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     IMS 2008 June20-24th   

International Mathematica Symposium - Maastricht, The Netherlands

An Exploration of a 
Discrete 
Rhombohedral 
Lattice
of Possible Engineering or Physical Relevance

Jim McGovern

Dublin Institute of Technology
School of Mechanical and Transport Engineering
Bolton Street, Dublin 1, Ireland
jim.mcgovern@dit.ie
A  particular  discrete  rhombohedral  lattice  consisting  of  four  symmetrically
interlaced  cuboctahedral  or  cubic  point  lattices  is  described  that  is  interesting
because of the high degree of symmetry it exhibits. The four constituent lattices
are denoted by four colours and the composite lattice is referred to as a 4-colour
rhombohedral lattice. Each point of the 4-colour lattice can be referenced by an
integer  4-tuple  containing  only  the  positive  non-zero  integers  (the  counting
numbers).  The  relationship  between  the  discrete  rhombohedral  lattice  and  a
discrete Cartesian lattice is explained. Some interesting aspects of the lattice and
of the counting-number 4-tuple coordinate system are pointed out. 
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à Introduction
Symmetry underlies  nature  and  has  a  major  role  to  play  in  science  [1],  art,  mathe-
matics  [2]  and  engineering.  In  two  dimensions  there  are  only  three  fully  regular  or
symmetric  point  lattices  and  in  three  dimensions  there  is  only  one  fully  regular  or
symmetric point  lattice [3].  These are  the  triangular  tessellation,  the  square  tessella-
tion and the hexagonal  tessellation in  two dimensions and the cubic  lattice in  three.
Here  the  expression  fully  regular  or  symmetric  is  used  in  the  sense  that  the  funda-
mental cells (triangles, squares, hexagons and cubes respectively) of the point lattices
are  regular,  having  equal  sides  or  edges  and  equal  angles.  The  number  of  distinct
lattices (not necessarily fully regular or symmetric) that can allow displacements, rota-
tions  and  reflections  is  small.  This  paper  is  an  exploration  of  such  a  lattice:  the  4-
colour rhombohedral lattice.

Details of possible application areas in science and engineering are left for treatment
elsewhere,  but  some  highly  speculative  possibilities  have  already  been  outlined  by
the author [4].

à The Cuboctahedral or Bell-Fuller Lattice
In the twentieth century the cuboctahedral lattice attracted the attention of Alexander
Graham  Bell  [5]  and  of  Richard  Buckminster  Fuller  [6],  largely  because  of  its
symmetry:  each  point  is  surrounded  by  twelve  nearest  neighbours,  Figure  1,  that
form a quasi-regular polyhedron, the cuboctahedron, Figure 2. (In the field of crystal-
lography  a  sphere-packing  arrangement  of  cuboctahedral  form  is  described  as  the
cubic close-packed lattice or the face-centred cubic lattice.) 

Figure 1. The central joint with twelve equally distributed spokes is a gusset. Alexander Graham
Bell used gussets of this type to build structures, including many kites. Replication of the gusset
and the links between gussets gives rise to cuboctahedral trusses, structures and space frames,
which in engineering terms can be strong, rigid and light.
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Figure 2. Illustration of how the Bell gusset forms a cuboctahedron

Figure 3 illustrates a size-4 Bell-Fuller lattice. The first size would be the trivial case
of the single point at the centre of the lattice. The central point is surrounded by three
more cuboctahedral  shells.  Every  point  in  the  lattice of  Figure  3  belongs  to  one of
the four shells (where the central point is regarded as shell 1).

Figure  3.  The  cuboctahedral  lattice  is  made  up  of  cells  that  are  either  regular  tetrahedra  or
regular octahedra. Richard Buckminster Fuller explored the geometry of this lattice.

The  composite  rhombohedral  lattice  described  in  this  paper  is  perhaps  even  more
fascinating  than  the  cuboctahedral,  or  Bell-Fuller  lattice:  it  comprises  four  such
lattices, arranged symmetrically as in Figure 4 and Figure 5 . 
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Figure 4. Four Bell type gussets

Figure 5. The points of four interlaced Bell-Fuller lattices
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à The Rhombohedral 4-colour Lattice

á Structure of the Rhombohedral 4-colour Lattice
The points of four interlaced Bell-Fuller lattices, when interlaced as shown in Figure
4  and  Figure  5,  comprise  what  is  described  here  as  a  four-colour  rhombohedral
lattice.  All  pairs  of  points  that  are  nearest  neighbours  can  be  joined  by  links,  as
shown in  Figure  6.  The thicker  gray  links  are  described  as  primary spokes  or  axes.
The  black  links  that  are  opposite  the  primary  spokes,  and  collinear  with  them,  are
described as secondary spokes.

The  external  form  of  the  lattice  shown  in  Figure  6  is  the  rhombic  dodecahedron.
There  are  twelve  rhombic faces,  twenty  four  edges  and  fourteen  vertices.  The eight
vertices that correspond to the primary and secondary spokes connect three edges of
the rhombic dodecahedron and the remaining six join four edges.

Figure 6. Size 2 of the rhombohedral lattice

Figure  7  illustrates  a  4-colour  rhombohedral  lattice  of  size  3.  As  for  Figure  6,  the
external  shape  is  the  rhombic  dodecahedron.  The  secondary  spokes  have  been
omitted to emphasise the rhombohedral nature of the cells of the lattice. When this is
done there are four different orientations of the rhombohedral cells, corresponding to
the  orientations  of  the  four  quadrants  of  the  rhombic  dodecahedron  that  is  shown.
Each of the four quadrants of the rhombic dodecahedron is itself a rhombohedron.

The first size would be the trivial case of the single red point at the centre of the rhom-
bohedral  lattice.  The  central  point  is  surrounded  by  two  more  dodecahedral  shells.
Every point in the lattice of Figure 7 belongs to one of the three dodecahedral shells
(where the central point is regarded as shell 1).
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Figure  7.  Size  3  of  the  rhombohedral  lattice.  The  secondary  spokes  have  been  omitted  to
emphasise the rhombohedral cells of the lattice.

á A Natural Coordinate System for the Rhombohedral 4-colour 
Lattice
Every  point  position  on  the  rhombohedral  lattice  can  be  described  by  an  integer  4-
tuple,  as  in  Figure  8.  The  full  range  of  the  set  of  integers  can  be  used  arbitrarily
within  the  4-tuple  to  describe  the  position  of  any  point  with  respect  to  a  specified
‘origin’  and  therefore  the  representation  is  not  unique.  However,  any  such  4-tuple
can  be  converted  to  zero-based  form without  negative  integers  by  the  addition  of  a
unique  integer  to  all  elements  that  makes  at  least  one  of  the  elements  zero  and  all
elements  non-negative.  A  ‘standard  form’  4-tuple  can  also  likewise  be  defined  in
which at least one of the elements is unity and none are zero or negative. As negative
ordinates are not used, it is considered more natural to count from the integer 1, with
the origin represented as H1, 1, 1, 1L, as in Figure 8. Conversions between zero-based
and  standard  form  4-tuples  are  easily  implemented,  as  explained  in  the  following
subsections.
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Figure 8. Integer coordinate system for the rhombohedral lattice

Figure 9. Sample integer coordinates for the rhombohedral lattice
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Converting 4-tuple Coordinates to Zero-based Form
Listing 1 presents  a function,  QZeroForm,  written in Mathematica,  that  converts a
4-tuple coordinate list, or vector, to zero-based form. Another version takes four sepa-
rate  arguments  for  the  ordinates  of  the  4-tuple.  Variants  have  also  been  written  to
deal with lists of 4-tuples or, for instance, lists of 4-tuple pairs.

QZeroForm[{q1_, q2_, q3_, q4_}] := Module[{zerf}, qmin = 
Min[q1, q2, q3, q4];
    zerf = {q1, q2, q3, q4} - {qmin, qmin, qmin, qmin}]

Listing 1. A function, written in Mathematica, to convert a 4-tuple to zero-based form

An  example  of  a  conversion  from  standard  form  to  zero-based  form  in  a  Mathe-
matica session is as follows:

QZeroForm@81, 2, 3, 4<D
80, 1, 2, 3<

Converting 4-tuple Coordinates to Standard Form
Function QStdForm, as presented in Listing 2, converts a 4-tuple coordinate list, or
vector, to standard form:

QStdForm[{q1_, q2_, q3_, q4_}] := Module[{qzf}, qzf = 
QZeroForm[{q1, q2, q3, q4}] + {1, 1, 1, 1}]

Listing 2. A function to convert a 4-tuple to standard form

An example of a conversion from zero-based form to standard form is as follows:

QStdForm@80, 1, 2, 3<D
81, 2, 3, 4<

á The Colour of a Lattice Point
Given the colour number of the origin, nco (an integer from 1 to 4 corresponding to
the colours red, yellow, blue and violet) and a 4-tuple coordinate list Hq1, q2, q3, q4L
of  a  point,  the  function  CoQ  determines  the  colour  number  of  the  point.  This  is
shown in  Listing  3.  This  determination  amounts  to  summing the  four  ordinates  and
the colour number of the origin using clock arithmetic, base 4.
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CoQ[nco_, {q1_, q2_, q3_, q4_}] := Module[{c}, c = Mod[(q1 + q2 
+ q3 + q4 + nco - 1), 4] + 1]

Listing 3. Function to give the colour number of a point on the rhombohedral lattice

For example, if the origin is red, the point H1, 2, 12, 8L is violet:

CoQ@1, 81, 2, 12, 8<D
4

á Sum, Point Inversion and Difference

4-tuple Vector Addition
The  sum  of  a  pair  of  4-tuples  of  the  4-colour  rhombohedral  lattice  is  obtained  by
adding the corresponding ordinates. The result would normally be converted to stan-
dard form.

Point Inversion and Vector Difference
Listing  4  illustrates  the  implementation  of  a  function,  QInvert,  that  inverts  a  4-
tuple and returns the result in standard form. This is the point inversion of the 4-tuple
through  the  origin.  Each ordinate  is  inverted  by adding  one  to  the  sum of  the  other
three ordinates. The resulting 4-tuple is then converted to standard form.

QInvert[{q1_, q2_, q3_, q4_}] := Module[ {p1, p2, p3, p4, 
qinv}, p1 = 1 + q2 + q3 + q4; p2 = q1 + 1 + q3 + q4; p3 = q1 + 
q2 + 1 + q4; p4 = q1 + q2 + q3 + 1; qinv = QStdForm[{p1, p2, 
p3, p4}]]

Listing 4. A function to obtain the additive inverse, or point inversion through the origin, of a 4-
tuple

The following is an example of 4-tuple inversion as part of a Mathematica session:

QInvert@82, 1, 11, 6<D
810, 11, 1, 6<

The  vector  difference  of  two  4-tuples  can  be  implemented by  summing the  first  4-
tuple and the additive inverse of the second. The result would be brought to standard
form.
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á Length or Distance Calculations
Any planes of the lattice of Figure 6 that are made up of rhombs of unit edge length
provide an invariant metric ground form [7] that allows the length of a vector in the
plane to be defined. This concept can be extended to the four-tuple discrete space of
the  lattice.  The  application  and  implementation  of  this  type  of  approach  (including
conversions between 4-tuple and Cartesian coordinates) has been described by Hassl-
berger [8] and Urner,  [9] and [10],  in the latter two cases using the term ‘quadrays’
for the four basis vectors. 

The  length  or  distance  formula  for  a  vector  Hq1, q2, q3, q4L,  which  can  be  derived
using the cosine rule, is given by equation (1).

(1)
» r » =

,IIq1
2 + q2

2 + q3
2 + q4

2M - 2 ê3 Hq1 q2 + q2 q3 + q3 q4 + q4 q1 + q3 q1 + q2 q4LM.
Listing 5 presents the function Dist4Axis that calculates distance, which is equiva-
lent to calculating the length of a vector. The input is a single 4-tuple. 

Dist4Axis[{q1_, q2_, q3_, q4_}] := ,((q1^2 + q2^2 + q3^2 + 
q4^2) - (q1  q2 + q2  q3 + q3  q4 + q4 q1 + q3 q1 + q2 q4) 2/3  
)

Listing 5. Function to calculate distance on the 4-colour rhombohedral lattice.

As can be seen below, this can yield a value that is the square root of a fraction that
has a three in the denominator. 

Dist4Axis@83, 1, 12, 7<D

283

3

An  integer-only  distance  measure,  which  is  equal  to  three-times  the  square  of  the
distance between any two points  on the entire lattice,  is readily defined,  as in equa-
tion (2).

(2)s = 3 Iq1
2 + q2

2 + q3
2 + q4

2M - 2 Hq1 q2 + q2 q3 + q3 q4 + q4 q1 + q3 q1 + q2 q4L.

á Scaling and Scalar Division

Scaling and Scalar Division
A 4-tuple of the 4-colour rhombohedral lattice can be scaled by multiplying the ordi-
nates of the zero-based form by an integer. By this means the scaling is applied to the
ordinate intervals. The result would be brought to standard form.

Given  two  arbitrary  points  on  the  4-colour  rhombohedral  lattice,  the  vector  differ-
ence is a vector from the first to the second point. Some vectors cannot be divided by

10 Jim McGovern



any  integer  other  than  1:  their  scalar  divisibility  is  unity.  Function  QDivyS,  as
presented  in  Listing  6,  can  be  used  to  calculate  the  maximum  number  of  equal
(symmetric)  intervals  into  which  the  vector  can  be  divided  by  an  integer.  This  is  a
matter of finding the greatest common divisor of the intervals of the ordinates.

QDivyS[{q1_, q2_, q3_, q4_}] := Module[{qds, v}, v = 
QZeroForm[{q1, q2, q3, q4}]; qds = GCD[v[[1]], v[[2]], v[[3]], 
v[[4]] ]]

Listing 6. A function to find the scalar divisibility of a vector

As an example,

QDivyS@83, 1, 5, 9<D
2

à Relationship Between the Discrete Rhombohedral Lattice 
and a Discrete Cartesian Lattice

á The Nature of the Nucleated Cubic Lattices
The  smallest  cube  on  the  rhombohedral  lattice  (not  counting  the  case  of  a  single
point)  is  formed  by  the  pair  of  smallest  tetrahedra  on  the  discrete  rhombohedral
lattice, Figure 10.  This cube is the smallest possible cubic lattice on the four-colour
rhombohedral lattice. It consists of eight points (four yellow and four violet) with an
edge length of 1/ 3  rhombohedral lattice units. It is on shell 2 of the rhombohedral
lattice.  The  third  and  fourth  shells  of  the  rhombohedral  lattice  also  contain  corre-
sponding  sets  of  eight  points  in  a  cubic  arrangement.  However,  the  first  rhombohe-
dral lattice size that contains a full nucleated cubic lattice, as shown in Figure 11, is
the  fifth.  What  is  remarkable  is  that  all  points  of  the  cubic  lattice  have  the  same
colour, red in this case.
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Figure 10. The eight  vertices  of  the smallest  cube on the 4-colour rhombohedral  lattice,  shown
surrounding the origin of the 4-colour rhombohedral lattice.

The  nucleated  cubic  lattice  represented  in  Figure  11  is  a  size-2  nucleated  cubic
lattice.  Its  vertices  are  contained  in  the  fifth  shell  of  the  rhombohedral  lattice.  The
spokes  of  the  size-2  nucleated cubic  lattice each contain two red points.  The length
of each unit link or spoke of the cubic lattice is equivalent to 2/ 3  units of the rhom-
bohedral lattice.

Figure 11. The size-2 nucleated cubic lattice (the vertices of the smallest possible cube on the 4-
colour rhombohedral lattice are also shown)
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A red nucleated cubic  lattice of  any arbitrary size can be constructed  about  any red
point of the 4-colour rhombohedral lattice. Yellow, blue and violet cubic lattices can
be  constructed  about  any  point  of  the  respective  colour,  or  can  be  produced  by
displacing the (originally) red cubic lattice within the 4-colour rhombohedral lattice,
as was done in generating Figure 12. Each nucleated lattice is thus centred on a point
of a different colour.

Figure 12.  The points  of  the  4-colour  rhombohedral  lattice,  with  the  links  of  four  symmetrically
interlaced cubic lattices. This diagram has been constructed from four size-4 cubic lattices.

The methodology used  for  conversions  between discrete  4-tuple  and  discrete Carte-
sian  coordinates  is  explained  in  the  following  subsections.  The  relationships  used
have been derived from the trigonometry of the lattices. 

Converting 4-tuple Coordinates to Discrete Cartesian Coordinates
Function QtoU,  as  presented in Listing 7,  converts  4-tuple  coordinates  to  Cartesian
coordinates:

QtoU[{q1_, q2_, q3_, q4_}] := Module[{u}, u = {(q1 - q2 - q3 + 
q4), (q2 - q4 - q3 + q1), (q3 - q2 - q4 + q1)}]

Listing 7. Function to convert 4-tuple coordinates to Cartesian coordinates

The following is an example of applying QtoU:
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QtoU@83, 1, 12, 7<D
8−3, −15, 7<

Converting Discrete Cartesian Coordinates to 4-tuple Coordinates
Function  UtoQ,  which  is  described  in  Listing  8,  converts  the  Cartesian  coordinate
list  Hu1, u2, u3L  to  a  4-tuple  coordinate  list  Hq1, q2, q3, q4L.  In  each  coordinate
system the unit metric for that coordinate system is used. This allows the ordinates to
be integers in both systems. In the Cartesian coordinate list the integers can be posi-
tive, negative or zero. The 4-tuple coordinate list that is output by the function is auto-
matically provided in standard form, where all ordinates are positive.

UtoQ[{u1_, u2_, u3_}] := Module[{q}, q = {(u1 + u2 + u3)/4, (u2 
- u1 - u3)/4, (u3 - u2 - u1)/4, (u1 - u2 - u3)/4}; q = q - 
Min[q] + {1, 1, 1, 1}]

Listing 8. Function to convert Cartesian coordinates to 4-tuple coordinates

An example of applying the function UtoQ is as follows:

UtoQ@8−3, −15, 7<D
83, 1, 12, 7<

However,  another  example  below  appears,  at  first,  to  give  an  incorrect  output
because a discrete point on the Cartesian lattice is mapped to a non-existent point on
the 4-colour rhombohedral lattice.

UtoQ@8−3, −15, 8<D

:
7

2
, 1,

25

2
, 7>

Every  point  on  the  discrete  rhombohedral  (or  4-tuple)  lattice  can  be  mapped  (as
above)  to  a  point  on  a  conventional  Cartesian  3-tuple  lattice  with  integer  ordinates
(positive  and  negative)  where  the  base  distance  is  1/ 3  rhombohedral  units.
However,  going  from discrete  Cartesian  to  4-tuple  coordinates,  non-integer  rational
ordinates with a denominator of 2 would be produced wherever the Cartesian coordi-
nate list contains a mixture of odd and even integers. 

If the 4-colour rhombohedral lattice is the fundamental lattice that has to be mapped
to  a  single  discrete  Cartesian  coordinate  system then  each  Cartesian  coordinate  list
can contain only odd or only even integers: the 4-tuple lattice thus maps to Cartesian
integer coordinates where the integers in each coordinate list (3-tuple) are either even
or odd, but not a mixture of both. This is equivalent to having four interlaced Carte-
sian  lattices,  as  shown  in  Figure  12,  where  the  length  of  the  unit  Cartesian  lattice
links in each lattice (red, yellow, blue or yellow) is 2/ 3  rhombohedral units.
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Conclusion
The  arithmetic  associated  with  the  4-colour  rhombohedral  lattice  is  remarkably
simple and possesses beautiful symmetry. Having undertaken the exploration thus far
there are many enticements for the present author to delve even further.

The most important conclusion from this paper is that one 4-colour rhombohedral 4-
tuple lattice maps onto four separate discrete cubic lattices that each have a cell edge
length that is twice the length of the smallest possible cube on the 4-colour rhombohe-
dral  lattice.  The  four  cubic  lattices can  be  assimilated into  a  single  Cartesian  lattice
with half the edge length. A consequence of doing this is that some Cartesian coordi-
nates will not exist on the underlying 4-colour rhombohedral lattice.
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