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ABSTRACT

The local model (LM) network is considered for the control of complex nonlinear
systems. Both controller design and system analysis techniques are investigated for the
purpose of the development of an overall global controller with guaranteed stability and
performance, based on the control methods and theories well developed for linear
systems. In particular, the influence of the offset term of affine LM networks on the

performance and stability of closed-loop systerns is investigated.

Assuming the system changes ‘slowly’ enough, an integrator can be utilised in the
controller design by considering the offset term as ‘constant’. Gain-scheduled local
controller (LC) networks based on feedback control and generalised predictive control
methods are proposed for the control of a highly nonlinear simulated process, the
continuous stirred tank reactor. Test results show reasonably good performance, but also

expose the weakness of the interpolation procedure.

Considering the nonlinear dynamics inherent in the interpolation procedure, the stability
issues associated with blending affine systems are investigated. Assuming the
corresponding linear blending systern is exponentially stable, the affine blending system
will be bounded. The ultimate bound is determined for both open loop systems and

closed-loop systems via affine state feedback control.

The velocity-based (VB) LM network has enhanced the capability to capture the
dynamics of nonlinear systems compared to normal LM networks. To have the best
access to dynamical information from the VB model, a state feedback integral controller
is skilfully proposed for the controller design. This approach overcomes the difficulty in
the practical implementation of velocity-based approaches. In addition, a discrete-time
version of the velocity-based LM network structure is proposed for the purpose of

extending the VB approach to the discrete time domain.
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Nomenclature

All symbols and abbreviations in this thesis are defined in the text as they occur. A
summary of the main symbols and abbreviations is provided here for ease of

reference.

Main Symbols

Neural networks

X Input vector

y Output vector

u Control input

W, i layer weight vector

b. i layer threshold/bias value

@ i layer nonlinear operator (sigmoid function)

N, Number of neuron inputs

N, Number of hidden iayer neuron

d Desired system output

o, Width factor in radial basis function (RBF) network

Generalised predictive control (GPC):

H, Maximum prediction horizon
Hon Minimum prediction horizon
He Control horizon



A Control weighting sequence

y (k) System output
w (k) Desired output/ Reference set point
A The difference operator (discrete time domain)

Local model (LM), local control (LC) networks and velocity-based multiple
model networks:

V4 Operating space

N Number of local models
f; Local model function
w(t) Scheduling vector

Centre of the basis function

[

o Width of the basis function

yo, Normalized validity/weighting function

v Un-normalised weighting function

¢ () Controller information vector

ou Perturbation system input

#(k 1) Discrete time domain information vector for input/output model

¢ (k1) Information vector for input/output ARX model

g Parameter vector

(o) High order modelling error

a Offset term in ALM

x State of general nonlinear systcm

X State of multiple model system

X State of local models

w Differential of the state of local models
w Differential of the state of general nonlinear system
r Reference signal

¥y System output

u Control input

K State feed back gain



Bold characters denote vectors and matrices; subscription ‘i’ denotes the i local
model or local controller; subscription ‘0’ denotes the operating points where the
linearization is formulated; ‘“*’ denotes the predicted signal; ‘(t)’ denotes signals in

the continuous time domain and ‘(k)’ denotes signals in the discrete time domain.

Notes: Thete are many approaches have been concemned both in modelling and control of the nonlinear processes. It might
happen that some symhols mean dilferently at different places. This is to keep the consistency with the common symbols that

those approaches normally employ. For those symbals, please refer (o the context.



Main Abbreviations:

ARX
CSTR
CARIMA
LC

LILM
ALM
MLP
NARMAX
PID

RBF
SOM

TS

GpC
MBPC
VB

LPV

Autoregressive with exogeneous inputs

Continuous Stirred Tank Reactor

Controlled Auto-Regressive and Integrated Moving Average model
Local Control (network)

Local Linear Model (network)

Affine local model (network)

Multi-layer Perceptron

Nonlinear AutoRegressive Moving Average with Exgeneous inputs
Proportional Integral Derivative Controller

Radial Basis Function

Self-Organising Maps

Takagi-Sugeno (fuzzy model)

generalized predictive control

Model based predictive control

Velocity based (multiple model networks)

linear parameter varying
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Introduction

Chapter 1

Introduction

Non-linear processes, by their nature, are non-uniform and invariably require custom
designed control schemes to deal with their individual characteristics. No general theory
deals comprehensively with the wide range of non-linear systems encountered. In an
attempt to accurately model nonlinear dynamical systems, a wide variety of techniques
have been developed, such as multiple layer perceptron (MLP) neural networks
(Narendra and Parthasarathy, 1990), radial basis function {RBF) networks (Moody and
Darken, 1989), nonlinear auto-regressive moving average with exogencous inputs
(NARMAX) models (Chen and Billings, 1989), Weiner models (Schetzen, 1981) and
Hammerstein models (Billings and Fakhouri, 1982). While the accuracy of such models
offer a potentially significant improvement over linear models, the process control
engineer is faced with the difficulty of their more-or-less so-called black-box
representation of the dynamics of nonlinear systems. These types of model fail to
exploit the significant theoretical results available in the conventional linear modelling
and control domain, and make it difficult to analyse the behaviour of the controlled
systems, and to prove their stability. This chapter first briefly reviews the neural
networks application in modelling and control, then discusses the main topic of local

model networks application in modelling and control for nonlinear systems.
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Introduction

1.1 Neural Networks for Nonlinear Modelling

The basic concept of artificial neural networks stems from the idea of mimicking
individual brain cells or neurons in a fairly simple way, and then connecting these
models in parallel to offer a complex processing mechanism, which exhibits learning

and training in terms of its overall nonlinear characteristics.

The earliest work in neural computing goes back to the 1940’s, when McCulloch and
Pitts (McCulloch and Pitts, 1943) introduced the first neural network computational
model. In the 1950s, Rosenblatt’s work resulted in a two-layer network, the perceptron,
which was capable of learning certain classifications by adjusting connection weights
(Rosenblatt, 1959). The perceptron laid the foundations for later work in neural
computing. In the 1970’s, Grossberg (Grossberg, 1973, 1978) developed adaptive
resonance theory {ART) to deal with the problem of governing neuron biological
systems. However, a real resurgence in this field began in the 1980’s with the work
done by Hopfield (Hopfield, 1982) and the self-organizing map developed by Kohonen
{(Kohonen, 1982). Shortly afterwards, Rumulhart and McClelland (Rumulhart and
McClelland, 1986) rediscovered the back-propagation learning algorithm first
developed by (Werbos, 1974) and brought the research in this area to a new stage.
Subsequently, multi-layer perceptrons (MLPs) have very quickly become the most
widely encountered artificial neural networks, particularly in the area of systems and
control (Narendra and Parthasarathy, 1990, Hunt et al, 1992, Irwin et al., 1995, Agarwal,
1997). Meanwhile, a relatively simple neural network, the RBF network, attracted a lot
of research attention since the beginning of the 1990°s. The following two sections give

a concise introduction to both MLP and RBF networks.

1.1.1 MLP Neural Networks

At the beginning of the 1990’s, researchers have been very enthusiastic about the

potential of neural networks, especially the multi-layer-perceptron (MLP) networks for

17



Introduction

nonlinear modelling and control. The reasons for this enthusiasm were several
demonstrations of the universal approximation capability of the MLP. Giving the
required number of neurons (the network structure), with a continuous and differential
transfer function, one hidden layer neural network can approximate any continuous

function to an arbitrary degree of accuracy (Hornik et al., 1989; Cybenko, 1989).

b I b 2
x; »>
Input vector x; Output
* AR y
X3 "’“" ?
Xy

Output laver

W, ?“’2 ?”’3

Input Hidden

Figure 1-1. MLP neural networks

A typical feed-forward multi-layer network with an input layer, an output layer, and one
hidden layer is shown in figure 1-1. Such a network can be described by means of the

equation:

y=8.w g, (W, - h(wx+b)+--+b,_)+b,) (I.1)

in which x 1s the input vector, y is the output vector (there is only one variable in figure

1-1), w, is the weight vector associated with the i" layer, ¢; is a nonlinear operator
associated with the i layer and &; indicates threshold or bias values associated with
each node in the /" layer. In the majority of cases, ¢; is a sigmoid function, such as
those given in equation (1.2) or (1.3); for all layers, ¢; is an identical sigmoid function

in input and hidden layers and a linear form in the output layer. Figure 1-2 shows an

example of ¢;.

]

(?»)=m (1.2)
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or ¢(x)=l—fﬁp—(ﬂ (1.3)

#4)

Figure 1-2. Sigmoid function

Normal use of an MLP, in practice, involves training the network on a set of desired
values. During the training, the response of the output elements in the network are
compared with a corresponding set of desired responses. Error signals associated with
the elements of the output layer are thus readily computed, so adaptation of the output
layer is straightforward. The fundamental difficulty associated with adapting a multi-
layered networks lies in obtaining error signals for hidden layer neurons, that is, for
neurons in layers other than the output layer. The back propagation algorithm provides a

method for establishing these error signals.

Learning of the weighting parameters by a back-propagation method (Rumulhart and

McClelland, 1986) is to minimize a sum square error £° as defined in equation (1.4)
1Y !
82:EZ(dk_yk) (dt—}"t) (1.4)
k=l

where # is the length of the training data set, d, denotes the desired value and y,

denotes the model output.

In its simplest form, back propagation training begins by representing an input vector x

19



Introduction

to the network, sweeping forward through the system to generate an output response
vector y, and computing the errors at each output. Continually sweeping the effects of

the errors backward through the network to associate a square error derivative §; with
neuron j in " layer, computing a gradient from each d;, and finally updating the

weights of each neuron based on the corresponding gradient. A new pattern is then
presented and the process is repeated (Widrow and Lehr, 1990, Rumrlhart and
McClelland, 1986).

The accuracy in modelling of complex nonlinearities is the main advantage of the use of
neural networks over linear models. However, with the exception of its ability to
capture the nonlinearities, the use of the MLP, in practice, implies slowness and
uncertainty of learning convergence due to the steepest gradient leamming method
commonly used. Meanwhile, MLP neural networks have a lack of transparency in
describing the system properties due to their black-box representation. These are
important restrictions for the usefulness of the MLP approach in controller design,
although there is some reported work to improve the training method for the purpose of

overcoming the described problems.
1.1.2 RBF Networks

The radial basis function (RBF) network is another very popular network-structured
modelling approach. Figure 1-3 shows the schematic diagram of an RBF network with
five receptive field units.
The output of the i receptive field unit (or hidden unit) is
2,2
@, = R,.(x):R,.(“x—c,.M /a,.) (1.5)
where x is an N-dimensional input vector, ¢; is a vector with the same dimension as x

and R,.(-) is the i receptive field response with a single maximum at the origin.
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Typically, R,(s) is chosen as a Gaussian function, which will be introduced in detail in
section 2.3.3. Thus the radial basis function ©, computed by the i*-hidden units is the
maximum when the input vector x is near the centre ¢; of that unit, and is close to zero

when the input vector x 1s far away from the centre ¢, of that unit.

Input Vector

Figure 1-3. A radial basis function network

The output of an RBF network can be computed in a simpler way, as shown in Figure 1-

3. It is the weighted sum of the function value associated with each receptive field:
N N
S)=2 fo =2 SR (x) (1.6)
i=1 i=l
where f; is the scalar value, or strength, of the i" receptive field and N is the number of

receptive field units. Such RBF network is able to produce the normalized response

function as the weighted average of the firing level as shown in equation (1.7).

o Zﬁa),- Zf;Ri(x)
Sx)=T— = = 4
@, ZR,.(X)

i=1 i=1

Since f; is linearly weighted to represent the output, i.e. a linear relationship exists

between the weights and the network output; there are a number of advantages to this
structure. The optimisation of the parameters based on standard regression techniques

and methods such as regulation, experiment design and recursive estimation are easier
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to transfer to such structures than to MLP networks. For example, a standard linear
parameter estimation scheme can be employed to train the weights with the ordinary

linear least squares algorithm (Moody and Darken, 1989).

This linear learning procedure for RBF networks is much easier to apply than the
complicated nonlinear learning procedure for MLP networks. With only one hidden
layer, the output layer becomes a linear combination of the hidden layer signals. So, the
RBF network allows for a much simpler weight updating procedure and subsequently
opens up greater possibilities for stability proofs and network robustness, as the network

can be described readily by a set of linear equations.

1.2 Neuro-control Approaches

Neural networks have been used for different purposes in the context of control. Their
fast parallel computation and their use of generic function forms for complex non-linear
mapping have motivated the proposal of a growing number of control schemes
involving neural networks (Hunt et al.,, 1992, Irwin et al, 1995, Agarwal, 1997,

Ndgaard et al., 2001). Generally, most of the existing methods used to develop a

neuro-controller are based on inverse control. This section historically introduces neuro-
control techniques based on the neural network model and analyses the advantages and

disadvantages of these techniques.

1.2.1 Neuro-control Techniques Based on System Inverse

When neural networks originally were proposed for controlling unknown nonlinear
systems, one of the first methods reported was the training of a neural network to act as
the inverse of the system and the use of the inverse network as a controller. The
nonlinear internal model control (NIML), which was proposed by Bhat and McAvoy
(1990), Hunt and Sbarbaro (1991) and Psichigios and Ungar (1990) is one example.

This is formulated in equation (1.8),
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vk +1)=glylk)--, vk —n + 1) ulk)- - ulk ~ m)] (1.8)

where y(k) is system output, # is system order, u(?) is the control input, m is input order
and g(-) is a system function that describes the relationship between the inputs and

outputs. The desired network is then the one that isolates the most recent control input

ufk),

a{k) = g'l[y(k + 1),y(k)- oyl —n+1)ulk), - ulk - m)] (1.9)

where #4(k) is the computed control signal and g() is the neural network function.

Assuming such a network has been obtained, it can be used for controlling the system

by substituting y(k+ 1) with the desired output, the reference signal rk+1).

The first such approach for developing a neuro-controller was by (Widrow and Smith,
1964), who tried to replicate a human-expert-based controller for the inverted
pendulum. This was used for plants controlled by humans, for which it is difficult to
design a standard controller (Hunt et al., 1992). The neural training consists simply of
learning the mapping between the sensory information received by the human controller

and the control output.

A similar approach involves training a neuro-controller to mimic the behaviour of
another controller designed by a conventional method (Ruano et al., 1992, Yu and Lu,
1998). In most of the applications, the neuro-controllers are trained to become a system
inverse (Gomi and Kawato, 1993, Lightbody and Irwin, 1997). This approach is
especially useful for plants having fast dynamics. The following sections will describe
some techniques proposed for establishing the inverse model: the direct inverse training
method, the specialised inverse training method and the most popular back-propagation
method. However, if the inverse model is unstable (corresponding to zeros outside the

unit circle in the discrete time linear case), the closed-loop system becomes unstable.

Unfortunately, this situation occurs quite frequently in practice (Astrom et al, 1984).
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1.2.1.1 Direct Inverse Neuro-control Training

The most straightforward way of training a network as the inverse of a system is to
receive the system output as an input and the system input as an output. The model is
trained by inputting to the controller a sequence of signals u%). Some examples can be
found in (Widrow and Stearns, 1985). Note that although there is a feedback path
between the system output y and the input vector x, this control system is open loop in
the sense that it does not take into consideration the error ¢ between the system output
and the desired output, r, to decide a suitable control action. Clearly, there will be no
action taken by the neural network to compensate for any deviation between the system
output and the desired output. Hence, in that respect, this scheme is not a feedback

control system but an open loop one.

The main difficulty in applying this training method is to choose the training signal u(k).
The system must be brought into the desired controller operating region. This is difficult

to achieve without strong a priori knowledge about the system.

1.2.1.2 Specialised Inverse Neuro-control Training

Specialised training (Psaltis et al. 1988) is a goal directed online neuro-control
approach. This feature is the fundamental difference between the specialised inverse
training method and direct inverse training method. Inspired by the recursive training
algorithms (e.g. recursive least squares algorithm), the network is trained to minimize

the criterion J, , which is described as below:
20,24)=0,_,(6,2"" )+ [r{k)- y(&)F (1.10)

With Z*=[y(k), - y(k = n+1),7(k),r(k = 1),---r(k —m)] and that 0 is the coefficient of

Z*. Based on this criterion, the Jacobian of the process is necessary (Psaltis et al,,

1988). Since specialised training is an on-line approach, the combination of the need to
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adjust weights and the slow convergence of a gradient method may cause serious
consequences. It is often highly recommended to use the direct inverse training
approach to provide an adequate initialisation for the network and the specialised

inverse neuro-control training is only used for “fine-tuning” of the controller

( Ngrgaard et al., 2001).

Back-propagation through time neuro-control learning

To avoid the problem associated with the specialised inverse control training, a number
of researchers (Nguyen and Widrow, 1990, Narendra and Parthasarathy, 1990) have
independently developed the back-propagation through time neuro-control learmning
method. The problem of the specialised inverse control training method is that the
performance error e, =r —y is not reliable because it is not directly related to the
neuro-control output, 4. To train the controller, we need to know the error in the
controller output. Therefore (Nguyen and Widrow, 1990, Narendra and Parthasarathy,

1990) propose to emulate e, a “virtual” error on the output of the controller:

K7

__olk)
)= oulk “1)ey(k) (1.11)

where jz(k) is the observed system output. In this way, the error e,, back-propagated

toward the input layer of the feed-forward model, should correspond to the error e,

(assuming the input, u, has a linear effect on the system). This makes the control

training feasible in many cases.

Narendra and Parthasarathy (Narendra and Parthasarathy, 1990) introduce a reference
model into the training structure, which gives a desired transient system output y rather
than a simple fixed reference output r. However, this also leads to a system inverse

based neuro-controller since it is the desired output y that drives the neuro-controller.
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In summary, neuro-control methods based on the system inverse have serious
drawbacks. The most important concerns the lack of feedback. It is not trivial to learn
the inverse dynamics of highly nonlinear systems. Furthermore, not all systems have an
inverse model. However, considering the modelling approximation ability of neural
networks, the model of the plant dynamics could be used to predict future states of the
plant. The model based predictive controller (MBPC) is then worth to consider. This
algorithm is presented in the next section while highlighting the usefulness of neural

networks in this context,

1.2.2 Neuro-model Based Predictive Control

Model Based Predictive Control (MBPC) is a criterion-based control algorithm, which
uses an optimiser to solve for the control trajectory over a future time horizon based on
a dynamic model of the process. It has become a standard control technique in the

process industry over the past two decades.

A prime characteristic that distinguishes predictive controllers from other controllers is
the idea of a receding horizon; at each sample, the control signal is determined, so as to
achieve a desired behaviour in the following H¢ (control horizon) time steps. This idea
is also appealing because it relates to many of the control tasks that one, as a human
being, carries out on a daily basis. This intuitive foundation can, to some extent,

accommodate the tuning of the design parameters.

Predictive control can be used together with instantaneous linearisation in an
implementation similar to the approximate minimum variance design (Chen et al.,
1990). However, predictive control algorithms apply to a full nonlinear model of the
systern as well (Wills et al., 1992). Due to its flexibility, predictive control can handle a
large class of systems. Here, the Generalised Predictive Control (GPC) method is taken
as an example. It was originally proposed by Clarke et al. (1987a, 1987b) as an
alternative to pole placement and minimum variance designs used in self-tuning

regulators. Although it originated in an adaptive control context, GPC has many
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attractive features, which definitely makes it worthwhile considering even for time-

invariant systems.

The idea behind generalized predictive control is to minimize a criterion of the

following type
i, if,
00,0 = 2| Sl )=l 2+ 320Kt - 0F ) 012

where Hpand H,, are the minimum and the maximum costing horizon; Hc is the control
horizon; /1(;) is a control weighting sequence, which is introduced to make a trade-off
between the minimization of tracking error and the minimization of the controller
output and to penalise excessive changes in the mampulated input; y, w, u are the

controlled output, desired output and manipulated control input, respectively.

To minimize the criterion, when the prediction are nonlinear in the control inputs, 1s a
quite intricate optimisation problem. In order to determine the minimum, it is necessary
to apply an iterative search method similar to the strategies used when training neural
networks. For linear systems, the optimisation problem can be solved beforehand,
which will be given in detail in section 3.3.3. However, for nonlinear systems, the
optimisation problem must be solved at each sample, relating to a sequence of future
control inputs. From this sequence, the first component u(k), is then applied to the

system. Generally, solving the optimisation problem can be done in two ways.

e The first idea is to derive the most suitable optimisation algorithms for
minimization of the MPC criterion by successive recursion of a deterministic
neural network model. This makes calculation of the control input very difficult,
as it has to be determined with an iterative minimization algorithm deployed at
each sample (Draeger et al., 1995, Schenker and Agarwal, 1998). Such an

approach is computationally intensive.
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* The second idea is based on an approximate minimum variance predictor
derived from the instantaneous linearisation of a neural network autoregressive
exogenous (NNARX) model. This makes the calculation of control inputs much
simpler as the minimum of the controllers is unique and easy to find. However, a
problem may occur if the approximate models obtained from instantaneous
linearisation are accurate only in a very narrow region of the current operating
point. Meanwhile, the linearisation may suffer from sensitivity to noise (Sales

and Billings, 1990, Geng and Geary, 1997).

1.2.3 Remarks on Neuro-control

As discussed during the chapter, the accuracy of neural network models offers a
significant improvement over linear models. However, process control engineers are
faced with the difficulties resulting from neural network models” black-box
presentations of the nonlinear dynamic properties, while the widely used multi-layer
perceptron (MLP) approach has important drawbacks. Firstly, and most importantly,
due to the neural network model’s unclear representation of the system, it is not possible
(or it is too difficult) to investigate their modelling and control properties. The issue of
controllability is seldom considered, although some work has been done under
significant practical restrictions (Narendra, 1996). This issue is very constraining, since
it is often necessary to investigate the controller properties to make sure that it satisfies
stability and robustness criteria. Moreover, the back-propagation leaming algorithm is
essentially a steepest-decent gradient algorithm and can either converge on a local
minimum or be extremely slow to converge. There is no guaranteed sclution even
given the required model structure, due to the existence of flat areas and/or local

minima in the error surface (Rumulart and McClelland, 1986).

Hence, even if the described neuro-control training methods, especially the MPC, are
promising approaches, mainly due to their non-linear control capability, their
applications are highly constrained by the drawbacks inherent in neural networks, for

the control signal « is required to appear linearly in the MPC equation.
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This may explain why, from the early 1990’s, there is a rapid increase of research
interest in the application of operating regime based multiple models in control. The
LM network is one type of these multiple models, which use neuron supported
functions that are active over some local regimes of the system operating range to
combine the local models. The advantages of this approach are purported to be their
simple approximation of the nonlincar property and their insight into the global
dynamics from local models (Johansen and Foss, 1995, Murray-Smith and Johansen,

1997, McLoone et al., 2001).

1.3 Multiple Model Networks

The last decade has shown a rapid increase in the use of local model representations of
non-linear dynamic systems. Control techniques based on multiple models have been
applied extensively in recent years. Numerous applications have been reported in the
mechanical, chemical, aeronautical industries and many other fields (Boskovic and

Mehra, 1999,).

Control techniques based on multiple model methods include a number of approaches:
Takagi-Sugeno (1985) fuzzy systems, local model networks (Johansen and Foss 1993),
gain-scheduled control {Shamma and Athans, 1990), local dynamic modelling with self-
organising maps (SOM) (Principe et al, 1998), the smooth threshold autoregressive
(STAR) models of Tong and Lim (1980) and the state dependent models of Priestly
(1988). Most commonly, linear local models are employed in these approaches for their
simplicity and continuity to the well-developed control methods and theones for linear
systems. Then the weighted sum of the local sub-models provides a qualitative high-
level description of the nonlinear system. The model parameters can be obtained from

prior knowledge, linearisation of a physical model or identified from measured data.

The construction of local model networks for interpolating the behaviour of locally
valid models offers an attractive and intuitively pleasing method of modelling non-

linear systems. The advantage of this approach is purported to be its insight into global
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dynamics from the local models. In addition, it is well-known that every model of the
systems is based on some simplifying assumptions, and that different models maybe
useful for understanding different aspects of the same phenomenon. Multiple models
are needed to describe the process characteristic when they change intensively with time,
as for example, chemical processes (Li et al. 2001, Zhang and Morris, 2001), paper mill
(Chow et al., 1996) and flight control (Boskvoic and Mebra, 1999). This is another

source of motivation for studying multiple model systems.

In terms of control, the local model network potentially provides a convenient
framework for obtaining both stability and improved performance simultaneously for
the control of nonlinear systems. Control techniques based on interpolation between
different controllers have been applied extensively in recent years. Correspondently, the
issue of stability has become one attractive topic as well. Many publications have been
given for fuzzy controllers by using polytopic (Farinwata et al., 2000, Filev 1996} and
Lyapunov functions (Wang et al., 1996, Daaffouz et al, 2002). Considering the
functional similarities (see section 2.3.4), some techniques applied for fuzzy systems

may be employed for the development of LC (local controller) network.

1.4 Objectives of Thesis

Despite the wide range of methodologies and applications of multiple models in
nonlinear systems modelling and the growing interest in this area, controller design and
analysis based on multiple models is still at an early research stage. The thesis will

focus on local model network applications in control.

The thesis will investigate controller design approaches for the control of complex
nonlinear dynamical systems. It aims to systematically develop an overall global
controller, with guaranteed stability and desired performance based on multiple models,
from the practical application point of view. Specifically, the research will concentrate
on the issues of controller design based on conventional local model networks and

velocity-based multiple model networks.
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Meanwhile, the thesis will provide a systematic presentation of features, advantages and
problems encountered, and available solutions, in the application of multiple models in
control. This presentation will include the main theoretical results and design
procedures with the aim of providing a critical overview of the field, and a useful entry

point into relevant literature.

1.5 Contributions of Thesis

Original work contained in this thesis include the following topics:

1. The development and application of gain-scheduled local controller networks by
employing the PID controller and the generalised predictive control (GPC)
approach, based on affine local model (ALM) networks in the control of the

Continuous Stirred tank Reactor (CSTR) process (Chapter three).

2. Application of Linear Parameter Varying (LPV) based GPC to the CSTR process
(Chapter three).

3. The development and application of a state feedback integral controller based on

velocity-based multiple model networks for the control of the CSTR (chapter five).

Some minor contributions in the thesis includes

1. A local model network application, with propertv analysis in the modelling of a

continuous stirred tank reactor (CSTR) simulated process (chapter two).

2. Application of stability analysis and control synthesis to affine LM (Local
ModelYLC (Local Control) networks based on the state feedback control approach
(chapter four).
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3. An application of the state observer in the control of the CSTR simulated process
based on velocity-based multiple model networks; a proposal for the control

synthesis of the velocity-based approach (chapter five).

4. The development of the discrete-time version of velocity-based multiple model

networks (chapter five}.

1.6 Outline of Thesis

The thesis will deal with the controller design issues for nonlinear systems based on

conventional LM networks and velocity-based multiple model networks.

Chapter two will introduce how to structure a conventional LM network, in which the
choices of local model structure, validity functions and interpolation schemes,
respectively, will be investigated. 1t will also look into the properties of both linear local
model (LLM) and affine local model (ALM) networks for the modelling of nonlinear
systems. Simulation work will be carried out on a highly nonlinear simulated process,

the continuous stirred tank reactor (CSTR).

Chapter three will review the reported contributions in controller design based on
multiple models and present how to formulate the gamn-scheduled local controller
network and linear parameter varying (LPV) controller based on local model networks.
Generalize predictive control (GPC) will be proposed as the basic technique for the
controller design mentioned above under the assumption that system changes ‘s
enough. Simulation work will be carried out in the application of the algorithms to the

control of the CSTR simulated process, followed by analysis of results.

Chapter four will consider the stability conditions for blending systems with atfine local
models, in which the offset term is nonlinear and dependent on parameters that

formulate interpolation functions. By employing Quadratic Lyapunov functions,
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theories will be developed to determine the bound for open loop blending systems. Then
a state feedback controller in the LC network framework will be proposed with the aim
of providing an overall stable closed-loop system with guaranteed stability and the

bound for the compensated systern will be determined.

Chapter five will consider two issues. The first issue is the controller design based on
velocity-based (VB) multiple model networks. A novel controller will be developed
based on the VB local model networks by employing integral state feedback control.
Simulation work will be carried out in the application of the control algorithm to the
CSTR simulated process; a comparison of results with those of the gain-scheduled LC
networks proposed in chapter 3 will be made. In addition, a discrete-time version of the
network will be developed based on the continuous time version. Modelling properties

will be investigated by simulation work carried out on the CSTR simulated process.

Chapter 6 concludes the thesis and outlines some future research directions.
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Chapter 2

Conventional Local Model Networks

2.1 Introduction

In the design of nonlinear control systems, to achieve good performance (for example,
speed and accuracy) and robustness, it is desirable to derive an accurate and meaningful
model of a given practical plant, i.e. a model that captures the key dynamics of the plant
in the operational regime of interest and provides transparent insight into the nonlinear

systems.

In recent years, an increasing interest in the use of local model representations of
nonlinear dynamic systems has been reported in the literature (Townsend and Irwin,
1999, Narendra and Cheng, 2000, Principe et al, 1998, Sharma et al, 2002). The ideca
started from partitioning a complex problem into a set of simple sub-problems, whose
solutions arc combined togethier through interpolation schemes (aiso cailed scheduling,
blending and clustering schemes) to give a global solution to the original problem. If
multiple models are used for nonlinear process modelling, techniques for multiple
model development need to be formulated and in turn, the following issues should be of

concem:

s Decomposition of local regimes from the full operating regime of the noniinear

system
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¢ The structure selection and parameter estimation of the local models
e Interpolation schemes to combine the local models

These three issues are highly correlated. The basic structure of multiple modelling
includes a number of approaches: gain-scheduled control (Shamma and Athans, 1990),
fuzzy inference systems (Takagi and Sugeno, 1985), local model (LM) networks
(Johansen and Foss, 1993), local dynamic modelling with self-organising maps (SOM)
(Principe et al, 1998), and adaptive control of multiple models (Narendra and
Balakrishan, 1994a). They are different from each other in the methods used for the
interpolation stage. Among these techniques, LM networks and SOM networks employ
neural networks in combining the local models to structure the global nonlinear model.
The LM network applies a Radial basis function (RBF) network and the SOM network
applies Kohonen neural networks. Conventional gain scheduling control is done in an
ad-hoc manner by the use of heuristic guidelines (Nichols et al, 1993) and additional
information about the plant (Rugh, 1991). Adaptive multiple model control is a kind of
piece-wise linear control (without interpolation). It leads to ‘switching’ and ‘tuning’
techniques for the control of complex nonlinear systems. The former takes rapid
measures to avoid catastrophic failures, while the latter involves more leisurely steps
taken to improve the control performance of the nonlinear system. The fuzzy inference
system structure is very close to the LM network structure under some minor
assumptions; a functional equivalence analysis between them will be given in section

2.3.4.

The research work focuses on the application of LM networks in the control of
nonlinear dynamic systems. LM networks aim to use a small number of relatively
simple local models to approximate a wide range of the operating regime of a complex
nonlinear system. The operating regime plays an important role in this area. The basis
of the LM network consists of decomposing the full range of the system operating
regime into a number of overlapped local operating regimes, in which a simple local
model (linear or affine model) describes the local dynamics. Then these local models

are smoothly combined in a neural network structure to yield a global model. The
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model parameters can be obtained from prior knowledge, linearization of a physical
model or identified from measured data sets. The advantages of this approach are
purported to be its simplicity and the insight into global dynamics from the local models
{McLoone et al, 2001). Furthermore, because linear models are most commonly
selected to describe local dynamics, the well-developed control theory for linear

systems can be extended in some simple ways to the control of highly nonlinear systems.

This chapter will begin by presenting a detailed introduction on structuring a
conventional LM network, in which the choices of local model structure, validity
functions and interpolation schemes, respectively, will be investigated. Then, the
properties of the LM network are discussed and analysis shows that the LM network is
functionally equivalent to popular fuzzy inference systems. Next, simulation work is
carried out on a simulated process, the continuous stirred tank reactor (CSTR), which is

a highly nonlinear plant. Finally, concluding remarks are provided.

2.2 Architecture of Conventional LM Networks

Operating regime based .M networks are constructed by decomposing the systern into a
number of smoothly over-lapping local operating regions in which a simple local model
describes the local dynamics. The global nonlinear model is created by using the
representational ability of the radial basis function (RBF) network to form the LM
network structure, which is able to apply the advantage of RBF in leaming compared

with MLP approaches, and allows more freedom in the selection of the scalar value, f;,

which in LM networks denotes a local model function. Compared with neural network

models, LM nctworks offer several advantages:

{1) The LM network develops a relatively clear representation of nonlinear processes
since each model is linear. This enables easy analysis of overall properties and
makes the conversion of the LM network into a local controller network (LCN)
straightforward (Gawthrop, 1995, 1996). The LM network is in this respect one of

the few nonlinear modelling approaches oriented for control design.
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(2) The learning of local models is quick, computationally efficient and straightforward

since linear regression methods can be applied.

(3) 1t is possible to introduce a priori knowledge in LM networks by using different

sorts of local models and by determining the operating regions of each model.

(4) The system order is the main information required in applying a LM network
(Johansen & Foss, 1995, Nelles, 1997), which allows a weakening of a priori
knowledge needs for the system, although good knowledge about the system will
help in the structuring of the LM network.

These advantages highlight the powerful potential of LM networks as a nonlinear
modelling and control approach. In addition, there have already been theoretical
supports available that LM network is able to approximate any continuous function
given a sufficient number of local models since the early 1990s (Funahashi 1989,

Johansen and Foss, 1993).

The following sub-sections investigate the basic problems in relation to structuring LM
networks, which include

¢ How to decompose the overall model to a set of operating regimes?

* How to define the proper operating regime based on a priori knowledge of the
system?

e How to optimize the number and parameters of local models? and especially

e How to optimize the LM network towards control objectives?

2.2.1 Operating Regime Decomposition

Any model has a limited range of operating conditions in which it is sufficiently
accurate to serve its purpose. This range may be restricted by several factors, such as
validity of linearisation, modelling assumptions, stability properties or experimental
conditions. A model that is useful in a relatively small region rather than the full range

of operating space is called a local model, as opposed to a global model, which is
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effective over the full range of operating space. LM network consists of a set of local
models, each describing different dynamics of the same system but at different
operating regions. The output of these local models are weighted and summed to give

the global model output.

The general architecture of LM networks for a single-output nonlinear dynamical

system is shown in figure 2-1, and it can be described by
~ N -
=2 pW)i(x) . wez @
i=]

where the operating space Z, a subspace of the input space, is decomposed into N

regimes:

Z=uZ,i=1,....N (2.2)
In equation (2.1), }7(!) is the LM network output at time ¢, x represents the model input
vector and fj(x) defines the local model for the i regime. The associated validity

functions (or basis functions) for the i* regime is given by p,(w(?)), which is a function

of the scheduling vector w(1).

The local models are typically linear or affine, but they could also be nonlinear. N is the

number of validity functions. To an extent, defined by the activation of the validity

function p; , the output f, of the corresponding local model defines the model output 3.

A0 (7 ()

. (1))

pylw(t))

Figure 2-1. LM network structure
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Comparing the LM network with the RBF network introduced in section 1.1.2, it can be
seen that the LM network can be taken as a generalised RBF network, assuming the

input to_the RBF network is defined as a scheduling vector w(#} and the weighted sum

of the functions f; (the scalar value of i'" receptive field in the RBF network) is defined

as f',.(x), which descnibe the same nonlinear system at different operating regimes.

In other words, the LM network structure has the advantages inherent in the local nature
of the RBF network; the learning algorithms and the theorems on the representational
ability for the RBF network can be applied to the learning of the LM network. At the
same time, because of the more powerful local models associated with the basis
functions, the LM network does not require as many basis functions as the RBF network

to achieve the desired modelling accuracy.
2.2.2 Locally Valid Models

Theoretically, the local model structure can employ either linear (or affine) or nonlinear
models. However, from a practical point of view, local models will be commonly
chosen as linear (or affine) models (Murray-Smith, 1994) for computational simplicity
and convenience. They can be chosen from the linearisation of a nonlinear system
around some operating points corresponding to the ‘centres’ of given sub-regimes, if the

physical model has been defined.
2.2.2.1 State Space Model

Consider the general nonlinear state space SISO (single input, single output) system,

with state vector x and input u:

y(6)= g(x(),ult)) 2.3)
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where x denotes the state vector, u is the system input. It is assumed that y = Cx,

without loss of generality, because it is common and practical to define system output

y proportional to the state vector.

In many cases, the behaviour of the nonlinear system near an operating point (xo,uo)

can be described by a linear time-invariant system. To see this, we consider state and
input trajectories that are small perturbations away from the operating point:
x(t)= x, + 0x(r)

u(t) = u, + dult) (2.4)
where u, is the nominal input and &4(!) is the perturbation input. The input and state

vector obey the differential equation, determined by submitting (2.4) into (2.3):

&lt) = flx, +ele)u, + du(t)) (2.5)

Expanding the right-hand side of (2.5) in a Taylor series about ( x, ,u,)

) o/ é
8() = S (50180)+ Ly B+ ) l0)  26)
ox Ou

: ) } . X : of

in which 4,(0) is the high order error of the Taylor series. If defining A, = ™ by o s>
x

of o : :
B, = 0 \x,.«,) @nd substituting (2.3) into (2.5} gives
x() = Ayx(e)+ Bu(t) +a, + k(o) (2.7)

in which a, = f(x,,u,) - (4,x, + Byu,).

It ho(o) is ignored, at an equilibrium point, the constant trend term @, vanishes to zero
and the dynamics are fully captured by the (4,,B,) parameters, which lead to the
normal linear local model (LLM). The structure of (2.6) contains extra degrees of
freedom a,, which leads to a reasonable approximation in a small neighbour-hood of
the linearized point. This structure formulates an affine local model (ALM). The
properties of both LLM and ALM will be investigated in sections 2.3.2 and 2.3.3,

respectively.
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2.2.2.2 Input/output Model

If the local models are of transfer function form, we consider a discrete-time nonlinear

SISO system having the general form
k)= flle =1) y(k = n ) utk = n),..lk —n, —n))+elk)  (2.8)

where denotes the system output, n_ denotes the system order, u(k) denotes the
Y v

system input, n, denotes the system input order, #, denotes the time delay and e(k)

denotes a zero-mean disturbance term. Attention is restricted to single-input, single-

output systems. Defining the information vector as

ol —1)=[y(k —1),...p(k —n ) ulk —n,),...;ulk —n, —n) (2.9)

then equation (2.8) can be written as
k)= fptk—1))+elk) (2.10)

The aim of the LM networks approach is to find a parameterized structure, which

approximates the nonlinear function f.

Consider a lincarisation of equation (2.7) about a nominal operating point (e.g., by
taking a first-order Taylor series expansion), which results in a linear autoregressive

model with exogenous input {ARX) structure:
Ak)=¢;, (k1) + elk) @.11)
where

¢i(k—l)=[—y(k—l),...,—y(k—-ny),u(k—nk),...u(k—-nk -n ) (2.12)

and

0=la,...,a,.b,...b, T (2.13)

is a constant parameter vector. Note that in equations (2.11)-(2.13), al! signals now

strictly represent deviations from the nominal operating point. With the definitions in
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equation (2.14) and (2.15), the linear system (2.11) can be written in the familiar

y(k)z %g_%?u(k)+ e(k) (2.14)

Here ¢’ is the unit delay operator and the polynomials A4 and B are

transfer function form

-n

A(q")=1+alq'l +...+anyq v

Blg")=b,+bg" +...4b, g™ (2.15)

In sub-section 2.2.2.1 and 2.2.2.2, locally valid models were introduced in both state
space and input-output transfer function form. In later chapters, depending on the
purpose of the modelling and the approaches used for controller design and property
analysis (such as robustness, stability and sensitivity analysis), both state space and

input-output representations will be applied.
2.2.3 Choices of Validity Functions

Having partitioned the full operating range into a number of simpler regimes and built
local models within each operating regime, one natural question that appears is how to
combine these sub-models to achieve a global model. In other words, how does the
interpolation scheme decide when, where and how to ‘switch’ between the local models.
Validity functions play significant roles in interpolation between the local models. They
smooth the ‘switching’ among the local models, improve the global approximation
accuracy and balance the trade-off between local performance and global performance.

A validity function should basically satisfy the following properties:

e A validity function limits its outputs to a value between 0 and 1; the activation
of a validity function decreases with increasing distance of the input from its

centre. The activation fades to zero for inputs that are far from the centre.
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e All validity functions form a partition of unity of their input space, that is
N
Z pj(l[l)= 1, € Z; this ensures that every single point in the input space is
i=!

covered to the same degree.

* The shape of the validity functions is smooth.

Generally, the Gaussian bell function is the validity function used most widely. Other
popular validity functions are B splines (Kalvi, 1993), multivariate adaptive regression
splines (MARS) (Friedman, 1991, Pischogios et al., 1992), and the kernel basis
functions (KBFS) (Hlavackova, 1996).

Here, the Gaussian bell function is taken as an example. A general definition of the

radial Gaussian bell function may be given by

¥ -c)ly-c)
v,(y,c;,0,) = exp| — L ! (2.16)
O—i
Here, each basis function has two parameters: the centre vector ¢, and the width factor

o, . If Gaussian bell functions are used as validity functions, their width can be adjusted

according to the mean distance to the n nearest neighbours. For the radial Gaussian bell

tunctions described, the width o, can be set as

1 H
O’f:kS—Z‘Ci—Cf,jl (217)
nj___l

where ¢; is the current centre and c, ; is the centre of the 7 nearest neighbour to c..

The scaling factor &, defines the degree of overlap between the validity functions and

has the same value for all centres. Figure 2-5 shows how the overlapping area changes

among three Gaussian functions centred at ¢, ~¢,, which are equal to 3, 5 and 7
respectively, when the scaling vector &, changes from 1 to 2. The overlapping area

increased significantly comparing Figures 2-2 (a) and 2-2(b).
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Figure 2-2.  Overlapping of Gaussian bell functions

In practice, the Gaussian bell functions are normally normalised to unity:

Py reno,)=leo0) (2.18)
Zv} r,(/,c,,cr
=1

In many cases, the use of normalised basis functions has resulted in a structure which
can be less sensitive to poor centre selection. This also ensures every point in the
operating space is covered by the basis function to the same degree i.e. the basis
functions form a partition of unity across the input. Meanwhile, the area outside of the
designed operating space is also covered by the normalised basis functions. However,
the normalisation of basis functions also brings some side effects, for example, the
change in shape of the basis functions and the possible loss in smoothness of the
representation. These problems could cause the loss of the independence of local
models, and lead to unpredictable {even unstable) behaviour in dynamic models
(Shorten and Murray-Smith, 1994). Figure 2-3 shows an example of some of problems

associated with normalisation.
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(a) Un-normalised validity function (b) Normalised validity function

Figure 2-3. Normalisation effect on validity function

Three Gaussian functions (G1~G3) are centred at ¢,~c;, which are equal to 2,5 and 7
respectively; the scaling vectors are defined as k£, =2, k,, =2 and £, =1. The dashed

vertical line highlights where the centres lie. Figure 2-3 (a) shows their overlapping
operating area focus on ¢ =2~5 between G1 and G2 and ¢ = 5~7 between G2 and G3.

However, after normalisation, as shown in Figure 2-3 (b), G2 plays an important role in
both its own working area and the G3 working area, which invades the independence of
G3. Secondly, the normalisation results cover the whole of input space rather than the
specified space defined by the training data. One more issue is that the maximums of

the Gaussian bell functions may move away from their centres.

After normalization, all the validity functions preserve the order of their relative

validity, i.e. if v; 2v; then p; 2 p;, but their firing levels are not proportional to the

validity functions. To get a proper LM network targeted for modelling or control
objectives, it is important not to normalise without the attention to the system, but to
compensate for the normalisation by altering the design criteria (i.e. centre positions
and width magnitude) for the structure identification procedure based on a priori
knowiedge of the system. The solution of this problem concerns the interpolation

technology, which involves the target directed leamning of the LM networks.
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2.2.4 interpolation

The main issues of LM networks implementation concern the identification of the
structure (number of local models and partition patterns) and the parameters (validity
functions and local models). These tasks are interlinked through interpolation
technology by using validity functions. The role of interpolation is to provide smooth
‘transition’, in some sense, between the local models, with the aim of achieving an
ultimate global representation of complex nonlinear systems with only a small number
of local models. Therefore, the interpolation methods are of significance to the utility of

the LM network.

One major concern in interpolation is how well the multiple models can approximate a
real system, which depends on the formulation of the leaming task for LM networks.
Ideally, it is desirable that a LM network should give accurate global nonlinear
prediction and, at the same time, that its local models are close approximations to the
local linearization of the nonlinear dynamic system at the operation point. The former
requirement is of significance in the global performance of the modelling; while the
latter requirement is important in many applications where the local models are used
individually to aid validation and interpretation of the models. These requirements
define a multi-objective identification problem, namely, the construction of a dynamic
model that is a good approximation of both local and global dynamics of the underlying
system. However, these objectives are normally conflicting. From the control point of
view, the solution to the conflict depends on the control objective and the controller

design approaches.

Most existing leamning algorithms choose the parameters to minimize a global mean

square error (MSE) objective function
M -~
> [d(k)- )P (2.19)

where d(k} is the output of the real system (or expected output), j»(k) is the output of

the identified model network defined in equation (2.1), and M is the length of training

data set. The objective of learning is to try to adapt local model and interpolation
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function structure and parameters to minimize the criterion function related to the

deviation of the model output from the desired system output,
Solving this minimization problem involves the estimation of validity function g, (y(¢))

parameters and the estimation of local dynamic model f:(x) parameters. Normally, the

local model parameters represent the linear behaviour of the LM network and thus can
be learned relatively easily by some non-iterative linear algebraic methods, such as the
least squares method. In contrast, the validity function parameters represent the location
and the shape of the interpolation functions that influence, in a nonlinear way, the LM
network behaviour. Therefore, iterative nonlinear optimisation techniques such as
steepest descent method (Lin, 1995), stochastic methods (Shibata and Fukuda, 1994)
and genetic algorithms (Vachkov and Fukuda, 1999) could be useful tools for tuning.

Early work on the leaming of the RBF network can be applied. For example, Moody

and Darken (1989) use a self-organizing technique to find the validity function centre ¢;
and width o, of the receptive fields, and then employ the supervised Adaline or LMS
learning rule to identify £;; Chen et al. (1991) and Wang and Mendel (1992} apply the

orthogonal least squares (OLS) algorithm to determine those parameters. However,
these approaches couldn’t guarantee that the learning is globally optimised, because
there is no link made between the local learning and the ultimate criterion function, in

which f, is taken as a scheduling vector only rather than a local model.

Later work in this area involved improving the learning towards a mixed modelling
target. Intuitively, an accurate global representation is an essential requirement for
modelling, but this doesn’t mean that the imporiance of local modelling could be
ignored. Murray-Smith and Johansen (1995) put forward the importance of local
leaming in LM networks, as follows: “Local learning has a regularizing effect (local
models often produce models with higher accuracy, and greater robustness than global
leaming methods) that can make it favourable compared to global learning in some
cases”. In the learning and optimising of LM networks, on the one hand, it 1s necessary
to address the significance of global model accuracy; on the other hand, to some extent,

the performance of local models in specifically designed local regimes should be
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guaranteed. While these kinds of learning algorithms can lead to LM networks with

arbitrary approximation accuracy, they are computationally expensive.

Brown et al. (1997) present a hybnid-learning scheme towards minimizing the global

error in the space of local models. This approach proposes an interpolation function
vector a = [cl,cz,---,cM,O'l,---,O'M ]T, in which N is the numher of local models, as the

centers and widths of the normalized Gaussian bell functions. The cost function is

rewritten as

M:i[«a-[zmx)p,(w(k),a)ﬂz 220

k= =t

where d, is the scalar plant output, A is the length of the data set and N is the number

of local models. Hence the target output is associated with the ¥ training vector, which
includes singular value decomposition (SVD) estimation of the parameters of linear
local models and Hessian-based optimisation to identify the nonlinear interpolation
functions’ parameters. This algorithm is a global optimisation approach in the sense
that the parameters of the model are identified using the whole training data set in a
single algorithm operation. If sufficient rules and training data are used, the resulting

model from these algorithms i1s guaranteed to converge to the real system.

Johansen and Foss (1995) and Nelles (1997) propose top-down-style construction
algorithms from both computational and performance points of view; they optimise the
LM network parameters through a repeated loop. In the loop, the algorithm
automatically partitions the designed input space into sub-spaces and determines the
suitable centres, ¢;, and widths, &, for them. In a manner similar to the idea of Moody
and Darken (1989), the local learming methods are applied to local model parameter

estimation. Based on a similar idea, Vachkov and Fukuda (1999) proposed a structured

optimisation scheme to improve learning of fuzzy inference systems.

Another approach which combines local learming and global leamning is proposed by

Yen et al. (1998), who improve the interpretability of Takagi-Sugeno (TS) fuzzy
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inference systems by combining local and global leaming with weighting functions
based on a user’s preference. They bring a local MSE criterion function (2.21) to a

combined objective function J as in (2.22)

2

J, = [ (k)- v k)] (2.21)

L
M

i M=
i ME

where N is the number of local models, M is the length of the data set,

Je=adg +BJ, (2.22)

where o and P are two positive constants satisfying c+f=1.

In practice, it is important, for some applications, that the global behaviour of the
nonlinear model should accurately represent the global behaviour of the nonlinear
system. For example, this is typically the case when the global model is used for
nonlinear prediction (Townsend et al., 1998, Townsend and Irwin, 1999) or when the
global model 1s used as an internal model in a controller as in e.g. (Wang, 1993, Brown
et al.,, 1997). On the other hand, it is sometimes required (and often desirable) that the
local linear models are accurate approximations to the local linearization. This is the
case when the local models are used to design linear local controllers (Narendra and

Balakrishan, 1994a, Narendra et al., 1995).

In brief, the learing or optimisation of interpolation schemes is closely related to the
objective of controller design. The role of interpolation is to balance the trade-off
between local and global approximation accuracy based on the methodology adopted to

fulfil the controller design objective.
2.2.5 Structuring Conventional LM Networks

After introducing the regime partition, local models and interpolation schemes, this
section brings them together to structure a LM network. A set of simple models defined
in each local regime of a nonlinear system is assumed. To each local model, a validity

function p, (y/(t)) is associated, which determines the validity of the operating regime
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for the current operating point defined by -;z/(t). As defined in previous sections,

p.(w(¢)) is a nonlinear function normalised to satisfy

ply()=1 (2.23)

M=

\

in which N is thc number of validity functions. The selection of the scheduling vector is
worth mentioning. It is clear that interpolation approaches should reflect the system
characteristics at intermediate operating points. Similarly, the choice of scheduling
vectors should reflect the instantaneous dynamic nonlinear properties of the system in
some appropriate sense. This could be done through a cooperation vector of system
states, system input and system output (Murray-Smith and Johansen, 1997). In practice,
scheduling vector selection is usually based on the “physics™ of the situation, and on the

particular characteristics of the model.
2.2.5.1 State Space Representation

Recall the general nonlinear state space system (2.3}, we rewrite equation (2.1) in state

space format and have

N

=3 pxu)filxu) (2.24)

where state vector x, input u , the model £(:,:) is one of N vector local model

functions of the state and the input, and is valid in a region defined by the scalar validity

function p,, which in turn is a function of the above variables.

Typically, the local models are chosen to be of the form as equation (2.7):
fi(xu)=Ax+Bu+a,+h(o),
resulting in constituent dynamics systems >, given by
> k= filxu)=Ax+Bu+a, +h(o) (2.25)

This results in a nonlinear description of plant dynamics of the form
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x = Alxu)+ B(x,uu+a(x,u)+e (2.26)

where

Alxu)= z p. ()4
Blwa)= Y58,
()= p s
e=2 p(xulho) (2.27)

Here, a;, A; and B; are all constants, e is the modelling error. Model building consists
of covering the operating space of the nonlinear plant with local models. Behaviour
along the plant equilibria is typically captured by using models whose equilibria are
located inside the region defined by their basis functions, whereas behaviour off
equilibria can be properly approximated by using affine models. It is shown in
(Johansen et al. 1998a) that the finite set of linearizations about a finite number of
points (equilibria and transient points) can be used to accurately approximate dynamic
linearization about arbitrary trajectories, using an interpolated multiple model structure

with local affine dynamic models.
2.2.5.2 Input-output Representation

In many cases, it is more convenicnt to use inpui-ouiput transter functions rather than
state space representation. Recall the general input-output nonlinear system (2.8), if the

local models are of ARX form as given in (2.11)
Sk)= ¢, (k—=1)6, + ¢ (k) (2.28)

in which,

0, =(ay.....a, by b, T,

Rl L
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¢5ﬂr(k —1)= [—y(k - 1),...,—y(k - ny),u(k -n, ),...u(k -n, ~ nu)]T

Then LM network (2.1) represents a nonlinear ARX model as follows
N
e +1)= gk -1)3" pw(k))o, +elk) (2.29)
i=l

The resulting model has an ARX structure at any instantaneous operating time. A major
advantage of this model structure is its simplicity and transparency, which leads to more
interpretable models; such models are compatible with well-developed control

technologies available for linear systems controller design.
2.3 Conventional LM Network Properties and Related Approaches

Having introduced the architecture of LM networks, it is known that LM networks are
able to give a close approximation to the modelled nonlinear systems. The basic
principle of LM networks is to decompose the entire system operating range into a
number of possibly overlapping operating regimes, and in each operating regime a

simple local model ts applied to describe the local dynamic properties.

This section analyses some properties inherent in LM networks. It starts discussing the
number and size of the sub-operating regimes required and the dimensionality problem
encountered in LM networks; next, it answers how well LM networks can approxima£e
nonlinear systems; then, it investigates the most commonly used LLM and ALM
networks with respect to their approximation ability and potential for controller design.
Finally, as an addition, the fuzzy inference system, which is functionally equivalent to
LM networks, is concisely introduced; some approaches that are closely related to the

LM networks are also discussed.
2.3.1 Fundamental Properties

The core idea of LM networks is to decompose the domain of functions into operating
regimes, and to design simpler functions that are adequate approximations to the

relationships that are desired for modelling within their respective operating regimes.

52



Conventional Local Model Networks

Obviously there is a trade-off between the number and size of the operating regimes on
the one hand, and the complexities of the local models on the other as shown in Figure
2-4 (Murray-Smith and Johansen, 1997). Provided that the functional relationship
approximated is smooth, it should be intuitively clear that approximations based on
operating regimes and local models can be made arbitrarily accurate either by making
the decomposition into operating regimes sufficiently fine, or by making the local

models sufficiently complex.

A
LA, s
’ % ’
/ Y ’
1 N J
- i— -

2 L

!

(c) (d)
Figure 2-4.  Function approximation using local models

The dashed curve is the modelled system, while the solid lines are local
approximations. (a) Local constant functions are applied, (b) Local linear
functions are applied, (c¢) Affine linear functions are applied, (d) Local
quadratic functions are applied.

It was established that the LM network could uniformly approximate any nonlinear
system given a sufficient number of local models N (Johansen and Foss, 1993). The
result is based on smoothness conditions on the nonlinear function f, and explicitly
formalises the intuitive notion that the operating point scheduling vector w(¢) should
capture the nonlinearities of the system. Moreover, it is shown that any continuous
function can be approximated to arbitrary uniform accuracy in the manner discussed

using polynomial local models of arbitrarily low order (like linear or constant local

approximation). Similar analysis and approximation results are given by (Kosko 1994,
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Zeng and Singh 1994). These contributions give strong support to the modelling ability
of LM networks.

An inherent problem with all function approximation approaches that are based on
partitioning of the function’s operating regime is the curse of dimensionality: with an
increasing number of variables on which the function depends, the number of partitions
required (assuming uniform partitioning) will increase exponentially. The use of a priori
knowledge about the system is the key to reduce the effects of dimensionality at least to

some extent.

In practice, linecar or affine models are most widely used as local models. Their
advantages are their simplicity and transparency in representation and by their
compatibility with well-developed linear control theories and stability analysis
techniques. Now, the properties of linear local model (LLM) networks and affine local
model (ALM) networks will be investigated, and their advantages and limitations in

modelling and control applications will be detailed.

2.3.2 Linear Local Model (LLM)

Conventionally, dynamical modelling of nonlinear systems has been carried out on the
basis of linearisation about equilibria. Most often, the ARX/ARMAX structure are
selected as local models (Johansen and Foss, 1993) for their simplicity and transparency
for controller design. This transparency of representation facilities the incorporation of a
priori knowledge, such as known linear regimes and linear models, into the process
network (Gawthrop, 1995). Furthermore, the representation is compatible with
conventional modelling and control techniques, for example, conventional internal
model control (Brown et al., 1997), predictive control (Townsend and Irwin, 1999} and
model-based control (Irwin et al., 1998). In particular, it is claimed that the design of a
local controller network, once the LLM network has been defined, is relatively

straightforward (Townsend et al., 1998, Townsend and lrwin, 1999).

LLM networks clearly inherit many valuable properties for employing linear local

models. However, a LM network using strictly local linear models can often result in a
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poor global representation of the nonlinear plant being approximated due to the side-
effects resulted from the normalised basis functions aforementioned. Introducing more
linear local models into the network will minimize the error area and provides more
potential to reduce the actual steady-state error. But because the network output is
bounded by the local models and as such, an infinite number of local models are

required to obtain a completely accurate representation (McLoone, 2000).

2.3.3 Affine Local Model (ALM)

As mentioned, the modelling accuracy of LLM networks for nonlinear dynamics is
questionable. Dynamic linearization, which means that the linearization is done based
on a nominal trajectory, was suggested in (Driankov et al., 1996); however, a drawback
is that the control design for the resulting linear time-varying (LTV) system is, in
general, a very difficult problem. An alternative is off-equilibrium linearization
(Johansen et al., 1998a), which can be seen to depend only on the granularity of the set

of points in the off-equilibrium linearization.

The reason for this is that the LTV system resulting from dynamic linearization depends
only on the point that the trajectory passes through at a given time. Hence, off-
equilibrium linearization leads to an arbitrarily close approximation of the LTV system
in terms of a set of linear time invariant (LTI) systems, provided there exists an LTI
system close to any point in the nominal trajectory of the LTV system, and the LTI
systems are interpolated using a sensible interpolation scheme (Driankov et al., 1996).
Mathematically, off-equilibrium linearization leads to local affine models, which have
an extra degree of freedom (i.c. an added offset term) to make the local models more
flexible, so that they can be shifted upwards or downwards in the operating space

(McLoone, 2000).

However, the affine models do not possess the superposition property fundamental to
linear systems, due to the inhomogeneous term @; (equation 2.25). Thus, there is a lack

of continuity with established linear theory and methods. Furthermore, the

inhomogeneous term can become quite large and significantly influence the solution.
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Then a,tends to dominate, while varying some elements, like A4, and B,, only has

minor influence on the local model accuracy (Shorten et al., 1999). Therefore, in
general, the inhomogeneous term cannot be simply regarded as a small approximation
error or disturbance. A novel velocity-based linearization approach is suggested as an
alternative (Leith and Leithead, 1998, 1999). We will discuss this method in a later
chapter.

2.3.4 Fuzzy If-then Rules and Inference Systems

Fuzzy inference systems are also known as fuzzy rule based systems, fuzzy models,
fuzzy associative memories, or fuzzy controllers. A fuzzy inference system is composed
of a set of fuzzy if-then rules, a database containing membership functions of linguistic
[abels, and an inference mechanism called fuzzy reasoning. The method of fuzzy logic
inference modelling was proposed by (Takagi and Sugeno, 1985), and is known as the
Takagi-Sugeno (TS) model in fuzzy systems literature. This method has been one of the

major topics in both theoretical studies and practical applications of nonlinear modelling

and control.
A
=ax, +bx,+c¢
_________ Wy N=ax +Hx; +¢ e f
> — f= 1./ 1 2J2
A, X = Wy + W,
_______ L] =a, x5 +bx, +c
l[ ! fr=a % +byx; + ¢,
xl X]

Figure 2-5. Fuzzy inference system example

Suppose there is a rule base consisting of two fuzzy if-then rules of TS type:
Rule I: If x, is 4, and x, is B, then f =ax +bx,+¢,

Rule 2: If x, is 4, and x, is B,, then f =a,x +bx, +¢,,
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then the fuzzy reasoning mechanism can be illustrated in figure 2-5, where the firing
strength (or weight) of the i rule is obtained as the T-norm (usually the minimum or

multiplication operator) of the membership values:
W = /"Af(x[ )/"B.'(xz) or w; = min{/"A;(xl ): ﬂB;(xz )}

Note, conventionally, that the overall output can be chosen as the weighted average of

each rule’s output

Zwiff
f(x)=4=% (2.30)
3w,

where R is the number of fuzzy if-then rules.

Generally, a TS model consists of iterative if-then rules that have the form
R':if x, is 4,and ... x is 4,
then ¥, = po+ pyx, +-+ pux, for i=1,2,...N. (2.31)

where / is the number of the rules, x; are input variables, y; are local output variables,
A are the fuzzy sets that are characterized by validity functions 4; (x J.), and p; are

the real valued parameters. The overall output of the model 1s computed by

N N
_foJ’s Zfi(Pio + PaXx +"‘+Pkak)

y=i <&l = (2.32)
Z T,- Z I"-
i=1 i=t
where T, is the firing strength of the rule R', which is defined as
7y = An(0)dp () - Ay (x) (2.33)

Defining p, = i and Ji= P+ puxi o Pax,

N
Z LT
i=1
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N
then (2.32) can be rewritten as y = »_p, f;, which is the same as (2.1) under some minor

i=l

restrictions:
o The number of local models must be the same.

¢ The validity functions within each rule are chosen as Gaussian functions with

the same variance.

e Both the LM network and TS fuzzy inference systems under consideration use

the same method to derive their overall outputs.

The LM network is strongly linked to the fuzzy inference system. Under certain
conditions, the TS model of fuzzy inference is functionally equivalent to the LM
network. Furthermore, it can be claimed that both models are universal approximations
if the validity functions and membership functions are chosen as a scaled version of the
Gaussian function. Some contributions have been made by Jang and Sun (1993) and

Hunt et al. (1996) in this respect.

Due to the equivalence of these models, it becomes straightforward to apply one
model’s learning rules to the other, and vice versa. Moreover, from the control point of
view, the controller design strategies and stability analysis developed for fuzzy

inference systems can be changed to serve the controller design based on LM networks.

A number of other modelling approaches are quite closely related to the LM network.
Several authors developed piecewise linear models (without smooth interpolation).
These include Skeppstedt et al. (1992) and Billings and Voon (1987). There are many
exampies of muitiple modelling approaches in the statistical literature. These include the
Smooth Threshold AR model of Tong and Lim (1980) and the non-parametric state-
dependent models of Priestly (1988). These modelling approaches are related with LM
networks (2.29) as represented by

)= 4" (-0 00 p) + (k) (234)

This equation appears as a linear model with parameters, which depend on the
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interpreting vector (which corresponds to the ‘state’ in Priestly’s terminology). The LM

network provides a way of finitely parameterising the state-dependent model.

24 Case Study

In order to allow better understanding of the structure and properties of LM networks
introduced so far, a case study is carried out. A LM network model was built for the
continuous stirred tank reactor (CSTR) simulation, a highly nonlinear simulated process,
which has become a standard benchmark in the field of nonlinear system modelling and
control studies (Henson and Seborg, 1990). Simulations are carried out in two steps: the
first step shows the important influence of interpolation schemes on modelling accuracy;
the second step shows the inherent properties and approximation ability of LM

networks.

24.1 CSTR Introduction

A simplified diagram of the CSTR process is shown in figure 2-6. It is a single input,
single output process, where the input is the flow rate of a coolant and the output is the

concentration of a product compound.

Cr.q.1;

Feed in

C), 1y

A |
.‘J_’qc

r—

qc (t)’ ch

Coolant

Figure 2-6. CSTR plant model

The reaction that takes place to produce the compound is exothermic which raises the
temperature and reduces the reaction rate. The induction of a coolant allows

manipulation of the temperature and, hence, control of the concentration. The reaction
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takes place in container of a fixed volume and the product flowrate, input concentration

temperature, and the output flowrate are all assumed constant at their nominal values.

The process model consists of two nonlinear ordinary differential equations (Henson

and Seborg, 1990):

% gc(t)

. _ﬂ_ oy . i B E \ . |_ 3 l/- K3 3 _ 3
7(0)=2L {1, —r(0)+ KIC(t)cxp( =0) +K2qc(111 e~ 7 J (7.7 -7()) and
E)=2L(c/ - c()- KoClr)exp| - —=~ (2.34)
y 0 RT(Y)
where qc(t) 1s the coolant flow rate, 7(¢) is the temperature of the solution and C(?) is

the output product concentration. The model parameters defined and nominal operating

conditions are shown in Table 1 (Henson and Seborg, 1990).

K , =0.011" |, constant K,=700 1/min, constant J
| 47 100 #/min, product flow rate V' =1001, container volume }
C ;=1 mol/l, input concentration ] % =10 K, activation energy J
T,=350 K, input temperature T.,=350 K, temperature of coolant [
| Ko =17.2x 10 min™ | constant K, =1.44x 10" Kl/min/mol, constant ‘

Table 1. Nominal CSTR Operating Conditions

CSTR is a highly nonlinear system with exponential terms and product terms. The
effect may be seen by open-loop step responses over a number of operating values

around certain nominal values.

The CSTR process model was simulated at a nominal operating point of g.(¢) =100
Vmin, T(£)= 441.22 K and C(¢)=0.0882 mol/l. Figure 2-7 is the step response of
output product concentration C(¢) and temperature 7'(/) when the coolant flow rate
g.(t) varies from 90 I/min to 110 I/min. The result shows that the output concentration
responses vary from the over-damped (C(¢)<0.1) to the under-damped ( C(¢)>0.1),

reflecting the dynamic variation in the CSTR process.
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Figure 2-7.

In addition, analysis on the linearized CSTR process at nominal operating conditions

,0.13566) & ¢,(¢) € (0,110.8),

(0

shows that the stable regime of the CSTR liesin C(¢) €

which is shown in Figure 2-8.

-

(17

12
'

o

ow)(1)]) uoHEBHUIIUOD)

Coolant flow-rate g.(f)
Figure 2-8. Steady-state concentration output from CSTR

-rate g.(f)

Coolant flow
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For CSTR such complicated nonlinear process, a single linear model is not able to
represent the varying dynamic properties. However, a set of models has the potential to

describe the dynamic variation in the CSTR process.
2.4.2 Modelling the CSTR Process

The LM network is built to approximate a complex nonlinear system by using a set of
local linear (or affine) models. Some factors that have effects on the modelling accuracy
are the number and size of partitioned local regimes, the structure and parameters of the
local models and the interpolation {or scheduling) schemes used for combining the local
models. The difficulty of modelling using LM networks is that it requires deliberate
consideration of these mentioned factors, with the hope of using a smaller number of
local models to get a good approximation of the modeled process based on the available

a priori knowled ge of the system.

Two sets of step input signals g.(¢) are chosen, as shown in figure 2-9. One of them

covers over-damped operating regime {concentration output C(#)<0.1 mol/l} of the
CSTR; the other covers the highly under-damped operating regime (concentration

output C(¢)>0.1 mol/I) of the CSTR as shown in Figure 2-6.

Coolant flow-rate g~(t)fl/min)
Coolant flow-rate g.ft}(l/min)

Time (min) Time (min)

(a) over-damped operating regime (b} under-damped operating regime

Figure 2-9. Step changes in coolant flow-rate g, (¢}
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A desirable LM network, from the point of view of modelling, should be able to give
information about the steady state relationship between the input and output signal,
meanwhile, it should be able to give the relationship between the input and output signal
during transient behaviour. Simulations are carried out to show the ability of LM
network in modelling nonlinear systems with certain accuracy from both the static and

the dynamic point of view, provided that proper weighting functions have been selected.

First, the full operating range of the CSTR is decomposed to two sub-regimes, in which

two local linear models are formulated at following nominal operating points:

C) =0.1298mol/1,T) = 432.9487K,q. =110.0//min

C? =0.0620mol/1,T} = 448.7522K ,q2, = 90.0// min

in which (C!,77,q! } denotes the linearization point of the i" local model. The local

0*"o?

state space models are

7.1884 1.3405¢3 —0.8191 —3.1961e3
Al = y Bl = R a] =
—4.6423e—-2 —7.7027 0 2.11el

[ 74161 3.0247¢3 5 - —0.9839 _[-3.4269¢3
2712465772 —16118el|" 2 0 T2 2,191

in which 4,, B,, @, denotes the parameters for the i* local model. The LM network

outputs are given in Figure 2-10, which compares the output product concentration C(t)
and the temperature outputs 7¢¢) from the CSTR process with the corresponding outputs

from the LM network, when the input signal (coolant flow rate} g.(f) changes as figure
29,

We can see in Figure 2-10 that the LM network with two local models doesn’t give
accurate performance. In over-damped (Figure 2-10(a)) operating regime, the LM
network output is able to follow the slow dynamic changes of CSTR, but there are
serious steady state modelling errors existing. In relatively under-damped operating

regime, Figure 2-10(b)} shows that the LM network could not follow the fast dynamic
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change in that area. Especially when Cf2)=0.11, both the concentration output C¢z) and

temperature output 7¢?) are oscillatory.

In addition, it should be noticed that when the operating point is close to the regimes,
where the local models are designed, the steady state errors are small. For instance,
when Cyt) is close to 0.062 in Figure 2-10(a) and 0.1298 in Figure 2-10(b). While the
steady state errors are gefting bigger when the operating point is further away from
those regimes. For instance, when Cf?) is about 0.02 in Figure 2-10(a) and 0.09 in
Figure 2-10(b).

4

=
2

=)
2

o
g

Concentration C(z}{(mol/I)

Concentration C(t)(mol/1)

f=]
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2 2w
= =
b~ b~
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T Tt
2 2
= =

L 1 L 430
ja | jo
= T E
L (3]

— X =

26 0

Time (min) Time (min)
(a) Over-damped operating regime (b) Under-damped operating regime

Figure 2-10. Step response Comparison of the CSTR with
the LM network with 2 local models

Solid line is from CSTR plant model, the dashed line from the LM networks.
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Simulation results given above are when the width vector between the local models is
designed as ¢ =[().02,0.03]. The interpolation scheme is shown as figure 2-11. While
these weighting functions are not necessarily optimal, they are more than adequate for
the purpose of the main objective of the thesis, i.e. the controller design based on the
LM networks. In later chapters, this LM network will be utilized for the local controller

(LC) network development with two local controllers.

0ot
08+
ort
LN
0.5
0.4
03;

[

01

Normalised Gaussian output

e

0 S

Q 0.02 0.04 0.06

Scheduling variable Cy2)

D.‘UB Oi 0.12 Q14
Figure 2-11. Normalised Gaussian based weighting function for the LM network
with 2 local models

Increasing the number of local models can limit the steady state errors to an upper
bound. This will be shown in the second step of the simulation. Five local models are

designed based on the following operating points:

C! =0.1298mol /1,T" = 432.95K 4, =110.0/ /min
C? =0.08506mol /1,T? = 442K 47, = 98.899/ /min
C? =0.05854mol/1,T} = 450K ,4°, = 88.291//min

=0.02946mol /1, T* = 465K ,q°. = 68.788//min
C} =0.01463mol/I,T) = 481K ,q., = 50.438//min

in which (C!,T!,4",) denotes the linearization point of the i"" 1ocal model. The local

state space models are

7.1884 1.3403¢3 —(.8191 -3.1961e3
AI = s B] = 3 a] =
—4.6423¢-2 -7.7027 0 2.11el
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Lo 7378 2.1513¢3 09137 ~3.3538¢3
P ~4.6832e-2 -1.1175e1|” 7| 2.17el
| 7188 3.2164¢3 _[-0.9968 ~3.4374¢3
S| -4.6492¢-2 ~1.7082¢1 | 7| 2.19l
[ 7.2893 6.5871e3 [—1.1495] [-3.5046¢3]
Aq = ) B‘1 = , aq =
|- 4.4885c—2 ~3.3936cl 0 | 2.19l
p 7.0136 1.347¢4 ~1.30998 ~3.5045¢3
= ) = ya. =
P -4.259¢~2 -6.8350el| o |7 2.15¢l

in which 4,, B,, a, denotes the parameters for the i” local model. The width vector

between the local models is designed as ¢ = [0.03,0.015,0.015,0.012,0.01]. The
interpolation scheme based on normalised Gaussian basis function is given in Figure 2-

12.

Normaiised Gaussian output

0.08 0.1

Scheduling varniable Crt)

Figure 2-12. Normalised Gaussian basis function for the LM network
with 5 local models

Figure 2-13 shows the step response comparison of CSTR with the LM network with
five local models. The reasonably improved matching is shown between the LM
network outputs and the process CSTR outputs. Steady state errors are decreased
significantly all over the operating space comparing with Figure (2-10), no matter in

over-damped operating regime (Figure 2-13(a)) or in under-damped operating regime
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(Figure 2-13(b)). It is worthwhile noting that, when the coolant flow rate g.(¢)=106

I/min, C()=0.11, the CSTR output is highly under-damped; however, the LM network
output still matches the CSTR output with high accuracy, indicating the better

modelling accuracy than the LM network with two local models.
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(a) Over-damped operating regime (b) Under-damped operating regime

Figure 2-13. Step response comparison of the CSTR with
the LM network with 5 local models

Solid line is from CSTR plant model; dashed line is from the LM network.

In summary, LM networks are able to model nonlinear systems with certain accuracy.
The steady state error between process and model can be limited to an certain bound if a
proper tradeoff can be reached among the modelling issues, such as the number of local

models, the structure of local models and the interpolation techniques involved.
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2.5 Concluding Remarks

This chapter considered the issues of structuring the LM networks and investigated the
properties of utilizing LM networks for modelling nonlinear systems. Theoretically, LM
networks are capable of approximating nonlinear systems with certain accuracy by
employing a finite number of linear local models. Howcver, in practice, there are
normally modelling errors involved in the approach, which, in part, result from the

normalization of validity functions.

Generally, in the operating points where the local model is defined through linearization,
accurate approximation can be made without much difficulty; however, this is not true
for the operating regime far away from these points. The further away the operation
regime is from these special operating points, the bigger the steady state error.
Increasing the number of local models and/or optimizing the interpolation schemes may
improve the modelling accuracy and be able to decrease the steady state errors to an

upper bound globally to satisfy the desired modelling requirement.

From the modelling point of view, the LM network can incorporate a priori knowledge
of a physical system into the framework of the model and have the framework
optimised through the leaming of the LM network. Such kind of modelling structure
carries on the advantages of linear models for controller design, i.e. the well-developed
control techniques for linear systems can be extended to nonlinear systems through the

LM network structure without much difficulty.

In the following chapters, we will investigate the controller design and system analysis
techniques for nonlinear systemns based on the LM networks, by employing the control

methods and theory that have been well developed for linear systems.
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Chapter 3

Local Controller Networks

3.1 Introduction

LM networks can be referred to as universal approximators due to their capability for
approximating a given system with arbitrary accuracy. The general idea of LM networks
is to decompose the operating state space into small local regtons and to approximate the
system in every region by a simple (usually linear or affine}) model. The overall LM
network is considered to be a combination of interconnected systems with simple local

models. This chapter describes nonlinear controller design based on LM networks.

From the modeling point of view, LM networks provide an excellent basis for developing
good data-driven identification methods that require little a priori knowledge of the
sysiem under investigation. The model structure (partitioning the full operating range and
employing local model structures) and local model properties can, in some applications,
be relatively easily related to the physics of the system. This simplifies model
development and validation. Meanwhile, the relatively complex interpolation technique

allows the number of local models to be quite small in many applications.

From a control engineering perspective, the use of local linear (or affine) models bridges
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the gap between nonlinear control and conventional control. Many existing tools and
theories in linear systems can be applied to LM networks to complete the controller
design. This is one of the significant advantages of applying LM networks for control
purposes compared to the more usual approach based on a complete nonlinear plant
model, for example neural networks, which inevitably suffers from computation penalty
due to the requirement for nonlinear optimization to minimize the cost function. LM
networks have been successfully used in such control schemes as internal model control
(Brown et al. 1997), predictive control (Townsend et al., 1998, Townsend and Irwin

1999, Gao et al., 2002b), and PID controllers (Gao et al., 2002a).

Linear system theory is based upon linearization of the underlying nonlinear dynamics in
some partitioned regions around some nominal operating points. Traditionally, these
operating points correspond to physical equilibria of the plant. However, if the operating
point is moved away from the nominal operating point, the local controller is less
effective, or even detrimental to the system. It is intuitive that a controller designed
around a specific operating point may not be able to accommodate large variations in
process dynamics and offer satisfactory tracking control without some performance

degradation or even instability.

One solution is the use of multiple models, which provides a convenient framework for
obtaining both stability and improved performance simultancously. Gain scheduling is
perhaps one of the most popular applications of multiple models (Shamma and Athans,
1990). Gain scheduling conventionally constructs a non-linear controller, with certain
required dynamic properties, by combining, in some sense, the members of an
appropriate family of linear time-invariant controllers. The transition between the family
members is governed normally by an auxiliary scheduling variable; a traditional rule of
thumb to ensure stability is that the scheduling variables vary slowly with respect to the
states and are able to capture parameter variations of the controlled nonlinear system

(Shamma et al. 1991).

Another closely related approach is piecewise (i.e. no interpolation between local

models) multiple model adaptive control, which was suggested by Middleton et al.
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(1988), and further developed by Narendra and Balakrishnan (19944, 1997;. This strategy
employs different classes of switching and tuning schemes, to ‘combine’ the fixed and
adaptive models, to improve the transient performance. Further investigation is given by
Narendra and Cheng (2000} on the overall global system stability and on the convergence
of tracking errors to zero. This investigation shows that an arbitrary switching scheme
yields a globally stable system, provided that the interval between successive switches
has an arbitrarily small but non-zero bound. These results strongly support the application
of this approach in industry. Compared with the gain scheduling approach, where the
local controllers are scheduled in open loop, the piecewise multiple model adaptive

control is scheduled based on the modelling performance of the local models.

As mentioned, the objective of this chapter is to present the formulation of the controller
designs based on LM networks. The theoretical principle for the design of the controller
using LM networks are based on well-established results for linear systems. Using the
implicit function theorem, the properties of the linearized system around the equilibrium
states can be extended to the nonlinear domain, assuming a LM network has been created

with arbitrary accuracy for a given nonlinear system.

Generally, there are two approaches to complete a controller based on LM networks. One
approach s to structure the local controller (LC) network based on locally valid models,
then the global controller is formulated by the combination of the local controllers; the
other approach is to design a global LPV (Linear Parameter Varying) controller based on

a global nonlinear model resulting from the LM network.

Controller design based on the locally valid model could be called a specialized
interpolation technique for the gain scheduling concept (Hunt and Johansen, 1997,
Johansen et al., 1998a, 1998b, Korba and Frank, 2000, Sharma et al., 2002). This
approach allows the design of a locally valid controller for each local model, and the

global controller output is given by the combination of local controller outputs.

In contrast, the global design method uses the dynamic LM network global model for the

controller design (Brown et al., 1997, Brown and Irwin, 1999). This global model can be
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considered as a linear parameter varying (LPV) system, which is an approximation of the
instant linearization of the controlled nonlinear system, so LPV theory can be employed
for the controller design and for the stability analysis (Rubensson and Lennartson, 2000,

Rong, 2002).

The contents of this chapter are as follows. Firstly, in section 3.2, the development of the
gain scheduled LC network 1s proposed by employing a model based predictive control
strategy. In section 3.3, Case studies are given to show how the linear control techniques
can be extended to the control of nonlinear systems and to bring out some new issues
related to the blending techniques on the control of a highly nonlinear simulated process.
Section 3.4 introduces the LPV controller design strategy based on a global LM network
model. In section 3.5, the concluding remarks summarize the main issues discussed in

this chapter.

3.2 Gain-scheduled Local Controller Networks

3.2.1 Gain Scheduling

Gain scheduling is a well-established engineering practice to design controllers for
nonlinear plants by linearizing the nonlinear dynamics at some fixed representative
operating points (Shamma and Athans, 1990, Rugh, 1991). The synthesis of a nonlinear
control system is made by objectively combining a family of linear controllers. A typical
gain-scheduled design procedure for nonlinear plants after selecting a number of

operating points is as follows:

1. Linearize the plant about a finite number of representative nominal operating
points, which cover the whole range of the nonlinear system’s dynamics.
2. Design a linear controller at each of these nominal operating points.

3. Interpolate the parameters of the linear controllers, designed at step 2, to achieve

adequate performance of the closed loop system at all points where the plant is
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expected to operate.

In the case of gain scheduling on a reference state trajectory, these operating points are
time-frozen values of the state vector that belong to the reference state trajectory. At each
of the nominal operating points, a local linear approximation of the original nonlinear
plant is constructed and a local linear controller is designed for each local linearized
plant. For intermediate operating points, the local controllers are interpolated or

scheduled, thus resulting in a global gain scheduling control or gain scheduler.

The main advantage of the gain scheduling approach is that linear design methods are
applied to the linearized system at each operating condition, and the wealth of linear
control methods, performance measures, design intuition, and computational tools can be
brought to bear on control design for general nonlinear systems. For example, pole
placement, quadratic performance indices, output feedback control techniques and model
predictive control can be used in specifying performance. Meanwhile, model-based
methods, such as adaptive and robust design for linear systems can be applied to counter
uncertainty in systemn parameters, which will benefit the final gain-scheduled design.
Moreover, a gain-scheduled control system has the potential to respond rapidly to

changing operating conditions.

However, these significant advantages are partly offset by some difficulties, such as the
selection of appropriate scheduling variable and the selection of the scheduling procedure.
General characterizations and prescriptions have not been particular useful, except for the
rules of thumb, such as “schedule on a slow variable”. In this case, most of the theory
developed for scheduling is likely to simply verify the intuitior obtained from an
understanding of a physical system (Rugh, 1991); analyzing the global control
performance and guaranteeing the global stability in the presence of rapid variations is

thus difficult.

An alternative gain-scheduling framework should be expected to give guarantees of
expected global performance, stability and robustness of the closed-loop system in the

presence of rapidly changing operating conditions. The gain scheduled LC network
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shows some progress towards this objective.

The LC network has the structure of a two-level control system. The first level is to
provide a basic feedback control and the second level is that the interpolation schemes
provide supervisory function. By using a LM network, these two kinds of knowledge can
be formulated into a unified mathematical framework. Moreover, the LM network can
incorporatc a priori knowledge of a physical system into the framework of the model and
have the framework optimised through the leaming of the LM network; this improves the
conventional scheduling technique, which is based on intuition of the physical system.
This framework brings more flexibility for gain scheduling and provides the possibility of

developing a systematic analysis and design method for complex nonlinear control.

Some research work has been done by Hunt and Johansen (1997} and Johansen et al
(1998a, 1998b) under this heading. One obvious potential benefit from this approach is
the improved transient performance over the full operating range when using an affine
LM network. Other approaches, like the fuzzy inference system, which is functionally
equivalent to LM networks, also can be applied for formulating gain-scheduled control

{Driankov et al. 1996, Farinwata et al., 2000, Bergsten et al., 2000, Lin, 2002).
The following sections show how to properly utilize the well-developed linear control
theories and analysis techniques for gain-scheduled LC networks. A general framework

of LC networks is given by introducing the generalized predictive controller into the

framework of the local controller network.
3.2.2 LM Networks as Gain-scheduled Systems

Consider a single input single output (SISO) LM network model p that is described by

equation (2.1). We rewrite it as follows for convenience:
N
)= pwl)p(x) (3.1)
i=l

where [ =[l,N], », is the local model output, y is the global LM network output and p,
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are the normalized weights as introduced in chapter two. The weight vector [pg -+, o]

is a function of the scheduling variables t,y(t), which, in the framework of LM networks,
can be a collection of system inputs or outputs, or states. The selection of scheduling

variables w(t) should explicitly address the possibility of rapid system variations.

Overall, the LM network model is nonlinear, with parameters that are scheduled based on

the weight vector p=[g,,"*-,0y], in which p. is a nonlinear function. In a broad sense,
the LM network can be considered as a gain-scheduled system with the firing levels as

scheduling variables. If the scheduling vector resides in only one i* region, then the LM
network coincides with the i/ linear local model. Because of the partitioning of the
operating range, LM networks may belong to more than one i regime and in this case
the output of the LM network is formed by a combination of the subsystems that are

associated with these regimes.

LC networks can be built in a straightforward manner, based on the LM network
structure. The basic idea is to adaptively blend locally valid controllers at different
operating regions of the process smoothly and effectively through the interpolation
system, which results from the LM network. Based on N locally valid medels, the
nonlinear controller design problem becomes the problem of designing N local
controllers, using available linear control methods and theories, to achieve the desired
performance in each selected operating regime of the nonlinear system. Then the local
controller (L.C) network combine these locally designed controllers to formulate a

globally valid controller which covers the full operating range.

In general, the global control signal is defined by

u)=3 clEp ) (32)

i=l

where C, denotes the local controller for each local model y,. The N local controllers
thus obtained are blended using the same validity function p, as the one used in the LM

network. The controller information vector ¢° could consist of past control inputs,
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current and past plant outputs, and the current and past values of the reference signal r,
depending on the local controller technology applied. Figure 3-1 shows a LC network

with an interpolation system.

Local controller scheduling
P |ST:heduIing variable |

r —ﬂ lﬂighﬁng vector 4|

_ﬁ Controller 1 Htt(lk
- y

_ﬁ Controller i I———b— —  Plant —»

T3l Controller N

Figure 3-1.  Local controller network scheme

One more issue that is worth mentioning is the link between the LC network and fuzzy
control. As a control concept, the LC network operating regimes can be viewed as fuzzy

sets, and the weighting functions p, interpolating the parameters are functionally

equivalent to membership function of Takagi and Sugeno (TS) fuzzy inference systems.
It is evident that the LC network approach has a very close resemblance to some TS fuzzy
model-based-control schemes such as those described in (Takagi and Sugeno, 1985,
Tanaka and Sugeno, 1992, Driankov et al., 1996, Filev, 1996). So the theories and
analysis techniques on fuzzy controller design can be used for LC network design and

vice versa.

3.2.3 Local Controller Design
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The LM network model naturally defines the mechanism for interpolation between the
linear local models. In the LM network based gain-scheduled approach, combinations of
linear subsystems that are associated with a given region of the operating range are
considered. Subsequently, combinations of linear controllers that are assigned to the

linear subsystems of a particular overlapped region are considered.

In general, any linear control design method can be applied to design local controllers in a
gain scheduled LC network framework. In chapter 2, it was pointed out that there are
normally modeling errors existing in the LM network model, although the modeling error
can be made arbitrarily small by taking a large number of operating regimes that cover the
full operating range with sufficient accuracy. In the development of local controller
design, both modeling error and disturbances should be considered as important issues to

enable desired controller performance (Hunt and Johansen, 1997).

An affine local model has better modelling performance, for it includes an offset
(inhomogeneous) term «,, which brings extra freedom for modelling. In terms of control,
the LC network approach goes a step further by incorporating affine local models for
operating regimes which do not necessarily contain any physical equilibria, as the

conventional gain-scheduled approach requires.

In this section of the chapter, controller design based on an affine local model takes the

extra offset term a; in the affine local model as a known constant disturbance. This

approach improves the system transient response but does not influence its stability when

a, is limited to some degree. However, when o, is beyound the limit, the stability

properties of the affine local model networks will be very different. This phenomenon

asks for attention to the affine terms when designing the controller.

The overall global closed-loop system stability depends on the local closed-loop systems
and the interpolation techniques between these local systems. Moreover, for some
systems which change not ‘slowly enough’, the offset term should be also cntically

considered in the controller design. An alternative method that overcomes this problem of
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using affine models is proposed by Leith and Leithead (1998, 1999, 2001). This method

is termed as a velocity-based approach, which will be discussed in chapter five.

Consider a single linear model of the form of equation (2.14)
Alg™ k)= g7*Bla™ Ju(k) + elk) (3.3)

where e(k) includes modeling error and disturbance contributions. One possibility for
dealing with the error e(k), is to use feedforward control, if knowledge of A(g™"),
B(g™") and e(k) is available. When an affine local model is applied in the LM network
structure, e(k) is partially determined. The determined part is termed as @, , the same as

«, in equation (2.7), and e(k) can be rewritten as

e(k)=a, + (k) (3.4)

where g(k) denotes unmodelled error, which could result from modelling uncertainties
and disturbances existing in any realistic problem. Hunt and Johansen (1997) proposed a
feedforward filter to eliminate the influence of the offset term in the formulation of the
[.C network based on pole-placement feedback control. An alternative is to employ

integral action, which removes the requirement for knowledge of e(k). Employing an
integrator may be more attractive, since normally the knowledge available of e(k) based

on LM network model is less than the knowledge available of A(¢™') and B(g¢').

Moreover, in many practical applications, the system variation is reasonably slow so that

the modelling error could be taken as constant.

Conventionally, the PID (proportional-integral-derivative) controller is the most widely
deployed in industry. This algorithm is well understood, and relatively easy to tune and
has capability to handle certain nonlinearities. Advanced control approaches include
adaptive control, internal model control and model predictive control. In recent years,
predictive control methods have become a very important area of research. Their

application in industry, especially in chemical process control (Morari and Lee, 1999, Qin
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and Badgwell, 1997) has systematically increased during the last three decades. The
fundamental predictive control methods include Model Algorithrnic control (Richalet et
al., 1978,), Dynamic Matrix control (Cutler and Ramaker, 1980), Extended Prediction
Self-adaptive Control (De Keyser and Van Cauwenberghe, 1985), Extended Horizon
Adaptive Control (Ydstie, 1984) and Generalized Predictive Control (Clarke et al., 19873,
1987b, Clarke and Mohtadi, 1989). All of these methods can be generalized in a unified
predictive control approach proposed by Soeterboek (1992).

The principle of predictive control is based on the prediction of the process output. The
prediction is made implicitly or explicitly according to the model of the process to be
controlled and represents the first step in the predictive control algorithm. In the next step,
the control signal is selected which brings the predicted process output signal back to the
reference signal, in a manner that minimizes the area between the reference and the output
signal. Controllers based on those methods are capable of controlling “difficult”
processes such as processes with long time delay and non-minimum phase and unstable

processes, and can include constraints into the controller design.

However, these significant advantages are partly offset by some difficulties when the
predictive control is designed based on nonlinear models. For example, the requirement
for nonlinear optimization to minimize the cost function for control is a problem, because
it normally involves intensive computation. To overcome the drawback, a LM network
can be incorporated into a model predictive control structure to formulate a nonlinear

MPC (Kouvaritakis and Cannon, 2001).

In this section, particularly, the generalized predictive control (GPC) approach (Clarke,
1987 a, 1987 b), which has integral action, is introduced for local controller design.
Considering regulation about a particular operating point, a non-linear plant generally
allows a locally linearized CARIMA model (Controlled Auto-Regressive and Integrated

Moving Average model) representation of the disturbances and modeling errors:

Alg™ (k)= Blg k- 1)+ Clg™ (k) A (3.5)
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where 4 and B are polynomials in the backward shift operator ¢~ as detailed in equations

(3.6) and (3.7), A is the differencing operator 1-¢', which brings the integrator action

and eliminates the steady state errors to zero.
A(qr")=1+a,qr'1 4 +a,,yq_"‘” (3.6)

Blg')=b+bg " ++b g™ (3.7)

If the plant has a non-zero dead-time, the leading elements of the polynomial B(q") are
zero. In (3.5), u(k) is the control input, y(k) is the measured variable or output, and

g”(k) is an uncorrelated random sequence. For simplicity, C(q") is chosen to be 1.

To derive a j-step ahead predictor of y(k+j) based on (3.5) consider the identity:

1=E,(g" ua+q7Flg™) (3.8)

where E; and F; are polynomials uniquely defined, given A(q“) and the prediction
interval j. Clarke et al. (1987) presented a simple scheme to use recursion of the

Diophantine equation so that the polynomials £,,, and F,, are obtained, given values

of E, and F,.If(3.5) is multiplied by £,Ag’, we have:

E,AMk + j)= E BAulk + j—1)+ E &(k + /) (3.9)
and substituting for £.4A from (3.8) gives

Wk + j)=E Baulk + j-1)+ Fylk)+ E £k + /) (3.10)

As E, (q‘l) is of degree j-1, the noise components are all in the future, so that the optimal

predictor, given measured output data up to &, and any given u(k+i) for i>1, is clearly:

&+ j 1 k)= G Aulk + j~1)+ F,p{k) (3.11)
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where G j(q" )= E.B and J(k + j| k) denotes the predicted output.

Suppose a future set-point or reference sequence [ w(k+j); /=1,2,...] is available. The
objective then of the predictive control law is to drive future plant outputs p(k + j) close

to w(k+f) in some sense. A cost function of the form in equation (3.12) can be described:

=H, =

J(N,,N2)=E{i”:[;(ku)-w(m)r+§iao>[m(k+f-l)r} 6.12)

where Hp denotes the prediction horizon; £, denotes the minimum-cost horizon
respectively, H- denotes the control horizon, and /1( j) denotes a control weighting

sequence.
Recalling equation (3.10), we have the future outputs:
ke +1)= G aulk)+ Fy(k)+ E&(k+1)

Pk +2)= G,Aaulk + 1)+ Fylk)+ E&(k +2)

e+ N)=Gaulk+ N -1)+ Fyylk)+ E£(k+N)  (3.13)

in which p(k + ) consists of three parts: one depends on future control actions, one

depends on past known systems output, and one depends on future noise signals. The
assumption that the controls are performed in open loop 1gnores the future noise sequence
E(k+ j) in calculating the predictions. Let f(k + j) be that component of yik+ /)

composed of signals which are known at time £, so that
Fle+1D)=1G/(g7)- gio)aulk)+ Fylk)

f(k + 2):Q[Gz(q4)“q_lg2| _gzn]Au(k)+ Fzy(k)
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f(k + N)= qN_I[GN(q_])— q_lgN,,\ul e gN.G]Au(k)+ FNJ’(k)’

where Gr'(q_]): Eiot gnq_] te

Then the equation above can be written in the key vector form:
y=Gi+f (3.14),
where all the vectors are N x1:
¥ =19k +1) 3+ 2, 5k + MY
u = [Aulk), Aulk +1),---, Au(k + N -1)]

£=[r(k+1) sk +2) S+ N

The matrix G is a lower triangular matrix of dimension N x N :

go o - 0
G= g.-l go - 0
En-1 Bx2 0 Eo

From the definition of the vectors above, and with

w = [wlk +1),wlk+2), -, wlk+ N[,

equation (3.12) can be written as:

J =G+ f ~w) (Gt + £ —w)+ 2"} (3.15)

The minimization of J (assuming no constraints on future controls) results in the

projected control-increment vector:
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7=(C"c+a) 6" (w-f)
Note that the first element of @ is Au(k), so that the current control u(k) is given by:

ulk)=ulk = 1)+ g7 (w- f) (3.16),

-1
where g7 is the first row of (GTG + il ) cT. Hence, the control includes integral

action, which provides zero static offsets provided that a constant set point w(k +J ) =w
exists. Operational constraints of system inputs and states can be incorporated into the
optimization procedure in the usual manner (Soeterboek, 1992). For each of the local
models, a local GPC can be constructed, and a predictive control action is obtained using
equation (3.16). Then the global control action is formulated by combining all the local

controllers through the interpolation systems, as described in equation (3.2).

To analyze the stability or robustness of a GPC system, it is required to write the

predictive control law in polynomial form. If & =0, the predictive control law can be

written as (Soetebrboek, 1992, Clarke, 1987a, 1987b):
Rulk)=-Sy(k)+ Twlk + H ) (3.17)

Here, H, is the prediction horizon; S, R and T are polynomials in the backward shift

operator:

-ns
a

ny 2

S(q'l)= Sg+8,g  +ets
Rlg")=ry+ng™ + 1"

T(q“): o1 ot g™

The control law above is the one used in the pole-placement controller design method. In

this case, w(k +H p) is equal to the set point. Figure 3-2 shows the control law (3.17) in a
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block diagram.
w(k + H ) _ E(k)
+
—d-1
Ir L’l /100 2
' y(k)
Figure 3-2.  The pole placement closed-loop system
From Figure 3-2, the following transfer functions can be calculated:
g BIwWk+ H, )+ ARE(k)
y(k)= - (3.18)
AR+q™" BS
ATWk+ H )+ ASEk
ulk) = " "_,),_l Q) (3.19)
AR+g™ BS

Clearly, to make sure that the predictive system is stable, AR +¢~*'BS should have all

its roots inside the unit circle,

3.2.4 Structure of LC Networks

Thus far, the predictive controller is designed only for local linear systems. To structure a

LC network, a finite number of N operating regimes , should be considered. Assume

that in each nominal operating regime, a linear local model characterizes the system

g W)= g7 Blg™ Jelk) + elk) (3.20)

For each local model, a corresponding local controller is designed (equation (3.16)) with
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control parameters (g , f;). For each nominal operating regime y,, the system is
characterized by a local model to a degree given by validity function p,. The overall
global controller is then defined naturally using the validity functions p, as smooth

interpolators. The LC network is described by

i = (6 (K)o, (v (0)) = Zp,(w elw—1r)  @21)

ulk)

u(k —1)+ Aulk) (3.22)

1t should be emphasized that, like the LM network, local models in LC networks do not
have their own local states; instead, they share a ‘common’ state defined by the controller
state u(k) as defined in equation (3.21) and (3.22). Under the framework of the LC
network and the LM network, some of the stability and robustness analysis for linear
model predictive controllers (Robison and Clarke, 1991, Scokaert and Clarke, 1994,
Soeterboek, 1992) could be extended to LM network based predictive control.

3.3 Case Study

In this section, two case studies are carried out on a highly nonlinear simulated process,
the continuous stirred tank reaction (CSTR), as introduced in chapter 2. The CSTR is
single-input, single-output process, where the input is the coolant flow rate ¢,(¢) and the
output is concentration of a product compound C(?). The reaction that takes place to the
compound is exothermic. It raises the temperature and reduces the reaction rate. The
objective of the controller design is to control the product concentration C(?) by adjusting

the induction of the coolant flow rate ¢_(¢), which manipulates the temperature 7¢#), and

hence, control the product concentration.

A nonlinear PID controller based on the LM network model is designed first, which
shows that LC networks provide a convenient approach to extend linear control theories

to nonlinear system control compared with neural networks based PID controllers. Next,
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GPC (generalized predictive control) is applied to the CSTR process, based on the LC
network framework. The online interpolation scheme in the LC network simplifies the
design procedure and improves the performance globally. Then some issues related to the

interpoaltion of local controllers are exposed in the comments.

3.3.1 PID Controllers

For many control applications, it is sufficient to use a standard PID controller. The
purpose of this example is to illustrate the possible improvement obtained over the
standard PID controller by designing local controllers based on the LM network model,

which employs an integrator to ¢liminate the steady state errors.

Suppose a nonlinear PID controller of the form

0= KO s el e D]z

5 dt

is designed, where the gain K, integral time 7] and derivative time 7, are functions of

the system’s operating point specified by scheduling variables !;/(t). In standard PID

controllers, these functions are all constant, and there exists numerous design procedures,
which guarantee that various stability, performance and robustness specifications are
met. Of course, with the nonlinear PID controller above, the design problem using neural

networks is much more difficult,

With respect to neural networks, generally, there are two different ways of applying a
neural network to solve control-engineering problems. One approach is to use the neural
networks to adjust the parameters of a conventional controller (Ruano et al., 1992, Yu and
Lu, 1998). The other method is to use the neural network as a direct controller, which is
trained to be the inverse of the nonlinear system (Chan et al., 1995, Chen and Chang,
1996, VanDoren, 2001). The first method involves emulating the thoughts of an expert
control engineer by tweaking the tuning parameters according to empirical rules. Its

application is limited and the computational load is normally intensive. The second
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method is an application of adaptive control, which has been used in industnal
applications and brings some promising results. However, the selection of the network
training data sets is not a trivial problem, and the computational load is highly intensive.
So far, most of the approaches based on neural networks lose the simplicity of

implementation, which is the most attractive feature of the original PID control approach.

However, the operating regime based approach offers an engineering friendly solution to
this design problem. One can, for instance, design a number of standard linear PID
controllers to meet the desired stability, performance and robustness criteria locally when

the system is operating in neighborhoods of some selected operating points:

{
u'(e)=K, e(t)+il, [e(:)d:w; i‘;@ (3.24)
T 10

Designing such local P1D controllers is often simpler than approaching the nonlinear
PID-controller design problem directly, even if a nonlinear dynamic model of the system
exists. In addition, a weighting function for combining or switching between the local
PID parameters is required. By using the LM network model, the validity function

pj.(y/(t)) can be employed. Then the final nonlinear PID controller is as follows:

=510+ L [l 50| ptet) @29

=i

with K, ()= S K pful0)

1, (0)= 3 Tin, (o)
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Simulation results show two LC networks, designed based on the LM network models,
for the CSTR plant. Controller C1 contains two local controlters. Controller C2 contains
5 local controllers. Both C1 and C2 are designed based on the LM network models
illustrated in chapter two. The local PI/PID controller parameters were designed firstly
using the Zeigler-Nichols ultimate cycle tuning rule (Zeigler and Nichols, 1942) for each
local model; then the P1D parameters are manually adjusted so that the + 2% settling
time is about 0.5 min with a subsidiary specification being that the overshoot to a step
command signal is less than 10%; then all the locally designed P1D parameters were
combined in the LC network structure to give a global nonlinear PID controller. One
thing should be emphasied is that the desired performance target is only set to each local
system. As for the global system, there is no specific control target could be set by using
LC network. However, good global performance could be expected if expected target for

local systems could be satisfied.

As well-known, there are many ways to set up the control target, settling time is one most
commonly used in the time domain. It can be evaluated by examing the perforamnce
figure. For the purpose to give a fair comparison between diference control methods, for
instance, predictive control and pole placement, settling time is selected as the control
target. In simulation, the following PID parameters are employed. The Local PID

controller parameters for Cl are:

K, =1.7€3, T,=0.6396, T,=0.15

I

K,,=2.1€3, T,=1.5832, T,,=0

The Local PID controller parameters for C2 are:

K, =1.7¢3, T,=0.6396, I,,=0.15
K ,=2.94¢3, T,,=01.0744, T,,=0.1

K,,=1.197¢3, T, =2.27, T,;=0
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K,,=6.945€3, T,=3.472, T,,=0

K ,,=4.458¢4, T,=0.535, T,,=0

These controllers are, for most practical purposes, equivalent to the LC network used by
Gawthrop (1995, 1996) and Hunt and Johansen (1997), where it is also shown that the LC
network 1s superior to a single controller designed on thc basis of linearization about a
single operating point. The global nonlinear PID controller is formulated by blending the
local controllers through the interpolation system resulting from the LM network

framework.

The overall performance of both the Cl and C2 nonlinear PID controlled systems are
shown in figure 3-3, which covers set-point concentration C(#) changes from 0.03 mol/l
up to 0.13 mol/l and includes both relatively over-damped (C(¢}<0.1) and highly
under-damped (C(#)>0.1) operating regimes. The overall closed-loop system,
compensated by each of the controllers, shows good transient response when the set point

C(t) changes from .03 mol/l up to 0.13 mol/I.

Generally, C2 (solid line) tracks the input changes faster and settles down quicker than
C1 (dash-dotted line) does. When step changes are made from C¢#)=0.1 to C(¢)=0.13, i.e.
so that the system remains in one local regime, C2 allows better closed-loop performance
both in term of rise time and overshoot than C1 does. When step changes to C(#)=0.06,

which is close to the representative  operating  points in

Ci( C:=0.062mol/l, T =448.7522K , 4> =90.0//min ) and C2

(C) =0.05854mol/1,T) = 450K ,q] =88.291//min), both of the 1.C networks show

relatively good performance. Moreover, C(#)=0.13 is very close to the open loop unstable
region of the CSTR process, in which there is only small closed-loop response overshoot

using C2.
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Concentration C(t) (mol/1)

Time (min.}

Time (min.)

Figure 3-3. PID LC network controlled CSTR step responses

Dash-dotted line is the step changes; Dashed line is from C1 (with 2 local
controllers), solid line is from C2 (with 5 local controllers)

Remark: The controller design procedure involves a trial-and-error process. Many
simulations have been carried out, not only towards the desired local controller
performance, but also towards a good global performance. A satisfactory local controller
performance doesn’t naturally guarantee a satisfactory global controller performance,

even though all the locally designed PID controllers satisty the design criteria locally.

It is important to emphasize that while LM and LC network pairs appear to offer a simple
solution to the PID auto-tuning problem, it is not always easy to guarantee the global
performance and analyse the properties of the overall controlled global system, especially
during the operating regimes, where local controllers are blended to play the role. For
instance, in Figure 3-3, the settling time for the concentration output at a level of 0.07
mol/l is greater than the local performance target of 0.5 minutes. These phenomena are
closely related to the nommalized weighting function, introduced in section 2.2.3.
Furthermore, the interpolation technique may cause some side effects on the global

stability and performance, which will be discussed in chapter four.
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3.3.2 Predictive Controllers

In this sub-section, examples are given to demonstrate the effectiveness of the LC
network in a nonlinear control problem based on the generalized predictive control
method, which optimizes the control strategy at every step based on a quadratic objective
function over a finite time horizon. This approach doesn’t involve the computationally
intensive calculations normally required for nonlinear optimization. This is the advantage

of incorporating the LM network into a model predictive control structure.

The simulation discusses two LC networks designed for the CSTR simulated process
illustrated in chapter two. Controller Cl contains two local controllers, which are
designed based on the LM network model with 2 local models in Chapter two. Controller
C2 contains five local controllers, which are designed based on the LM network model

with 5 local models in Chapter two.

In simulation, all the local controllers are designed with about 0.5 minutes settling time,
and less than 10% overshoot. The prediction parameters H=5, H,=1, H~=1 and weights
for control output in a quadratic objective function (equation 3.12) are A= [5e-7, 1e-7]

for C1 and A =[5e-7, 5¢-7, Se-7, 3e-7, le-7, le-8] for C2 obtained by trial and error.

To check the performance of the LC network based on predictive control approach, a set

of simulation experiments have been designed:
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Coolant flow-rate g.(t) l/min
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Figure 3-4.  Servo responses comparison for over-damped area

Dash-dotted [ine is the step changes; Dotted line is from C1 (with 2 local controllers);
Solid line is from C2 (with 5 local controllers)

» Experiment El entails a set of step changes in a relatively over-damped arca
(C(1)<0.1). It intends to cover small and big, up and down step changes. Stmulation

results are shown in figure 3-4.

In experiment E1, the overall stimulation result shows that C2 allows better performance
than C1. When the system moves to the areas (say C(z)= 0.06 or 0.085) close to those
special operating points C, =0.062mol/1,T) = 448.7522K,q', =90.0//min (where a
local controller is designed in C1), or
C: =0.08506mol/1,T? = 442K g2, =98.899//min (where a local controller is designed
in C2), both the concentration output C¢z) and the temperature output 7¢z) from C2 track
the step change quicker and settle down faster than those from C1. C2 also performance
better than C1 when the step changes to the set point, say C(¢)= 0.095, which are some
operating points away from those special points, where the local controllers are designed.

In addition, g_(¢) from C2 shows smaller and shorter oscillation than CI does.

* Experiment E2 entails a set of step changes in a relatively under-damped area
(C(t)>0.1), corresponding to highly dynamic area of CSTR. Simulation results are
shown in Figure 3-5.
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In experiment E2, the closed-loop simulation results using both C2 and C1 show
reasonably good performance. From section 2.4.2, it is noticed that the LM network with
two local models is oscillating when C2)=0.11. However, in Figure 3-5, C1 shows
reasonably good tracking ability. In contrast, C2 doesn’t give as good performance as Cl
does and presents slow tracking ability when C¢z)=0.11, although the LM network with 5

local models shows better modelling accuracy at that working point.

When the effluent concentration Cy?) moves upwards to 0.12mol/l and 0.13mol/1, C1 and
C2 gives very close performance for the same unique local controller is employed from
both C1 and C2 in this area. This local controller is designed based on the local model
linearized at operating point C(t) = 0.1298mol/I, T(t)=43295K, gct=110{/min,
when C¢1)>0.115 (see figure 2-11 and figure 2-12). In addition, generally, the coolant

flow rate ¢_(¢t) from C2 shows smaller and shorter oscillation than g.(¢) from CI,

although the difference is small.

From Figure 3-4 and Figure 3-5, it maybe noticed that, although C2 does show better
control performance than C1, the performance difference between them is much smailer
than in Figure 3-3, where the local controllers are experience-based PID controllers. In
addition, it is obvious that the GPC based LC network facilitates much smaller overshoot

and rise-time globally than the nonlinear P1D controller implementation.
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Figure 3-5.  Servo response comparison for under-damped area

Dash-dotted line is the step changes; Dotted line is from C1 (with 2 local controllers);
Solid line is from C2 (with 5 local controllers)

¢ Experiment E3 deals with the regulation performance of the closed-loop system

controlled by C1 and C2. Simulation results are shown in figure 3-6.

Both the over-damped area and under-damped area have been tested. Introducing an
impulse disturbance of 30//min amplitude and 1min width to the system, the CSTR output
goes back to the set point after short osciilations, when under the control of both C1 and

C2 as shown in Figure 3-6.
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10

Disturbance impulse (/min)

Time (min.)
(¢)  Daisturbance input

Figure 3-6. Comparison of regulation Performance of the controlled CSTR

Dash-dotted line is the step changes; Dotted line is from C1 (with 2 local controllers);
Solid line is from C2 (with 5 local controllers)

Generaliy, the system outputs from both C1 and C2 are satisfactory. When C¢z)=0.03 and
0.04, C2 goes back to the setpoint a bit quicker than C1 does. However, their
performances are very close at most setpoints. C2, the LC network with 5 local

controllers, doesn’t present obvious advantages for disturbance rejection.

Remarks: The weighting factor A(y) in equation (3.12) for local GPC design is hard to
choose such that the system behaves as desired, because A(j) is highly application
dependent and must usually be determined by simulations in combination with the
well-known and often-used trial-and-error method (Soeterboek, 1992). For local
controller design, the trial-and-error method seems effective, but when the operating
points moves, an adaptable A(;) should be expected. No knowledge is so far available to
atllow A{j) to be sclected automatically. However, increasing the number of local
controllers can reduce the requirement for selecting A(/) to some degree and lead to

better global performance.
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3.3.3 Comments

The results from the two application cases aforementioned clearly demonstrate the ability
of the LC network to adapt its characteristics to the nonlinear plant. This is achieved
through combining the local controllers between operating regimes by utilizing the

interpolation technique resulted from the LM network model.

It is important to note that the local model is only used to design a lc’)cal controller. The
real meaning of the local model is that if the system operating point lies in the designed
local regime, then the control of the system depends on the local model and the local
controller. In this case, the global performance of the LC network highly depends on the
performance of the local controllers. However, after introducing the ‘divide and conquer’
interpolation technique to blend the local controllers, the definition of ‘local regime’ is
not highly transparent. In the operating regime between the representative operating
points, co-operation of the local controllers is required rather than any local controller to

play the role solely.

From the modeling point of view, the LM networks model with five local models gives a
good approximation for the process based both on static and dynamic considerations; the
LM network model with two local models, however, is able to approximate the dynamic
properties of the CSTR simulated process, although the steady state errors are significant.
From the control point of view, this static modelling inaccuracy is not a difficult issue, if
the LM network can instantly capture the dynamics of the controlled system, assuming
the system changes ‘slowly’ enough. Employing an integral action in local controller
design can eliminate constant steady state errors to some degree. However, the integral
action only asymptotically rejects the modeling error and disturbances in steady-state
operation around the equilibrium point; the transient performance is affected when

combining the local controllers together to control the process.

Properly increasing the number of local model and local controller pairs reasonably
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improves the global control performance, which benefits from better modeling accuracy,
but increasing the number of local model and controller pairs also increases the difficulty
of design due to the interpolation function. Generally, the controller design procedure
involves a trial-and-error process. Simulations have been carmied out, not only towards
desired iocal controller performance, but also towards an expected global performance. A
satisfactory local controller performance doesn’t naturally guarantee a satisfactory global
controller performance, even though all the locally designed controllers satisfy the design
criteria locally. This phenomenon is a problem with the method. The blending of local
controllers brings some new interesting issues, which are not transparent, but they
influence the global performance robustness and the global stability, if the system change
is not ‘slow’ enough (Leith and Leithead, 1999). This issue will be discussed in chapter

four.

In summary, generally, introducing integrative actions in local controller design is able to
overcome the steady state modelling errors to some degree in the application of LC/LM
networks for nonlinear processes; properly increasing the local model and local controller
pairs improves the controlled system performance, which benefits from the improved
accuracy in steady state modelling. Moreover, the generalized predictive control
application with the LC network brings on-line optimization techniques into the

controller design process, which improves the global LC network controller performance.

One more thing worth mentioning is that, for the case of the control of the simulated
CSTR process, both of Cl and C2 present good tracking and regulation performance,
although C2 gives better simulation results. Simulations have also been implemented
based on 3 and 4 local models and controllers, but no obvicus performance inprovement
could be observed compared to C1. It is noted that the LM network built with two local
models is good enough in this simulation case for the controller design if proper control
techniques have been seclected. From the engineering point of view, the smaller the

number of the local models, the lower the overhead for the controller design.
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3.4 Globally Designed Controller

3.4.1 Controller Formulation

The underlying assumption in the local modelling strategy of LM networks is that the
plant to be modelled undergoes significant changes in operating conditions. The
complexity of the overall model can be reduced by incorporating simpler models in each
operating region. For example, local state-space and ARMAX linear models can be
formed first and then interpolated to give global nonlinear state-space models
(Priestly,1988) and NARMAX (nonlinear ARMAX) models (Johansen and Foss, 1993).

This section considers the controller design based on the global LM network model.

By using the LM network, the state space description of the plant dynamics as in equation

(2.26) can be rewritten as follows:
x = A(p)x(t)+ Blpulr)+ a(p)
y =Clp)x(r) (3.26)

where A(p)= gp;(w(f))/lp B(p)- gp,.(w(z))a..,

alp)= iz’_“lp,.(w(r))a.. and C(p)= gp@(-,u(t»c,..

p is the weighting vector, each value p,.(w(t)) is associated with a local model, and
determines the validity of the operating regime for the current operating point defined by
scheduling vector w(t), which is associated with system states and system input and

output. It should be noted that the above model is nonlinear in nature since the weighting

functions are nonlinear and parameter-dependent in general. However, at any sampling
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instant, a linear (affine) model representation is formulated to approximate the system

mnstant dynamic behaviour.

Recall the input-output representation of LM networks as in equation (2.29), and rewrite

it as follows:
Wi +1)= o (k=13 ()0, + (k) =g, (k-1)@ +eh)  (3:27)

in which @7 (k ~1)=[- y(k =1),....~y{k = n, hulk = n,)....ulk =, — )] ,

0, =[a,,....a, ,by,...b, . T,

i *“ni

@ =[4,...,A ,B,,B,...,B.].

5

The resulting model is still ARX in structure, with parameters 4; and B; determined as

follows:

B=3 o, (0, and 4= > (w(b,

Both 4; and B; are parameter-dependent variables. Rewrite the equation (3.27) as
follows:

e +1)= By(RJulle) +B, (Kl =1)+ - + B, (kJulle = 5) +---

e A ()= A= )= A Bk =) ey O

The sequence e(k) contains unknown, unconstructed uncertainty, such as disturbanccs,

unmodelled dynamics and modelling error.

At any sampling instant, a linear model is formulated to describe the instantaneous

dynamics of the nonlinear system

A(q Pk +1)= B (g (k) + e(k) (3.29)
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in which A.(q-])z 1+ A“q_l NS A:Hq—(rﬂ)’

B'(q")= B, + B:q" +-+Bg” .

At the current operating point, equation (3.29) 1s an instantly linearized model with ARX

structure; a linear online controller can be easily designed from this model. Theoretically,
any available linear controller design approach can be employed for the local controller
design to formulate a globally effective LC network. In this section, the GPC method is
employed for the local controller design. This kind of approach is called LMN-GPC in
the book by Kouvaritakis and Cannon (2001).

There has been some research reported based on the idea of the global design approach,
for example, internal model control (IMC) (Brown et al., 1997), dynamic matrix control
(DMC) (Townsend et al., 1998) and generalized minimum variance (GMV) control
(Brown and 1rwin, 1999) control. With regard to linear model predictive control (MPC)
applications for the control of nonlinear processes, one challenging problem is of
guaranteeing the closed-loop stability, although there have been the emergence of some
significant results: some of which use dual model predictions with terminal penalties and
control Lyapunov functions, positively invariant sets and terminal stability constraints;
others deploy feedback linearisation or differential flatness (Kouvaritakis and Cannon,

2001).

Employing a LM network model for controller design has potential to build a controller
with guaranteed performance and global stability. There now exists a whole range of
techniques for the application of multiple models: some use a common Lyapunov
function (Wang et al, 1996); some make use of a set of Lyapunov functions with some
restriction to the weighting functions (Daafouz et al., 2002); some make use of the
stability analysis of polytopic description, in which it is needed to find out that all the
system roots are in the unit circle (Farinwata et al., 2000, Filev 1996). The global stability

would be one of the important issues for future work.
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In addition, the LM network formulates a one parameter-dependent linear structured
model to approximate the nonlinear process by blending a set of linear local models at
any instant. The LM network transforms a nonlinear system into a user-specified and
more transparently described LPV system. One advantage of using the LM network for
controller design is that it avoids techniques which require nonlinear optimisation when
using a nonlinear neural network model of the process. Moreover, there exists important
contributions for the closed-loop stability of LPV systems (Lu and Arkun, 2000, Cuzzola
et al., 2002, Rong, 2002, Wang and Balakrishnan, 2002), which utilise the combination of
MPC and linear matnx inequality (LMI) .

3.4.2 Case Study

The GPC algorithm as introduced in section 3.2.3 is utilized to examine the performance
of the global design approach. To ensure stability, it is assumed that the finite horizon
length is chosen long enough such that the objective function cost decreases as time

Increases.

Consider the CSTR simulated process presented earlier. The controller design objective
is to instantaneously design a linear predictive controller that drives the concentration of

the effluent to track a known trajectory.

The simulation concerns two controller design for the CSTR simulated process based on
the LM network models. Controller C1 is designed based on the LM network model with
two local models; Controller C2 is designed based on the LM network model with five
local models. Each local controller in both C1 and C2 follows the same design parameters
as in section 3.3.2, i.e., H,=5, H,=1, H~=1, but the weights A4 for control output in the
quadratic objective function is uniquely defined as A = 5e-7. A set of simulation

experiments have been carried out:

» Experiment E1 entails a set of step changes in a relatively over-damped area (Cy#)<0.1)

and underdamped area (C(#)<0.1). The simulation results are shown in Figure 3-7.
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compared to using 2 Icoal modes based on the globally designed LC network approach.

In Figure 3-7, the results show that there is little advantage in using 5 local models
For example, the overshoot and settling time values show only minor differences when
comparing the effect of C1 and C2 at most of the levels in both under-damped and

over-damped areas.
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(a) Servo responses comparison between C1 and C2 for over damped area
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Figure 3-7. Servo response comparison from the globaly designed I.C
network between Cl and C2

Dash-dotted line is the step changes; Dotted line is from C1 (with 2 local controllers);

Solid line is from C2 (with 5 local controllers).
Remarks: The selection of A(j) plays an important role in the controller performance
and stability for the global controller design approach, as in the gain scheduled L.C
network. It is ideal to have adesired A(/) at any instant of sampling time. However, there
is no method available so far to automatically allow the selection of A(;). In simulation,

the same values of A(/) were employed as the ones in the gain scheduled LC network

controller, which other simulations have shown to allow better performance than a fixed

A(J), over the operating range.
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Experiment E2 compares the disturbance performance from the gain-scheduled LC

network and the globally designed controller as shown in Figure 3-9 for the

concentration output C(f). The same disturbance is employed here as in Figure 3-6 (c).
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Solid line is from globally designed controller and dashed line is from
gain-scheduled LC network based on the LM network with 5 local models. -

Figure 3-8. Comparison of disturbance performance from the gain-scheduled
LC network and globally designed controller
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In figure 3-8, the CSTR concentration outputs go back to the set point after a short
oscillation under the control of any designed nonlinear MPC. The disturbance
performances from the globally designed controller shows very little difference to those
from the gain-scheduled LC networks for both C1 (Figure 3-8 (a)) and C2 (Figure 3-8 (b)).
From the point of view of disturbance rejection, the globally designed controller works as

well as the gain-scheduled LC network does.

Generally, in Figure 3-7, the closed-loop servo response results using either controller C1
or C2 are very close and indicate reasonable correspondence with the local design
specifications. When adding the disturbances as shown in figure 3-8, the system output
also shows good robustness. In summary, simulation results for the CSTR process
illustrate the potential offered by controller design based on the global LM network

model in terms of tracking and disturbance rejection.

3.5 Concluding Remarks

This chapter classified the reported approaches for controller design based on local model
networks into two categories. The gain scheduled LC network is composed of a fixed
number of local controllers that are designed offline based on corresponding locally valid
linear models. The global controller design method is to design a controller online, based

on an instant linear representation model resulting from LM networks.

For the gain-scheduled L.C network approach, the local models are only used to design
local controllers. The real meaning of the local model is that if the system operating point
lies in the designed local regime, the local controller satisfies the local control iarget.
However, after introducing the interpolation technique to combine the local controllers,

the global performance normally is not able to meet the local control target.

In summery, both of the controller design approaches illustrate the simplicity and
practicality of the LM network application in the control of nonlinear systems. In the case
study, the combination of the LM network and GPC enables the global controller to

perform satisfactory across the entire operating range. Moreover, one advantage of these
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approaches is that they avoid time-consuming numerical optimization methods, which

often happen in conventional nonlinear model based predictive control.

One more thing is that for the nonlinear process CSTR, the LM network built with two
local models is good enough in this simulation case for the controller design provided the
proper control techniques have been selected. From the engineering point of view, the

smaller the numbcr of the local models, the lower the overhead for the controller design.

Under the assumption that the system changes ‘slowly’ enough, an integrator could be
introduced to eliminate the modelling errors to zero. Introducing an integrative action and
online predictive control drives the closed-loop system output to the set point with good
speed and accuracy. However, if the system does not change “slowly’ enough, the offset
term in the affine model, which is actually nonlinear and time varying after interpolation,
shouldn’t be simply taken as constant. The blending technique brings some new
interesting issues, which influence the global stability and the global performance
robustness at some stage. Later chapters attempt to present a systematic analysis and
design methodology for the control of a class of nonlinear systems based on interpolation

of linear subsystems.
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Chapter 4

Synthesis & Analysis of LM/LLC Networks

4.1 Introduction

Local model/controller (LM/LC) networks may be considered as the blending of
relatively simple local subsystems to model and control overall complex nonlinear
systems. Theoretically, from the modelling point of view, the finite set of linearizations
about a finite number of points (equilibria and transient points) can be used to
accurately approximate dynamic lineanizations about arbitrary frajectories using a
blended multiple model structure (Johansen et al., 1998a). Linear (homogenous) local
model (LLM) networks inherit many valuable properties, but these networks with
limited numbers of local models could often result in poor global representations of the
nonlinear plant, due to the side effects resulting from the interpolation techniques
(McLoone, 2000, McLoone et al. 2001). In contrast, affine (inhomogeneous) local
model (ALM} networks improve the modelling accuracy of LLLM networks significantly
with the benefit of the extra offset term introduced in the ALM networks.

From the control point of view, LC networks adopt the same idea as Takagi-Sugeno
(TS) fuzzy logic control systems, whose attraction is that a nonlinear design task is
simplified to linear design problems by first decomposing the problem into a number of

linear sub-problems solvable by established methods and recombining, in some
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appropriate manner, the resultant collection of linear designs to obtain the required

nonlinear design.

The inherent nonlinearity in the local model (LM) network structure makes it possible
to utilize linear models for the modelling of nonlinear processes with certain accuracy;
the inherent nonlinearity in the local control (LC) network structure provides promising
performance by simply using well-developed linear control approaches. However, the
inherent nonlinearity also brings some disadvantage of the approach, for recent research
found that the blending (interpolation/scheduling) procedure could play important roles
in the stability, performance and robustness of the interpolation system (Murray-smith

et al., 1999, Leith and Letithead, 1998, 2000).

It has become evident that many basic issues remain to be further addressed. Many
requirements are common to the controller design based on local model representations
of nonlinear dynamic systems; such controller design methods include gain scheduling,
TS fuzzy logic systems, and statistical mixture control systems. These methods have
attracted a rapidly growing interest in recent years. Stability analysis and systematic

design are certainly among the most important issues for the controller design problem.

Moreover, the linear local model (LLM) has its equilibrium centred at the origin x=0. In
contrast, the ALM is inhomogeneous and has a constant offset term. The literature
review for these two approaches shows unevenly distributed interest, although the ALM
blending system has been widely applied in the modelling of nonlinecar systems. Most of
the research work reported has been devoted to analysis of linear systems (Wang et al.,
1996, Cao et al., 1998, Daafouz et al., 2002), although there are several interesting
reports on the use of affine fuzzy systems or piecewise affine systems (Johansen et al,,
1998a, Johansson et al., 1999, Kim and Kim, 2001,2002). The novelty of this chapter is

the stability analysis of ALM blending systems by using ultimate boundedness analysis.

In chapter 3, we presented gain-scheduled L.C networks, in which the offset terms
resulting from the affine local models were considered as ‘constants’ under the
assumption that the system changes slowly enough. This chapter presents a further step

towards a systematic design methodology based on LM networks, which guarantees the
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stability of the closed-loop system. It employs quadratic Lyapunov functions to analyze
the influence of offset terms on stability issues in affine blending systems. It deals with
the offset terms, which partially represent the dynamics of nonlinear systems, in detail
rather than simply dealing with the offset terms as ‘constants’ in the proposed gain-

scheduled LC networks.

The chapter is organized as follows. In section 4.2, the stability conditions for
inhomogenous ALM blending systems are discussed based on the analysis of the
stability of LLM homogenous systems. Section 4.3 proposes a state feedback controller
in the LC network framework with the aim of providing an overall stable closed-loop
system with guaranteed stability and improved performance. Section 4.4 concludes the

chapter with comments on the approach.
4.2 Stability Analysis of Homogenous Blending Systems

Consider the SISO nonlinear system as in equation (2.3). By a blended local model
structure we understand a dynamic model of the form given by equation (2.1), and

rewrite it as follows:

=3 p e} () (4.1)

i=1

where state vector is x, input is u, the model f(;,:) is one of N vector functions of

the states and the input, and is valid in a region defined by the scalar validity function

p,, which is, in turn, a function of the above varables. Typically, the local models f;
are chosen to be of the affine form f{x,u)= Ax+ Bu+d,, resulting in constituent

dynamic systems ). given by,

x= A(x,u)x + B(x,u)u +d(x,u) (4.2)

N N
where A x,u) Zp,(x u A,, B(x u Zp,.(x,u B. and d(x,u Zp, x,u)d
i=l i=l

i=)
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Several limitations of the multiple model approach are reviewed in (Shorten et al. 1999).
These limitations can be summarized as the difficulties, or confusion, in understanding
the meaning of the multiple models, which, to a high degree, resuited from the blending
procedure. Such an understanding may be vital when the model is being used for
designing a control system. This section concentrates on stability issues resulting from
the blending framework. In particular, the stability behaviour associated with ALM

networks will be investigated.

4.2.1 Stability Issues Resulting from Blending

The LC and LM network pairs concern the incorporation of N locally valid subsystems.
Assuming that all the local closed-loop subsystemns are stable, a question naturally arises
as to whether the overall global closed-loop system is stable. The answer is no, in
general. Although the stability, performance and robustness properties of each linear
local model controller are well understood and can be analyzed using standard tools,
such as the Bode plot and Nyquist plot for each fixed operating point, these local
properties do not naturally and necessarily lead to guaranteed global properties (Wang,

1996, Rong, 2002, McConley et al., 2002).

One serious problem that the blending procedure could cause is the instability of the
overall system, although each subsystem is locally stable (Wang et al. 1996). Thus
stability issues should be taken into consideration when selecting validity functions and
local models, and in the controller design of the blending system. How to systematically
select validity functions, local models and approaches for controller design to meet the
required overall system stahility is not clear so far. Most of the time, a trial-and-error

procedure has been used (Tanaka and Sugeno, 1992, Wang et al. 1996).

Hunt and Johansen (1997) proposed one sufficient but not necessary condition to
guarantee the overall stability for gain scheduling systems, which is based on the
analysis of the effect of modeling errors. However, the condition is mainly of a
qualitative nature, as no bounds on performance, robustness or design parameters are

provided. The objective of the work in this section of the chapter is to determine the
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bounds for the stability conditions of the blending affine systems by using quadratic

Lyapunov functions.

4.2.2 Quadratic Stability of Blending System

4.2.2.1 Linear Local Models

For a blending system with linear local models, whose offset terms fade to zero, a
common sufficient condition for the stability is given by the Lyapunov function. Recall
the state space representation of the LM network as given by equation (4.2); the
homogeneous system corresponding to (4.2) is

N

=Y pdx (4.3)

i=l

N
where the validity function 12p; 20 and Zpi =1. Each linear component 4;x(r) is

i=l
called a subsystem. The sufficient conditions for ensuring stability of equation (4.3) are

usually formulated in Theorem 1 (Tanaka and Sugeno, 1992):

Theorem 1: The equilibrium point of a system (4.3) is globally exponentially stable if

there exists a common positive definite matrix P such that
A'P+PA <0,i=12,-- N (4.4)

i.e.,, a common P has to exist for all subsystem to guarantee the overall stability. In this
case, the nominal global system has a uniformly exponentially stable equilibrium point
at the origin. This theorem reduces to the Lyapunov stability theorem for linear systems

when N=1.

The stability condition of Theorem 1 is derived using a quadratic function ¥{x)= xI Px.

If there exists a P> such that the quadratic function proves the stability of system (4.3),
system (4.3) is also said to be quadratically stable and the function V is called a
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quadratic Lyapunov function. Theorem 1 thus presents a sufficient condition for

quadratic stability of system (4.3).

Checking the stability of system (4.3) has long been recognized to be difficult for there
is a lack of a systematic procedure to find a common positive definite matrix P. Solving
this problem requires the answer to two questions: Is there a common quadratic
Lyapunov function that exists? How can a common quadratic Lyapunov function be

determined?

Deriving sufficient conditions under which exponential stability will be assured has
been investigated by a number of authors. Narendra and Balakrishnan (1994b) introduce
‘commutativity’ to assure the existence of a common Lyapunov function; however, the
converse of the approach does not hold in general i.e. if there is no such commuting
Lyapunov function found for the overall system, it doesn’t mean that the overall global
system is not stable; thus, the utilization of other approaches to look for the common P
matrix, if it exists, is needed. Shorten and Narendra (1999) presented the necessary and
sufficient conditions for the existence of a common quadratic Lyapunov function for
two stable second-order linear systems. Subsequently, Shorten and Narendra (2002)
extended the approach to check the existence of a common quadratic Lyapunov function
for a finite number of stable second-order linear systems. Recently, the authors

generalized the above results in (Shorten et al., 2003).

To determine the common quadratic Lyapunov function, most of the time a trial-and-
error procedure has been used (Tanaka and Sugeno, 1992). In the literature, since the
middle of the 1990s, there has been a rapidly growing interest in finding out the
common Lyapunov function P by solving a convex optimization problem using linear
matrix inequality (LMI) approaches (Boyd et al., 1994). A very important property of
these approaches is that the stability condition of theorem 1 is expressed in LMI form
(Wang et al., 1996, Daafouz et al., 2002). To check stability, which means to find a
common positive quadratic Lyapunov function P, or to show that there is no such

common P that exists for the system, converts to a problem of solving LMI functions.
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Numerically, LMI problems can be solved efficiently by means of some powerful tools

available in the mathematical programming literature, like the Matlab LMI toolbox.
4.2.2.2 Affine Local Models

For a blending system with linear local models (each of which has a stable node with an
equilibrium point centered al the origin), the global system has its equilibrium point
centered at the origin. In contrast, the affine local model allows its equilibrium point to
be close to, but not centered at the origin (Murray-Smith et al., 1999), because the offset
term in each affine local model doesn’t fade to zero, but is instead a constant. Thus, the
origin x=0 may not be the equilibrium point of the blended system. We can no longer
study the stability of the system with the origin as an equilibrium point, nor should we

expect the solution of the offset term to approach the origin as ¢t — .

One possibility is to consider the offset term d(x,u,t) in equation (4.2) as a non-

vanishing perturbation. It is hoped that if the ‘perturbation term’ d(x,u,¢) is small in

some sense, then x(¢) will be ultimately bounded by a small bound; that is, |x(r]| will

be small for sufficiently large ¢.

Consider the homogeneous system as in equation (4.2) and rewrite it as follows:
N N
X=pAx+) pd, (4.5)
i=1 i=1

Note that equation (4.3) is termed a ‘nominal system’ and equation (4.5) is termed a

‘perturbed system’ for convenience.

Suppose the nominal system (4.3) has a uniformly asymptotically stable equilibrium
point at the origin, what can we say about the stability behaviour of the perturbed
system (4.5)7 A natural approach to address this question is to use the Lyapunov
function for the nominal system as a Lyapunov function candidate for the perturbed
system. The new element here is that the ‘perturbation term’ will not vanish at the

origin, i.e. the origin will not be an equilibrium point of the perturbed system. Therefore,
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the problem can no longer be studied as a question of the stability of equilibria. The best

that can be hoped for is that the perturbation term, bounded by a small bound |Jx(¢)], will

be small for sufficiently large ¢.

From Theorem 1, it is known that if there is a common positive definite P existing for

all the local linear modcls, then V(t,x):xTPx is a Lyapunov function of the global

blending system (4.3). The conditions to ensure the global stability of system (4.5) are
more complicated, as more analysis needs to be performed. As a special application

case of the ultimate boundedness theory (Khalil, 1992}, lemma 1 is given below:

Lemma 1: Let x=0 be an equilibrium point for the blended system in equation (4.3),

where 4; is Hurwitz. Let V' (x) be a Lyapunov function of the nominal system. Then V'

satisfies the inequalities:;

¢ “x"i <V (x)s c, "x”; (4.6)
oV & 2

Ex_; piAx < —cyflxf, (4.7)
] lx" (4.8)

for some positive constants ¢,,¢,,¢, and ¢,, where
l mm (P) cZ ’lmax (P) C3 ‘.I;I}i?\,(imin (Q.l)) and C4 = 2ﬂ’max (P)

Proof: Assuming that the Lyapunov function is defined as V (x)=xTPx, P being the

common positive definite matrix, then

= A (P <V () < A (PN

m in
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This result proves (4.6).

IV N r N N T T N
—— 2. pidx=x PZP;A:' + ZpiAf Plx=-x ZpiQix
i=l i= i=1

ox ‘3

<=3 o @) < -min(t,, (0))

=1

This result proves (4.7).

ov

ool <, < AP, < 20 (P,

This completes the proof of (4.8). Now we introduce some special scalar functions and
Theorem 2 (Khalil, 1992) that will help to characterize and study the stability behavior

of the blending affine local model systems.

Definition 4.1: A continuous function o :[0,a) — [0,%0) is said to belong to the class K
function if it is strictly increasing and «(0)=0. It is said to belong to the class K

function if a = and afr) > as r > o,

Definition 4.2: A continuous function B:[0,a) —>[0,2) 1s said to be a class KL
function if for each fixed s, the mapping ﬁ(r,s) belongs to class K with respect to r, and

for cach fixed r the mapping B(r,s) is decreasing with respect to s, and B(r,s)—) oo as

¥ — o0,

Theorem 2: Let D={xe R" |H,1ﬁ <r} and f:{0,0)x D — R" be piecewise continuous
in ¢ and locally Lipschitz in x. Let ¥ :[0,00)x DD — R be a continuous differentiable

function such that
al(”x") <V(r,x)<ay (Hx") (4.9)

o aV

A RN ()l = > 0 (4.10)
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Vi20, Vxe D, where oq(-), ay(-), and a3(") are class K functions defined on [0, r)

and y<ay 1(a'l (r)). Then, there exists a class KL function #(.-) and a finite time 4

(dependent on x(to) and ) such that
(el < Bl Yot —10), Vo <t <1y (4.11)
and ()] < ai ay (1)), vezq 4.12)

V"x(tol[<a2_ 1(c:tl(r)). Moreover, if all the assumptions hold with r =<0, that is,

D=R", and al(-) belongs to class K, then inequalities (4.11)-(4.12) hold for any
initial state x(¢,). Furthermore, if a;(r)= k;s“, for some positive constants k; and ¢,

then B(r,s)= krexp(- rs) with k = (k; /K )1/ € and r = (ks /kye).

Inequalities (4.11)-(4.12) show that x(t) is uniformly bounded for all ¢+ >¢,. They also

show that x(¢) is uniformly ultimately bounded with an ultimate bound af l(a'2 (1)) 1t
is significant that the ultimate bound is a class K function of g, because the smaller the
value of x, the smaller the ultimate bound. As x — 0, the ultimate bound approaches

ZCT0.

Based on theorem 2, a lemma (Lemma 2) is developed for the analysis of the blending

of affine local models, when the origin of the nominal system is exponentially stable.

Lemma 2: Lct x=0 be an exponentially stable equilibrium point of the nominal system.
Let ¥(x) be a Lyapunov function of the nominal system and for some positive 0 <8 <1,

then the solution of the perturbed system x(¢) satisfies:
”x(t]l <k exp[— r(t ~1, )](x(t“ ]l , Vi, St <y

and  |xle)|<b,vezy
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o / S
for some finite time ¢, where &k = \Jc, /¢, r =—*2 (- 9)63  b=5 7
c ¢

Proof: Assume ¥V (x) is a Lyapunov function candidate for the perturbation system (4.7).
The derivative of V' (x) along the trajectories of (4.7) satisfies

V(x)z X Pr+xTPx
N N I N T
_ xfp[z p,.At.HzpidiJ s [z oA+ zp,d,.] Px
i=l i=I i=1 =l

= xT(P}AiP;A,- + ipsAsTPJX+2xTPipfd’
)

i=] i=l

<yl + e, max(a)

i=l- N

N
(From Lemma | and 0<p, <1, Zp,. =1)
i=]

- Ol ~ (0], ~ .5+, & = max(a,)

i=l-N
Okl Ve, > e/

The application of Theorem 2 completes the proof.

Lemma 2 shows the effect, from the offset term, of affine models on the property of
blended systems. This result demonstrates that if nominal system (4.3) is exponentially
stable with respect to the origin, then the corresponding perturbed system (4.5) is
usiforinly bounded with ultimate bound b. Moreover, note that the ultimate bound b is
proportional to the upper bound on the perturbation 6 = E.%Qd‘()' The ultimate bound
can be viewed as a robustness property of nominal systems having exponentially stable

equilibria at the origin, because it shows that arbitrarily small (uniformly bounded)

perturbations will not result in large steady-state deviations from the origin.
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4.3 Stabilization via Feedback Control

The standard state feedback stabilization problem for the system in equation (2.3) is the
problem of designing a feedback control law, u = ‘y(x), such that the origin x=0 is an
asymptotically stable equilibrium point of the closed-loop system x= f (x,y(x)). In a
typical control problem, there are additional goals for the design, like meeting
requirements on the transient response or certain constraints on the control input, but the

discussion in this section is mainly concentrated on the basic problem of stabilizing the

blending affine systems.
Naturally, the feedback stabilization problem is much simpler when the system is linear:

Xx=Ax+ Bu

In this case, the state feedback control u = kx preserves the linearity of the open-loop
system, and the origin of the closed-loop system described by X = (A +Bk)x 18

asymptotically stable if and only if the matrix 4+ Bk is Hurwitz. Thus, the feedback
stabilization problem reduces to a problem of designing a matrix & to assign the
eigenvalues of 4+ Bk in the open left-half complex plane. Linear control theory
(DeCarlo, 1989) confirms that the eigenvalues of 4+ Bk can be arbitrarily assigned
provided that the pair (4, B) is controllable. Even if some eigenvalues of 4 are not
controllable, stabilization is still possible provided the uncontrollable {open-loop)

eigenvalues of 4 will be (closed-loop) eigenvalues of 4+ Bk.

For a general nonlinear system, the problem is more difficult and less well understood.
The most practical way to approach the stabilization problem for nonlinear systems is to
appeal to the results available in the linear case, that is, via lineanization. This approach,
however, generally only provides a local result, which has an attractive region of

robustness locally.

Alternatively, LM networks formulate linear (affine) model to approximate the

nonlinear systems instantaneously, and provide the possibility to design a non-local
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controller, which is conceptually simple and straightforward. Linear feedback control
techniques can be utilized to stabilize the system. The following subsections present the
stabilization of LLM systems by state feedback control first; then the results will be
applied for the analysis and design of state feedback controllers for ALM systems.

4.3.1 Linear Local Controllers

When state feedback control is employed to design the controller, the main idea is to
design each local state feedback controller so as to compensate each local model. For
instance, each local controller has the same structure for each local model; the blending
global controller has the same structure as the LM network. Consequently, the control

signal is replaced with the feedback laws in the closed-loop system.

Assume cach pair of ( 4,B ) is controllable, design a matrix F, to assign the

i

eigenvalues of A4, + B F, to desired locations in the open left-half complex plane. Then

the LC network based on the state feedback control approach can be written as follows:
N
u(t) == pFx(t) (4.13)
Substituting (4.13) into (4.2), the closed-loop system can be described as
N N
=3 Y pp,(4-BF ) (4.14)

Clearly, the origin is an equilibrium point of the closed-loop system. As an application
of Theorem 1, Theorem 3 gives the sufficient conditions to guarantee the stability of

system (4.14).

Theorem 3: The equilibrium point of system (4.14) is globally asymptotically stable if

there exists a common positive definite matrix P such that

(4.-BF,Y P+ P(4-BF)<0, for pp, #0,¥i,j=1,- N (415
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The controller design involves determining the local feedback gains F;, i=1,--,N.
The feedback gain F'; assures that 4, + B.F, are Hurwitz, and that there is a positive

definite matrix P satisfying Theorem 3. These requirements, on the one hand, satisfy a
desired overall closed-loop system performance requirement; on the other hand, the

global stability of the closed-loop system is guaranteed.

Wang et al. (1996) proposed the so-called parallel-distributed compensation (PDC)
method as a design framework for the discrete time system and also modified Tanaka’s
stability theorem (Tanaka and Sugeno, 1992) to include a control algorithm. An
important observation in Wang’s approach is that the stability problem is structured as a
standard feasibility problem with several LMIls when the feedback gains are
predetermined, and can be solved numerically using an algorithm named the interior-
point method. Thus the controller design is simple and natural. Basically, Wang’s
stability criterion is adopted and tailored here for the analysis of the stability problem of

continuous time LLM systems.

Rewrite (4.14) as
N
i=) p {4, —BF)x+2) pp,G,x (4.16)

where Gu‘ Z(AI—BJ'F})-;(A}—BJF)J<]-

Therefore theorem 3 may be reformulated as theorem 4 with relaxed constraints as

follows:

Theorem 4: The equilibrium of system (4.14) is asymptotically stable in the large if
there exists such a common positive definite P matrix that satisfies the following two
conditions:

(4,

~BE) P+P(4 -BF)<0, i=12--- N (4.17)
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T . .
GIP+PG,<0,i<j<N (4.18)

The controller design method based on this result is a trial-and-error method. Generally,
after designing a local controller for each local model, the global stability conditions
need to be checked. If the stability conditions are not satisfied, the design procedure
needs to be repeated. As for the ALM hlending systems, extra tools and analysis are
required to obtain a closed-loop system with guaranteed stability, in addition to meeting
the conditions in (4.17) and (4.18).

4.3.2 Affine local controllers

Assuming a set of state feedback gains F, exist, which satisfy the conditions in theorem

4, the idea of canceling the offset term of the affine models is proposed here for
controller design. The idea of directly canceling the offset term in the affine local model
structure is not new. Hunt and Johansen (1997) utilized a feedforward loop to cancel the
offset term in gain-scheduled LC networks. Such approach showed improvement in the
transient performance of the closed-loop systems. The offset term in the blending
systems plays an important role in the capture of the nonlinear dynamics. Introducing
the offset term substantially improved the approximation accuracy of LM networks
compared with the normal linear LM networks (McLoone, 2000, Fantuzzi and Rovatti,
1996). To best utilize the knowledge from the model, it is worthwhile to consider the

offset term for controller design.

It is not hard to see that canceling the offset term d(x,u) can be done by directly
subtracting the control signal # in equation (4.13), as shown in equation {4.19).
Therefore, using feedback control converts an affine local state equation into a
controllable linear state equation by canceling the offset term locally. However, because
of the interpolation technique involved, the closed-loop system is not generally a simple

sum of linear subsystems. A detailed analysis is given below.

Design a set of feedback gains F, such that each 4 + B.F, is Hurwitz. The feedback

1

control signal is given by
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N
u= _Zpi(oidi + Ex) 4.19)
i=1

where o, =[o, UN]' Substituting {4.19) into (4.2) results in the overall

closed-loop system description

N N N N
k= Zl:z;p,pj (4, - BF Jx+ le:‘p,.pj (¢,-Bo,d,) (4.20)
il j= o =
There are two parts in equation (4.20). The first is the same as (4.14) in section 4.3.1. It
plays a vital role in stabilizing the global system; the second part is nonlinear and is
parameter dependent (it relies on the states, input or output parameters applied in
validity functions) due to the interpolation technique involved, but it is bounded. Under
the assumption that the second part changes slowly, an integrator was proposed in
chapter 3 for the controller design. Here, the second part of (4.20) will be taken as
modelled nonlinear dynamics (related to the affine terms) in the controller design.

Rewrite the second part of (4.20) as follows:

N
Zzpipj(di - BIdoj)

i=l j=

—_

N
=2.pd, -Bod)+23 pipb; (4.21)
i=1

i<f

(d,-Bo,d,)+(d, - Bod) o
)i

[ Ngi Jo it
J

where 9,.j. = 5

Constder the special case that B, = B,i =1,---, N first. Then,

g _(di-Bod)+(d,—Bod) (d,-Bod)+(d,-Bo,d)
i 2 2 ,

If we set d,—Bod, =0, i=1--,N, then 6,=0, thus the closed-loop system is

associated only with the first part of (4.20). Therefore, the cancellation of the offset
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term leads to a linear system description. Consequently, the stabilization problem for
the nonlinear system is reduced to a stabilization problem for a set of controllable linear
systems. We can proceed to design a stabilizing linear state feedback controller to locate
the eigenvalues of the closed-loop system in the open left half plane, as presented in

section 4.3.1. However, setting d, - Bo,d, equal to zero is generally only possible when

B is full rank or else matched to the offset 4, .
Consider the more general case, i.e. B; does not have to be equal to B, Vi # j, then

_ (d,—Bo;d)+(d,-Bod)

6, .

(@, -Bod)+(d, -Bo,d)+(od —o,d XB ~B,)
2

Ifweset d, -Bod, =0, i=1,---,N, then

(Ur‘di B O-jdlei B Bj)
g, = >

(4.22)

6, is proportional to the difference between the model parameters B, i=1,---,N and a

difference functionally related to the designed controller offset parameter o, ,

i=1,---,N . Thus the second part of (4.21) can be written as

d —o.d)B -B,
Zprp,- (0di =9, 2’)(' ) (4.23)

Now,0< p, <1, i=1,---,N is the weighting function of i local model, so (4.23) is
bounded by

N-(N-1)

5= max(fo.d, - o,d,)- (8- 8,)) (4.24)
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for a finite number N of affine blending systems. Deducing (4.22) from (4.23) involves

a+b . )
< ab and the fact that the number of items summed in

employing the identity

(4.23) is 1+2+---+(N—1)=£%—lll,
We distinguish two cases:

1. Consider the case that p, =1 and p, =0, i# j,i,j=1,--,N.

2. Consider that the operating point resides in more than one region R,, i=1,--- N,

so that the local systems are interpolated. This is the general case.

For the special case 1, 6, =0, the design and analysis issue is simplified as discussed

previously, i.e. when the system has a common 5.

To deal with the general case, the closed-loop system can be written as

N
x= Zzpfpj(Af - BiFj)t"-zZpipj(Gidr' _cjdeBf a Bf) (4.25)

N
i=1 j=1 i<
System (4.25) includes an offset term, which is nonlinear parameter dependent.

Applying the stability analysis in section 4.2.2.2, Lemma 3 is developed below.

Lemma 3: The affine blending system (4.2) is uniformly bounded for all ¢ = ¢, via state
feedback controller (4.19), if there exits a positive definite matrix P, which satisfies
(4.17) and (4.18). Let ¥ = x” Px be a Lyapunov function of the system (4.2), for some

positive 0 <0 <1, then the solution of the system x(t) satisfies
(e )| < kexpl- e — 1 )]x(, Y|, v, <t <,

and  |x()| < vezy
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for some finite time ¢, where k = cz/cl , F= (1 _29)03 , b= 2;‘"‘“(1)) fiﬁ
€2

c, ¢ 6

Proof: Assuming ¥ = x” Px is the Lyapunov function of the LLM system (4.14), i.e.
there is a common positive definite P existing for each local system so that (4.17) and

(4.18) are satisfied and

clﬂxui <)V < czﬂxlz Lo =A (P), c, = )Lmax(P)

Then we define

(4, -BEY P+P(4 -BF)=-0Q,, for i=1,-,N

T _ s
and G P+ PG, =-0Q, fori<jij=1-N.

Based on Lemma 1 and lemma 2, the differential of the Lyapunov function can be

written as

] N N N N
V= xT[PZZ o0, (4 -BF )+ Yo, (4 —B,.Fj)fp}xﬁuszP(zZp,.pjeﬁ]
i=) =l i=l =l i<j

- Soilta-neY P s -

1257 S pp G P+ PG, )+ 25" P Y pip,(oid, - 0,4, B, -Bj)]

i<j i<j

N
= “XT(Z SHONES 22 piijy‘}x-i- 2x" Zp.'pj (Gidi -o,d, XB;' - B, )J
i=1

i< i<

< —[min(xmin(QH )+ —N—%’—” -minfp,, (©, ))Jllxni + 2l A s (PO

(From Lemma 1 and equation (4.23) and (4.24))
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< ¢, + 2, M (P
= —~(1-O)es ] — (0, - 22, (PI )],

<10k, v, > Lm0

Apply theorem 2 to complete the proof. Lemma 3 shows the closed loop system is
bounded by an ultimate bound &, which, in strong part, depends on the interpolation

function p,, i=1,---,N¥, which in turn depends on the states, system input and system

output.
4.4 Concluding remarks

Blending systems with affine local models show improved modelling accuracy over
normal linear model based blending systems. However, affine systems do not carry on
the continuity with the well-established linear approaches. The blended offset term
partially describes the dynamic properties of the overall systems and should be
considered in the controller design. The offset terms in affine local models move the
equilibria point of the system away from the origin x=0. The stability analysis is

consequently difficult.

This chapter utilises the ultimate boundedness theory to the stability analysis of affine
blending systems, in which the offset term is nonlinear, parameter dependent (on states,
and input and output signals) and bounded. The approach considers the nonlinear o{fsct
term in affine blending systems as a non-vanishing ‘perturbation’ being added to the

corresponding nominal linear blending systems.

Assuming the nominal linear blending system is exponentially asymptotically stable, i.e.
there is a common positive definite matrix P existing for all the local systems, the
corresponding affine blending system will be bounded by an ultimate value b, which is

proportional to the maximum of the offset terms of the local systems. The smaller the
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bound b is, the smaller the deviation of the affine blending systems from the stabilizing

origin of the linear blending systems.

A state feedback controller, with an extra term, is proposed to cancel the offset term of
the affine blending systems. In some special cases, the overall compensated system is
stable at the origin via the state feedback control; this happens only if the local systems

have a common B, or if the weighting functions of the local models satisfy p,p, =0, for

i#j, i,j=1,--,N . Generally, the overall compensated system is bounded by an

ultimate bound b, which is proportional to the differences between the local model

parameter B; -8, i, j =1,--- N, and the differences between the designed offset terms in

the state feedback controller.

The contribution of this chapter might be limited currently. Future work will go on to
give quantity analysis of the boundedness result related to the boundedness of the

operating region.

In summary, the blending systems using affine local models, although widely applied in
the literature, do not provide continuity with established linear methods. In terms of
control, affine blending systems raise some difficult issues due to the varying nonlinear
offset term, which blurs the transparency of representation of the global dynamics. Leith
and Leithead (1998, 1999) propose a novel class of blended multiple model networks,
namely, the velocity-based multiple model network, which establishes a rigorous, and
direct relationship between the dynamic characteristics of a nonlinear system and those
of a related family of linear systems. Since the representation of the linear members of
the family can be combined to approximate the represcntation of the nonlinear system
arbitrarily accurately, the family of linear systems is able to descrnibe the entire

dynamics of the nonlinear system. This is the topic of the next chapter.
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Chapter 5

Velocity-Based Multiple Model Networks

5.1 Introduction

A static model gives information about the steady-state relationship between the input
and the output signal. A dynamic model should give the relationship between the input
and the output signal during transients. It is naturally much more difficult to capture
dynamic behaviour. However, dynamic behaviour is very significant when discussing
control problems. In an attempt to accurately model nonlinear dynamical systems,
blended multiple-model systems have got increasing attention for their attractive
continuity with well-established linear methods. Local model networks and fuzzy
inference systems are some examples in which the local valid sub-models are easily
interpreted; also, the weighted sum of the local sub-models provides a qualitative high-

level description of the nonlinear system.

In chapter 2, the methods for structuring LM networks were introduced, in which the
blending (interpolation) procedure is required to provide smooth interpolation, in some
sense, between the local models, to achieve an accurate representation over the whole
operating space with only a small number of local models. At any instant operating

point, a linear representation of the process is formulated via combination of a set of
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linear (or affine) local models to approximate the dynamics of nonlinear systems.
However, the blending procedure itself is inherently nonlinear, which raises questions
about the case of implementation of the approach. In chapter 4, the stability issue was
investigated for the blending system. Although widely applied in the literature, it is
noted that the offset (inhomogeneous) terms in affine blending systems are nonlingar
and parameter dependent. They need to be carefully treated in the controller design in

general.

Recent research (Leith and Leithead, 1998) queried the ease of interpretability of the
multiple model frameworks for nonlinear systems and presented a novel class of
blended mualtiple model networks, i.e. velocity-based (VB)} multiple model networks, in
which the global dynamics are directly related to the local models employed. The VB
analysis and design framework associates a linearization with every operating point of a
nonlincar system. The relationship between the nonlinear system and its VB
linearisation 1s direct. Moreover, the underlying sub-models are continuous-time,
velocity-based and linear, thus maintaining the continuity with existing linear
techniques, which are well developed for analysis and controller design. Meanwhile,
analytical results based on the application to a complex nonlinear continuous stirred
tank reactor {(CSTR) simulated process show that the velocity-based approach is ideally

suited to the development of [ocal controller (LC) networks (McLoone et al., 2001).

In chapter 3, a gain-scheduled LC network was applied to the control of the CSTR
under the assumption that the CSTR system changes slowly. With regard to controller
design, the VB approach does not inherently involve a slow variation requirement on
shows significant advantages in representing the dynamics of the nonlinear systems, not
many control applications have been developed based on VB multiple model networks,
though there are some results reported (Leith and Leithead, 2001, Rong et al., 2001).
This is partially due to some difficulties in practical implementation that engineers have
to face; for example, the differential realization of the controller input signal and the

‘drift’ problem of steady-state errors.
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McLoone and Irwin (2001) utilized sinusoids and constant signals to facilitate the
formulation of differential signals in the simulation of modelling of the CSTR process
and show that the steady-state errors could be accumulated as simulation proceeds.
However, with regard to the controller design based on VB multiple model networks, so

far not much work has been done.

This chapter proposes a novel controller design approach based on the VB multiple
model networks via the application of integral controllers. This approach skilfully
employs an integral action to eliminate the need for the derivative of the controller input.
The solution locally incorporates an integrator in the state feedback loop. Meanwhile, a
state observer is applied to adjust the ‘drift’ problem of steady-state errors in the
feedback loop. A case study on the CSTR process highlights the feasibility and
simplicity of the proposed approach in the application of VB multiple model networks

to the control of complex nonlinear systems.

Furthermore, the literature review shows that a lot of work has been done regarding the
conventional LM technique in both the continuous-time and discrete-time domains.
However, all the studies relating to VB multiple model networks exist in the
continuous-time domain. Considering that applications of digital computers are popular
in the field of control and the potential capability of the VB multiple model network
approach in the development of LC networks, this chapter develops and presents a
discrete-time version of the VB multiple model representation. The modelling
capabilities of the resulting nonlinear model are examined via simulation on the CSTR

process.

The chapter is organised in the following sections. Section 5.2 briefly outlines the
continuous-time VB multiple model network approach, while section 5.3 develops the
state feedback integral controller based on the VB multiple model network. In section
5.4, the novel discrete-time version of the network is developed and simulation results
are given for the CSTR process; the chapter ends with some conclusions and

suggestions for future work in section 5.5.
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5.2 Continuous Time VB Muitiple Model Networks

5.2.1 VB Multipie Model Networks Formulation

Consider the general nonlinear state space SISO system (2.3), with state vector x and

inputs u :
(r)= £ (x(t)u(0))
e} = g(x{e)ue)) (5.1)

Linearizing (5.1) about an operating point ( x,,%, ), ignoring the high order errors and

keeping only the linear terms yields (2.6), which is rewritten as follows:
.. of of
éx(f) = f(xn 7R ) + ™ s, ) 6x(t) + 2 (e ) au(t) (5.2)

where 5x(t)= x(t)-— x,, oult) = u(t)— u, . Notice that if the operating point ( x,,u;) is
an equilibrium point of the system, f (xo,uo):O. This is the case for normal LM

network models, although there are some contributions on off-equilibrium LM networks
available (Johansen et al., 1998a). However, it is not necessary to linearize the system at
the equilibrium point for the VB multiple mode! network, which allows linearization of

the system at any instant operating point.

Define A = o

_é; kx-u)=(ru ) B, = —% kxlnyn ) equation (5.2) can be rewritten as

x=Ax+ Byu+a, (5.3)

where a; = f(xn,uu)— (4,x, +Bou0). Differentiating (5.3) with respect to time gives

the linear velocity-based system, whose state vector is denoted by X, as follows.

¥ = A, X + By (5.4)
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With the appropriate initial conditions, equations (5.2) and (5.4) give identical solutions,
and therefore there is no approximation at this stage. Equation (5.4) establishes a direct
relationship between the dynamics of the VB form of the nonlinear system and the VB
linearisation near an operating point. Furthermore, mFmbem of the family of VB
linearisation functions are all linear, which provides continuity with established linear

theory and methods.

A velocity-based, blended, multiple-model system is formed by weighting several

velocity-based linearized models as follows:
S PRICE A DL TR A O) TR

where Ai(fi’ui)':a%:f Kea( ) B;(Epui)=a%ukf,u):(;,.,u,.) and (Ei»'ui) 15 the

freezing point of the i” local model as below.
¥=A(%,u)x + B(X,,u ) (5.6)

in which X denotes the state vector of the linearization function at that freezing point

(:fi’ui)'

The normalised weighting function is given by p, (w) , where ¢ is the scheduling

vector as introduced in chapter 2. The dynamics of the blended system, about the

operating point (i"u,uu) is now considered. The velocity-based linearized form of (5.5),
at (E,,,u,_,), is simply obtained by freezing the validity function p,(w) at the operaling

point to produce the following linear system:
X= (Z Ai(ia‘ 21 )Pi(‘/’o ))35 + [2 B:'(Ei!”f)f’i(‘/’o )]“ (5.7)

With the appropriate initial conditions, the solution to (5.7) is initially tangential to the

solution of the velocity-based multiple model system in (5.5). The dynamics of the
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multiple model system local to an arbitrary operating point are therefore the same as the
dynamics of the comresponding frozen-form linear system at the same operating point.

Rewriting (5.7) as
X= ZP;(‘I’:}XAE(EH”;)? + Br‘(fi’ui)i‘) (5.8)

clearly highlights this direct relationship between the frozen-form (5.7) of the velocity-

based blended system and the underlying local models (5.8) at (Eo,uo). Thus, at any

arbitrary operating point, the global dynamics of the multiple model system are
described by a straightforward weighted sum of the local model dynamics. Further
detailed theoretical analysis of both conventional and velocity-based nonlinear
representations can be found in (Leith and Leithead, 1999, Mcl.oone et al., 2001,
McLoone and lrwin, 2001).

5.2.2 Case Study

Recalling equation (5.5), we see that the input of the velocity-based multiple model is
the time differential of the control signal « . The simulation diagram is shown in Figure
5-1. If the control signal u is step signal, then the input to the VB multiple model
network would be an impulse. Practically, it is very difficult to formulate an impulse
input signal because of the differential problem. This is an important issue that should

be concerned.

—T > Plant A o

du
dt )
] . ¥m ¥m
u VB multiple
—»
l ‘ model network '[
Figure 5-1 VB multiple model networks implementation
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Mathematically, in the continuous time domain,

ﬂ(r)z 111_13 u(t + 1:3— u(r)
For simplicity, in simulation, we employed the strategy in (McLoone and Irwin, 2001),
in which sinusoids and constant signals were combined to facilitate the formulation of
impulse signals. Two local models are employed to model the relationships between
the coolant flow rate g, (t) and the product concentration, C(¢). These two local models
are obtained by freezing the nonlinear velocity model at the appropriate linearization
points:

C) =0.062mol /1,T) = 448.7522K,q!, =90.0// min

C?=0.1298mol /1T = 432.9487K ,q!, =110.0// min

in which (C!,T/,q.. ) denotes the linearization point of the i” local model. The

interpolation function is the same as used in chapter 2, in which ¢ = [0.02,0.03].

g

g8 7

]

=]

Concentration C(t) (mol/1)

Coolant flow rate g.(t) (I/min)

e S B

Time (min) Time (min)

Figure 5-2  Comparison of output product concentration when C(#)}<0.1

The solid lines represent the simulated CSTR process output, while the dotted
line is from VB multiple model networks and the dash-dotted line is from the
conventional LM networks.
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Figure 5-2 and figure 5-3 show the coolant flow rate g, (t) step changes and comparison
of the product concentration output C¢#) from the CSTR process with the corresponding
output from the velocity-based multiple model network and the conventional LM
network in the continuous time domain. In Figure 5-2, coolant flow rate g, (t) varies

from 65 /min to 100 min. The CSTR lies in over-damped operating space (C(1)<0.1).

Both of the modelling performances are poor in terms of the steady-state accuracy.
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Coolant flow rate g.(t) (I/min)

[=]
-
a

015

Concentration C(t) (mol/1)

Concentration C(t} (mol/l)

Time (min) Time (min)

(a) VB multiple model network (b) conventional LM network

Figure 5-3  Comparison of output product concentration when Cr1)>0.1

The solid lines represent the CSTR process output, while the dotted line is
from VB multiple model networks in (a) and dash-dotted line is from the
conventional LM networks in (b).
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However, in figure 5-3, coolant flow rate qc(t) varies from 100 I/min to 110 I/min. The

CSTR lies in under-damped operating space (C(}>0.1).the VB multiple model network
shows much better dynamic capability than the conventional LM network especially,
when the concentration output C() goes to about 0.11-0.13 mol/l, where the CSTR is
extremely under-damped. The conventional LM network fails to capture the dynamics
of the CSTR. Meanwhile, the steady-state errors from VB multiple model networks are
smaller than those from conventional LM network. This significant advantage of the VB
multiple model network approach shows the potential of VB multiple model network
applications in control. The next section will investigate the controller design issue

based on VB multiple model networks.

More detailed analysis in the continuous time domain can also be found in (McLoone et
al., 2001, Leith and Leithead 1998, 1999). Modelling properties of VB multiple model

networks in the discrete time domain will be investigated in section 5.4.

5.3 VB Integral State Feedback Control Networks

Traditionally, integral actions can be employed in controller design to overcome the
problem of steady-state errors. In many cases, it is difficult to obtain an accurate value
for the plant gain, in part, because plants are typically nonlinear and the plant model is
linearized at some particular point. Therefore, steady-state errors will result even though
the model is sufficiently accurate for good feedback controller design. One solution is to

incorporate an integral control term in the feedback loop.

Chapter 3 presented the application of integral actions in the LC network based on
generalised predictive control approaches. While the affine terms in the local models
cause difficulties for the controller design, the integrator is employed to evenly treat the
affine terms the same as slow disturbance variations. Such an approach ignores the
dynamics that those affine terms can describe. However, the VB local models are linear.
This advantage makes it convenient to design local controllers based on well-developed

control approaches for linear systems.
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As presented in section 5.2, the VB multiple model networks instantaneously establish a
direct linearisation near an operating point of the nonlinear systems. Therefore, the VB
multiple model networks are able to capture the dynamics of nonlinear systems better
than the conventional local model networks. This provides a potential to design a better
controller based on the more accurate modelling capability of the dynamics of nonlinear
systems. However, the input signal to the VB multiple model networks is the time
differential of the control mput signal as shown in Figure 5-1, which is difficult to

formulate in practical application.

This section proposes a novel integral state feedback control network based on the VB
multiple model networks, for the control of nonlinear systems. This method makes the
controller design possible to have the best access of dynamic information available from
the VB multiple model networks, which represent the better dynamics of the nonlinear
system than the conventional local model networks do. Meanwhile, this method makes
the implementation of the controller design feasible and practical based on VB multiple
model networks. Therefore, the integral state feedback control network 1s able to allow
better performance by utilising the dynamics of the nonlinear systems that the VB

multiple model network can capture.
5.3.1 State Feedback Integral controller

As shown in section 5.2.1, each local model in velocity-based multiple model networks
is linear. Therefore, for each VB local model, a state feedback integral controller can be
simply designed for the purpose of achieving satisfactory dynamic response in terms of

rise-time, overshoot, settling time or other measures of transient response.

This subsection will present the state feedback integral controller design approach based
on the VB multiple model networks. For each local model, the state feedback integral
controller is able to exactly match the closed loop characteristic equation of a feedback
system to its desired value. This is often used in controller design where the
performance criterion for the control system can be expressed in the classical control

terms of transient response or frequency response.
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A general structure of a state feedback integral controller is shown in Figure 5-4.

T x", X

! u Yy
L‘“ K Plant —»

1

[

Figure 5-4  Conventional state feedback integral controller

Given a linear single-in-single-out {SISQ) system description:

x=Fx+Gu 59
- Hx (5.9)
Define x, = y—r, and then extend equation (5.9) as follows:
5] [0 H]x ] [0 1
= | |u—| |
|7 lo Flx]|"|6] |o
y=[o H{x’ (5.10)
X

X
Defining u=-[K; Kg][ "] and substituting it into (5.10) gives
X

o mEHE e

T n 1

We set the eigenvalues of the extended matrix | ) to the desired poles,
-GK, F-GK,

and then K, and K, can be calculated.

Recall the velocity-based linearization local model (5.6), for the " VB local model,
equation (5.6) could be rewritten as equation (5.12), which defines w =X and

W, =y—F.
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yv=Cw (5.12)

W,
Let t.'r:—[K, KO{ ! :l, an integral controller can be designed to satisfy some
W

specifically assigned requirement using the above method. Then a little change can be

made from Figure 5-4 to Figure 5-5.

Figure 5-5  The i local VB integral controller

As for the blending VB multiple model networks, we define w = X . Considering the

single-input-single-output (SISO) system, equation (5.7) is rewritten as

W= pAw+ Y pBi (5.13)
It should be noted that the Iocal VB subsystems share common states, as does the gain-
scheduled LM controller network introduced in chapter 3. The VB multiple model
networks provides a global nonlinear system representation from a set of linear models

together with an interpolation function. The vontrolled closed-ioop sysiem 1s described

by

W, 0 | C Tw1 7.
W - "ZZP:-P,-B,-K,’ ZP;A;*ZZ;J,,OJB,.K: wl lo ro(514)

Then, the characteristic matrix of (5.14) is
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0 c
-2 2.PpBK! Y pA-23 prBK
i i LI
0 c
222""’![3;1({ Al.—B,.Kj}

c o ¢ |
=Zp,2[31” A _BKf‘l+2Z BI'K{ +BJK1, (AJ _BIK:)+ (AJ'_BJ'K;)
i i | i 1] a i<y 2 2

Employing the stability theorems discussed in chapter 4 and comparing the above
equation with equation (4.17), the stability of system (5.14) can be investigated in the
same way as described in Theorem 4 (chapter 4). If there is a common positive P
existing for each local feedback system, the overall closed-loop system is stable and it
stabilizes to the origin. This shows another advantage of the VB approach over the
conventional affine LM network, which is a bounded system generally. The overall

closed-loop system is shown in Figure 5-5.

N u
r oK' VB 1 >
‘ZT £ + Model s

Figure 5-6 VB integral state feedback control network

When the VB integral state feedback controller network is applied to the plant, a
framework is proposed as shown in Figure 5-7, which introduces an observer to the
modelling loop. As mentioned in section 5.2.2, the velocity-based multiple model
network has a weakness in static modelling accuracy, for there are steady-state errors
existing, although the VB approach shows an attractive capability in capturing the

dynamics of nonlinear systems. Moreover, these steady-state errors accumulate as the
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simulation continues and the VB multiple model outputs drift away from the nonlinear
system output (McLoone et al. 2001). So, it is desirable to bring the VB multiple model
outputs back to the proper operating point when we design a model-based controller as

shown in Figure 5-7.

=]

|

Figure 5-7 VB integral state feedback control network application to a plant
5.3.2 Case Study

The process continuous stirred tank reactor (CSTR) introduced in chapter 2 is
considered as a case study. The CSTR is a highly nonlinear process. The objective of
the controller design is to control the concentration output C¢¢) by manipulating

temperature output 7(¢), which is carried out by adjusting the effluent flow rate g.(¢).

The VB multiple model network used here consists of two nominated velocity-based
lucal models as shown n section 5.2.2. The two local controllers, corresponding to the
velocity-based local models lincarized at the nominal operating points

( C)=0.062mol/l , T'=448.7522K , g!, =90.0//min and C?=0.1298mol/l ,
T =432.9487K , g', =110.0!/min respectively), can be arbitrarily designed to give a

desired closed loop characteristic form with a dominant set of closed-loop poles, by

applying the controller structure proposed in section 5.3.1.
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In the case study, two integral state feedback control networks (IC1 and IC2) have been
designed. In ICI, each local controller is designed to give a settling time of 0.5 minutes;
[n IC2, each local controller is designed to give a settling time of 0.3 minutes, The
reason for choosing the settling time of 0.5 minutes is for the purpose to give a fair
comparison with the gain-scheduled LC networks described in chapter 3. IC2 with the
settling time of 0.3 minutes facilitates the showing of the impact of local control design
to the global performance based on the proposed VB integral state feedback control

networks by the comparison with ICI,

A system whose poles are the roots of a Bessel polynomial is known to possess a
desirable servo response by choosing the closed-loop pole locations (Vaccaro, 1995).
Based on the Bessel polynomial, a third order system with 0.5 minutes settling time
should have their poles set as -7.9336+ 7.5690/ and -10.0186; a third order system
with 0.3 minutes settling time should have their poles set as -13.2227 +12.6150/ and —
16.6977. Their corresponding controller gains are calculated according to section 5.3.1,

as follows:

ICI:  K/=2.6285e4; K'=3.1679¢4
K =[-17.4651 —30.9764]; K? =[-4.162¢2 2.0227¢3]
IC2:  K|=1.2169¢5; K= 1.4666e5
K, =[-35.0047 -52.0459]; K} =[4.3450e3 1.1581e4]
where K denotes the ™ gain for the i local model. To examine the performance of the

proposed integral controller design approach, a set of simulation experiments have been

designed.

e Experiment El entails a comparison of the servo responses of two VB integral

control networks ICI and IC2.

As in chapter 3, two sets of step changes are designed in the relatively over-damped
operating regime {C(f)<0.1) and in the relatively under-damped operating regime

(C(1)>0.1). The simulation results are shown in Figure 5-8 and 5-9 respectively.
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in both of the figures, the performance of the product concentration output C(#) and the
temperature output 712) is satisfactory from both IC1 and IC2. Meanwhile, the product
concentration output and the termperature output from IC2 always track the step change
faster and settle down faster than those from the IC1 as expected. Moreover, the control

inputs, i.¢. the coolant flow rates g.(¢), from IC2 shows more aggressive and quicker

response than those from IC1 in both figure 5-8 and 5-9.

One thing that should be emphasized here is to differentiate the desired local control
target (for the local system) from the expected global performance. The design approach
described sets the desired control target locally only, but no desired global control target
1s set directly. For each step change from IC1, it normally settles down in 0.5 minutes,
although it sometimes takes a bit longer especially during over-damped area; for each
step change from IC2, it is normally able to settle down in 0.3 minutes. Although it
takes a bit longer than 0.3 minutes, but it never takes longer than IC2 to settle down. It
is clear from the simulation that the better and the more rigorous the local controller is

designed, the better performance could be expected for the global system.

e Experiment E2 entails a comparison of the disturbance rejection of the two VB

integral state feedback control networks IC1 and IC2.

A set of step changes has been designed to cover the whole operating regime. It starts
from 0.03mol/l, with 0.03 mol/] intervals in over-damped area and with 0.01 mol/l in
highly dynamic area, ie. the under-damped area, as shown in Figure 5-10. The
simulation results are shown in Figure 5-11. The disturbance introduced to the system is

a set of impulses with 30 //min coolant tlow rate as shown in Figure 5-11.
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Figure 5-11  Comparison of disturbance rejection performance from IC1 and I1C2

Solid line 1s from ICI and dotted line is from 1C2

Both 1C1 and IC2 show good disturbance rejection ability in concentration output and
temperature output, although IC2 shows even stronger robustness than IC1 does. The
concentration output from both ICI and IC2 goes back to the set point quickly after a
tiny vibration when the disturbance change occurs. Meanwhile, IC2 shows much better
robustness than IC1. IC1 shows only half of the overshoot that the IC1 gives,
corresponding to the disturbance, as shown in the zoom-in figure. It is clear that the
simulation shows that the better and the rigour the local controller are designed, the
better and the more robust the global performance intends to be. The strong disturbance
rejection performance shows an attractive contribution of the proposed integral state
feedback control approach based on the VB multiple model networks. To firmly show

this contribution, experiment E3 is designed.
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» Experiment E3 entails a comparison of the disturbance rejection performance
from the VB integral state feedback control networks IC1 and that from the
gain-scheduled LC network with two local controllers (C1) proposed in chapter

3, which employed generalised predictive controllers as the basic local

controllers.

The set of step changes has been designed for experiment E2, as shown in Figure 5-10,
are used in this experiment E3 for the purpose of fair comparison. The main advantage
of using multiple model networks is to obtain good performance globally rather than at
certain local operating regime only, so it is important to show simulation results all over
the operating regime rather than under certain limited operating conditions. Simulation

results are shown in Figure 5-12.

e = = = — =

Concentration C(t)(mol/)

Concentration C¢tj(mol/l)
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Figure 5-12  Comparison of disturbance rejection from IC1 and CI

The solid line is from the VB integral feedback network (1C1) controlled
system and the dashed line is from the gain-scheduled LC network (C1)
controlled system.

Obviously, the integral controller based on VB multiple model networks IC1 allows
much better regulator performance compared with the gain-scheduled local controller
networks Cl, especially when C(1) is equal to or greater than 0.09m0//, i.e. in the
relatively under-damped operating area, the overshoot of the results from the 1C1 is less
than half of those from Cl when disturbance occurs, as shown in the zoomed figure in
Figure 5-12. This result also, in part, demonstrates the advantage of the velocity-based
linearization, which applies not only at the equilibrium point but at any operating point,
in capturing the dynamics instantly, so that the instant change of system dynamics can

be fed back to the closed-loop and be properly controlled.
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5.3.3 Comments

State feedback controllers have been widely applied in control engineering. The novel
element of the proposed approach is that it introduces a combination of integral action
and the state feedback control approach for the controller design based on the VB
multiple model networks. It skilfully utilizes the integral action to eliminate the
differential action necessary for the input signal; such differential action is normally not

feasible in a practical implementation but required for the velocity-based approach.

This approach doesn’t involve time-consuming numerical optimisation methods, like
local controller (1.C) network approach based on local model (LM) networks. It shows
simplicity in controller design and continuity with the well-established linear control

methods and theories for controller design and analysis.

Moreover, the proposed integral controller design approach based on VB multiple
model networks shows excellent servo and regulator performance in simulation. This
promising advantage is convincing when evaluating the potential of the application of

VB multiple model networks in the control of complex dynamic nonlinear systems.

5.4 Discrete Time VB Multiple Model Networks

Velocity-based approaches show potential in modelling and control for complex
dynamic nonlinear systems. However, the literature review shows that all the studies
relating to VB multiple model networks exist in the continuous-time domain.
Considering the popular application of digital computers in the field of control and the
inherent capability of VB multiple model networks for controller design, this section
formulates the z-transform of the velocity-based multiple model networks (not limited
to SISO process). It starts from the z-transform of the conventional LM networks; next,
the discrete-time velocity-based multiple model networks are developed
mathematically; then simulation results are shown by application to the continuous

stirred tank reactor (CSTR) simulated process.
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5.4.1 Discrete Time Conventional LM Networks

5.4.1.1 ZOH Equivalent Model Development

The continuous time input to the plant is a zero-order hold {(ZOF) of the compensator

output

u(t)=ulk), kT <t <kT+T (5.15)

and the output of the plant is sampled by an A/D converter:
(k)= y(kT) (5.16)

Assume that we have a state space model (4, B, C, D) for the plant G(s); that 1s, the
behaviour of the plant is governed by the following equations:
x(¢) = Ax(e)+ Bulr)

ylt)= Cx(t)+ Duly) (5.17)

Because (5.17) is a first order differential equation, if the value of x(t) is known at

some time ¢, , then the value of x(¢) at future times is given by
x(t)= e x(t, ) + f eI Bu(t (5.18)

where the symbol ¢ stands for the matrix exponential function. If f, =47 and

t =kT +T, where T is the sampling time, then (5.18) gives an update formula for the
state vector at sampling instants. That is, integrating the state equation over one sample

period yields

(kT +7) = Dk 4 [0 OBu(cr (5.19)

Now recall from (5.15) that in the interval of integration, the function u(t) is equal to

u(k), a constant. This constant can be taken outside of the integral as follows:
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kT +T) = " x(kT) + [ f:ﬁe”(”'”")Bdr]u(k) (5.20)

This formula computes the value of the state vector x{r) only at sampling instants

t =T . Thus, if we define a discrete time state space equation
x(k) = x{kT),

AF
b=

?

r- f”'e"“””"’ﬂdf (5.21)

T

Then (5.20) becomes the discrete time state space sequence:
x(k +1)= Dx(k)+ Tulk) (5.22)

Note that I' in (5.22) is a constant vector. Also, using the output equation of (5.17), we

can write

y{k) = Cx(k)+ Dulk) (5.23)

Equations (5.22) and (5.23) constitute a discrete time system whose output, by
construction, exactly matches the output of the analog system if its input is piecewise
constant. Note that if G(s) is linear and time invariant, then its ZOH equivalent will

also be linear and time invariant.

5.4.1.2 Conventional LM Network Development

Assuming we have a set of linearized local models, each of which is governed by
equation (5.2), for a nonlinear system described by equation (5.1), the local model is

rewritten as follows:

8x{t) = A,(x,,u,)5x()+ B,(x;, 1, )our)

»(0)=Cx() 29
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where 8x(t) = x{r)- X;e s 6u(t)= ult)- u, , X, and u, are the state vector and the input

at the equilibrium points, near which the nonlinear system is linearized.

According to section 5.4.1.1, we have the ZOH equivalent models for each linearized

model, as follows:
5%k +1)= B, (x5 (K) + ' (x, 10, o)

y(k}=Cx(k) (5.25)

in which 8%(k)= %(k)~x,., Su(k)=u(k)-u,, I;= [ "¢ T Bdr and &, =7

I

We can rewrite (5.25) as
Xk + )= ¢|’(xi’ u Xx(k)—x, ) + ri(xi’uixu(k)_ )+ X,
ylk)=Cx(k) (5.26)

A normal, blended local model network system in the discrete time domain is

formulated by weighing several local models:
x(k + l) = Zpi (*.70)(4",- (xi ; “:‘Xx(k) = xie)+ ri(xi’ “,-)(“(k)— “ie) + x;'e)

y(k)=Cx(k) (5.27)
5.4.2 VB Multiple Model Network Development

Recalling the linearized i velocity-based local model in (5.6), we define w=Xx .

Rewriting the equation as follows:

["ﬂ 2[8 A,.(.;:,u,.)}[;}{gi(;,ui)}‘ (5.28)

Then, the linearized model output is
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y=|e o{f] (5.29)
W

For simplicity, we write (5.28) as follows

— — s

FV = Ai(zjruj)W +Bi(}i’ui)i‘

]

7=CW (5.30)

- I . 0 .
" WhiCh, A"(}f’"")=[g A,-(:f,-,uf)}’ Bi }",E)=I:B¢'(:fnm)} , C=[C 0] ’ and
— | X
e
W

Then based on section 5.4.1.1, we have the velocity based local state-space model
W(k + 1): dji(:fi!ui)ﬁ(k)'* F:‘(Ei’"i)“(k)
y(k)=CW (k) (5.31)
Where 19,.(3?,.,11‘.): e’-"'(}"""')r, I",.(Sr',.,u,.)= f:”.e’-“(f"'“ixknr")Bidr and C=C.

A velocity-based multiple model network in the discrete time domain is formed by

weighing several velocity-based local models:

Wik + l): ZP;(%XQ(:‘E;: ";)W(k)"' T, (}:-'”i)“(k))
Y(k)=Cw (k) (5.32)
5.4.3 Case Study

One of the key issues in this section is to demonstrate the effectiveness of the developed
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approach above by simulation. For simplicity, the CSTR (Continuous Stirred Tank

Reactor) process is employed here.

5.4.3.1 Implementation of VB Muitiple Model Networks

In simulation, we employ sinusoids and constant signals to approximate the step
changes. This approximation simplifies the realization of the differential input signal for
the VB multiple model networks in the continuous time domain. In the discrete time
domain, the differential of the signal is deduced from

AulkT) _ ulkT)—u(kT - T)
T T

where 7 represents the sample time. This equation exactly matches the definition of the
differential. There is no approximation at this stage. To transform the velocity-based
LM network to a discrete-time model, the sampling time is selected as 0.1 min

according to Shannon’s sampling theorem.

5.4.3.2 Simulation Results

In this section, the simulation will be done in two parts. To get a clear idea about the
performance of all the kinds of multiple models we discussed, we choose the same set

of steps signal qc(t), which varies from 88 I/min to 110 1/min as shown in Figure 5-13.

Firstly, continuous-time outputs from the velocity-based multiple model networks are
compared with the corresponding discrete-time outputs; secondly, both of the outputs
from the conventional LM network and the VB muliiple models, in the discrete time
domain, are compared with the output from the CSTR simulated process. Meanwhile,
the modelling error from the velocity-based LM network and the conventional LM

network are compared.
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!

Coolant flow-rate g(t) (I/min)

Time (min)
Figure 5-13  Step changes in coolant flow-rate qc(t)

A. Comparison of the concentration outputs from the discrete-time models with

the corresponding outputs from the continuous-time models,

Figure 5-14 shows that the dynamics of the discrete-time model matches those of the
continuous-time model with certain accuracy. The results validate the use of the
proposed continuous-to-discrete model transform approach. It should be noted that the
steady-state error in the discrete-time velocity-based LM network is not equal to that of
the continuous-time velocity-based LM network. This is because modelling errors exist
in both the continuous-time and discrete-time velocity-based LM network. These errors
accumulate with time. More detailed information is shown in Figure 5-16.

T =za Zoom in
I - Ny

£

Concentration C(1) (mol/1)

Concentration C(t) (mol/1)

Time (min) Time (min)

(a) Velocity-based LM network
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Concentration C(t) (mol/1)
Concentration C(t) (mol/1)

Time {min) Time {min)
(b) Conventional LM network

Figure 5-14  Comparison of the concentration outputs

The solid line represents the outputs from the discrete time model, and the
dash-dot line represents the outputs from the continuous time model.

B. Comparison of concentration outputs from the discrete-time model networks

with corresponding outputs from the CSTR simulated process.

Figure 5-15 shows that the performances of both networks are relatively poor,
especially in terms of steady-state accuracy. The discrete-time conventional LM
network represents the CSTR simulated process accurately at points where only one
model is vaiid (C()=0.058 mol/l). However, in the space between the models, the
steady-state accuracy is relatively poor. Furthermore, the conventional LM network

fails to capture the dynamics of the CSTR. The discrete-time velocity based LM

the CSTR, especially when C(1) is about 0.11 mol/l - refer to the modelling error shown
in Figure 5-15 (c).
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Concentration C(t) (mol/1}
Concentration C(t) (mol/}

Time {min) Time (min)

(a) Velocity-based LM network (b) Conventional .M network

0.92 g mm e m i m——m o

gop15l——- —rno b —— ———— - -

Modelling error of C(t} (mol/1)

Time (min)

(¢) Modelling error

Figure 5-15 Comparison of concentration outputs.

In (a) and (b), the dashed line represents the output from the CSTR simulated
process. The solid line represents the output from the discrete-time imodel
networks. Modelling errors are shown in (c¢).

In summary, the proposed continuous-to-discrete time transform approach successfully
represents the modelling property of continuous-time VB multiple model networks. The
discrete-time concentration and temperature outputs from the velocity-based multiple
network follow their corresponding continuous-time outputs and show better accuracy

in modelling the system dynamics compared with those simulation outputs from the
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conventional LM network. However, the steady-state errors in the velocity-based
multiple model networks are still significant, although the steady-state errors in the

discrete-time domain are much smaller than those in the continuous-time domain.

Thus, there is a necessity to consider the steady-state error as an issue in the controller
design. Section 5.3 proposed an ‘adjustment’ structure via the feedback of the plant
output to the VB multiple model, which shows satisfactory trajectory tracking and
regulation performance. Further work should consider the controller design based on

discrete-time VB multiple model networks.

5.5 Concluding remarks

This chapter considered two issues based on a dynamic multiple model network
structure (i.¢. velocity-based multiple model networks) proposed recently (Leith and
Leithead, 1998, 1999). The first issue dealt with the controller design based on the VB
multiple model networks; the other issue concentrated on the Z-transform of VB

multiple model networks.

The velocity-based analysis and design framework connects an instantancous
linearization with every operating point, which builds a direct relationship between the
nonlinear system and the VB linearisation. Therefore, the velocity-based multiple model
networks have an advantage in capturing the dynamics of nonlinear systems over the
conventional LM networks. This provides a potential to design a better controller based

on the dynamic information available from the VB multiple inodel networks. An

integral state feedback controller is proposed, based on the VB multiple model networks.

The proposed controller design approach associates an integral action with state
feedback in a local controller design, and then simply combines the local controllers
together to give an overall system control signal. The method overcomes the difficulty

in the implementation of the velocity-based approach, which normally involves
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deducing the differential signal. It exhibits continuity with linear control theory in the
analysis of the overall system, which brings the potential to automatically design a
controller with guaranteed performance and stability. Moreover, this approach shows
satisfactory servo responses and much better regulator performance when compared
with the proposed gain-scheduled LC network proposed in chapter 3. In addition, an
approach for stability analysis was also proposed for the proposed controller design

approach.

The second issue of this chapter is to develop the discrete velocity-based LM netwaork,
Both the velocity-based LM network and conventional LM network are transformed to
the discrete time domain theoretically. Then, simulations on a highly nonlinear process
(CSTR) show the effectiveness of the proposed continuous-to-discrete model transform
approach and highlight that the velocity-based LM network has better capability in
capturing the dynamics than the conventional LM networks, This brings promising

potential for its application in controller design.

In summary, the velocity-based linearization approach proposed is new and promising
for modelling and control of nonlinear systems. Its ability to accurately describe the
complex nonlinear dynamics shows strong potential for the application of the model
based controller design. There is a sound requirement for further research in this area,
not only in the structure of the controller but also in the analysis and synthesis of the
closed-loop systems. Meanwhile, some conventional controller design approaches for
nonlinear systems, such as adaptive control and robust control, and model based
predictive control have potential to be combined with VB multiple model networks.

Fusther work should consider ihese 1ssues.
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Chapter 6

Conclusions and Future Work

6.1 Project Review

The project started by exploring linear model estimation techniques, such as ARX and
ARMAX representations for systems with time delay. Algorithms that involve over-
parameterisation of the process model, and those that involve approximating the time
delay by a rational polynomial prior to identification were investigated. The results are
reported in a paper (Gao and O’Dwyer, 2001), which discussed and compared two

algorithms (for potential adaptive control development) theoretically and in simulation.

In practice, many real systems encountered exhibit complex nonlinearities that the
conventional linear techniques couldn’t handle. The last decade has shown a rapid
increase in the use of local model representations of complex nonlinear dynamic
systems. This approach employs multiple model networks for nonlinear system
modelling and control; these networks consist of a family of subsystems and an

interpolation scheme that orchestrates the interpolation between several subsystems.

The research has focused on the application of multiple model networks for control
purposes. It concentrated on making a further step for automatically developing an
overall global controller, with guaranteed stability and performance, based on well-
developed linear controller design and analysis methods for complex dynamic nonlinear

systems.
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6.2 Concluding Remarks

The thesis has investigated and examined in detail the controller design approaches

based on conventional local model networks and velocity-based multiple model

networks. Both the local model network based GPC and LPV based GPC are employed

to the control of nonlinear process CSTR in case study. An integral state feedback

control based on velocity based multiple model networks is developed and successfully

applied to the control of CSTR process. The main conclusions and contributions are

summarised as follows:

Chapter 2:

Theoretically, LM networks are capable of approximating nonlinear systems
with certain accuracy by employing a finite number of linear (affine) local
models, in practice, however, with limited number of local models, there are
normally steady state errors involved in the network resulting from the

normalization of validity functions.

Case study on CSTR process shows employing affine LM networks is able to
give satisfactory approximation accuracy, which has an extra freedom carried by
the offset terms. However, the affine local model does not possess the
superposition property fundamental to linear systems, which requires special

consideration in controller design.

Chapter 3:

Controller design based on LM networks is able to utilize the well-developed
linear control theory to the control of nonlinear systems. It avoids the intensive
computation load, such as the nonlinear optimisation to minimise the cost
function for control, that the more usual approach based on a complete nonlinear

model suffers.
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Assuming the system changes ‘slowly’ enough, introducing an integrative action
with predictive control drives the closed-loop system output to the set point with
good speed and accuracy for both the L.C network and linear parameter variation

{LPV) control.

In the application of CSTR process control, both the LC network control based
GPC and the linear parameter variation (LPV) control based GPC give globally
satisfactory servo and regulator performance. There are no obvious advantages

shown between them.

Properly increasing the number of local model improves the global control
performance, which benefits from better modelling accuracy. For the case of
CSTR, both of the controller design approaches based on the LM network with

two local models are able to give satisfactory servo and regulation performances.

For the LC network based GPC, a satisfactory local controller performance
doesn’t naturally guarantee a satisfactory global controller performance, even
though all the locally designed controllers satisfy the design criteria locally. This

phenomenon is a problem with the method.

Chapter 4:

Under the assumption that the nominal linear blending system is exponentially
asymptotically stable, i.e. that there is a common positive definite matrix P
existing for all the local systems, the corresponding affine blending system will
be bounded by an ultimate value b, which is proportional to the maximum of the

offset terms of the local systems.

Introducing a state feedback controller with an extra term to control the affine
blending systems. 1If the local systems have a common B, or if the weighting

functions of the local models satisfy pp, =0, for i= j, i,j=1,---,N, the

overall compensated system is stable at the origin; Generally, the overall

compensated system is bounded by an ultimate bound &.
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Chapter §:

e The novel integral state feedback controller based on VB multiple model

networks is simple to design and practical in application.

e The better and the more rigour the local controllers are designed, the better
global performance can be expected, based on thc integral state f[eedback

controller.

e The integral state feedback controller overcomes the difficulty in the
implementation of the wvelocity-based approach, which normally involves

deducing the differential signal.

e This integral state feedback controller holds the continuity with linear control
theory in the analysis of the overall system, which brings the potential to

automatically design a controller with guaranteed performance and stability.

¢ Moreover, the integral state feedback controller has an attractive advantage,
which shows much better regulator performance when compared with the

proposed gain-scheduled LC network proposed in chapter 3.

e A discrete-time version of the VB multiple model representation brings potential

of VB multiple model networks application in the discrete time domain.

6.3 Future Work

The thesis has considered the control problem of hybrid dynamical systems in a
particular case. We mean onc kind of interpclated systems i.e. LM/LC networks,
consisting of a family of linear (or affine) subsystems and an interpolation scheme
(typically formulated by employing Gaussian functions) that orchestrates the
cooperation between them. In future work, whenever possible, problems should be

formulated and discussed in the more general context of the switched system.

It remains true to declare that a deeper understanding of the behaviour of switched

systems is crucial for obtaining an efficient solution to many real world control
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problems. In the context of the application in control of multiple model systems, some

issues are of fundamental importance. Among these issues are:

e How to systematically design a controller, which guarantees global stability and

desired servo and regulator performance?

* How weight functions in the interpolation scheme are reflected in controller and

closed-loop system function modification?

¢ How to relax the stability condition for interpolated systems and also how to

conquer the boundary problem?
In what follows, some proposals are made for the future work in these directions.
1. Systematic controller design and analysis with guaranteed stability and performance

Chapter 3 proposed three methods of controller design based on the interpolated
multiple models. One of the common objectives in these methods, which require further
development, is on a systematic controller design approach, which could automatically
achieve stability and desired performance. The linear matrix inequality (LMI) based
design technique has been effectively applied to achieve a global controller with

guaranteed stability in recent years (Wang et al. 1996, Kim and Kim 2002, Rong, 2002).

Future research may be done in this area by extending these results to the case where
performance is needed in addition to robustness and stability. One posstbility is to use a
guaranteed-cost framework developed, for example, in the model predictive control
approach; an observer/controller system may be designed, which minimizes an upper
bound on a quadratic performance index. Another extension of the existing work would

be to include additive noise and develop a Kalman filter for the multiple model systems.
2. Stability analysis and control synthesis

On the stability analysis front, the approaches commonly used involve the application of

the common Lyapunov function, multiple Lyapunov functions (Daafouz et al., 2002,

166



Conclusions and Future Work

Rubensson and Lennartson, 2000, Johansson et al., 1999, Tanaka et al., 2001) and
interval approaches (Wang and Balakrishnan, 2002, Cao et al 1998).

In chapter 4, stability analysis on affine multiple models was given assuming the
existence of a common Lyapunov function. However, it is not always easy to find a
common positive definite matrix P, although there are some approaches available; for

instance, the matrices ‘commute’ approach, the Lie algebra approach, another approach,
for which that, for all Ae[0,1], Ad, +(1-2)4, and A4, +(1-A)4,” are Hurwitz and

finally, the LMI based approaches.

An altemative is to employ multiple Lyapunov functions. This approach designs one
Lyapunov function for each controller and requires communication constraints. These

constraints may be formulated as ¥(x) =V ,(x) at points x where a switching from i to j

can occur, i.e. V;(x) does not increase during transitions. This approach is more flexible

compared with the common Lyapunov function approach. Issues to be investigated are:
e How this change affects the stability of the affine multiple systems?

e [s there a possibility to obtain a umfied theory for stability analysis on switched

systems?

On the synthesis front, efforts should concentrate on sound foundational and systematic
formulations, as well as implementations of multiple models whose applications range
from decision analysis to optimisation and control. Thus, issues pertaining to stability,
controllability, observability, robustness, interpolation techniques (switching methods)
should be addressed as they pertain to the behaviour of the synthesized model within a

closed-loop control system.

3. Systematic controller design and analysis based on velocity-based multiple model

networks

The novel velocity-based linearization exhibits strong potential in the representation of

the relationship between the nonlinear systems and their instant velocity-based
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linearisation. One distinctive advantage of the velocity-based approach over
conventional multiple models is that it is able to capture fast dynamic changes in
nonlinear systems, which relaxes the requirement that the systems should change
‘slowly’ enough, which is required in conventional gain-scheduled systems. Further
investigations should be performed to extend the proposed methods to more general
nonlinear systems applications, for instance, applications in aviation, in which rapid

dynamics are common.

Chapter 5 effectively applied the velocity-based multiple model networks to the
coniroller design of the CSTR simulated process. Simulation results show strong
robustness and improved performance. Although an approach was proposed on the
stability analysis of the compensated system by using LMI techniques, more work is

needed for the practical application of this method.

Meanwhile, some conventional controller design approaches for nonlinear systems,
such as adaptive control and robust control, and model based predictive control have
potential to be combined with VB multiple model networks. Not only the structure of
the controller design but also the analysis and synthesis of the closed-loop systems need

further investigation.
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