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Focas Research Institute, 

Dublin Institute of Technology, 

Camden Row, 
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Ireland 

Summary 

This chapter outlines some developments in the applications of vibrational spec-

troscopy for disease diagnostics and demonstrates how the applications of the 

spectroscopic techniques can be extended to the analysis and evaluation of disease 

aetiology and the mechanisms of interaction with and the cellular and subcellular 

responses to, for example, chemotherapeutic agents and nanoparticles. The prima-

ry emphasis is on Raman spectroscopy, although some examples are based on in-

frared absorption spectroscopy. The studies presented are chosen to illustrate how 

a range of multivariate analytical techniques can be employed to maximize the po-

tential benefits of the complex spectral information obtained from tissue or cells.   

Introduction 

Vibrational Spectroscopy is a subset of spectroscopy which analyses vibrations 

within a molecule (or material). The vibrations are characteristic of the molecular 

structure and, in polyatomic molecules, give rise to a spectroscopic “fingerprint”. 

The spectrum of vibrational energies can thus be employed to characterise a mo-

lecular structure, or changes to it due to the local environment or external factors 

(eg radiation, chemical agents). Vibrational energies fall within the mid Infrared 

(IR) region of the electromagnetic spectrum and are commonly probed through IR 

absorption spectroscopy. Following the discovery of IR radiation by Herschel in 

1800 [1], initial applications of Infrared absorption spectroscopy were limited to 

astronomy and astrophysics [2]. In material sciences, significant advances were 

made by 1900 when Abney and Festing recorded spectra for 52 compounds, corre-

lating absorption bands with molecular structures [3]. Coblentz helped establish 

IR spectroscopy as a routine analytical tool, cataloguing the spectra of hundreds of 

substances, both organic and inorganic [3]. Technological developments post 

world war II aided considerably in establishing IR spectroscopy as a routine labor-

atory characterisation technique, but none more so than the development of com-

mercial Fourier Transform IR (FTIR) spectrometers in the 1960s and 70s [4,5] and 

FTIR microscopes in the late 1980s [6]. 

IR spectroscopy is now a routine technique for materials characterisation and 

has found numerous applications in forensics [7], environmental science [8] and 

pharmacology [9]. Raman spectroscopy is a complementary technique with origin 

in the discovery of the Raman effect in 1928 [10], for which C.V. Raman was 
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awarded the Nobel prize in physics in 1930. In 1998 the Raman Effect was desig-

nated an ACS National Historic Chemical Landmark, in recognition of its im-

portance in materials and process analysis. Raman spectroscopy remained largely 

a curiosity until the advent of the laser in the 1960s, and the revolution in Charged 

Coupled Detector (CCD) arrays in the 1980s and 1990’s added to the benefits of 

high laser source intensities. In addition, the development of narrow band laser 

line rejection filters meant that the huge losses in signal from traditional triple 

monochromator systems could be overcome with the combination of a filter set 

and a single spectroscopic grating. Furthermore, the significant reductions in ac-

quisition time with multichannel signal detection enabled significant improve-

ments in signal to noise ratios [11]. The combination of technology developments 

led to a new range of Raman spectroscopic microscopes in the 1990s, establishing 

Raman spectroscopic microscopy as a relatively inexpensive benchtop laboratory 

tool to rival conventional infrared spectroscopy. 

Similar to IR spectroscopy, Raman spectroscopy entails the coupling of inci-

dent radiation with molecular vibrations and the resultant Raman spectrum is 

characteristic of the compound or material. However, whereas IR spectroscopy in-

volves the absorption of radiation, Raman spectroscopy is a scattering technique, 

whereby the incident radiation couples with the vibrating polarisation of the mole-

cule and thus generates or annihilates a vibration. The differing underlying mech-

anisms gives rise to a complementarity of the two techniques. For a vibration to be 

active in IR spectroscopy, a change in dipole is required, whereas to be Raman ac-

tive, a change in polarisability is required. Vibrations of asymmetric, polar bonds 

thus tend to be strong in IR spectra, whereas Raman is particularly suitable as a 

probe of symmetric, nonpolar groups. Notably, OH vibrations of water are very 

strong in IR spectra, whereas they are extremely weak in Raman spectra, render-

ing Raman a potentially more suitable technique for bioapplications. 

A further implication of the differing physical origins of the techniques is that 

whereas IR monitors the absorption of IR radiation, Raman scattering can be em-

ployed in the UV, visible or near IR regions of the spectrum. Raman scattering 

thus offers intrinsically higher spatial resolution for mapping or profiling, the dif-

fraction limit being determined by the wavelength (<1m for Raman, ~5-10m 

for IR). For many applications, however, near IR is favoured as a source for Ra-

man analysis, to minimise interference from scattering, fluorescence, or photodeg-

radation of the sample [12]. 

FTIR has become an accepted tool in biophysics for analysis of the structure 

and interactions of proteins [13], lipids [14], carbohydrates [15] and nucleic acids 

[16]. Applications to tissue samples for (cancer) diagnostic applications were first 

reported in the early 90s [17], and since this time a range of pathologies has been 

investigated [18 – 20]. The application of Raman spectroscopy to biomolecules 

and even tissues was first demonstrated as early as the 1960s [21-23] and by the 

mid 1970s biomedical applications were explored [24]. Whole cell and tissue stud-

ies have been carried out on a range of pathologies [25-29] and in vivo studies [30-

32] have demonstrated the prospective for diagnostic applications. The potential 
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of vibrational spectroscopy in conjunction with multivariate analysis techniques as 

a diagnostic tool has thus been well demonstrated and the concept of Spectral Cy-

topathology has been coined [33].  

This chapter is based on the experience of the research activities within the Fo-

cas Research Institute, Dublin Institute of Technology, and outlines efforts and 

progress in the applications of both Raman and infrared spectroscopy for the rou-

tine screening of disease as well as the understanding disease origin. It further de-

scribes studies demonstrating the potential of the techniques for in vitro diagnos-

tics and biochemical analyses, for example of the efficacy of chemotherapeutic 

agents and the interaction of nanoparticles in cells. 

Vibrational Spectroscopy for Cervical Cancer Pathology [34] 

Cervical cancer is the second most common cancer among women worldwide 

and generally is more common in developing countries.  However, substantial de-

creases in cervical cancer mortality have been observed in Western countries and 

some developing countries with well developed screening programmes [35]. A 
Papanicolaou test (Pap smear test) is used to screen for Cervical Intraepithelial 

Neoplasia (CIN) and cervical cancer in the general female population.  Such cer-

vical cytology can have a high specificity of 95-98% but a sensitivity of lower 

than 50% [36].  Other methods such as automated cytology and human papilloma 

virus (HPV) testing [37-39] have been introduced to reduce the false negative 

rates.  An abnormal Pap smear is followed by colposcopic examination, biopsy 

and histological confirmation of the clinical diagnosis.  This involves the visual 

examination of histological sections.  The grading characteristics are quite subjec-

tive and pre-malignancy may not be visually perceptible at all.   

Optical technologies such as fluorescence spectroscopy [40], polarised light 

scattering spectroscopy [41], optical coherence tomography [42, 43] and confocal 

reflectance microscopy [44] have emerged in recent years as promising tools for 

diagnosis of cervical and other cancers. The potential of vibrational spectroscopy 

for cervical cancer diagnosis has also been recognised. A number of studies have 

shown that Fourier Transform Infra Red (FTIR) spectroscopy [45-47] or Raman 

spectroscopy [32, 48] can be used for detecting spectral changes in malignant and 

pre-malignant cells.  Raman spectroscopy is, however, more suited to in vivo stud-

ies because of minimal interference from water. Coupled with adapted multivari-

ate analysis techniques, Raman spectroscopic analysis of cervical biopsies and cy-

tological samples can provide high specificity and sensitivity for the detection of 

cervical cancer and early pre-malignant states. The following provides an illustra-

tion of such applications combining Raman analysis and Principal Component 

Analysis/Linear Discriminate Analysis [34].  

Formalin fixed paraffin preserved (FFPP) cervical tissue samples were obtained 

from the National Maternity Hospital, Holles St., Dublin. Two parallel 10μm 

FFPP sections were cut from each block using a microtome, mounted on glass 

slides and dried. Samples were dewaxed in-house prior to investigation by immer-

sion in baths of Xylene (BDH), Ethanol Absolut (Merck) and Industrial Methylat-
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ed Spirits 95% (Lennox) and air-dried.  Cervical tissue was dewaxed using the 

same procedure outlined above, but xylene was substituted with hexane, due to the 

improved level of dewaxing [49]. One section from each sample (the reference 

section) was stained with Haematoxylin and Eosin and the other kept unstained for 

spectroscopic examination. 

FFPP cervical tissue sections were characterised by consultant pathologist Dr. 

P. Kelehan, National Maternity Hospital, Holles St., Dublin, and the samples con-

sisted of 20 normal and 20 invasive carcinoma sections from 40 individuals. Of 

the 20 carcinoma samples, 10 samples were identified as having various grades of 

CIN, which were also marked for examination.  

An Instruments S.A. Labram Raman spectroscopic confocal microscope was 

used, with an Argon Ion laser operating at an excitation wavelength of 514.5nm. A 

x50 objective lens was used. The laser power at the sample was measured and 

found to be 6.5±0.05mW, focused to a spot size of 2μm at the tissue surface. 

Raman spectra of the various tissues were accumulated for 150 seconds.  A total 

of 10 spectra were recorded from different spots on each sample. 

Selected spectra were baseline corrected, dark current subtracted and were 

smoothed using a 10 point moving average before being normalised to the spectral 

maximum, from 0 to 1. Basic matrix manipulations and data reduction was carried 

out in Microsoft Excel Professional 2003 (v. 11.0), before being exported into 

Minitab to perform Principal Component Analysis (PCA) and Linear Discriminant 

Analysis (LDA).  Minitab Release 14.1 Statistical Software Analysis Programme 

was used to produce PCA scores and LDA plots, as well as to carry out leave-one-

out cross validation. 

Figure 1 shows the layer structure of normal cervical tissue in an unstained 

FFPP tissue section together with the Raman spectra recorded from basal cells, ep-

ithelial cells and connective tissue. The spectra of the three different regions do 

have a degree of similarity, but notably there are many differentiating spectral fea-

tures. The spectra of basal cells show strong bands at 724 cm
-1

, 779 cm
-1

 and 1578 

cm
-1

 which are characteristic of nucleic acids. The morphology of basal cells con-

sists of a single line of tightly packed cells, with large nuclei in relation to the 

compacted surrounding cytoplasm. In addition, these cells are constantly dividing, 

providing cells to the parabasal layer. For both of these reasons, a high concentra-

tion of DNA would be expected in the basal cells. Spectra of epithelial cells have 

characteristic glycogen bands at 482 cm
-1

,
 
849 cm

-1
,
 
938 cm

-1
, 1082 cm

-1
 and 1336 

cm
-1

. Collagen contributions can be clearly seen in the spectra of connective tissue 

at 850 cm
-1

, 940 cm
-1

 and 1245 cm
-1

.  

Figure 2a compares the Raman spectra collected from normal epithelial cells and 

invasive carcinoma from a selection of different patients. Glycogen contributions 

are clearly visible in the spectra from the normal epithelial tissue. The most obvi-

ous bands arise at 482 cm
-1

, 849 cm
-1

 and 938 cm
-1

 and are due to glycogen skele-

tal deformation, CCH aromatic deformation and CCH deformation respectively. 

However, there are also other glycogen contributions not as apparent, including a 

CC stretching band at 1082 cm
-1

 and CH3CH2 wagging at 1336 cm
-1

. These glyco-

gen bands (482 cm
-1

, 849 cm
-1

 and 938 cm
-1

) are absent in the spectra from inva-
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sive carcinoma, and a reduction in the intensity of the CC stretching mode (1082 

cm
-1

) is also apparent. Glycogen, a polysaccharide, is the principal storage form of 

glucose. Cervical cells are unusual among other epithelial cells in that they accu-

mulate large amounts of glycogen during the maturation process. Glycogen is 

known to be linked with cellular maturation and disappears with the loss of differ-

entiation during neoplasia. The spectra of invasive carcinoma also show character-

istic nucleic acid bands. These include prominent bands at 724 cm
-1

, 779 cm
-1

 and 

1578 cm
-1

, but also at 829 cm
-1

, 852 cm
-1

, 1002 cm
-1

, 1098 cm
-1

, 1240 cm
-1

. Dis-

tinct bands are also seen at 1366 cm
-1

, a shoulder at 1484 cm
-1

 and a band at 1578 

cm
-1

. An increase in the intensity of the Amide I band (1655cm
-1

) was observed in 

the spectra of carcinoma samples compared to the normal tissue samples.  The in-

creased nucleic acid and protein bands are a result of the increased proliferation of 

these tumour cells. 

 

 
 

Figure 1: (a) Photomicrograph of unstained tissue section, with different cell types 

identified and (b) Raman spectra recorded from basal cells (A), epithelial cells (B) 

and connective tissue (C) in cervical tissue sections. The main spectral features as-

sociated with each cell type are highlighted. (Reproduced from [34]) 

 

 
Figure 2:Raman spectra of a) normal cervical epithelial cells (A) and invasive car-

cinoma cells (B) and (b) Raman spectra of CIN tissue. Assignments of the main 

Raman vibrational modes are detailed in table 1. (Reproduced from [34]) 
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Figure 3: Linear discriminant analysis of the principal components of the first de-

rivative, normalised, 10 point averaged spectra, over the entire spectral range, C = 

CIN, N = normal and T = invasive carcinoma. (Reproduced from [34]) 

 

To investigate whether pre-malignant changes can be elucidated using Raman 

spectroscopy, 10 areas of CIN from 10 different patients were marked by the 

pathologist and a selection of the resulting Raman spectra are shown in Figure 2b. 

A number of the spectral features identified in the invasive carcinoma samples 

were also observed in the CIN samples such as the nucleic acid bands at 724 cm
-1

, 

779 cm
-1

, 852 cm
-1

, 1366 cm
-1

 and 1578 cm
-1

. This indicates that biochemical 

changes associated with CIN can be identified using Raman spectroscopy.  

Principal component analysis (PCA) is a method of multivariate analysis wide-

ly used with datasets of multiple dimensions. PCA is a chemometric technique 

that can resolve a complete spectral data set into a few principal components and 

can thus identify and isolate important trends within the data set [50]. It allows the 

reduction of the number of variables in a multidimensional dataset, although it re-

tains most of the variation within the dataset. The order of the PCs denotes their 

importance to the dataset. PC1 describes the highest amount of variation, PC2 the 

second greatest and so on. Therefore, var (PC1) ≥ var (PC2) ≥ var (PCp), where var 

(PCi) represents the variance of PCi in the considered data set. Generally, the 3 

first components represent more than 90% of the variance. This statistical method 

was preferred for this study to highlight the variability existing in the spectral data 

set recorded during the different experiments. Another advantage of this method is 

the observation of loadings which represent the variance for each variable (wave-

number) for a given PC. Analysing the loadings of a PC can give information 

about the source of the variability inside a data set, derived from variations in the 

molecular components contributing to the spectra. 
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Table 1: Peak position and assignments of main Raman vibrational modes 

 

 

Peak Position  
(cm-1) Assignment 

Peak reference (figure 
4) 

622 C-C twisting (Proteins) 1 
642 C-C twisting mode of Tyr and Phe 2 

670 C, T,G (DNA/RNA) 3 

720 C-N stretching in A and lipids 4 

724 CH2 deformation  
746 CH2 rocking  
750 Symmetric ring breathing (protein) 5 
782 U, T, C (ring breathing modes in the DNA/RNA) 6 

827 PO2 stretching in DNA, Tyr 7 

832 CCH deformation aliphatic  
854 Ring breathing in Tyr and Pro (proteins) 8 

873 CC stretch  
922 C-C stretching  
935 C-C stretching mode of Pro and Val 9 

1004 CC aromatic ring breathing 10 
1031 C-H bending mode in Phenylalanine 11 
1034 C-N stretching in proteins  
1065 C-N stretch  
1093 symmetric PO2 stretching of the DNA backbone; lipids 12 

1096 C-C chain stretching  
1098 CC stretch  
1102 CC stretch  
1124 CC skeletal stretch trans  

1128 
C-N stretching in proteins; C-O stretching in 

carbohydrates 

13 

1155 C-C and C-N stretching of proteins 14 

1175 C-H in plane bending mode of Tyr and Phe; C, G 15 

1208 C-C6H5 stretching mode in Trp, Phe; 16 

1214 CC stretch backbone carbon phenyl ring  
1220-1280 Amide III; A,C,T ring breathing modes of the DNA/RNA 17 

1236 CN stretch, NH bending Amide III band  
1240 CN stretch, NH bending Amide III band  
1311 CH3/CH2 twisting mode of collagen and lipid 18 

1314 CH deformation  
1337 CH2 deformation  
1335 CH2 deformation  

1340 
G (DNA/RNA), CH deformation in proteins and 

carbohydrates; Trp 

19 

1366 CH2 bending  
1440 CH2 scissoring  
1450 CH (CH2) bending mode in proteins and lipids 20 

1484 CH2 deformation  
1548 NH deformation; CN stretch Amide II band  
1578 C=C olefinic stretch  
1583 A,G (DNA/RNA); C=C bending mode of Phe 21 

1585 C=C stretching  
1550-1700 H2O bending mode 22 

1602 CO stretching  
1618 C=C Phe, Tyr and Trp 23 

1660 - 1665 C=O stretch Amide I α-helix 24 
2930 CH2 stretching (2930 cm-1)  
2932 CH3 symmetric stretch (2932 cm-1).  
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Table 2: Summary of cross-validation classification results and sensitivity and 

specificity values 

 

Principal component analysis was used to reduce the number of parameters 

needed to represent the variance in the spectral data set. The principal components 

were then used to generate a linear discriminant model. LDA applies a linear dis-

criminant function that maximises the variance in the data between groups and 

minimises the variance between members of the same group [51].  All three tissue 

classes were successfully discriminated as shown in figure 3. The classification 

model was tested using a leave one out cross validation in which all but one spec-

trum was used to build the model. This model was then used to predict the remain-

ing spectrum. This was repeated for all 498 spectra and the results are shown in 

table 2. Of 498 tissue spectra, 492 were correctly classified as normal, invasive 

carcinoma or CIN. The cross validation mis-classified 6 spectra, 2 of which were 

normal samples assigned as invasive carcinoma. The other 4 were either invasive 

carcinoma or CIN mis-classified as either CIN or invasive carcinoma respectively. 

Importantly, no abnormal samples were classified as normal.  Based on the cross 

validation results, sensitivity and specificity values were calculated as 99.5% and 

100% respectively for normal tissue, 99% and 99.2% respectively for CIN and 

98.5% and 99% respectively for invasive carcinoma. It is possible that these val-

ues may be slightly over optimistic because of the LDA method used with leave 

one out cross validation. However, similar methods have been used previously to 

classify bladder and prostate cancer [52], breast cancer [53] and basal cell carci-

noma [54]. Ideally, the use of an unknown test set would provide a more robust 

analysis of the sensitivity and specificity of the technique and this is planned for 

future work.  

The results show the ability of Raman spectroscopy to classify cervical cancer 

and pre-cancer with high sensitivity and specificity. These classifications are 

based on biochemical changes known to accompany cervical cancer such as loss 

of differentiation and increased proliferation. The study presented details of the 

application to cervical biopsies, but they can equally be applied to cytological 

samples. Studies in a range of different pathologies have emerged and technologi-

 Diagnosis (Histopathology)  

Predicted  (Raman) Normal CIN Invasive carcinoma 

Normal 198 0 0 

CIN 0 99 3 

Invasive carcinoma 2 1 195 

    

Total 200 100 198 

Number correct 198 99 195 

Proportion 0.990 0.990 0.985 

    

Sensitivity 99.5% 99.0% 98.5% 

Specificity 100% 99.2% 99.0% 
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cal development is progressing beyond the stage of “proof of concept” [55, 56]. 

Technologically, ex-vivo screening of histological or cytological samples is less 

challenging, but as the technologies are optically based, the emergence of in-vivo 

probes is inevitable [57]. The development of ssuch an automated technique 

measuring biochemical changes with improved diagnostic capability could allow 

faster, more effective patient management and inevitably would increase survival 

rates.  Raman spectroscopy therefore offers enormous potential as a ‘next genera-

tion’ technology to assist pathologists and cytologists with cervical cancer, and 

other pathological screening and diagnosis. 

In the development of the technologies towards clinical and other applications, 

it is important to ensure that the preprocessing of the spectral data is appropriate 

and in this context it is important to understand the physical and instrumental 

origin of any measurement artefacts. Significant progress has been made in FTIR 

spectroscopy to identify and correct for so-called dispersion artefacts [58-60]. In 

Raman microspectroscopy, it has been demonstrated that measurement in immer-

sion significantly reduces the spectral background [61] and photodamage [62], 

minimizing the need for spectral preprocessing. 

Notably, the analytical capabilities of the spectral techniques rely heavily on 

multivariate analytical techniques to classify the complex spectral signatures, and 

changes to them, associated with disease. A broad range of data analytical tech-

niques are available including Genetic algorithms, Support Vector Machines, Neu-

ral Networks etc. To date, no direct comparison of the efficacy or suitability of 

such techniques has been made and such a comparison on experimental data may 

not be conclusive, as the true result is not known. Ultimately, the field would ben-

efit from an exhaustive comparison of the range of data preprocessing and analysis 

techniques on appropriate simulated datasets [59].   

Exploring the aetiology of disease – HPV infection [63, 64] 

The probability of developing cervical dysplasia is much higher for women in-

fected with the human papillomavirus (HPV) than those free of infection [65]. In-

fection with oncogenic or high- risk HPV (HPV-16, HPV-18) is the main risk fac-

tor for cervical cancer [66], 99.7% of invasive cervical neoplasia being associated 

with HPV infection [67]. Identifying the presence of HPV is a very important fac-

tor in the prevention of cervical cancer and thus, HPV testing has been added to 

the range of clinical options for cervical cancer screening. HPV testing is based on 

detecting the DNA of the virus. It has been found that the DNA of high risk strains 

of HPV is assimilated within the cellular DNA of the host [68]. A drawback to 

HPV testing is that it is more expensive and time-consuming than other screening 

tests, and it requires a sophisticated laboratory infrastructure.  

Raman spectroscopy has also been used to study cell lines derived from the 

cervix, revealing spectral variations, mostly in peaks originating from DNA and 

proteins, in cell lines expressing the E7 gene of HPV-16 compared to cells not af-

fected by HPV [69]. Furthermore, it has been demonstrated that in low-grade cy-

tology infected with high-risk oncogenic HPV16 or HPV18, it was possible to dif-
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ferentiate samples from women based on whether they were aged 20–29 years vs. 

30–39 years using attenuated total reflection infrared spectroscopy [70]. 

To further demonstrate the potential of vibrational spectroscopy for clinical 

screening, four cervical cancer cell lines were investigated using both Raman and 

FTIR spectroscopy; HPV negative C33A, HPV-18 positive HeLa with 20-50 inte-

grated HPV copies per cell, HPV-16 positive SiHa with 1-2 integrated HPV 

strands per cell and HPV-16 positive CaSki containing 60-600 integrated HPV 

copies per cell. The main aim of the experiment was to investigate biochemical 

changes in cells caused by high risk HPV strands (HPV-16 and HPV-18) and to 

examine whether it is possible to differentiate between the cells with no HPV cop-

ies and cells infected by low number, medium number and high number of inte-

grated HPV copies, using vibrational spectroscopic techniques. Both common 

forms of vibrational spectroscopy, Raman and Fourier Transform Infrared absorp-

tion, were used to gain complementary information [63]. The Raman spectroscop-

ic analysis is discussed here. 

A Horiba Jobin Yvon LabRam 800HR was employed for the measurement, op-

erating at a wavelength of 532nm and utilising a x100 objective. After incubation, 

cells were centrifuged to form pellets and washed thoroughly before measurement. 

The mean of 30 Raman spectra recorded from two pellets (approximately 15 spec-

tra per pellet) for C33A, SiHa, HeLa and CaSki cell lines were derived from the 

raw spectra via the pre-processing procedures and are presented in figure 4. As-

signments of the main peaks (numbered in figure 4) are shown in table 1. In the 

mean Raman spectra, almost no significant differences between HPV negative 

C33A and SiHa cells, containing 1-2 HPV copies per cells (low HPV concentra-

tion) are discernible. Only the peak at 1583cm
-1

 assigned to DNA/RNA and Phe-

nylalanine vibrations was found to vary between C33A and SiHa cells. For cells 

containing a higher number of integrated HPV copies per cell, HeLa cells (medi-

um HPV concentration) and CaSki cells (high HPV concentration), the observed 

differences are more prominent for protein, nucleic acid and lipid vibrations. 

CaSki cells exhibited a significant increase in Amide I (proteins) intensity at 

1660cm
-1

 and a decrease in lipid levels at 1093cm
-1

, 1311cm
-1

 and 1450cm
-1

 com-

pared to C33A, SiHa and HeLa. HPV presence in a cell appears to change protein 

expression, which may result in the protein variations observed in the Raman 

spectra, primarily for the Amide I region. Further differences in protein vibrations 

between the cells affected by non- and low HPV number compared to medium and 

high HPV number were observed in the Amide III region (1254cm
-1

), and protein 

constituent amino acids Tryptophan (Trp), Proline (Pro), Tyrosine (Tyr) and Phe-

nylalanine (Phe) vibrations at 854cm
-1

, 935cm
-1

, 1003cm
-1

, 1583cm
-1

 and 1618cm
-

1
. Variations in vibrations associated with nucleic acid constituents: PO2 group, A, 

C, T, U at 1093cm
-1

, 720cm
-1

, 782cm
-1

, 1254cm
-1

, 1583cm
-1

 respectively were al-

so observed. The differences in protein and nucleic acid composition support the 

molecular data which demonstrates intergration of HPV DNA at chromosome 

fragile sites and the subsequent downstream effect of HPV E6 and E7 oncoprotein 

expression on host cell proteins such as p53 [71].  
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The principal component (PC) scatterplot for Raman spectroscopic results pre-

sented in figure 5A shows a distinctive separation between the cell lines, suggest-

ing a HPV concentration dependence factor. The C33A (non HPV) and SiHa (low 

HPV concentration, LC) cell lines are grouped together, confirming observed sim-

ilarities between these two types of cells based on mean spectra analysis. The 

HeLa (medium HPV concentration, MC) and CaSki (high HPV concentration, 

HC) cell lines are clearly separated from each other and from the C33A-SiHa 

group. Although the 3D PCA scatterplot demonstrates the HPV concentration de-

pendent separation, the cell lines are not grouped according to increasing (or de-

creasing) number of HPV copies. CaSki (HC) cells lie between HeLa (MC) and 

SiHa (LC). This suggests the influence on the data point distribution of another 

factor – HPV strand type. HeLa are cells infected by HPV-18, while CaSki and 

SiHa are infected by HPV-16. Principal component loadings are presented in fig-

ure 5B. Peak numbers correspond to assignments presented in table 1. The percent 

of variance explained by PC1, PC2 and PC3 is 71.9%, 10.8% and 6.2%, respec-

tively. The first principal component is dominated by the contribution of the H-O-

H bending of water, a broad peak in the range of 1550-1700cm
-1

 with maximum at 

~1644cm
-1

 [72]. Water is not, however, the only potential contribution within this 

range, as Amide I vibrations (β-sheet) exhibit a maximum at 1640cm
-1

. Nucleic 

acid contributions to PC1 may also be present at 782cm
-1

, 1093cm
-1

 and 1583cm
-1

, 

although it is very difficult to judge what is the percentage of contribution of each 

of these components. The second principal component shows predominantly pro-

tein and lipid contributions. Lipids are exhibited at 1095cm
-1

, 1310cm
-1

 and 

1450cm
-1

, while proteins are at 1660cm
-1

 – Amide I (α-helix), 1270cm
-1

 - Amide 

III (α-helix), 1450cm
-1

, C=C Phe at 1582cm
-1

 and Trp at 750cm
-1

. The third prin-

cipal component contains a lot of biological information with mainly nucleic acid 

and protein contributions but only accounts for 6.2% of variance. There are dis-

tinctive peaks corresponding to nucleic acids and protein vibrations. DNA and 

RNA contributions are observed at 670cm
-1

, 720cm
-1

, 782cm
-1

, 1092cm
-1

, 

1250cm
-1

, 1340cm
-1

 and 1583cm
-1

. PC3 shows a strong influence of variation aris-

ing from protein vibrations, Phe (642cm
-1

, 1002cm
-1

, 1031cm
-1

, 1583cm
-1

 and 

1618cm
-1

), Trp (1208cm
-1

, 1340cm
-1

 and 1618cm
-1

), Tyr (642cm
-1

, 854cm
-1

 and 

1618cm
-1

), Pro (854cm
-1

, 935cm
-1

), Val (935cm
-1

), Amide I at 1680cm
-1

 (disor-

dered) and Amide III at 1260cm
-1

 (disordered). The source of variations shown in 

the loadings is in very good agreement with those observed in the analysis of the 

mean spectra for the investigated cell lines. The main peaks in the loadings arise 

from protein, nucleic acid and lipid component vibrations. Each principal compo-

nent is dominated by different cellular components; water, and possibly nucleic 

acids and proteins in PC1, lipids and proteins in PC2 and nucleic acids and pro-

teins in PC3. Amide I and Amide III contributions are present in all principal 

component loadings indicative of differences in structural conformation of the 

protein β-sheet in PC1, α-helix in PC2 and disordered conformation in PC3. As 

mentioned previously, variations in protein, nucleic acid and lipid levels arise 

from the fact that the viral DNA interacts with the cellular DNA, causing repro-
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gramming of protein expression in the cell. It was noted that the multivariate anal-

ysis could be sustantially influenced by water contributions in the region of 

1640cm
-1

. Repeated over the spectral range 400-1550cm
-1

, the PCA gave a similar 

separation of the cellular types and yielded similar principal components. 

The applications of spectroscopic analysis, coupled with multivariate statistic 

techniques can therefore be extended beyond diagnosis based on classification to 

biochemical analysis of the underlying physiology based on changes to the molec-

ualr composition on a cellular and subcellular level. This new technology for cer-

vical screening not only can distinguish cervical cells based on biochemical con-

tent but also can elucidate the effect of HPV on the cells. As a further 

demonstration of the potential of the techniques, FTIR spectroscopy was em-

ployed to further explore the known manifestations of HPV infection in cervical 

cell lines [64]. 

 
 

Figure 4: Mean Raman spectra of cervical cancer cell lines. (Reproduced from 

[63]) 

 

Differentially expressed proteins in cancer have potential utility as biomarkers. 

As the cell cycle is often disrupted in a cancerous cell, proteins associated with it 

are often candidate biomarkers. Putative biomarkers of cervical cancer that are 

currently under study include proteins such as CDC 6 (DNA licensing protein), 

minichromosome maintenance proteins (MCM 2, MCM 5), p53 or p16
INK4A

 [73]. 

These biomarkers have been used to detect the presence of abnormal cells, based 

upon immunocytochemical methods. p16
INK4A 

regulates the levels of active cyclin 

D/CDK in the cell, providing a feedback mechanism that regulates the levels of 

MCM (minichromosome maintenance proteins), PCNA (proliferating-cell nuclear 

antigen) and cyclin E. Overexpression of p16
INK4A

, which is considered a marker 

of elevated E7 expression, can be detected in some CIN1 lesions, as well as in 
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CIN2 and CIN3 lesions that show evidence of integration [74,75]. Integration of 

the HPV genome into the host cell chromosome is a critical event in the develop-

ment of most cervical cancers [76]. Overexpression of p16
INK4A

 has been demon-

strated in cervical cancers as a result of functional inactivation of pRb by the HPV 

E7 protein [77]. This overexpression highlights the potential of p16
INK4A

 as a 

marker for CIN and cervical cancer. HPV positivity and p16
INK4A 

positivity have 

shown a correlation, even though p16
INK4A

 expression was also seen in a limited 

number of HPV negative biopsy samples [78]. Also, a correlation between 

p16
INK4A

 expression and cervical lesion grade and HR-HPV positivity has been 

documented [79]. p16
INK4A

 has been proven to be the most reliable marker of cer-

vical dysplasia and was found to mark all grades of squamous and glandular le-

sions of the cervix. The use of p16
INK4A

 immunocytochemical analysis as a com-

plement to conventional screening programmes could potentially aid in the 

reduction of false positive and false negative results [80]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5: Principal component analysis for Raman spectroscopy results for cer-

vical cancer cell lines.  (A) - Three dimensional PCA scatterplot. Graphs show 

separation of the cervical cancer cell lines suggesting HPV concentration depend-

ence. (B) - Principal component loadings. Peak assignments correspond to those 

listed in table 1. (Reproduced from [63]) 

 

In the first part of this study, expression of p16
INK4A

 was analysed in cervical 

cancer cell lines using immunocytochemical staining and both confocal fluores-
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cence microscopy and flow cytometry. [64] Fluorescence images of cells were 

collected using a confocal fluorescence microscopy system. Representative imag-

es of cells are presented in figure 6, where A, C, E and G show only green fluores-

cence staining (FITC), while B, D, F and H show the overlay of green (FITC) and 

red (PI) fluorescence signals. The FITC fluorescence intensity is associated with 

the p16
INK4A

 expression level, while the PI dye was used to visualise the position 

of nuclei within the cells. 

 

 
 

Figure 6: Confocal microscopy images of cervical cell lines: A-B C33A cells, 

C-D SiHa cells, E-F HeLa cells, G-H CaSki cells. Images A,C, E and G show 

FITC fluorescence staining (related to p16INK4A expression), while images B, D, 

F and H present FITC and PI staining. (Reproduced from [64]) 

 

A degree of correlation between the number of HPV copies per cell line and the 

fluorescence intensity related to p16
INK4A

 expression was observed for the flow cy-

tometry data (figure 7). The highest level of p16
INK4A

 expression (intensity of 

staining) was observed for CaSki cells, followed by HeLa, SiHa and the lowest for 

C33A. The relationship between p16
INK4A

 expression and HPV copy number illus-

trated by figure 7 is supported by a study conducted by Klaes et al. (2001), where-

in a correlation between increasing grade of cervical lesion and staining intensity 

of p16
INK4A

 was observed [81]. Similarly, Agoff et al. showed that p16
INK4A

 ex-

pression correlates with an increasing severity of cervical disease [82]. Murphy et 

al. showed a strong correlation between HR-HPV positivity and p16
INK4A 

staining 

pattern [78, 83, 84]. In the study conducted by Wang et al. a correlation between 

p16
INK4A

 immunostaining and cervical disease severity stratified by HPV status 

was observed [85]. 

The results demonstrate a correlation between p16
INK4A

 immunostaining and 

the presence of HPV in cervical cancer cell lines, supporting the previous studies 

and implies that p16
INK4A 

is a highly sensitive marker of HPV in cervical cancer 
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cell lines. The hyperbolic-like relationship between the levels of p16
INK4A

 and 

HPV copy number is typical of the response of a cell to the action of an agonist 

[86] and in figure 7, is approximated by a fit with the following function y=a+b√x 

+cx, where a=62.4, b=3.5 and c=-0.1. It should be noted that, in figure 7, the HPV 

copy number is represented by the average of the range quoted in literature [87, 

88] and so error margins in the horizontal axis are potentially very large. Howev-

er, the sublinear nature of the plot indicates that p16
INK4A

 expression levels are 

particularly sensitive for low HPV copy number. 

 

 
 

Figure 7: Fluorescence intensity related to the p16INK4A expression level in cer-

vical cancer cell lines plotted against the average HPV copy number present in a 

cell with the fitted function.  The dotted line is a fit of the data with the equation 

y=a+b√x +cx, where a=62.4, b=3.5 and c=-0.1. (Reproduced from [64]) 

 

FTIR maps were recorded for C33A, SiHa, HeLa and CaSki cells (2-4 maps for 

each cell line) using the Perkin Elmer Spotlight 400N system. As in Raman spec-

troscopy, three main biochemical cellular components feature strongly: proteins, 

lipids and nucleic acids. A detailed examination of the relative intensities of peaks 

related to vibrations of the cellular components (nucleus and cytoplasm) of the 

C33A, SiHa, HeLa and CaSki infrared spectra revealed the following tendencies: 

 

• Increase in nucleic acid levels with increasing number of HR-HPV copies in 

the cell or increasing p16INK4A expression (figure 8A, 8D), 

• Decrease in lipid levels with increasing number of HR-HPV copies in the cell 

or increasing p16INK4A expression (figure 8B, 8E), 

• No tendency for changes in protein levels related to HR-HPV copy number or 

increasing p16INK4A expression (figure 8C, 8F). 

The observed increase in nucleic acid levels may be related to an increased 

number of chromosomes present in HPV infected nuclei. It was reported by Me-

hés et al. that HPV presence facilitates polyploidisation (increase in chromosome 
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number in a cell nucleus) in cervical squamous cells [89]. Additionally, it is 

known that binding of HPV DNA to host DNA disrupts the normal function of the 

cellular proteins and as a consequence, the host cell accumulates more and more 

damaged DNA that cannot be repaired [90].  

 

 
  

Figure 8: Peak intensity analysis for FTIR spectra of nuclear and cytoplasmic re-

gions of cervical cancer cells. Dependence of peak intensities vs. HPV copy num-

ber was fit with y=a+b√x +cx function, while peak intensities vs. fluorescence in-

tensities (p16INK4A expression level) was fit with a linear function, y=a+bx. 

(Reproduced from [64]) 

 

CaSki cells are known to be the most malignant and in the spectra of the cyto-

plasm and nucleus representing this cell line the highest level of nucleic acids was 

observed. A similar increase of the nucleic acid related peaks in cancerous cervi-

cal cells was noticed in previous studies [91, 92] and is confirmed by these obser-

vations. Changes in lipid levels are possibly associated with the disruption of the 
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membrane functionality caused by the virus which influences lipid rafts [93]. A 

similar behaviour was noted and reported in the previous study on cervical cancer 

cell lines, wherein both Raman and FTIR (Figure 4) techniques were utilised [63]. 

Moreover, it was reported previously by Wong et al. that the degree of disorder of 

methylene chains in membrane lipids increases in cervical neoplastic cells [94]. 

The absence of any clear relationship between protein levels and HPV copy num-

ber is expected, as the presence of HPV in the cell results in functional over- and 

under- expression of only select biomarker proteins [73], while the level of the 

other proteins would not be affected. The variation of the spectroscopic features 

associated with the nuclear lipids, proteins and nucleic acids as a function of the 

HPV copy number was found to be sublinear and to be well fitted with a similar 

function to that employed to describe the variation of the p16
INK4A

 levels with 

HPV copy number in figure 7. Notably, the dependences of the cytoplasmic lipids, 

proteins and nucleic acids on the p16
INK4A

 levels, as identified by fluorescence 

were found to be linear.  

In order to further elucidate the multivariate spectral signatures which are spe-

cifically related to HPV infection, multivariate regression models were construct-

ed using Partial Least Squares Regression (PLSR) and PLS Jack-knifing was em-

ployed as a multivariate feature selection technique [94-96]. The PLSR algorithm 

seeks to develop a model that relates the spectral data (X-matrix) to a series of tar-

gets (Y-matrix, e.g. concentration of reaction product or analyte) according to the 

equation Y=XB+E, where B is a matrix of regression coefficients and E is the re-

gression residual. The PLS Jack-knifing method developed by Westad and Mar-

tens [96] was then used to determine the spectral features that were statistically 

significant at a particular level of confidence using t-testing of the regression coef-

ficients, B.  

Figure 8 demonstrates that p16
INK4A

 levels as measured by fluorescence intensi-

ty are approximately linearly correlated with the univariate spectral features and 

thus, as PLS is a linear model, these values are employed as targets for the PLS 

analysis. The model can therefore be applied to the FTIR data to elucidate multi-

variate signatures which are correlated to p16
INK4A

 expression level, and therefore, 

in accordance with figure 7, to HPV infection levels. Once established, these vari-

ation patterns can then be applied to unknown samples to screen for the biomarker 

levels. As p16
INK4A

 was found to be predominantly expressed in cytoplasmic re-

gions of the cells, signals recorded from the cytoplasm were utilised in the analy-

sis. Calibration (based on 40% of the data) and test set performance (based on 

60% of the data) are presented in figure 9A and demonstrate a very good fit to the 

model. As shown in figure 9B, the PLS loading exhibits variations originating 

from proteins, primarily as sub-bands of Amide A (3000-3700cm
-1

) and Amide III 

(1230-1250cm
-1

), and are associated with the chain of biochemical disruption in 

protein regulation caused by HPV presence [97]. Another prominent spectral fea-

ture differentiating the cell lines, and present in PC loadings and the PLS loading, 

is the lipid contribution. Again, the presence of HPV is seen to significantly influ-

ence the lipid balance within the cell [93], and thus it can be expected that the vi-
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brations of lipid component groups differentiate cells with various HPV copy 

number. This differentiation was distinctly manifest in the mean spectra of the cy-

toplasm and nucleus (figure 4 – enlarged lipid region of 2800-3050cm
-1

).  Fur-

thermore, the DNA and RNA related peaks are exhibited in the range of 1050-

1250cm
-1

, (sym. and asym. PO2 str. CO str.) and 3200-3400cm
-1

.  

 

 
  

Figure 9: Partial Least Squares analysis results targeting the p16INK4A expres-

sion level prediction based on the FTIR spectral features. (Reproduced from [64]) 

 

A potential application of vibrational spectroscopy to cervical cancer screening 

and diagnosis requires a full understanding of the spectral information and its cor-

relation with existing screening and diagnostic methods such as Pap testing or col-

poscopy. However, the field of the cervical cancer recognition and detection is 

still developing with new biomarkers [73] being identified that may be considered 

as adjuncts to existing cervical cytology and pathology methods. Biomarkers such 

as p16
INK4A

 have been found to be useful for low-grade lesions (Benevolo et al., 

2006, Passamonti et al., 2010, Negri et al., 2008, Focchi et al., 2007) making them 

particularly attractive. Thus, a correlation and explanation of the spectral infor-

mation with these new biomarkers is a new challenge for biospectroscopists work-

ing on future cancer diagnostic systems. The study outlined above demonstrates 

how multivariate regression techniques can help to associate specific spectral sig-

natures with specific biomarkers, potentially paving the way for “spectro-markers” 

of disease. 
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Analysis of the Effects of Anticancer Agents [98, 99] 

The previous sections demonstrate how vibrational spectroscopy, coupled with 

multivariate statistical techniques can be utilized for high sensitivity and specifici-

ty disease screening, but also to analyse the underlying biochemical changes at a 

cellular level. This analytical capability opens up the possibility of a range of in 

vitro applications.  

For the design of new anticancer drugs, an in-depth understanding of the mech-

anisms underlying their biological effects is required. The in vitro study of the in-

teraction of anticancer drugs with mammalian cells is therefore important to eluci-

date the mechanisms of action of the drug on its biological targets and thereby 

maximise efficacy and guide development strategies. The prevalence of such stud-

ies is likely to increase following the EU Directive (2010/63/EU) on the re-
placement, reduction and refinement (RRR) of animal experimentation in sci-
entific studies. Vibrational spectroscopy has great potential to explore sub-

cellular biochemical structure as exemplified by its use in studies investigating the 

action of various agents on biological macromolecules as well as their interaction 

with cancer cells [100-106]. It can provide high content information as it can ex-

amine spectral changes in the cell membrane, cytoplasm and nucleus of the target 

cells simultaneously and highlight the biochemical interaction of external agents 

with the cell or its physiological response [98, 99]. Validation of the technique of 

Raman spectroscopy in the quantitative measurement of the biochemical and 

physiological effects of known chemotherapeutic agents is required, however, be-

fore it may be used for studies of novel chemical treatments.  The study of the 

spectroscopic signatures of the biochemical effects of commercially available an-

ticancer drugs may be helpful before application for the evaluation of the novel 

anticancer agents.  

Cisplatin (cis-Diamminedichloroplatinum (II)) is a well established chemother-

apeutic agent with a known mode of action. In the nucleus, it binds with DNA 

forming inter-strand and intra-strand crosslinks which lead to cell cycle arrest and 

apoptosis [107]. The formation of inter-strand and intra-strand crosslinks between 

cisplatin and DNA leads to conformational changes of the DNA. To understand 

the changes caused in DNA conformation due to the adducts formed by cisplatin, 

the formation of 1,2-GG or 1,3-GTG intra-strand cross-links and their characteri-

zation by Raman spectroscopy has been carried out [108] and it was found that 1,3 

GTG cross linkages induce more distortion in the B-form DNA as compared to the 

1,2-GG complex. 

Cancer cell lines, such as the A549 human lung adenocarcinoma cell line pro-

vide a good in vitro model for lung cancer. The high spatial resolution of Raman 

microscopy can be employed to identify localized spectroscopic changes in the 

nucleus, cytoplasm and cell membrane and the responses can be correlated with 

drug dose, as well as physiological response, as determined by the cytotoxicologi-

cal assay MTT. Feature selection techniques can then be used to identify regions 
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of the spectrum that are associated with the biochemical effect of exposure to the 

agent, and with the subsequent cytotoxicological response of the cells.  

The MTT assay is a measure of the mitochondrial metabolic activity and can be 

used initially as a standard against which to map the spectroscopic response of the 

cells. Maximum cytotoxicity was observed after 96hrs exposure and thus this time 

period was employed for all measurements. The cytotoxicity induced in A549 

cells due to the exposure to cisplatin for 96hrs, as determined by the MTT assay, 

is shown in Figure 10, where the level of viability in each sample was normalised 

to that in the control sample. Due to the action of the drug, the mitochondrial ac-

tivity decreases monotonically which in turn leads to a decrease in cell viability. 

The Inhibitory Concentration (IC50) value was derived from the data by a fit of 

f(x) = min + (max-min)/(1+(x/IC50)^n) and found to be 1.2 ± 0.2μM, which is 

consistent with the literature. For A549 cells exposed to test drug concentration 

(TDC) for 72 hrs, IC50  values of 3.59 μM and 2.2 μM are reported elsewhere with 

MTT and ATP assays respectively [109]. Also, Cordes et al. have determined an 

IC50 value of 2.0 μM for cisplatin (0.1-50 μM) exposed A549 cells using the colo-

ny formation assay [110]. 
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Figure 10. A549 cell viability (measured by MTT absorption) at 96 hours after ex-

posure to Cisplatin. Error bars denote the standard error on the mean at each con-

centration. (Reproduced from [98]) 
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Figure 11: Feature selection in PLSR of Raman spectra of the A549 nucleus 

against (A) cisplatin concentrations and (B) against cellular viability. The shaded 

areas denote statistically significant features selected using PLS Jack-knifing with 

a t-test (p<0.001) of regression coefficients (shown in red with associated standard 

error). (Reproduced from [98]) 

 

While some indication of the localised biochemical impact of the external agent 

can be gleaned from the mean spectra of the cellular regions [98], the spectral 

changes are multivariate and may have complex exposure dependence. They in-

clude the fingerprint of the interaction of the cisplatin with the nuclear DNA, but 

also evident are a multitude of other changes associated with exposure and chang-

es in cellular physiology. In an effort to identify the most important spectral fea-

tures, feature selection was performed using the PLS – Jack knifing analysis de-

scribed earlier. The regression co-efficients were obtained forseparate regressions 

against cisplatin concentrations and against cell viability with the nuclear spectral 

data. To elucidate spectral changes that are most statistically significant with re-

spect to regression against either endpoint, a t-test (p<0.001) was applied on the 

PLS-Jack knifing results. The spectral features identified by this process are high-

lighted by vertical bands in Figure 11. 

The PLS regression of the nuclear data against cisplatin concentration (Figure 

11A), identifies many features but, for the purpose of this discussion, only the 

changes which are related to the known action of cisplatin are highlighted. Fea-

tures identified include the thymine (737-742 cm
-1

, 1589-1595 cm
-1

), guanine 

(1548-1553 cm
-1

) and adenine (1578 cm
-1

, 1604-1611 cm
-1

) bands. The regression 

co-efficients of guanine and thymine are stronger than that of adenine, indicating 
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that cisplatin binds preferably with guanine as compared to adenine [111]. Anoth-

er interesting observation is that the bands at (877-883 cm
-1

)
 
and at (899-900 cm

-

1
), both assigned to deoxyribose ring breathing, are significantly changed, indicat-

ing a change in the conformation of B-form DNA [112-114]. Changes in the Ra-

man bands of the proteins are also highlighted, as indicated by the regression co-

efficients which can be assigned to tryptophan ring breathing (761-765 cm
-1

), 

(889-891 cm
-1

), C-N stretching (1128-1132 cm
-1

), C-H deformation (1315-1316 

cm
-1

, 1351-1354 cm
-1

), amide-I (1668-1679 cm
-1

). These changes may indicate 

some structural changes in the nuclear proteins. The spectroscopic features select-

ed by the PLS regression against drug concentration are consistent with the known 

direct interaction of the drug with the DNA and thus are identified as spectroscop-

ic markers of the direct chemical interaction of the drug. 

The regression against cell viability (Figure 11B), shows the features which are 

correlated with the change in cell physiology. These include the conformational 

changes of the DNA B-form (832-833 cm
-1

) and DNA A-form (798-813 cm
-1

). 

These changes in the Raman bands of the DNA can be taken as markers for the 

conformational changes in the DNA caused by cisplatin binding to the guanine 

and thymine DNA bases(Vrana et al., 2007) and also confirm the observations 

from the mean difference spectra. Changes related to protein secondary and ter-

tiary structures are indicated by the selection of amide-III random coil (1225-1228 

cm
-1

), amide-III -sheet (1250-1259), amide-III  helix, tryptophan ring breathing 

(711-721 cm
-1

, 758-763 cm
-1

, 767-772 cm
-1

) and phenyl ring stretching modes 

(1202-1210 cm
-1

) together with the C-C skeletal vibrations (935-937 cm
-1

, 1159-

1163 cm
-1

), C-N stretching vibrations (1065-1068, 1073-1075) and C-H bending 

(1178-1182 cm
-1

) (1185-1186 cm
-1

). These features suggest changes in the Raman 

bands of proteins and are indicative of structural alterations associated with pro-

tein activation and denaturation during cellular apoptosis and nucleic acid repair 

responses.  

Comparing the regression co-efficients obtained via spectral regression against 

cisplatin concentration (which highlight the primary biochemical effect of the ac-

tion of the agent) with those obtained via regression against cell viability (which 

highlight biochemical markers of the change in the viability of the cell), very dif-

ferent spectral features are selected as being statistically significant and thus allow 

the differentiation of the chemotherapeutic response. The spectral features of thy-

mine (737-742 cm
-1

, 1589-1595 cm
-1

), guanine (1548-1553 cm
-1

) and adenine 

(1578 cm
-1

, 1604-1611 cm
-1

) emerge as prominent as a result of regression against 

the concentration of the chemotherapeutic agent and are attributable to direct bind-

ing of the cisplatin molecule with these DNA bases. In addition, changes related to 

proteins feature in the regression against the concentration of the chemotherapeu-

tic agent are significantly different than those changes of protein associated bands 

which appear as a result of regression against the cellular viability. The changes in 

the features of the proteins due to the chemical effect are attributable to structural 

alterations in nuclear histone proteins due to cisplatin interactions with the cellular 

DNA. These features are not selected as being statistically significant by the anal-
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ysis for regression against the viability endpoint, suggesting that they are markers 

of the biochemical interaction between cisplatin and DNA. Contrastingly, the con-

formational changes to the DNA A-form (798-813 cm
-1

) and DNA B-form (832-

833 cm
-1

), among the changes associated with the protein features, especially the 

amide-III random coil (1225-1228 cm
-1

), amide-III -sheet (1250-1259), amide-III 

-helix, among others, are selected as being statistically significant in the regres-

sion against cellular viability, suggesting that they are markers of this physiologi-

cal endpoint in the chemotherapeutic response. Overall, Figure 11 demonstrates 

that the Raman spectrum of the cell may be resolved into distinct groups of statis-

tically significant spectral markers for distinct types of effect. A similar analysis 

of the spectral changes as a result of the action of the chemotherapeutic agent in 

the cytoplasm and cell membrane can be performed [99]. Raman microspectros-

copy can therefore clearly fingerprint the effects of the interaction of the chemo-

therapeutic agent with DNA, and identify that fingerprint within the sub cellular 

spectra of exposed cells.  

 

 
 

Figure 12: Calibration (A) and test set performance (B) in prediction with PLSR 

of the cell viability using Raman spectra of the nucleus of A549 cells. Root mean 

squared errors of calibration (RMSEC) and prediction (RMSEP) are in units of 

cell viability, which themselves are normalized to the level in the control. (Repro-

duced from [98]) 
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PLSR models of A549 nuclear spectra versus concentration and reference via-

bility measurements from the MTT assay can then be constructed to determine the 

ability of the spectral data to predict the level of exposure to cisplatin and the as-

sociated level of physiological effect from Raman spectra. All spectra were com-

piled into a matrix, and were randomly sorted. A total of 60% of the spectra were 

used to train the PLSR model and 40% of the total was retained as an independent 

test set to assess the performance of the model in predicting the level of exposure, 

and the cellular viability, with unseen data. Leave-one out cross validation with 

the calibration set was used to determine the optimal model complexity for use in 

testing [115]. This process was performed on fifty separate occasions, with ran-

domization of the data matrix and splitting of the data on each occasion to prevent 

data bias [116]. The results of prediction of levels of cellular viability is shown in 

Figure 12, for the example of the nuclear region, where the values of the root 

mean square error of calibration (RMSEC) and the root mean square error of pre-

diction (RMSEP) denote the prediction uncertainty. The mean values of the 

RMSEC and RMSEP for the PLSR for prediction of the level of exposure to cis-

platin were found to be 1.67 M (0.45) and 3.41 M (0.41) respectively, where 

the figures in brackets denote the standard deviations of these estimates. The asso-

ciated values of RMSEC and RMSEP for PLSR against normalized cellular viabil-

ity were 0.05 (0.008) and 0.11 (0.011) respectively. The RMSEP for prediction of 

cisplatin concentration is therefore 6.8% over the full scale range (0 to 50 M), 

and 11% over the full scale range of viability (from 0 to 1). The proportionally 

higher observed errors of prediction of cell viability may be due to the develop-

ment of cellular resistance to cisplatin over the exposure period in the low dose 

groups [117, 118], which contributes to a non-linearity in the variation in viability 

with concentration that is difficult for the PLSR algorithm to model. 

The study demonstrates the potential of commercially available benchtop Ra-

man microscopy for the examination and prediction of chemotherapeutic respons-

es. In general, for subcellular resolution, Raman spectroscopy is chosen over infra-

red spectroscopy due to the intrinsically higher spatial resolution. Furthermore, the 

relative insensitivity to water renders live cell imaging of real time exposures a 

possibility [119]. Nonlinear optical imaging techniques [120] promise even higher 

spatial resolution in the future, but at present such short pulse systems cannot be 

considered benchtop techniques. 

Cisplatin, a DNA major groove binder [121], was chosen as a model as its 

mechanism of action is well characterised. To fully validate the technique, the 

study should be extended to other chemotherapeutic agents of known interaction 

mechanisms, such as tallimustine, a known DNA minor groove binder, and ethidi-

um bromide, a known DNA intercalator. In this way the spectroscopic signatures 

of their interaction can be established and subsequently can act as a database 

against which novel chemotherapeutic agents can be evaluated. Ultimately, the 

techniques should be validated in tumour tissue. 
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Live cell imaging [122] 

Raman microspectroscopy presents several advantages for the study of live 

cells, combining molecular analysis with optical imaging. In comparison to infra-

red spectroscopic analysis, the weak contribution from water offers the possibility 

to study the cells in an aqueous environment and thus to keep them alive for the 

duration of the measurement [101]. The specific information contained in the Ra-

man spectra provides a signature of the samples studied, which can be related to 

molecular content or changes to the physiology as a result of external stimuli [123, 

124]. The spatial resolution is of the order of 1-2 m, providing access to the sub-

cellular organisation of the cells at a molecular level [125, 126].  

Previous studies have demonstrated the capacity of Raman spectroscopy to 

map single cells and their subcellular structures. The identification of the sub-

cellular structures such as the nucleus, cytoplasm and mitochondria can be 

achieved [127] and chemical maps can be constructed giving information about 

the distribution of differentiating molecules such as proteins [128]. However, 

these have been performed on chemically fixed cells and it has since been demon-

strated that chemical fixation induces significant changes to the biochemistry of 

the cell [129, 130]. Ultimately, if subtle changes in metabolism due to for example 

chemotherapeutic agents, toxicants, or radiation are to be discerned, live cells 

should be studied. 

Over the last decade, new models such as collagen gels and more complex mul-

ticomponent systems such as Matrigel have emerged, providing the cells a matrix 

which more accurately reproduces the extra cellular matrix (ECM) [131-133]. It 

has been demonstrated in various studies that the behaviour of cells cultured in 

such an environment differs considerably compared to those cultured on tradition-

al 2D surfaces [134]. In terms of cellular viability and spectral quality, collagen 

gels have been recently demonstrated to be a substantially improved substrate for 

live cells analysis using Raman spectroscopy. The gels provide a 3-D matrix for 

cell growth, although it should be noted that the cells are cultured on the surface of 

the matrix. As measured using the Alamar Blue cytotoxicity assay, in comparison 

to uncoated quartz, a human lung cell line exhibited a 39% increase in viability in 

collagen gels whereas as dermal cell line seemed to be more affected by the dif-

ferent substrates and a 285% increase in viability was observed. Furthermore, after 

polymerization, the density of the collagen is too low to give any contribution in 

the spectra recorded [119]. Also no contribution from the medium used for the cell 

culture is observable in the spectra recorded which allows the cells to be kept alive 

for prolonged periods and spectroscopically monitored, effectively in real time.  

After growing A549 and HaCaT (immortalised human keratinocyte) cells for 

24 hours on collagen gels, the medium was substituted by NaCl before mapping, 

as the phenol red of the cell growth medium limits the visibility of the cells [119]. 

Examples of photographs obtained using a Horiba Jobin - Yvon Labram HR800 

equipped with a x100 immersion objective are presented in figure 13A and 13C. 

The different structures of the cells can be identified; the cell membrane is clearly 
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defined for both cell lines and the nucleus is located in the centre part of the cells. 

The cytoplasm appears smaller in the case of the HaCaT cell. The main difference 

between the two cell lines is the organisation in the nucleus. When observing the 

A549 cells, the nucleoli are clearly visible inside the nucleus but in the case of the 

HaCaT cell, no well defined shapes can be observed under these conditions. An-

other observation is the presence of 2 different organelles in the cytoplasm of the 

A549 cell. This observation is not surprising as the cytoplasm of the cells has a 

complex organisation and different structures can be found such as the actin or 

microtubules [135, 136], endoplasmic reticulum[136, 137], the mitochondria [138] 

or the Golgi apparatus[139, 140].  

 

  
Figure 13: A and C are examples of images taken from the Labram HR 800 

equipped with x100 immersion objective respectively from a A549 cell and a Ha-

CaT cell. B and D are the corresponding false colors images obtained after K-

means cluster analysis of Raman maps . Each pixel of the Raman map has been at-

tributed to a specific cluster. The cluster numbers are indicated in the colour code 

to the right of the figure. (Reproduced from [122])  

 

Raman spectral maps were performed in immersion using a Horiba Jobin Yvon 

LabRam HR800 using a 785nm laser as source. The step between two successive 
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measurements was set to 1.5 µm and the backscattered Raman signal was integrat-

ed for 10 seconds over the spectral ranges from 400 to 1800 cm-1 and accumulat-

ed twice to improve the signal to noise ratio. In order to visualise the subcellular 

structures in the spectral maps recorded, K-means clustering analysis was em-

ployed.  

 

 
Figure 14: Average spectra obtained from different cluster after K- means cluster-

ing analysis. A: nucleus; B: nucleolus; C: cytoplasm cluster 1 and D: cytoplasm 

cluster 2. (Reproduced from [122]) 

 

K-means clustering analysis is one of the simplest unsupervised learning algo-

rithms used for spectral image analysis. It groups the spectra according to their 

similarity, forming clusters, each one representing regions of the image with iden-

tical molecular properties [141]. The distribution of chemical similarity can then 

be visualised across the sample image. The number of clusters (k) has to be de-

termined a priori by the operator before initiation of the classification of the data 

set. K centroids are defined, ideally as far as possible from each other, and then 

each point belonging to a data set is associated to the nearest centroid. When all 

the points have been associated with a centroid, the initial grouping is done. The 

second step consists of the calculation of new centroids as barycentres of the clus-

ters resulting from the previous step. A new grouping is implemented between the 

same data points and the new centroids. These operations are repeated until con-

vergence is reached and there is no further movement of the centroids. Finally k 

clusters are determined, each containing the most similar spectra from the image. 

From here, colours can be attributed to each cluster and false colour maps can be 

constructed to visualise the organisation of the clusters in the original image. 
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K-means clustering analysis is currently commonly used for the analysis of tis-

sue sections by infrared and Raman spectroscopy, especially for the detection of 

the different structures present in the samples studied and the identification of tu-

moral regions [142-144]. K-means clustering can also be employed for the study 

of individual cells by Raman spectroscopy but only a few studies have elucidated 

the subcellular organisation and they are usually based on fixed cells grown on a 

non optimal substrate such a quartz window or equivalent [127, 145, 145]. The ef-

fects of cell fixation on the cellular composition has been already investigated 

[129, 130] and thus it is desirable to be able to obtain the Raman signature from 

live cells, avoiding any structural and molecular modification which may occur as 

a result of the chemical processing. Moreover, the use of collagen gels enables ex-

tended measurement periods and thus more detailed mapping of live cells. In con-

trast to quartz substrates which have a toxic effect necessitating fixation of the 

cells for prolonged measurement times, collagen gels offer a better adhesion of the 

cells to the substrate, enhancing the cell viability.  

Within the cells, it may be predicted that distinct biochemical regions can be 

identified, corresponding to, for example, nucleus, nucleoli, cytoplasm and cell 

membrane. However, in analysing the spectral response of the cells, it is observed 

that the spectra recorded from the edge of the cells contain a high variability due 

to the transition from the membrane to the substrate, resulting in quite noisy spec-

tra. When the K-means analysis is performed, the variability between these spectra 

can interfere with the analysis, resulting in the creation of new clusters. Thus, in 

order to best visualise the different structures existing inside the cells the numbers, 

the number of clusters has to be increased to 10 groups, which produced the best 

reproducibility. In this way, the variability in the spectra obtained at the edge of 

the cells are contained in different clusters and do not interfere with the identifica-

tions of the different structures present within the cells. The initiation step was se-

lected randomly for each iteration and it was seen to have no effect on the final re-

sults of analysis. After analysis, the spectra were gathered in the 10 different 

groups according to their similarities and a colour (arbitrarily) attributed to each 

cluster. False colour maps were then constructed representing the partition of the 

different clusters in the cells. The resulting images are presented in figure 13B and 

13D. A correspondence between the organisation of the clusters and the structure 

present in the cells can be seen. In figure 13B, specific clusters relating to the cy-

toplasm, nucleus and nucleoli appear. The specificity of the information contained 

in the spectra recorded allows discrimination of the different cellular compart-

ments using K-means analysis. The sensitivity of the analysis furthermore allows 

visualization of the two different compartments present in the cytoplasm of the 

A549 cell and identifies a specific cluster related to the nucleoli in the HaCaT cell, 

although they are not clearly seen in the visible image. 

K-means clustering analysis appears to be a powerful tool to identify the differ-

ent structures present in the cells. The false colour maps give a representation of 

the partition of the different clusters but do not provide any information about the 

chemical composition of the samples. This biochemical information and the varia-
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tions between the different clusters can be visualised through the mean spectra of 

the clusters. Figure 14 presents the average spectra obtained from selected clusters 

of the K-means analysis performed on an A549 cell (Figure 13B). (A: nucleus 

from the cluster number 4, B: nucleolus from the cluster number 6, C: cytoplasm 

from the cluster number 5 and D: cytoplasm from the cluster number 7). The other 

clusters correspond to the spectra recorded from the collagen gel and those located 

at the edge between the cell and the substrate (data not shown). Variations can be 

observed in different spectral windows according to the different clusters (high-

lighted in grey in figure 14). 

The characterisation of live cells on 2D substrates is well documented [123, 

124, 147-149] and, based on literature; assignments of the different peaks can be 

performed. For example, the variations in the spectral range 718 -725 cm
-1

 are re-

lated to the lipids and nucleic acids, between 815 and 830 cm
-1

 to RNA and pro-

teins, from 1088 cm
-1

 to 1102 cm
-1 

to the nucleic acids, the lipids and carbohy-

drates, from 1243-1266 cm
-1

 to the nucleic acids, the proteins and lipids, from 

1296-1322 cm
-1

 to the lipids and from 1315-1348 cm
-1

 to the nucleic acids and 

proteins. In analysing the cluster average spectra, it is important to note that, with 

a ~1.5 m spot size, while the nucleus can be specifically targeted, the overlying 

cellular membrane and cytoplasm will also contribute to the spectrum acquired. 

Similarly, the spectrum of the cytoplasm will contain contributions from the over-

lying cellular membrane and potentially also from subcellular organelles such as 

mitochondria, lysosomes, etc.. Across, the spectral range, the variations between 

the different regions are thus subtle. However, the regions do clearly cluster by K-

means analysis, and for example the nucleus and nucleoli are clearly differentiated 

from the other spectra by for example the peak at 1423 cm
-1

, which is completely 

absent in the cytoplasmic spectra.  

The mean spectra obtained from each cluster provide information about the 

spectral ranges which differentiate the sub-structures of the cells. However, it is 

difficult to determine precisely the differentiating features and to profile the bio-

chemical structure of the cellular compartment analysed. Using K-means cluster-

ing analysis, the different structures of the cells have been identified and spectra 

associated with the nucleus, nucleoli and cytoplasm can now be extracted from the 

map and analysed independently to highlight the modification in the spectral sig-

natures. For this purpose, principal component analysis (PCA) was employed, for 

the case of the A549 cells for illustration purposes [150]. Similar results are ob-

tainable for the HaCaT cell line. Figure 15 is a representation of the plots obtained 

from the spectra extracted from the A549 cell map. Each spectrum has been con-

sidered as a single unit for the analysis and the difference compared to K-means 

analysis is that PCA is a totally unsupervised method. The result is a representa-

tion of the discrimination between the different spectra. Figure 15A is a plot of PC 

1 versus PC 2 for each spectrum. The spectra from the nucleus and nucleoli form 

one group and are not discriminated by these principal components. Nevertheless, 

PC 1, which represents 34% of the explained variance, gives a good discrimina-

tion between the spectra from compartment 1 of the cytoplasm from the other 



30  

spectra (this can also be seen in figure 15C) whereas PC 2, which represents 23% 

of the variance, allows the discrimination between compartment 2 of the cyto-

plasm and the other spectra. The second plot (figure 15B) represents the loadings 

of PC 2 versus PC 3. PC 2 again gives a clear discrimination between the spectra 

from compartment 2 of the cytoplasm and the other spectra, as seen in figure 15A. 

PC 3, which represents 3.5% of the explained variance, discriminates between the 

spectra from the nucleus and those from the nucleoli. The same observation can be 

made in figure 15C. PCA thus provides a clear discrimination between the differ-

ent groups of spectra analysed. The results are not surprising, as the spectra have 

been extracted from different clusters obtained after the K-means analysis and no 

additional information about the chemical composition of the samples is given in 

the plots. Nevertheless, the observation of the plots is essential to identify the 

principal component involved in the discrimination between the different groups, 

as for each principal component a corresponding loadings is given after analysis.    

  

 

 
 

Figure 15: Plots of the first 3 principal components after PCA performed on Ra-

man spectra recorded from A549 cells grown on collagen gels. The spectra have 

been selected for the cluster corresponding to the nucleus (red), nucleolus (green) 

and cytoplasm (cluster 1: dark blue; cluster 2: light blue). (Reproduced from 

[122]) 

 

The loading is a representation of the variability described by a principal com-

ponent as a function of wavenumber of the spectra. Figure 16A shows the loading 
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of PC1 obtained from the PCA analysis based on the A549 cell map which allows 

visualisation of which part of the spectrum is responsible for the discrimination 

between compartment 1 of the cytoplasm and the other spectra, observed in the 

plot of figure 15. The loading is a combination of different peaks with different in-

tensities, the solid red line representing the zero level. It appears that the loading is 

composed of different sharp peaks, both positive and negative, and correspond to 

increased or decreased contributions of specific molecular components to the Ra-

man spectra. The spectra in figure 16 B,C,D and E, offset for clarity, are from 

DNA, RNA, L-α-Phosphatidylcholine and Sphingomyelin respectively. DNA and 

RNA are abundantly present, especially in the nucleus, phosphatidylcholine is a 

major component of biological membranes and sphingomyelin is also found in an-

imal cell membranes. To demonstrate further the origin of the spectral variations, 

and their clustering using PCA, the 12 peaks with highest variability have been 

highlighted in figure 16A. Each of them has a correspondence with one or more of 

the four spectra from compounds tested. For example, the peak at 791 cm-1 is 

prominent in the spectra of DNA and RNA. In figure 14, it can be seen that while 

all average spectra exhibit a peak in this region, it is significantly stronger in the 

spectra of the nucleus and nucleoli, thus giving rise to a strong positive contribu-

tion to PC1, which differentiates between nucleus/nucleoli and cytoplasm 1. The 

strongest variation, however, is the negative peak at 1439 cm-1, which is promi-

nent in the spectra of the L-α-Phosphatidylcholine and Sphingomyelin indicating 

significant variations in lipidic content. The loading of PC2, plotted in figure 17A 

is the basis of the discrimination between compartment number 2 of the cytoplasm 

and the nucleus and nucleoli (figure 15A). Once again the comparison with the 

spectra of pure compounds highlights peaks matching with the loading. The high-

est variability can be seen at 699 cm-1 and 1436 cm-1, both attributed to the lipid 

content, and at 1342 cm-1, related to the DNA and RNA. The loading of PC3  

(figure 18A) represents the variability between the nucleus and the nucleolus (fig-

ure 15B and 15C). Many peaks can be identified as related to the DNA and RNA, 

especially at 651, 813, 1091, 1482 and 1572 cm-1, showing that the main differ-

ence between the spectroscopic signatures of the nucleus and nucleolus is the 

DNA/RNA content. 
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Figure 16: Plot of the loadings number 1 (A) corresponding to the first principal 

component resulting of the PCA analysis. This loading has been compared with 

spectra recorded from different compounds: DNA (B) RNA (C) L-α-

Phosphatidylcholine (D) and Sphingomyelin (E).  (Reproduced from [122]) 

 

 
 

Figure 17: Plot of the loadings number 2 (A) corresponding to the second princi-

pal component resulting of the PCA analysis. This loading has been compared 

with spectra recorded from different compounds: DNA (B), RNA (C), L-α-

Phosphatidylcholine (D) and Sphingomyelin (E). (Reproduced from [122]) 
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Figure 18: Plot of the loadings number 3 (A) corresponding to the third principal 

component resulting of the PCA analysis. This loading has been compared with 

spectra recorded from different compounds: DNA (B) RNA (C) L-α-

Phosphatidylcholine (D) and Sphingomyelin (E).  (Reproduced from [122]) 

 

The loadings of the principal components provide a multivariate profile of the 

biomolecular variations within the cell. While a detailed analysis is not undertaken 

here, it is clear that a wealth of information can be derived from the Raman analy-

sis of single cells. In contrast to other studies, the work presented here is conduct-

ed on live cells rather than chemically preserved, and moreover the details of the 

spectra are greatly enhanced by the minimal need for data-preprocessing and pro-

longed measurement periods. These conditions are facilitated by the use of colla-

gen 3-D matrices for cell growth and measurement.   

NanoParticles in Cells [151]  

The potential of vibrational, particularly Raman, spectroscopy as a realtime la-

bel free subcellular analytical technique opens up a range of applications, as for 

example in the field of nanotoxicology and nanomedicine. One of the major con-

cerns regarding the possible toxic effects of nanoparticles is the capacity of these 

materials to penetrate cells and possibly translocate to other cells around the body. 

Conventional in vitro cytotoxicity assays, such as Alamar Blue, Neutral Red, 

MTT, etc, provide indications of impact on cell proliferation, viability, metabolic 

activity, lysosomal and mitochondrial activity. However, they fail to provide a 

verification of nanoparticle internalisation or elucidate intracellular trafficking 

mechanisms and subcellular distribution within cells. Indeed, false positive results 

have been demonstrated due to the extracellular interaction of the nanoparticles 

with the cell culture medium in vitro, and with the cytotoxic assays themselves 

[152, 152]. The underlying principles of internalisation and distribution of nano-
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particles within cells and any associated toxicity to humans are still relatively 

poorly understood. However, there are numerous studies that have demonstrated 

the ability of nanoparticles to cross membranes and internalise within many dif-

ferent cell types [153-155]. In order to assess potential risks, but also benefits in 

terms of nanomedicine, a greater understanding of migration of nanoparticles in-

tra- and inter-cellularly and essentially from one part of the body to another, along 

with information on the translocation of nanoparticles within organelles, is urgent-

ly required. 

Among the main challenges faced by nanotoxicologists are the detection and 

identification of nanoparticles that have crossed the cell membrane and monitoring 

of their intracellular trafficking. Imaging cells exposed to fluorescently labelled 

nanoparticles using confocal fluorescence microscopy is one of the most common 

ways in which to ensure nanoparticles can be tracked and monitored as they enter 

and localise within cells [156-158].  However, not all nanoparticles can be easily 

fluorescently labelled. Furthermore, there have been reports that labelled nanopar-

ticles can release the dye into the surrounding biological environment, and so the 

distribution of fluorescence within the cell does not necessarily represent the pres-

ence or subcellular distribution of the nanoparticles [159-161]. Furthermore, it is 

not clear that the transport mechanisms of smaller nanoparticles, fluorescently la-

belled with anionic moieties, are the same as their unlabelled counterparts. Trans-

mission Electron Microscopy can also be employed to visualise nanoparticles 

within cells, but significant sample processing (fixing and ultramicrotoming) is 

required and only particles with sufficient electronic contrast to the cellular envi-

ronment can be visualized [162, 163]. Thus, there is a requirement for a sensitive 

technique to localise and identify nanoparticles internalised in cells, ideally based 

on their chemical composition, rather than fluorescence labels or electronic con-

trast. Identification of their local environment (e.g. endosomes, lysosomes, mito-

chondria) could aid in elucidating their intracellular trafficking and interaction 

mechanisms, and the resulting changes in cellular metabolism. 

Raman spectroscopy potentially offers a label free probe of nanoparticles with-

in cells, which can potentially analyse their local environment, and ultimately 

changes in the cellular metabolism which can be correlated with cytotoxic re-

sponses [164], oxidative stress, or inflammation. Kneipp et al. have previously 

demonstrated the use of Surface Enhanced Raman Scattering from gold nanoparti-

cles and nanoaggregates to probe the environment of the subcellular compartments 

through which they are trafficked [165, 166]. They have also demonstrated the use 

of molecular labelled nanoparticles as more specific probes of the local environ-

ment [167-169]. However, the uptake rates and mechanisms as well as the subse-

quent trafficking may be specific to the nanoparticle type, size and surface chem-

istry. Furthermore, the molecular specificity of the surface enhancement process is 

not well understood. Therefore, a truly label free method for monitoring and char-

acterising the cellular uptake and subcellular localisation of nanoparticles in gen-

eral is still required. 
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It has been demonstrated that, based on the spectroscopic fingerprint of poly-

styrene, Raman spectroscopy, coupled with routine multivariate analyses such as 

K-means clustering, is a more specific probe to detect and localise nanoparticles 

within cells [151]. Furthermore, Principal Component Analysis can be employed 

to differentiate the local environment of the nanoparticles from the cytoplasm. For 

convenience, formalin fixed (A549) cells were employed. Raman mapping was 

performed in immersion using a x100 Olympus LUMPlanF1 objective, a wave-

length of 785nm, and a step size of 0.75m. As seen in figure 13, using a 100x ob-

jective, the visible image obtained from the cells is rather detailed (Figure 19 IA). 

The nucleus is clearly identifiable and the nucleoli can also be seen. The mem-

brane of the cells is well defined and the cytoplasm presents different structures 

and the region containing the endoplasmic reticulum can be easily recognised. As 

in the previous section, K-means cluster analysis of the Raman spectral map using 

10 clusters clearly differentiates the sub-cellular regions of interest (Figure 19 IB).  

 

(I) 

 
(II)     (III) 

 
  

Figure 19: I; (A) Microscopic image of an A549 cell, showing the reduced area 

identified for spectral mapping. (B) K-means cluster map of the Raman profile of 

the same reduced area. II; K-means spectra of clusters 3 (A – representing nucleo-

li), 6 (B – representing nucleus), 1 and 4 (C and D, both from the cytoplasm). 

Spectra are offset for clarity. III; K-means spectrum of Cluster 5 (A), compared to 

the Raman spectrum polystyrene nanoparticles (B). Spectra are offset for clarity. 

(Reproduced from [151]) 
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The nucleoli spectra form a specific group (cluster 3), distinct from the nucleus 

(cluster 6). The corresponding mean spectra are displayed in figure 19 II. The cy-

toplasm is represented by a number of different clusters (1, 2, 4, 8, 9, 10). Notably, 

nanopolysterene can now be localised in the cytoplasm according to cluster 5, the 

corresponding mean spectrum of which is presented in figure 19 IIIA. Although 

some cellular features clearly contribute to the cluster spectrum, it is dominated by 

specific features originating from polystyrene (figure 19 IIIB). K-means cluster 

analysis yields the average spectra for the identified clusters. These average spec-

tra can contain contributions from points on the boundaries between the cellular 

regions and a direct comparison does not always easily facilitate identification of 

the differences in the biochemical composition. Cluster 5 clearly identifies the 

presence of polystyrene nanoparticles localised in the cytoplasm, but the averaged 

spectrum also exhibits clear contributions of the biological environment. PCA can 

be employed to highlight the biochemical differences between the subcellular re-

gions [150]. In figure 19 IB, cluster 5 is predominantly surrounded by cytoplasmic 

regions grouped within cluster 1. Figure 20 (top) is a scatter plot of the PCA of 

spectra associated with K-means clusters 1 and 5. For visualisation purposes, 

spectra associated with cluster 1 are coloured blue, while those from cluster 5 are 

coloured green, and although the data is rather dispersed, some differentiation be-

tween the two clusters according to PC1 is apparent. PC1 accounts for 61% of the 

variance and, as shown in the loadings plot of figure 20 (bottom), it is dominated 

by positive contributions of polystyrene (figure 20 B). Notably, the negative con-

tributions of PC1 match well with the Raman features of lipids such as L-α-

Phosphatidylcholine (figure 20 C) and also sphingomyelin (figure 20 D). For 

comparison, the Raman spectra of DNA (figure 20 E) and RNA (figure 20 F) are 

also shown, and it is clear that they exhibit few or no similarities with PC1. High 

loadings of PC1 for cluster 5 are therefore an indication of the dominance of poly-

styrene. Positive loadings of PC1 for some of Cluster 1 may indicate regions of 

overlap between the localised nanoparticles and the surrounding cytoplasm, 

which, although they have significant polystyrene contributions, are represented in 

the K-means cluster analysis by the average spectrum of cluster 1. 

An established mechanism for the transport of nanoparticles in cells is via en-

dosomes and later lysosomes [170]. A number of studies have also demonstrated 

that, in the later stages of trafficking, individually endocytosed nanoparticles ac-

cumulate in larger multivescular bodies [165] and they have also been seen to be 

localized in the endoplasmic reticulum and Gogli apparatus [171]. Notably, in fig-

ure 19 IA, the majority of the nanoparticles, identified in green as cluster 5, are 

surrounded by cytoplasmic regions of cluster 1, which is relatively spatially exten-

sive, particularly compared to typical sizes of lysosomes (1-2m). In the white 

light image of figure 19 IB, this region can be identified as the Endoplasmic Re-

ticulum (ER), which may be expected to be rich in lipidic compounds, and a PCA 

of the different regions of the cytoplasm confirms this. Cluster 4, on the other 

hand is relatively rich in nucleic acids, which may be due to the presence of mito-

chondria. Co-staining the cells to highlight the ER and examination using confocal 
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fluorescence microscopy indicates a strong correlation between the ER stain and 

the fluorescence of the nanoparticle label, and any locally concentrated fluores-

cence which may be indicative of encapsulated nanoparticles is contained within 

the ER [151]. The analysis supports the attribution of the subcellular environment 

of K-means cluster 1 as endoplasmic reticulum. 

 

 
 

Figure 20: Top; Scatter plot of the PCA of spectra associated with clusters 1 

(Blue) and 5 (Green). Bottom; (A) Loading of PC1 (B) Raman Spectrum of poly-

styrene nanoparticles (C) of L--Phosphatidylcholine, (D) of Sphingomyelin, (E) 

of DNA and (F) of RNA. (Reproduced from [151]) 

 

The study represents an initial proof of concept, to demonstrate the potential 

use of Raman spectroscopy to identify and locate nanoparticles in cells and to 

probe their subcellular environment. No attempt has, as yet, been made to quantify 

the amount of nanoparticles located or the sensitivity and detection limit of the 

technique. Instrumentally, the spatial resolution can be improved by moving to 

lower wavelength sources, although the excitation of any fluorescence from the 

nanoparticles and the cell constituents should be avoided. However, as it scales 

linearly with wavelength, a move from 785 nm to 473 nm should result in an im-

provement in lateral resolution by a factor of ~1.7. Ultimately, the confocal mode 

of operation can provide 3D localisation of the nanoparticles at submicron resolu-

tion.  

Other multivariate analytical approaches have also been applied in the field of 

Raman microspectroscopy of cells. In addition to KMCA, other clustering meth-

ods such as Fuzzy C means clustering (FCM) and hierarchal cluster analysis 

(HCA) have been used to separate the cellular Raman data into clusters and sub-

sequently reshape the data into images [172, 173]. However, as highlighted by 

Headegaad et al., these approaches have their own limitations. In particular, 

boundaries between sub-cellular features can often result in the addition of extra 

clusters with mixed spectral signatures. This can be overcome by increasing the 

number of clusters; however, this in turn can result in added complexity to inter-

pretation and inaccuracies in regional separation. Additionally, the reproducibility 
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of these methods can also be questioned as the starting point for the centroid based 

KMCA and FCM is subjective [172].     

PCA and vertex component analysis (VCA) have also been used to separate out 

distinct regions of the cell. With regards to PCA, separation is based on the vari-

ances between the spectra in the data set, the majority of the variance being de-

scribed by the first three principal components [172]. Thus, the score values can 

be used to construct a composite image of the cell in which the biochemical con-

tributions of each component are described by the corresponding loadings plot. 

Unlike KMCA and FCM, PCA identifies quite accurately the boundaries between 

each feature. However, the images generated suffer from inferior contrast and in 

some instances interpretation may be difficult as biochemical features may be 

spread across different loadings.   

VCA is another method which has been used for similar analytical purposes. In 

brief, VCA computes a linear combination of supposed pure component spectra 

which are termed endmember spectra. As described in Miljkovic et al., the 

endmember spectra are acquired under the assumption that the most extreme data 

points in the dataset are representative of pure component spectra [173]. However, 

it has been pointed out that the endmembers generated are not truly representative 

of the pure component they describe in the data set and can often contain a mix-

ture of biochemical constituents i.e. DNA and proteins. While this is representa-

tive of the true nature of nucleic acids in-situ, it could lead to inaccuracies in in-

terpretation. 

A more recent study introduced the technique of spectral cross correlation to 

screen spectral maps for the spatial distribution of specific spectral signatures, in-

cluding those of polystyrene nanoparticles, RNA and lipids, and argued that it was 

more effective than Classical least squared analysis, both supervised and unsuper-

vised, which is commonly available on instrument software [174]. 

As in the case of multivariate techniques for disease diagnostics, there is a myr-

iad of potential techniques to explore the spatial variations of the spectral profiles 

with heterogeneous structures such as biological cells. A truly quantitative com-

parison of the different techniques is lacking, however. 

Conclusions 

Since their origins in the 19
th

 and 20
th

 centuries, the techniques of Infrared ab-

sorption and Raman scattering spectroscopy have come a long way. Technological 

developments have rendered them routine benchtop techniques for chemical and 

process analysis. Although their applications for the analysis of complex mixtures 

have raised some challenges, an understanding of the fundamental physical pro-

cesses and interactions has helped the scientific community address these chal-

lenges. In biomedical applications, the chemical and physical inhomogeneities of 

cells and tissues have presented many such challenges, not easily understood by a 

multidisciplinary community. However, concerted efforts through collaborative 

programmes such as the EU FP6 Special Support Action DASIM [175] have 

helped understand the origins of spectral artefacts which can mask or obscure the 
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true information contained within a spectral profile, such that such effects can be 

minimised by improved sample presentation and/or data preprocessing.  

Over the past decades, the potential of vibrational spectroscopy for biomedical 

applications has been extensively explored and demonstrated. The prospect is of a 

truly label free, non-invasive, non destructive, rapid, automated and objective 

technology for disease diagnostics and beyond. Disease diagnostics can be made 

on the basis of true changes in biochemistry rather than for example cellular and 

tissue morphology, and disease origin and progression can be better understood.  

Gerwin Puppels, one of the pioneers of the field and founder of River Diagnostics 

likens the developing technology to that of Dr. McCoy of Star Trek, whereby a 

simple optical probe can scan a body for all ailments. While it may seem improb-

able, the emergence of spectroscopic probes for in vivo analyses and the develop-

ment of applications for the analysis of bodily fluids and identification of spectral 

markers of disease may mean the realisation of real clinical applications in the 

near future. 

Beyond disease diagnostics, EU legislation is placing increasing emphasis on in 

vitro screening techniques for the replacement, reduction and refinement of animal 

experimentation in scientific studies. High Content Analysis techniques for auto-

mation and higher throughput of screening based on chemical and immuno assays 

have developed significantly over the past decade. However, the assays are highly 

specific and the process of assaying is extremely expensive. In the realm of in 

vitro diagnostics and therapeutics, vibrational spectroscopy presents as realistic al-

ternative. 

The development of applications of vibrational spectroscopy for biomedi-

cal/chemical applications has relied heavily on the development and application of 

multivariate statistical and data mining techniques. A single spot on a cell or tissue 

contains a multitude of different biochemical components in itself, and the compo-

sition and morphology of this complex melange can vary dramatically over a 

length scale which is comparable to the sampled spot size. Cell to cell, tissue to 

tissue, or patient to patient variability must also be considered. The challenge of 

extracting relevant information is therefore immense, and a myriad of techniques 

has been applied and adapted as exemplified in a multitude of techniques. Given 

the impact of the conclusions derived, particularly in medical diagnostics, it is im-

perative that the combination of spectral analysis and data processing yield the 

“right answer”. In a real life scenario, however, it is impossible to know for cer-

tain what the “right answer” is however. In this context, complex simulated data 

sets which incorporate instrumental variabilities and measurement artefacts, but 

also sample to sample variabilities may play a critical role in validating and opti-

mising the data analytical techniques. With a combination of optimised spectro-

scopic technologies, sample presentation protocols and data processing and analy-

sis techniques, the future for vibrational spectroscopy is bright, for disease 

diagnostics and beyond. 



40  

References 

[1] http://coolcosmos.ipac.caltech.edu/cosmic_classroom/classroom_activities/ 

herschel_bio.html  

[2] G.H. Rieke, "History of infrared telescopes and astronomy". Experimental As-

tronomy, 25, 125 (2009) 

[3] A.L. Smith, Applied Infrared Spectroscopy: Fundamentals, Techniques, and 

Analytical ProblemSolving. Wiley, New York (1979) 

[4] L. Mertz, Astron J., 70, 548 (1965) 

[5] P.R. Griffiths, R. Curbelo, C.T. Foskett and S.T. Dunn, Analytical Instrumen-

tation (Inst. Society of America), 8, II4 (1970) 

[6] R. Messerchmidt and M. Harthcock eds, “Infrared Microscopy, Theory and 

Applications”, Marcel Dekker, New York (1988) 

[7] http://www.mtholyoke.edu/~mlyount/MySites/ForensicSpectroscopy/ 

ForensicApps.html 

[8] USA Today, June 23 rd 1993, pg8A 

[9] R.C. Lyon, E.H. Jefferson, C.D. Ellison, L.F. Buhse, J.A. Spencer, M.M. Nasr 

and A.S. Hussain, “Exploring Pharmaceutical Applications of NearInfrared Tech-

nology”, American Pharmaceutical Review,  

http://americanpharmaceuticalreview.com/ViewArticle.aspx?ContentID=225 

[10] C.V. Raman and K.S. Krishnan, Nature, 121, 501 (1928) 

[11] C. Adjouri, A. Elliasmine, Y. Le Duff, Spectroscopy, 44, 46 (1996) 

[12] G.J. Puppels, J.H.F. Olminkhof, G.M.J. Segers-Nolten, C. Otto, F.F.M. de 

Mul and J. Greve, Experimental Cell Research, 195, 361 (1991) 

[13] M. Jackson and H. Mantsch, CRC Crit., Rev. Biochem. Mol. Biol., 30, 95 

(1995)  

[14] H.L. Casal and H.H. Mantsch, Biochim. Biophys. Acta, 779, 381 (1984) 

[15] M. Mathlouthi and J.L Koenig, Adv. Carbohydr. Chem. Biochem., 44, 7 

(1986) 

[16] E. Taillandier, J. Liquier and J.A. Taboury, in R.J.H. Clark and R.E Hester 

(eds.), Vol. 12, “Advances in Spectroscopy: Advances in Infrared and Raman 

Spectroscopy”, Wiley, New York, (1985) p65. 

[17] P.Wong, S. Lacele, H. Yadzi, Appl. Spectroscopy, 47, 1830 (1993) 

[18] R. Dukor, “Vibrational spectroscopy in the detection of cancer, Handbook of 

Vibrational Spectroscopy”, Ed J. M. Chalmers and P.R. Griffiths Vol 5, Wiley, 

Chichester (2002) 

[19] E. Gazi, M. Baker, J. Dwyer, N. P. Lockyer, P. Gardner, J.H. Shanks, R. S. 

Reeve, C. Hart, N.W. Clarke M. Brown, European Urology, 50, 750–761 (2006) 

[20] D. C. Fernandez, R. Bhargava, S. M. Hewitt, I. W. Levin, Nature Biotechnol., 

23, 469 (2005) 

[21] R.C. Lord, N.T. Yu, J Mol Biol, 20, 50924 (1970). 

[22] M.C. Tobin, Science, 161, 68, (1998). 

[23] A.G. Walton, M.J. Deveney and J.L. Koenig, Calcified Tissue International, 

6, 162, (1970). 

http://coolcosmos.ipac.caltech.edu/cosmic_classroom/classroom_activities/
http://www.mtholyoke.edu/~mlyount/MySites/ForensicSpectroscopy/


41 

[24] N.T. Yu, B.H. Jo, R.C.C. Chang and J.D. Huber, Arch. Biochem. Biophys., 

160, 614 (1974). 

[25] G.J. Puppels and J. Breve, in “Biomedical Applications of Spectroscopy”, 

R.H.J. Clark and R.E. Hester eds, Advances in Spectroscopy, vol. 25, John Wiley 

and Sons, New York (1996). 

[26] M. Gniadecka, H.C. Wulf, O.F. Nielsen, D.H. Christensen, J. Hercogova, 

Photochemistry and Photobiology, 66, 418 (1997). 

[27] C.M. Krishna, G.D. Sockalingum, L. Venteo, R.A. Bhat, P. Kustagi, M. 

Pluot, M. Manfait, Biopolymers, 5, 269 (2002). 

[28] J. Smith, C. Kendall, A. Sammon, J. ChristieBrown, N. Stone, Technology in 

Cancer Research & Treatment, 2, 327 (2003) 

[29] A. Molckovsky, L.M.W.K. Song, M.G. Shim, N.E. Marcon, B.C. Wilson, 

Gastrointestinal Endoscopy, 57, 396 (2003) 

[30] E.B. Hanlon, R. Manoharan, T.W. Koo, K.E. Shafer, J.T. Motz, M. Fitzmau-

rice, J.R. Kramer, I. Itzkan, R.R. Dasari and M.S. Feld, Phys. Med. Biol., 45, R1-

R59 (2000). 

[31] P. J. Caspers, G. W. Lucassen, R. Wolthuis, H. A. Bruining, G. J. Puppels, 

Biospectroscopy, 4, S31-39 (1999). 

[32] U. Utzinger, A. MahadevanJansen, D. Hinzelman, M. Follen, R. Richards-

Kortum, Applied Spectroscopy, 55, 955, (2001). 

[33] http://www.chem.neu.edu/web/faculty/Prof.MaxDiem.html 

[34] F.M. Lyng, E. Ó Faoláin, J. Conroy, A. Meade, P. Knief, B. Duffy, M. 

Hunter, J. Byrne, P. Kelehan, H.J Byrne, Experimental and Molecular Pathology, 

82, 121 (2007) 

[35] D.M. Parkin, F. Bray, J. Ferlay and P. Pisani, Global Cancer Statistics 2002, 

CA Cancer J. Clin; 55,74-108 (2005) 

[36] K. Nanda, D.C. McCrory, E.R. Myers, L.A. Bastian, V. Hasselblad, J.D. 

Hickey, D.B. Matchar, Ann Intern Med, 132, 810 (2000) 

[37] B.H. Willis, P. Barton, P. Pearmain, S. Bryan, C. Hyde, Health Technol As-

sess, 9, 1-207 (2005) 

[38] N. Bolger, C. Heffron, I. Regan, M. Sweeney, S. Kinsella, M. McKeown, G. 

Creighton, J. Russell, J. O'Leary, Acta Cytol., 50, 483 (2006) 

[39] G. Koliopoulos, M. Arbyn, P. Martin-Hirsch, M. Kyrgiou, W. Prendiville, E. 

Paraskevaidis, Gynecologic Oncology, 104, 232 (2006) 

[40] S.K. Chang, T. Pavlova, N. Marin, M. Follen, R. Richards-Kortum, Gyneco-

logic Oncology, 99, S61-63 (2005) 

[41] R.S. Gurjar, V. Backman, L.T. Perelman, I. Georgakoudi, K. Badizadegan, I. 

Itzkan, R.R. Dasari, M.S. Feld, Nat Med. 7, 1245 (2001) 

[42] P.F. Escobar, J.L. Belinson, A. White, N.M. Shakhova, F.I. Feldchtein, M.V. 

Kareta, N.D. Gladkova, Int J Gynecol Cancer. 14, 470 (2004) 

[43] A.F. Zuluaga, M. Follen, I. Boiko, A. Malpica, R. Richards-Kortum, Am J 

Obstet Gynecol., 193, 83 (2005) 

[44] K. Carlson, I. Pavlova, T. Collier, M. Descour, M. Follen, R. Richards-

Kortum, Gynecologic Oncology, 99, S84 (2005) 



42  

[45] B.R. Wood, L. Chiriboga, H. Yee, M.A. Quinn, D. McNaughton, M. Diem, 

Gynecologic Oncology, 93, 59 (2003) 

[46] S. Mordechai, R.K. Sahu, Z. Hammody, S. Mark, K. Kantarovich, H. Guter-

man, A. Podshyvalov, J. Goldstein, S. Argov, Journal of Microscopy-Oxford, 215, 

86 (2004) 

[47] M. Romeo, C. Matthaus, M. Miljkovic, M. Diem, Biopolymers, 74, 168 

(2004) 

[48] A. Mahadevan-Jansen, N. Ramanujam, A. Malpica, S. Thomsen, U. Utzinger, 

R. Richards-Kortum, Photochemistry and Photobiology, 68, 123 (1998) 

[49] E. Ó Faoláin, M.B. Hunter, J.M. Byrne, P. Kelehan, H.A. Lambkin, H.J. Byr-

ne, F.M. Lyng, J. Histochem. Cytochem., 53, 121 (2005) 

[50] J.E. Jackson, “A User’s Guide to Principal Components”, Wiley, New York 

(1991) 

[51] M. Otto, “Chemometrics: Statistics and Computer Applications in Analytical 

Chemistry”, Wiley New York (1999)  

[52] P. Crow, A. Molckovsky, N. Stone, J. Uff, B. Wilson, L.M. Wong-KeeSong, 

Urology, 65, 1126 (2005) 

[53] A.S. Haka, K.E. Shafer-Peltier, M. Fitzmaurice, J. Crowe, R.R. Dasari, M.S. 

Feld, Cancer Res., 62, 5375 (2002) 

[54] A. Nijssen, T.C. Bakker Schut, F. Heule, P.J. Caspers, D.P. Hayes, M.H. 

Neumann, G.J. Puppels, J Invest Dermatol., 119, 64 (2002) 

[55] UK Patent Application No. GB0823071.6, “A Diagnostic Instrument for Cer-

vical Cancer Screening”, December 2008 

[56] International Patent, F. M. Lyng., H. J. Byrne, E. Ó Faoláin, C. Clarke and K. 

M. Ostrowska (2010), “A Diagnostic Instrument for Cervical Cancer Screening”, 

Patent no WO2010070133 

[57] M.L. Almond, J. Hutchings, C. Kendall, N. Stone, H. Barr, British Journal of 

Surgery, 98, 35 (2011) 

[58] P. Bassan, H.J. Byrne, F. Bonnier, J. Lee, P. Dumas, P. Gardner, Analyst, 

134, 1586 (2009) 

[59] P. Bassan, H.J. Byrne, J. Lee, F. Bonnier, C. Clarke, P. Dumas, E. Gazi, M. 

D. Brown, N.W. Clarke, P. Gardner, Analyst, 134, 1171 (2009) 

[60] P. Bassan, A. Kohler, H. Martens, J. Lee, H.J. Byrne, P. Dumas, E. Gazi, M. 

Brown, N. Clarke and P. Gardner, Analyst, 135, 268 (2010) 

[61] F. Bonnier, A. Mehmood, P. Knief, A. Meade, W. Hornebeck, H. 

Lambkin, K. Flynn, V. McDonagh, C. Healy,T.C. Lee, F.M. Lyng, H.J. 

Byrne, Journal of Raman Spectroscopy, 42, 888 (2011) 

[62] F. Bonnier, S.M. Ali, P. Knief, H. Lambkin, K. Flynn, V. McDonagh, 

C. Healy, T.C. Lee, F.M. Lyng, H.J. Byrne, Vibrational Spectroscopy, 61, 

124 (2012) 

[63] K.M. Ostrowska, A. Malkin, A.D. Meade, J. O’Leary, C. Martin, C. 

Spillane, H.J. Byrne and F.M. Lyng, Analyst, 135, 3087 (2010) 



43 

[64] K.M. Ostrowska, A. Garcia, A.D. Meade, A. Malkin, I. Okewumi, J.J. 

O’Leary, C. Martin, H.J. Byrne and FM. Lyng, Analyst, 136, 1365 (2011) 
[65] K.S. Cuschieri, H.A. Cubie, M.W. Whitley, G. Gilkison, M.J. Arends, C. 

Graham and E. McGoogan, J. Clin. Pathol., 58, 946 (2005) 

[66] W.A. Tjalma, T.R. Van Waes, L.E. Van den Eeden and J.J. Bogers, Best 

Pract. Res. Clin. Obstet. Gynaecol., 19, 469 (2005) 

[67] J.M. Walboomers, M.V. Jacobs, M.M. Manos, F.X. Bosch, J.A. Kummer, 

K.V. Shah, P.J. Snijders, J. Peto, C.J. Meijer and N. Munoz, J. Pathol., 189, 12 

(1999) 

[68] M.H. Mayrand, E. Duarte-Franco, I. Rodrigues, S.D. Walter, J. Hanley, A. 

Ferenczy, S. Ratnam, F. Coutlee and E.L. Franco, N. Engl. J. Med., 357, 1579 

(2007) 

[69] P.R. Jess, D.D. Smith, M. Mazilu, K. Dholakia, A.C. Riches and C.S. Her-

rington, Int. J. Cancer, 121, 2723 (2007) 

[70] J.G. Kelly, K.T. Cheung, C. Martin, J.J. O’Leary, W. Prendiville, P.L. Mar-

tin-Hirsch and F.L. Martin, Clin. Chim. Acta, 411, 1027 (2010) 

[71] N. Murphy, M. Ring, C.C. Heffron, B. King, A.G. Killalea, C. Hughes, C.M. 

Martin, E. McGuinness, O. Sheils and J.J. O’Leary, J. Clin. Pathol., 58, 525 

(2005) 

[72] J.J. Max and C. Chapados, J. Chem. Phys., 131, 184505, (2009) 

[73] C.M. Martin, L. Kehoe, C.O. Spillane and J.J. O'Leary, Mol Diagn Ther, 11, 

277 (2007) 

[74] A. Kalof, M. Evans, L. Simmons-Arnold, B. Beatty and K. Cooper, Am J 

Surg Pathol, 29, 674 (2005) 

[75] M. Dray, P. Russell, C. Dalrymple, N. Wallman, G. Angus, A. Leong, J. 

Carter and B. Cheerala, Pathology, 37, 112 (2005) 

[76] T. Yu, M.J. Ferber, T.H. Cheung, T.K. Chung, Y.F. Wong and D.I. Smith, 

Cancer Genet Cytogenet, 158, 27 (2005) 

[77] N. Ozgul, A. Cil, G. Bozdayi, A. Usubutun, D. Bulbul, S. Rota, M. Kose, A. 

Biri and A. Haberal, J Obstet Gynaecol Res, 34, 865 (2008) 

[78] N. Murphy, M. Ring, C. Heffron, B. King, A. Killalea, C. Hughes, C. Martin, 

E. McGuinness, O. Sheils and J. O'Leary, J Clin Pathol, 58, 525 (2005) 

[79] N. Missaoui, S. Hmissa, L. Frappart, A. Trabelsi, A. Ben Abdelkader, C. 

Traore, M. Mokni, M. T. Yaacoubi and S. Korbi, Virchows Arch, 448, 597 (2006) 

[80] N. Murphy, M. Ring, A.G. Killalea, V. Uhlmann, M. O'Donovan, F. Mul-

cahy, M. Turner, E. McGuinness, M. Griffin, C. Martin, O. Sheils and J.J. 

O'Leary, J Clin Pathol, 56, 56 (2003). 

[81] R. Klaes, T. Friedrich, D. Spitkovsky, R. Ridder, W. Rudy, U. Petry, G. Dal-

lenbach-Hellweg, D. Schmidt and M. von Knebel Doeberitz, Int J Cancer, 92, 276 

(2001) 

[82] S.N. Agoff, P. Lin, J. Morihara, C. Mao, N.B. Kiviat and L.A. Koutsky, Mod 

Pathol, 16, 665 (2003) 

[83] N. Murphy, C.C. Heffron, B. King, U.G. Ganuguapati, M. Ring, E. McGuin-

ness, O. Sheils and J.J. O'Leary, Virchows Arch, 445, 610 (2005) 



44  

[84] N. Murphy, M. Ring, C. C. Heffron, B. King, A. G. Killalea, C. Hughes, C. 

M. Martin, E. McGuinness, O. Sheils and J.J. O'Leary, J Clin Pathol, 58, 525 

(2005) 

[85] S.S. Wang, M. Trunk, M. Schiffman, R. Herrero, M.E. Sherman, R.D. Burk, 

A. Hildesheim, M. C. Bratti, T. Wright, A.C. Rodriguez, S. Chen, A. Reichert, C. 

von Knebel Doeberitz, R. Ridder and M. von Knebel Doeberitz, Cancer Epidemiol 

Biomarkers Prev, 13, 1355 (2004) 

[86] Z. Movasaghi, S. Rehman and I. U. Rehman, Appl. Spectrosc. Rev., 42, 493 

(2007) 

[87] J. W. Black and P. Leff, Proc R Soc Lond B Biol Sci, 220, 141 (1983) 

[88] G. Lizard, M.C. Chignol, Y. Chardonnet, C. Souchier, M. Bordes, D. Schmitt 

and J.P. Revillard, J Immunol Methods, 157, 31 (1993) 

[89] G. Mehés, N. Speich, M. Bollmann and R. Bollmann, Pathol Oncol Res, 10, 

142 (2004) 

[90] E.M. Burd, Clin Microbiol Rev, 16, 1 (2003) 

[91] S. Neviliappan, L. Fang Kan, T. Tiang Lee Walter, S. Arulkumaran and P.T. 

Wong, Gynecol Oncol, 85, 170 (2002) 

[92] H.M. Yazdi, M.A. Bertrand and P.T. Wong, Acta Cytol, 40, 664 (1996) 

[93] F.A. Suprynowicz, G.L. Disbrow, E. Krawczyk, V. Simic, K. Lantzky and R. 

Schlegel, Oncogene, 27, 1071 (2008) 

[94] P.T. Wong, R.K. Wong, T.A. Caputo, T.A. Godwin and B. Rigas, Proc Natl 

Acad Sci USA, 88, 10988 (1991) 

[95] H. Martens and M. Martens, Food Qual. Prefer., 11, 5 (2000) 

[96] F. Westad and H. Martens, J. Near Infrared Spectrosc., 8, 117 (2000) 

[97] J. Doorbar, Clin Sci (Lond), 110, 525 (2006) 

[98] H. Nawaz, F. Bonnier, P. Knief, O. Howe, F.M. Lyng, A.D. Meade and H.J. 

Byrne, Analyst, 135, 3070 (2010) 

[99] H. Nawaz, F. Bonnier, A.D. Meade, F.M. Lyng and H.J. Byrne, Analyst, 136, 

2450 (2011) 

[100] C.A. Owen, J. Selvakumaran, I. Notingher, G. Jell, L.L. Hench and M.M. 

Stevens, J. Cell. Biochem., 99, 178 (2006) 

[101] F. Draux, P. Jeannesson, A. Beljebbar, A. Tfayli, N. Fourre, M. Manfait, J. 

Sule-Suso and G.D. Sockalingum, Analyst, 134, 542 (2009) 

[102] J. Ling, S.D. Weitman, M.A. Miller, R.V. Moore and A.C. Bovik, Appl. 

Opt., 41, 6006 (2002) 

[103] J.Y. Ling, Q.Z. Yang, S.S. Luo, Y. Li and C.K. Zhang, Chin. Chem. Lett., 

16, 71 (2005) 

[104] I. Notingher, C. Green, C. Dyer, E. Perkins, N. Hopkins, C. Lindsay and L. 

L. Hench, J. R. Soc. Interface, 1, 79 (2004) 

[105] S. Verrier, I. Notingher, J.M. Polak and L.L. Hench, Biopolymers, 157 

(2004) 

[106] Y. Yang, J. Sule-Suso, G. D. Sockalingum, G. Kegelaer, M. Manfait, and A. 

J. El Haj, Biopolymers, 78, 311 (2005) 



45 

[107] B. Kosmider, I. Wojcik, R. Osiecka, J. Bartkowiak, E. Zyner, J. Ochocki 

and P. Liberski, Invest. New Drugs, 23, 287 (2005) 

[108] O. Vrana, V. Masek, V. Drazan and V. Brabec, J. Struct. Biol., 159, 1 

(2007) 

[109] E. Ulukaya, F. Ozdikicioglu, A.Y. Oral and M. Demirci, Toxicol. In Vitro, 

22, 232 (2008). 

[110] N. Cordes, C. Beinke, L. Plasswilm and D. van Beuningen, Strahlenther. 

Onkol., 180, 157 (2004) 

[111] M.H. Baik, R.A. Friesner and S.J. Lippard, J. Am. Chem. Soc., 125, 14082 

(2003) 

[112] S.U. Dunham, C. J. Turner and S.J. Lippard, J. Am. Chem. Soc., B, 5395 

(1998) 

[113] A. Gelasco and S. J. Lippard, Biochemistry, 37, 9230 (1998) 

[114] P.M. Takahara, A.C. Rosenzweig, C.A. Frederick and S.J. Lippard, Nature, 

377, 649 (1995) 

[115] A.D. Meade, C. Clarke, H.J. Byrne and F.M. Lyng, Radiat. Res., 173, 225 

(2010) 

[116] K. Varmuza and P. Filzmoser, “Introduction to Multivariate Statistical 

Analysis in Chemometrics”, CRC Press, Taylor and Francis Group, Boca Raton, 

FL, 2009. 

[117] C.M. Krishna, G. Kegelaer, I. Adt, S. Rubin, V.B. Kartha, M. Manfait and 

G.D. Sockalingum, Biopolymers, 82, 462 (2006) 

[118] J M. Le Gal, H. Morjani and M. Manfait, Cancer Res., 53, 3681 (1993) 

[119] F. Bonnier, A.D. Meade, S. Merzha, P. Knief, K. Bhattacharya, F.M. Lyng 

and H.J. Byrne, Analyst, 135, 1697 (2010) 

[120] Y. Fu, H. Wang, R. Shi and J.-X. Cheng, Biophys. J., 92, 3251 (2007) 

[121] G. Colella, S. Marchini, M.D. D’Incalci, R. Brown and M. Broggini, Br. J. 

Cancer, 80, 338 (1999) 

[122] F. Bonnier, P.Knief, B. Lim, A.D. Meade, J. Dorney, K. Bhattacharya, F.M. 

Lyng, H.J. Byrne, Analyst, 135, 3169 (2010) 

[123] I. Notingher, S. Verrier, S. Haque, J. M. Polak and L.L. Hench, Biopoly-

mers, 72, 230 (2003). 

[124] I. Notingher and L.L. Hench, Expert Rev. Med. Devices, 3, 215 (2006) 

[125] G.J. Puppels, F.F. de Mul, C. Otto, J. Greve, M. Robert-Nicoud, D.J. Arndt-

Jovin and T.M. Jovin, Nature, 347, 301 (1990) 

[126] G.J. Puppels, H.S. Garritsen, G.M. Segers-Nolten, F.F. de Mul and J. Greve, 

Biophys. J., 60, 1046 (1991) 

[127] M. Miljkovic, T. Chernenko, M.J. Romeo, B. Bird, C. Matthaus and M. Di-

em, Analyst, 135, 2002 (2010) 

[128] N. Uzunbajakava, A. Lenferink, Y. Kraan, B. Willekens, G. Vrensen, J. 

Greve and C. Otto, Biopolymers, 72, 1 (2003) 

[129] F. Draux, C. Gobinet, J. Sule-Suso, A. Trussardi, M. Manfait, P. Jeannesson 

and G.D. Sockalingum, Anal. Bioanal. Chem., 397, 2727 (2010) 



46  

[130] A.D. Meade, C. Clarke, F. Draux, G.D. Sockalingum, M. Manfait, F.M. 

Lyng and H. J. Byrne, Anal. Bioanal. Chem., 396, 1781 (2010) 

[131] V.M. Weaver, A.R. Howlett, B. Langton-Webster, O.W. Petersen and M.J. 

Bissell, Semin. Cancer Biol., 6, 175 (1995( 

[132] O.W. Petersen, L. Ronnov-Jessen, A.R. Howlett and M.J. Bissell, Proc. 

Natl. Acad. Sci. U.S.A., 89, 9064 (1992) 

[133] G. D. Prestwich, Acc. Chem. Res., 41, 139 (2008) 

[134] K.S. Smalley, M. Lioni and M. Herlyn, In Vitro Cell. Dev. Biol.: Anim., 42, 

242 (2006) 

[135] A. Curtis and C. Wilkinson, Biomaterials, 18, 1573 (1997) 

[136] P. Giannakakou, M. Nakano, K.C. Nicolaou, A. O’Brate, J. Yu, M. V. 

Blagosklonny, U.F. Greber and T. Fojo, Proc. Natl. Acad. Sci. U.S.A., 99, 10855 

(2002) 

[137] A. Kotorashvili, S.J. Russo, S. Mulugeta, S. Guttentag and M.F. Beers, J. 

Biol. Chem., 284, 16667 (2009) 

[138] T.C. Hsia, J.S. Yang, G.W. Chen, T.H. Chiu, H.F. Lu, M.D. Yang, F.S. Yu, 

K.C. Liu, K.C. Lai, C.C. Lin and J.G. Chung, Anticancer research, 29, 309 (2009) 

[139] B.J. Pettus, A. Bielawska, P. Subramanian, D.S. Wijesinghe, M. Maceyka, 

C.C. Leslie, J.H. Evans, J. Freiberg, P. Roddy, Y.A. Hannun and C.E. Chalfant, J. 

Biol. Chem., 279, 11320 (2004) 

[140] S. Grewal, S. Ponnambalam and J.H. Walker, J. Cell Sci., 116, 2303 (2003) 

[141] J.B. MacQueen, Proceedings of 5th Berkeley Symposium on Mathematical 

Statistics and Probability, (1967) 

[142]S. Koljenovic, T.C. Bakker Schut, J.P. van Meerbeeck, A.P. Maat, S.A. 

Burgers, P.E. Zondervan, J.M. Kros and G.J. Puppels, J. Biomed. Opt., 9, 1187 

(2004) 

[143] P. Lasch, W. Haensch, D. Naumann and M. Diem, Biochimica et Biophysi-

ca Acta, 1688, 176 (2004) 

[144] E. Ly, O. Piot, A. Durlach, P. Bernard and M. Manfait, Analyst, 134, 1208 

(2009) 

[145] M. Hedegaard, C. Krafft, H.J. Ditzel, L.E. Johansen, S. Hassing and J. Popp, 

Analytical Chemistry, 82, 2797 (2010) 

[146] A. Taleb, J. Diamond, J.J. McGarvey, J.R. Beattie, C. Toland and P.W. 

Hamilton, J. Phys. Chem., 110, 19625 (2006) 

[147] K.W. Short, S. Carpenter, J.P. Freyer and J.R. Mourant, Biophys. J., 88, 

4274 (2005) 

[148] R. J. Swain, G. Jell and M.M. Stevens, J. Cell. Biochem., 104, 1427 (2008) 

[149] C.M. Krishna, G.D. Sockalingum, L. Venteo, R.A. Bhat, P. Kushtagi, M. 

Pluot and M. Manfait, Biopolymers, 79, 269 (2005) 

[150] F. Bonnier, H.J. Byrne, Analyst, 137, 322 (2012) 

[151] J. Dorney, F. Bonnier, A. Garcia, A. Casey, G. Chambers, H.J. Byrne, Ana-

lyst, 137, 1111 (2012) 

[152] P. Berntsen, C.Y. Park, B. Rothen-Rutishauser, A. Tsuda, T.M. Sager, R.M. 

Molina, T.C. Donaghey, A.M. Alencar, D.I. Kasahara, T. Ericsson, E.J. Millet, J. 



47 

Swenson, D.J. Tschumperlin, J.P. Butler, J.D. Brain, J.J. Fredberg, P. Gehr and 

E.H. Zhou, J. R. Soc. Interface, 7, S331 (2010) 

[153] M. Lundqvist, J. Stigler, G. Elia, I. Lynch, T. Cedervall and K.A. Dawson, 

Proc. Natl. Acad. Sci. U.S.A., 105, 14265 (2008) 

[154] M.J.D. Clift, B. Rothen-Rutishauser, D.M. Brown, R. Duffin, K. Donaldson, 

L. Proudfoot, K. Guy and V. Stone, Toxicol. Appl. Pharmacol., 232, 418 (2008) 

[155] J. Rejman, V. Oberle, I.S. Zuhorn and D. Hoekstra, Biochem. J., 377, 159 

(2004) 

[156] B. Rothen-Rutishauser, C. Muhlfeld, F. Blank, C. Musso and P. Gehr, Part. 

Fibre Toxicol., 4, 9 (2007) 

[157] P.C. Naha, K. Bhattacharya, T. Tenuta, K.A. Dawson, I. Lynch, A. Garcia, 

F.M. Lyng and H.J. Byrne, Toxicol. Lett., 198, 134 (2010) 

[157] I. Roy, T.Y. Ohulchanskyy, D.J. Bharali, H.E. Pudavar, R.A. Mistretta, N. 

Kaur and P.N. Prasad, Proc. Natl. Acad. Sci. U.S.A., 102, 279 (2005) 

[158] H. Cang, C.S. Xu, D. Montiel and H. Yang, Opt. Lett., 32, 2729 (2007) 

[159] A. Salvati, C. Aberg, T. Dos Santos, J. Varela, P. Pinto, I. Lynch and K.A. 

Dawson, Nanomedicine, 7, 818 (2011) 

[160] H. Suh, B. Jeong, F. Liu and S.W. Kim, Pharm. Res., 15, 1495 (1998) 

[161] K. Yin Win and S.-S. Feng, Biomaterials, 26, 2713 (2005) 

[162] M. Davoren, E. Herzog, A. Casey, B. Cottineau, G. Chambers, H.J. Byrne 

and F.M. Lyng, Toxicol. in Vitro, 21, 438 (2007) 

[163] K. Shapero, F. Fenaroli, I. Lynch, D.C. Cottell, A. Salvati and K.A. Daw-

son, Mol. BioSyst., 7, 371 (2011) 

[164] P. Knief, C. Clarke, E. Herzog, M. Davoren, F.M. Lyng, A.D. Meade and 

H.J. Byrne, Analyst, 134, 1182 (2009) 

[165] K. Kneipp, A.S. Haka, H. Kneipp, K. Badizadegan, N. Yoshizawa, C. 

Boone, K.E. Shafer-Peltier, J.T. Motz, R. R. Dasari and M.S. Feld, Appl. Spec-

trosc., 56, 150 (2002) 

[166] J. Kneipp, H. Kneipp, M. McLaughlin, D. Brown and K. Kneipp, Nano 

Lett., 6, 2225 (2006) 

[167] J. Kneipp, H. Kneipp, A. Rajadurai, R. W. Redmond and K. Kneipp, J. Ra-

man Spectrosc., 40, 1 (2009) 

[168] J. Kneipp, H. Kneipp, W. L. Rice and K. Kneipp, Anal. Chem., 77, 2381 

(2005) 

[169] J. Kneipp, H. Kneipp, B. Wittig and K. Kneipp, J. Phys. Chem. C, 114, 7421 

(2010) 

[170] A.E. Nel, L. Madler, D. Velegol, T. Xia, E.M. V. Hoek, P. Somasundaran, 

F. Klaessig, V. Castranova and M. Thompson, Nat. Mater., 8, 543 (2009) 

[171] M.Y. Chang, A.L. Shiau, Y.H. Chen, C.J. Chang, H.H. Chen and C.L. Wu, 

Cancer Sci., 99, 1479 (2008) 

[172] M. Hedegaard, C. Matthaus, S. Hassing, C. Krafft, M. Diem and J. Popp, 

Theor. Chem. Acc., 130, 1249 (2011) 

[173] M. Miljković, T. Chernenko, M. J. Romeo, B. Bird, C. Matthäus, and M. 

Diem, Analyst, 135, 2002 (2010) 



48  

[174] M.E. Keating, F. Bonnier, H.J. Byrne, Analyst (2012), DOI: 

10.1039/c2an36169h 

[175] http://www.dasim.eu/website.php  
 

  

http://www.dasim.eu/website.php

	Vibrational Spectroscopy: Disease Diagnostics and Beyond
	Recommended Citation
	Authors

	tmp.1378463887.pdf.vEbCT

