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Automatic detection of optimal azimuth widths for
sound source separation using Adress.
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†Dept. of Electronic Engineering ∗School of Electrical Engineering Systems

Cork Institute of Technology, Cork Dublin Institute of Technology, Dublin

E-mail:
†derry.fitzgerald@cit.ie ∗dan.barry@dit.ie

Abstract — The Adress algorithm has proved successful as a means of separating

sound sources from stereo mixtures. The algorithm has two main parameters, azimuth

position and azimuth width, and these are typically set by the user for each source

individually. For the separation of large amounts of audio material, such as in an audio

archive, a method of automatically setting these parameters would be of use. This paper

proposes a method of automatically obtaining the azimuth widths for the sources in a

mixture by balancing the reconstruction error between the original spectrograms and

the resynthesised spectrograms with the sparseness of the recovered sources, using an

L-curve type approach.

Keywords — Sound Source Separation, Sparsity

I The Adress Algorithm

The Adress algorithm was developed for the pur-
pose of sound source separation from linear stereo
mixtures where different sources are positioned at
different positions in the stereo field [1]. The signal
model underlying Adress can be described as:

L(t) =

J
∑

j=1

PljSj(t) (1)

R(t) =
J

∑

j=1

PrjSj(t) (2)

where Sj indicates the jth source, Plj and Prj are
the panning coefficients for the jth source, and L

and R indicate the resultant left and right channel
mixtures respectively. Based on these equations,
an intensity ratio for each source can be defined
as:

gj =
Plj

Prj
(3)

As the mixture signals are linear mixtures of the
original sources, it can be seen that L − gjR will
cause the jth source to be cancelled from the mix-
ture. While this is sufficient to eliminate a given

source from a mixture of sources, recovery of the
cancelled source requires the use of frequency do-
main techniques.

Therefore, a Short Time Fourier Transform
(STFT) is carried out on each of the mixture sig-
nals, using the same parameters for each signal,
typically a 4096 point FFT, with a hopsize of 1024
points. A frequency-azimuth plane is then created
for each channel, where β is the azimuth resolu-
tion, which determines how many equally spaced
gain scaling values of g are used to create the plane.
β is related to the gain as follows

gi = i ∗
1

β
(4)

where 0 ≤ i ≤ β and where i and β are integers. A
frequency-azimuth plane for each channel can then
be defined as:

AzR(k,i) = |Lfk − giRfk| (5)

AzL(k,i) = |Rfk − giLfk| (6)

where AzR and AzL are the right and left chan-
nel azimuth frequency planes, and Rfk and Lfk

are the current right and left frames of the STFT
respectively.



At azimuth positions where a source is present,
the energy in the frequency bins associated with
a given source will be cancelled out and there will
be a minimum at that position in the azimuth fre-
quency plane. In order to estimate the magnitude
of the energy lost due to cancellation at each fre-
quency bin, the azimuth-frequency plane is then
redefined as:

AzR(k,i) =
{

AzR(k)max
− AzR(k)min

ifAzR(k,i) = AzR(k)min

0 otherwise

(7)

AzL(k,i) =
{

AzL(k)max
− AzL(k)min

ifAzL(k,i) = AzL(k)min

0 otherwise

(8)

To separate sources at different spatial positions
in the stereo field, a discrimination index d is de-
fined, where 0 ≤ d ≤ β, with d indicating the po-
sition of the source in the azimuth plane. In many
cases dealing with musical sources, there will be
frequency overlap between different sources which
will cause the position of a frequency minimum to
drift away from that of the source position. In
order to overcome this problem, an azimuth sub-
space width, H is defined, so that 1 ≤ H ≤ β.
Together with d, this defines what portion of the
azimuth-frequency plane to resynthesise.

Given d and H for a given source, the magnitude
spectrogram of the current frame of that source
can be estimated from:

YR(k) =

i=d+H/2
∑

i=d−H/2

AzRk,i (9)

YL(k) =

i=d+H/2
∑

i=d−H/2

AzLk,i (10)

A time-domain signal can be obtained by applying
the phase information from the original mixture
signal to the magnitude spectrogram and carrying
out an inverse Fourier Transform.

The Adress Algorithm has been shown to give
high quality separations for stereo mixtures, and
is capable of functioning in real-time [2]. However,
to-date, no research has been carried out on tech-
niques for determining the optimal values of d and
H for separation of the sources in a mixture. This
would be useful in cases where a large volume of
audio material has to be separated, such as in a
large audio archive. The remainder of this paper
focuses on developing a technique for the deter-
mining the optimal values of H for the sources in
a given mixture.

II Sparsity and the L-curve

In the spectrograms of any mixture of sound
sources there will be a greater number of time-
frequency bins with significant energy in them
than in the individual source spectrograms. There-
fore it can be seen that the spectrograms of in-
dividual sources will be sparser than the mixture
spectrograms. It follows from this that a good so-
lution to the problem of separating sound sources
is to find sparse individual source spectrograms,
which, when combined, still give a good recon-
struction of the original mixture spectrograms. It
can be appreciated that there is a trade-off be-
tween the sparseness of the sources and the re-
construction of the mixtures, and a technique is
needed to measure this trade-off.

A simple approach to this problem is the L-curve
method proposed by Hansen [3]. Though the L-
curve was developed for use in another context, it
has been found by Morup et al. to generalise well
for use in measuring the trade-off between sparse-
ness and reconstruction error [4]. In this paper,
the L-curve was used in the context of sparse cod-
ing. A typical cost function used in sparse coding
is

Dspar (A,S) =
1

2
‖X− AS‖2 + λ

∑

i,

|Sij | (11)

where X is the original data matrix and A and S

are the matrix factors used to reconstruct X. The
cost function attempts to balance the reconstruc-
tion of the original data, as measured by the the
squared Euclidean distance given in the first term,
with the sparseness of the reconstruction, as mea-
sured by the second term. The sparseness of the
solution is determined by the value of λ.

The L-curve was then obtained by plotting the
reconstruction error, against the l0-norm of the
sparse code matrix for various values of λ. The
optimal value of λ was taken to be the value as-
sociated with the point of maximum curvature of
the L-curve. This method was found to give good
results both in image analysis and in the sound
source separation of musical instruments.

In the context of the Adress algorithm, once the
azimuth positions of the sources have been deter-
mined, the sparseness of the solution is determined
by the azimuth width H , which controls the num-
ber of frequency bins used to reconstruct a given
source, with the fewer bins used, the sparser the
representation of the recovered source. Therefore,
it is proposed to use an L-curve approach to deter-
mine the optimal azimuth widths that balance re-
construction of the original mixture spectrograms
with the sparseness of the source spectrograms.

Unlike the sparse coding case where there is a
single parameter λ to be optimised, here the num-
ber of parameters to be optimised is equal to the



number of sources identified in the mixture. This
makes plotting an L-curve directly unfeasible, and
so we have adopted the approach of using an L-
curve distance measure defined as:

DL =
√

r2 + l02 (12)

where r is the reconstruction error and l0 is the
l0-norm for a given set of azimuth widths, with
one width per source. The optimal set of azimuth
widths is then determined as the set of widths as-
sociated with the smallest DL.

III Measures for Data Reconstruction

The L-curve approach requires the use of a mea-
sure of the reconstruction error between the orig-
inal data and the reconstructed data. In the con-
text of sparse coding the squared Euclidean dis-
tance was used, which measures the closeness of
the reconstruction in a least squares sense:

DSED

(

X, X̂
)

=
1

2

∑

ij

(xij − x̂ij)
2 (13)

However, in the context of sound source sep-
aration algorithms, it has been found that other
measures often give better results. In particular,
the generalised Kullback-Liebler (KL) divergence,
which has found widespread use in non-negative
matrix factorisation [5], has been found to be a
useful measure for sound source separation of mu-
sical instruments [6]. In light of this, it was decided
to use this distance to see if it gave better perfor-
mance in this context than the squared Euclidean
distance. The generalised KL divergence is given
by:

DKLD(X‖X̂) =
∑

ij

(

xij log
xij

x̂ij
− xij + x̂ij

)

(14)

Another measure used in testing the L-curve ap-
proach is the Itakura-Saito divergence [7], which
was designed as a similarity measure for speech
signals, as it was felt that it might have some appli-
cability in a musical context as well. The Itakura-
Saito (IS) distance is given by:

DISD(X‖X̂) =
∑

ij

(

xij

x̂ij
− log

xij

x̂ij
− 1

)

(15)

IV Source Separation Performance

Metrics

In order to quantitatively measure the quality of
the separations obtained, a set of separation per-
formance metrics must be used. A commonly used
set of metrics are those defined by Vincent et al [8].
Here the recovered time domain signal is decom-
posed into the sum of three terms, with reference
to the original unmixed source signal:

srec = star + eint + eart (16)

where srec is the recovered source signal, star is the
portion of the recovered signal that relates to the
original or target source, eint is the portion that
relates to interference from other sources, and eart

is the portion that relates to artifacts generated
by the separation technique and/or the resynthe-
sis method. Based on this decomposition, source
separation metrics were then defined.

The first of these, Signal to Distortion ratio
(SDR), provides a measure of the overall quality
of the sound source separation:

SDR = 10log10
‖star‖

2

‖eint + eart‖2
(17)

The Signal to Interference ratio (SIR) provides a
measure of the presence of other sources in the
separated source:

SIR = 10log10
‖star‖

2

‖eint‖2
(18)

Finally, the Signal to Artifacts ratio (SAR) pro-
vides a measure of the artifacts present in the sig-
nal due to separation and/or resynthesis:

SAR = 10log10
‖star + eint‖

2

‖eart‖2
(19)

These metrics are invariant to scaling factors
and were calculated using the BSS EVAL toolbox
available at [9].

V Evaluation Methodology

In order to evaluate the performance of the L-
curve approach in determining the optimal az-
imuth widths for source separation, a set of 15
test signals were created using a large library of
orchestral samples [10]. The 15 test signals were
of 4 seconds duration and contained mixtures of
melodies played by three different instruments or
sources. Samples from a total of 15 different or-
chestral instruments were used. Fixed azimuth po-
sitions were used for the sources in each example,
with the first source at -0.6, the second at 0 and
the third at 0.6, where an azimuth postion of -1
corresponds to fully left, zero to the centre and 1
to fully right. These azimuth positions were pro-
vided to the Adress algorithm.

For each test signal, the azimuth width for each
of the sources was varied from 0.05 to 0.5 in steps
of 0.05, resulting in 10 azimuth widths for each
source. The source spectrograms for each azimuth
width of each source were obtained, and for each
of the 1000 possible combination, the l0-norm,
DSED, DKLD and DISD were obtained. From
these DL, the L-curve distance measure between
the l0-norm and the data reconstruction measures
was calculated.



For each azimuth width of each source, the re-
sultant source spectrogram was inverted back to
the time domain by applying the original mixture
phase information to the spectrogram. The phase
of the left channel used for left dominant sources,
and the phase of the right channel used for right
dominant sources, with the left channel phase in-
formation used for sources positioned in the centre.
SDR, SIR and SAR were then calculated from the
recovered time-domain signals for each width of
each source. For each of the 1000 possible combi-
nations of the 3 sources, an overall SDR, SIR and
SAR were calculated by taking the mean of the
metrics for the individual sources. This was done
in order to provide an overall measure of separa-
tion for each of the azimuth width sets. The results
obtained are discussed in the following section.

VI Results

On examination of the results obtained, it was
found that a high degree of correlation was ob-
served across all test signals between the L-curve
distance measures for the generalised Kullback-
Leibler distance and both SDR and SAR, and simi-
larly for the Itakura-Saito distance. No correlation
was observed with the squared Euclidean distance,
and no correlation was observed with SIR and any
of the distance measures. Figure 1 shows the re-
sults obtained for one of the test signals. The 1000
datapoints corresponding to all possible azimuth
width combinations were sorted by their SDR, and
the plot shows SDR, −DL for the KL distance,
−DL for the IS distance, and −DL for the squared
Euclidean distance. It can be seen that the trends
for the KL and IS distances closely follow those of
the SDR, while no relationship is visible for the
squared Euclidean distance.

100 200 300 400 500 600 700 800 900 1000

0

2

4

6

8

100 200 300 400 500 600 700 800 900 1000

−5

−4

−3

−2

−1

x 10
7

100 200 300 400 500 600 700 800 900 1000

−6

−4

−2

x 10
21

100 200 300 400 500 600 700 800 900 1000
−10

−9

−8

−7

−6
x 10

7

Fig. 1: Results obtained from one of the test signals for
SDR, −DL for the KL distance, −DL for the IS distance,
and −DL for the squared Euclidean distance respectively

Similarly, Figure 2 shows the results obtained
for SIR and the distance measures, sorted by SIR.
No correlation can be seen between SIR and any
of the measures. The results obtained for SAR

were very similar to those for SDR and so are not
shown.
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Fig. 2: Results obtained from one of the test signals for
SiR, −DL for the KL distance, −DL for the IS distance,
and −DL for the squared Euclidean distance respectively

Figure 3 shows the correlation coefficients ob-
tained between SDR and the 3 distance measures
for each of the 15 test signals. Results for the KL
distance are shown as a solid line with a cross in-
dicating the data points, the IS distance is shown
as a dash-dotted line with a square marking the
data points, and the squared Euclidean distance
is shown as a dashed line with circles marking the
points. There is a large negative correlation be-
tween SDR and both the KL and IS distances,
while no significant correlation is observed for the
squared Euclidean distance. It can also be seen
that the results for both KL and IS distances are
very similar, though the KL distance does on av-
erage outperform the IS distance. Further, the re-
sults for SAR were very similar to those for SDR
and so no figure is shown for SAR.
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Fig. 3: Correlation Coefficients obtained for SDR with DL

for the KL distance (solid line, cross for data points), DL

for the IS distance (dash-dotted line, square for data
points), and DL for the squared Euclidean distance
(dashed line with circle for data points) respectively

Figure 4 shows the correlation coefficients for
SIR and the distance measures. No significant cor-



relation is shown between SIR and each of the mea-
sures.
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Fig. 4: Correlation Coefficients obtained for SiR with DL

for the KL distance (solid line, cross for data points), DL

for the IS distance (dash-dotted line, square for data
points), and DL for the squared Euclidean distance
(dashed line with circle for data points) respectively

It can be seen from the above that DL for both
KL and IS distances can be used to provide a good
estimate of which sets of azimuth widths should
be used to obtain high SDR and SAR values, with
lower DL values providing higher SDR and SAR
values. Figure 5 shows the maximum SDR scores
obtained for each of the data signals, as well as the
maximum SDR scores obtained by using the set of
azimuth widths associated with the minima of each
of the reconstruction measures. It can be seen that
the KL distance provides SDR scores which are
closer to the actual maximum scores than the IS
distance, both of which considerably outperform
the squared Euclidean distance, and that in all
cases the difference between the actual minimum
score and that of the L-curve distance method is
less than 1 dB for the KL distance, with an aver-
age difference of 0.35 dB. The average difference
is 0.83 dB and 3.1 dB for the IS distance and the
squared Euclidean distance respectively. Similar
results are obtained for SAR.

Figure 6 shows the maximum SIR scores ob-
tained for each of the data signals, as well as the
maximum SIR scores obtained by using the set
of azimuth widths associated with the minima of
each of the reconstruction measures. It can be seen
that in general there is a large difference between
the maximum SIR and those returned using the
L-curve method. However, it can also be seen that
the lowest SIR scores returned using the L-curve
method with the KL distance are all higher than
22 dB. This is still a very high level of rejection of
the other sources, and this is evident on listening
to the resynthesised source signals, with little or no
evidence of other sources in the recovered signals.
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Fig. 5: SDR values for each test signal, maximum
achieved (solid line, circle for data points), SDR for

minimum KL distance (dashed line, + for data points),
SDR for minimum IS distance (dash-dotted line, x for

data points), and SDR for the squared Euclidean distance
(dotted line, square for data points) respectively
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distance (dashed line, + for data points), SIR for
minimum IS distance (dash-dotted line, x for data points),
and SIR for the squared Euclidean distance (dotted line,

square for data points) respectively

Further, the results for SDR and SAR are very
similar, which suggests that the limiting factor in
the resynthesis quality of the separated sources is
not interference from other sources, but artifacts
from the separation and resynthesis, or in terms
of Eqn. 16 that eart ≫ eint and so SDR becomes
approximately equal to SAR. Therefore, once SIR
is high, as it is in the sources recovered using the
L-curve with KL method, the more important con-
sideration is high SDR. In this light, the L-curve
distance method, when used in conjunction with
the KL distance, can be seen as a good approx-
imation to the optimal overall separation of the
sources in the mixture. This is evident in listening
to the recovered source signals.

However, there is a downside to the method,



in that it currently requires an exhaustive search
of all combinations of azimuth widths across all
sources. While this still only takes a couple of
minutes, it considerably slows down recovery of
the sources.

VII Conclusions

The Adress sound source separation algorithm was
described, and the fact that the azimuth position
and width had to be manually fixed highlighted.
It was then noted that there was a trade-off be-
tween the sparseness of the sources, as controlled
by the azimuth width and accurate reconstruction
of the original mixture spectrograms, and that the
sparsest set of recovered sources which still gave
good reconstruction were likely to be a good ap-
proximation to the actual sources.

Taking inspiration from the L-curve method
used in sparse coding to control the trade-off be-
tween sparseness and accurate reconstruction, the
method was adapted to deal with determining the
optimal set of azimuth widths, by obtaining a dis-
tance measure combining the l0-norm of the re-
covered spectrograms with the reconstruction er-
ror. A number of different reconstruction measures
were used and it was found that the generalised
Kullback Leibler distance gave the best approxi-
mation to the optimal separation of the sources as
measured by SDR, with results close to the opti-
mal obtained consistently.

However, a drawback of the method is that, at
present, it requires an exhaustive search of the pos-
sible combinations of azimuth widths across all the
sources. Future work will concentrate on develop-
ing faster methods of performing this search.
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