parking: Thanks to the huge progress in computer vision and self-parking technology, higher-level
applications have been introduced for more comfort and better driving experiences. One of which is "Home
Parking" where the system is trained by the driver to follow a set trajectory and park in a particular spot.
The surrounding area is stored on the system and particular landmarks recorded. By doing this the vehicle
is capable of localizing itself within the environment in future and driving completely autonomously onto the
stored trajectory and following it to it’s regular parking space.

Valet Parking: Significant progress has been made in automated parking even without a stored trajectory.
In this case, the system is completely autonomous in it’s slot-search, selection, and parking without having any
prior knowledge about the environment or a predefined trajectory.

2.2 Necessary Vision Modules

Parking slot detection: The first and foremost step in automated parking is the selection of a valid parking
space, in which a car can be safely parked. An ideal parking slot detection algorithm shall detect several types
of parking slots, as shown in Figure[2] Parking slot detection can be further broken down into several stages. It
involves detection of line markings, curbs, vehicles, shrubs and walls as all of these are necessary in recognizing
an open parking slot. Additionally, it is of vital importance an accurate measurement of the width and length
of the slot can be made to ensure the vehicle can safely fit within.

Freespace detection: The final objective of autonomous parking system or complete autonomous driving
systems is navigating the car to a target. Therefor the freespace (area free of pedestrians, vehicles, cyclists
or any other objects that have potential risk of damage or injury while passing over them) or "driveable" area
information is critical. Such information is also crucial in situations when evasive maneuvers are needed in real
time to minimize the risk of collision.

Pedestrian detection: Collision risk usually arises from object classes that can be moving. One of such
classes is the pedestrian class. Pedestrian detection comprises a challenging task due to several reasons. For
instance, they are very difficult to track because pedestrian motion can be erratic and difficult to predict. A
pedestrian may suddenly appear behind a vehicle while attempting to park. Knowing the object belongs to the
pedestrian class, the system should expect it to move away, and thus should not abort at that moment. Pedestrian
classification is very helpful in other autonomous driving situations as well, e.g. a child suddenly crosses the
street and the vehicle has to suddenly brake. Infrared cameras can be utilized to maximize the performance of
pedestrian detection systems, due to their capability to capture thermal energy [Baek et al., 2017]], but this can
be costly in production systems.

Vehicle detection: Vehicle detection is one of the most important automotive computer vision tasks. It
is very helpful in the scope of autonomous parking for many reasons. For example, the ability to distinguish
between high obstacles, such as shrubs or walls and vehicles. In a parking situation it is of vital importance the
system can recognize a vehicle which has the ability to move and obstruct the planned trajectory of our car, and
a wall which we plan to park alongside, knowing it will be stationary throughout our manoeuvre. Typically,
in the AD scenario, the system has to react to dynamic vehicles surrounding the ego-vehicle. Such vehicles
have to be tracked to avoid suddenly occurring vehicles after occlusion. The first step to perform such a task is



vehicle classification.

Cyeclist detection: Cyclists can be classified as pedestrians. However, cyclists have the ability to move
faster with less maneuverability. Thus, distinguishing between cyclists and pedestrians provides additional
information for the system that helps in tracking such objects.

Soiling Detection: Cameras embedded within the vehicles are directly exposed to an external environ-
ment and there is a good chance that they get soiled due to bad weather conditions such as rain, fog, snow,
etc [Uricar et al., 2019b]. Moreover, dust and mud have a strong affect of degraded computer vision perfor-
mance. Compared to other types of sensors, cameras have much higher degradation in performance due to
soiling. Thus, it is critical to robustly detect soiling on the cameras, especially for higher levels of autonomous
driving. Soiling detection was first implemented to alarm the driver that there will be degraded performance
in the environment perception system. In a high-level autonomous system there could be fatal consequences if
information from soiled cameras is relied on, without having prior information that it is not correct.

3 Parking System Architecture

3.1 Overall Software Architecture

The block diagram of our system is illustrated in Figure [3] The first step in an industrial system is the SOC
(System on Chip) selection for embedded systems, based on criteria including performance (Tera Operations
Per Second (TOPS), utilisation, bandwidth), cost, power consumption, heat dissipation, high to low end scal-
ability and programmability. The SOC choice provides the computational bounds in the design of algorithms.
A typical embedded system is shown on top left of the block diagram. In computer vision, deep learning is
playing a dominant role in various recognition tasks and gradually for geometric tasks, like depth and motion
estimation also. The progress in CNN has also led to the hardware manufacturers including a custom hardware
intellectual property core to provide a high throughput of over 10 TOPS. The current system we are developing
our algorithms on, has 1 TOPS of compute power, consuming less than 10 watts of power.

The necessary object detection modules were discussed in Section[2.2] In previous systems, some modules,
for instance pedestrian detection, was done using machine learning techniques while others, like parking slot
detection were done using classical computer vision techniques. Due to recent advancements in deep learning,
all of the necessary vision modules can now be done using deep learning models. Thus, we propose a unified
multi-task architecture for doing all these tasks, that runs on a Hardware accelerator (Green in the block dia-
gram (Fig. [3))). This will be discussed in more detail in the next section. The deep learning model provides
necessary functionality for parking. However, to add robustness, additional cues like motion estimation and
depth estimation can be used along with other sensors like Ultrasonics, Radar, etc. In this paper, we focus on
the basic solution for a parking system using deep learning only. Any detected objects from the four cameras
are recorded in image coordinates, mapped to world coordinates to create a common representation and fed into
a virtual map to plan maneuvering of the car for automated parking. Road markings and curbs are handled in
the same way, also being sent to the map building a viable model for the world around us. Bounding boxes can
be established around objects such as pedestrians and vehicles by assuming a flat ground plane and mapping the
foot-point (intersection of object to ground plane) to a world position using the vehicle and camera calibration.
Depth estimation can handle cases where the foot-point is occluded or the road is no flat.

3.2 Proposed Multi-task Architecture

Various visual perception tasks like semantic segmentation [Paszke et al., 2016]], bounding object detection
[Redmon et al., 2016], motion segmentation [Siam et al., 2018bf|], depth estimation and soiling detection are
commonly addressed using an encoder-decoder style architecture in deep learning. Many works have focused
on solving these tasks independently. However, multi-task learning [Sistu et al., 2019} |Chennupati et al., 2019a,
Teichmann et al., 2018]] enables the solving of these tasks using a single model. The main advantage of a multi-
task network is its high computational efficiency, which is most suitable for a low cost embedded device. In
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Figure 3: Parking System Architecture

a simple scenario, where a multi-task network solving two tasks using a common encoder that shares 30% of
common load is comparatively much better than independent networks consuming the whole processing power
available without common load sharing. In this case, an additional task can also be solved with remaining com-
puting resources. This, in fact, offers scalability for adding new tasks at a minimal computation complexity.
[Chennupati et al., 2019b]] provided a detailed overview on negligible incremental computational complexity
while increasing number of joint tasks solved by a multi-task network. On the other hand, using pre-trained
encoders (say ResNet [He et al., 2016]]) as a common encoder stage in multi-task networks reduces training
time and alleviates the daunting requirements of massive data to optimize. Reusing the encoder also provides
regularization across different tasks.
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Figure 4: Illustration of FisheyeMultiNet architecture comprising of object detection, semantic segmentation
and soiling detection tasks.

Network Architecture: We propose a multi-task network called FisheyeMultiNet, having a shared encoder
and three independent decoders that perform joint semantic segmentation, object detection and soiling detection
as shown in Figure [d A semantic segmentation decoder provides valuable lane markings, road and sidewalk
information, while an object detection decoder provides bounding boxes of pedestrians, cyclists, vehicles, etc.
These two tasks primarily provide solutions to the major vision modules discussed in Section [2] A soiling
detection decoder outputs the presence of external contamination on the camera lens, providing classification



Table 1: Comparison Study: Single task vs. Multi-task FisheyeMultiNet

Databases Metrics STL Seg STL Det MTL
JI road 0.9574 0.9514
Parking Seg JI lane 0.6517 0.6424
JI curb 0.5960 0.5850
mean IOU  0.7350 0.7263
AP Vehicle 0.6910 0.7016
. AP person 0.3620 0.3609
Parking Det ) p 1 clist 03682 03817
mean AP 0.4737 0.4814
Parking Soiling TPR 0.5581 0.5532
FPR 0.1432 0.1443

per tile for obtaining the localization of soiling in the image. We treat the camera soiling detection task as
a mixed multilabel-categorical classification problem focusing on a classifier, which jointly classifies a single
image with a binary indicator array, where each 0 or 1 corresponds to a missing or present class respectively,
and simultaneously assigns a categorical label. The classes to detect are {opaque, transparent}. Typically,
opaque soiling arises from mud and dust, and transparent soiling arises from water and ice.

The raw fisheye images are passed to a common encoder built using the ResNet10 [He et al., 2016] en-
coder. This encoder is pre-trained on ImageNet [Russakovsky et al., 2015]] and then trained on raw fisheye
WoodScape images. The semantic segmentation network is built using the FCN8 [Long et al., 2015|] decoder
with skip connections from the ResNet10 encoder. The object detection decoder is built using a grid level
softmax layer, while the soiling decoder is built using a grid level softsign layer. The categorical cross entropy
is used as a loss metric for semantic segmentation and soiling detection, while average precision is used as the
loss metric to express individual task losses. The total loss of the network is expressed as a weighted arithmetic
combination of individual task losses and optimized using the Adam [Kingma and Ba, 2015] optimizer. We
do this intending to have a drastic increase in memory available and computational efficiency with just a small
reduction in accuracy. We make use of several standard optimization techniques to further improve the runtime,
and achieve 10 fps for four cameras on an automotive grade low power SOC. Some examples are: (1) Reducing
number of channels in each layer, (2) Reducing number of skip connections for memory efficiency, and (3)
Restricting segmentation decoder to image below the horizon line (only for roadway objects).

Datasets: The development of our architecture was primarily done on our internal parking dataset, which
originates from three distinct geographical locations: USA, Europe, and China. While the majority of data
was obtained from saloon vehicles, there is a significant subset that comes from a sports utility vehicle (SUV)
ensuring a strong mix in sensor mechanical configurations. It consists of four 1 Megapixel RGB fisheye cameras
(190° hFOV). After the collection of images, an instance selection algorithm is applied to remove redundancy
[[Uricar et al., 2019al] and produce the final dataset which consists of 5,000 samples. To the best of the authors’
knowledge, this is the first public dataset for automated parking. The dataset is split into three chunks in a ratio
of 6:1:3, namely training, validation, and testing. This dataset and the baseline multi-task model will be made

public to the research community via our WoodScape project [[Yogamani et al., 2019].

3.3 Results and Discussion

In this section, we explain the experimental settings including the datasets used, training algorithm details,
etc. and discuss the results. We used our fisheye dataset comprising of 10,000 images. We implemented our
baseline object detection, semantic segmentation networks and our proposed multi-task network using Keras.
All input images were resized to 1280 x 384 because of memory requirements needed for multiple tasks. Tablel[l|
summarizes the obtained results for the single task (STL) independent networks and multi-task (MTL) networks
on our parking fisheye datasets.

One of the main challenges of MTL is to balance the loss functions of all three tasks as the magnitude of
the losses vary at different scales. This led to a faster convergence of certain tasks and divergence of other



tasks. To handle this, we make use of a weighted loss function to normalize the losses. We update the task
weights every epoch, based on loss gradients. We weigh the different tasks based on gradients observed after
every epoch in a similar fashion to GradNorm [Chen et al., 2017]]. We tested 3 configurations of the MTL loss,
the first one (MTL) uses a simple sum of the segmentation loss and detection loss (Wseg = Wger = 1). The two
other configurations MTL ;g and MTL, g, use a weighted sum of the task losses where the segmentation loss is
weighted with a weight wgeg = 10 and wyeg = 100 respectively. This compensates the difference of task loss
scaling and wyeg = 100 consistently improves the performance of the segmentation task for all the three datasets.
Experimental results show that performance of MTL networks are marginally lower than the STL networks.
However, the computational gains offered by multi-task networks and a potential to improve performance by
further fine-tuning, would make multi-task networks a more suitable option for future embedded deployment.

4 Conclusion

In this paper, we provided a high level overview of a commercial grade automated parking system. We covered
various aspects of the system in detail, including the embedded system architecture, parking use cases which
need to be handled and the vision algorithms which solve these use cases. We have focused on a minimal
system which can be designed via an efficient multi-task learning architecture using four fisheye cameras which
provides 360° view surrounding the vehicle. We provided detailed quantitative results of the proposed deep
learning architecture and show that the accuracy of an MTL network is not that much lower than an STL, despite
the reduction in memory consumption and computational power. In addition, we released a dataset comprising
of 5,000 images with semantic segmentation & bounding box annotation to encourage further research.
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