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Recently, shift-invariant tensor factorisation algorithms have been proposed for the purposes of sound source separation of
pitched musical instruments. However, in practice, existing algorithms require the use of log-frequency spectrograms to allow
shift invariance in frequency which causes problems when attempting to resynthesise the separated sources. Further, it is difficult
to impose harmonicity constraints on the recovered basis functions. This paper proposes a new additive synthesis-based approach
which allows the use of linear-frequency spectrograms as well as imposing strict harmonic constraints, resulting in an improved
model. Further, these additional constraints allow the addition of a source filter model to the factorisation framework, and an
extended model which is capable of separating mixtures of pitched and percussive instruments simultaneously.

Copyright © 2008 Derry FitzGerald et al. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
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1. Introduction

The use of factorisation-based approaches for the separation
of musical sound sources dates back to the early 1980s
when Stautner used principal component analysis (PCA)
to separate different tabla strokes [1]. However, it was not
until the development of independent component analysis
(ICA) [2] and techniques such as sparse coding [3, 4]
and nonnegative matrix factorisation (NMF) [5, 6] that
factorisation-based approaches received much attention for
the analysis and separation of musical audio signals [7–11].

Factorisation-based approaches were initially applied to
single channel separation of musical sources [7–10], where
time-frequency analysis was performed on the input signal,
yielding a spectrogram X of size n×m. This spectrogram was
then factorised to yield a reduced rank approximation

X ≈ ̂X = AS, (1)

where A is of size n × r and S is of size r × m, with r
less than n and m. In this case, the columns of A contain
frequency basis functions, while the corresponding rows of S
contain amplitude basis functions which describe when the
frequency basis functions are active. Typically this is done

on a magnitude or power spectrogram, and this approach
makes the assumption that the spectrograms generated by
the basis function pairs sum together to generate the mixture
spectrogram. This does not take into account the effects of
phase when the spectrograms are added together, and in
the case of magnitude spectrograms this assumption is only
true if the sources do not overlap in time and frequency,
while it holds true on average for power spectrograms. Where
the various techniques differ is in how this factorisation
is achieved. Casey and Westner [7] used PCA to achieve
dimensional reduction and then performed ICA on the
retained principal components to achieve independent basis
functions, while more recent work has focused on the use of
nonnegativity constraints in conjunction with a suitable cost
function [8, 9].

A commonly used cost function is the generalised
Kullback-Leibler divergence proposed by Lee and Seung [5]:

D
(

X‖̂X) =
∑

i j

(

Xi j log
Xi j

̂Xi j

−Xi j + ̂Xi j

)

(2)

which is equivalent to assuming a Poisson noise model
for the data [12]. This cost function has been widely used
due to its ease of implementation, lack of parameters, and
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the fact that it has been found to give reasonable results
in many cases [13, 14]. A sparseness constraint can also
be added to this cost function, and multiplicative update
equations which ensure nonnegativity can be derived for
these cost functions [15]. Other cost functions have been
developed for factorisation of audio spectrograms such as
that of Abdallah and Plumbley which assumes multiplicative
gamma-distributed noise in power spectrograms [16]. A
similar cost function recently proposed by Parry and Issa
attempts to incorporate phase into the factorisation by
using a probabilistic phase model [17, 18]. Families of
parameterised cost functions have been proposed, such as the
Beta divergence [19], and Csiszar’s divergences [20]. The use
of the Beta divergence for the separation of speech signals
has been investigated by O’Grady [21], who also proposed a
perceptually-based noise to mask ratio as a cost function.

Regardless of the cost function used, the resultant
decomposition is linear, and as a result each basis function
pair typically corresponds to a single note or chord played
by a given pitched instrument. Therefore, in order to
achieve sound source separation, some method is required to
group the basis functions by source or instrument. Different
grouping methods have been proposed in [7, 8], but in
practice it is difficult to obtain the correct clustering for
reasons discussed in [22].

1.1. Tensor Notation

When dealing with tensor notation, we use the conventions
described by Bader and Kolda in [23]. Tensors are denoted
using calligraphic uppercase letters, such as A. Rather than
using subscripts to indicate indexing of elements within
a tensor or matrix, such as Xi, j , indexing of elements is
instead notated by X(i, j). When dealing with contracted
product multiplication of two tensors, if W is a tensor of
size I1 × · · · × IN × J1 × · · · × JM and Y is a tensor of size
I1 × · · · × IN × K1 × · · · × KP , then contracted product
multiplication of the two tensors along the first N modes is
given by

〈WY〉{1:N ,1:N}
(

j1, . . . , jm, k1, . . . , kp
)

=
I1
∑

i1=1

· · ·
IN
∑

iN=1

W
(

i1, . . . , iN , j1, . . . , jM
)

×Y
(

i1, . . . , iN , k1, . . . , kP
)

,

(3)

where the modes to be multiplied are specified in the
subscripts that are contained in the angle brackets.

Elementwise multiplication and division are represented
by ⊗ and �, respectively, and outer product multiplication
is denoted by ◦. Further, for simplicity of notation, unless
otherwise stated, we use the convention that : k denotes the
tensor slice associated with the kth source, with the singleton
dimension included in the size of the slice.

1.2. Tensor Factorisation

Recently, the above matrix factorisation techniques have
been extended to tensor factorisation models to deal with

stereo or multichannel signals by FitzGerald et al. [24] and
Parry and Essa [25]. The signal model can be expressed as

X ≈ ̂X =
B
∑

b=1

G:b ◦A:b ◦ S:b, (4)

where X is an r × n×m tensor containing the spectrograms
of the r channels, G is an r × B matrix containing the gains
of the B basis functions in each channel, A is a matrix of size
n×B containing a set of frequency basis functions, and S is a
matrix of sizem×B containing the amplitude basis functions.
In this case, : b is used to denote the bth column of a given
matrix.

As a first approximation, many commercial stereo
recordings can be considered to have been created by
obtaining single-channel recordings of each instrument indi-
vidually and then summing and distributing these recordings
across the two channels, with the result that for any given
instrument, the only difference between the two channels lies
in the gain of the instrument [26]. The tensor factorisation
model provides a good approximation to this case. The
extension to tensor factorisation also provides another source
of information which can be leveraged to cluster the basis
functions, namely that basis functions belonging to the same
source should have similar gains. However, as the number of
basis functions increases it becomes more difficult to obtain
good clustering using this information, as basis functions
become shared between sources.

2. Shift-Invariant Factorisation Algorithms

The concept of incorporating shift invariance in factorisation
algorithms for sound source separation was introduced
in the convolutive factorisation algorithms proposed by
Smaragdis [27] and Virtanen [28]. This was done in
order to address a particular shortcoming of the standard
factorisation techniques, namely that a single frequency basis
function is unable to successfully capture sounds where
the frequency content evolves with time, such as spoken
utterances and drum sounds. To overcome this limitation,
the amplitude basis functions were allowed to shift in time,
with each shift capturing a different frequency basis function.
When these frequency basis functions were combined, the
result was a spectrogram of a given source that captured the
temporal evolution of the frequency characteristics of the
sound source.

Shift invariance in the frequency basis functions was later
developed as a means of overcoming the problem of group-
ing the frequency basis functions to sources, particularly in
the case where different notes played by the same instrument
occurred over the course of a spectrogram [14, 29]. This
shortcoming had been addressed by Vincent and Rodet using
a nonlinear ISA approach [30], but this technique required
pretraining of source priors before separation.

When incorporating shift invariance in the frequency
basis functions, it is assumed that all notes played by a
single pitched instrument consist of translated versions of a
single frequency basis function. This single instrument basis
function is then assumed to represent the typical frequency
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characteristics of that instrument. This is a simplification
of the real situation, where in practice, the timbre of a
given instrument does change with pitch [31]. Despite
this, the assumption does represent a valid approximation
over a limited pitch range, and this assumption has been
used in many commercial music samplers and synthesisers,
where a prerecorded note of a given pitch is used to
generate other notes close in pitch to the original note. The
principal advantage of using shift invariance in the frequency
basis functions is that instead of having basis functions
which must be grouped to their respective sources before
separation can occur, as in standard NMF, the frequency shift
invariant model allows individual instruments or sources to
be modelled explicitly with each source having an individual
slice of the tensors to be estimated.

Up till now, the incorporation of shift invariance in the
frequency basis functions required the use of a spectrogram
with log-frequency resolution, such as the constant Q trans-
form (CQT) [32]. Alternatively, a log-frequency transform
can be approximated by weighted summation of linear-
frequency spectrogram bins, such as obtained from a short-
time Fourier transform. This can be expressed as

X = RY, (5)

where Y is a linear-frequency spectrogram with f frequency
bins and t time frames. R is a frequency weighting matrix
of size c f × f which maps the f linear-frequency bins
to c f log-frequency bins, with c f < f and X is a log-
frequency spectrogram of size c f × t. It can be seen that R
is a rectangular matrix and so no true inverse exists, making
any mapping back from log-frequency resolution to linear
frequency resolution only an approximate mapping.

If the frequency resolution of the log-frequency trans-
form is set so that the center frequencies of the bands are
given by fx = f0βx−1, where fx denotes the center frequency
of the xth band, β= 21/12, and f0 is a reference frequency,
then the spacing of the bands will match that of the equal-
tempered scale used in western music. A shift up or down
by one bin will then correspond to a pitch change of one
semitone.

In the context of this paper, translation of basis functions
is carried out by means of translation tensors, though other
formulations, such as the shift operator method proposed
by Smaragdis [27] can be used. To shift an n × 1 vector, an
n×n translation matrix is required. This can be generated by
permuting the columns of the identity matrix. For example,
in the case of shifting a basis function up by one, the
translation matrix can be obtained from I(:, [n, 1 : n − 1]),
where the identity matrix is denoted by I and the ordering
of the columns is contained in the square brackets where
[n, 1 : n − 1] indicates that n is the first element in the
permutation, followed by entries of 1 : n−1. For Z allowable
translations, these translation matrices are then grouped into
a translation tensor of size n× Z × n.

Research has also been done on allowing more general
forms of invariance, such as that of Eggert et al. on
transformation invariant NMF [33], where all forms of
transformation such as translation and rotation are dealt

with by means of a transformation matrix. However, their
model has only been demonstrated on translation or shift
invariance. Further, while a transformation matrix could
potentially be used to allow the use of linear frequency
resolution through the use of a matrix that stretches the
spectrum, it has been noted elsewhere that this stretching
is difficult to perform using a discrete linear frequency
representation [13].

2.1. Shifted 2D Nonnegative
Tensor Factorisation

All of the algorithms incorporating shift invariance can
be seen as special cases of a more general model, shifted
2D nonnegative tensor factorisation (SNTF), proposed by
FitzGerald [34], and separately by [35]. The SNTF model can
then be described as

X ≈
K
∑

k=1

〈

G:k

〈

〈

T A:k
〉

{3,1}
〈

S:kP
〉

{3,1}
〉

{2:4,1:3}

�

{2,2}
, (6)

where X is a tensor of size r × n × m, containing the
magnitude spectrograms of each channel of the signal. G is
a tensor of size r × K , containing the gains of each of the K
sources in each of the r channels. T is an n×z×n translation
tensor, which translates the instrument basis functions in
A up or down in frequency, where z is the number of
translations in frequency, thereby approximating different
notes played by a given source. A is a tensor of size n×K× p,
where p is the number of translations across time. S is a
tensor of size z × K × m containing the activations of the
translations of A which indicate when a given note played by
a given instrument occurs, thereby generating a transcription
of the signal. P is an m × p × m translation tensor which
translates the time activation functions contained in S across
time, thereby allowing time-varying source or instrument
spectra. These tensors, their dimensions, and functions are
summarised in Table 1 for ease of reference, as are all tensors
used in subsequent models. If the number of channels is
set to r = 1, and the allowable frequency translations z are
also set to one, then the model collapses to that proposed
by Virtanen in [28]. Similarly, setting p = 1 results in the
model proposed in [36], while setting both r and p to one
results in the model described in (4). In [34], the generalised
Kullback-Leibler divergence is used as a cost function, and
multiplicative update equations derived for G, A, and S.

When using SNTF, a given pitched instrument is mod-
elled by an instrument spectrogram which is translated up
and down in frequency to give different notes played by the
instrument. The gain parameters are then used to position
the instrument in the correct position in the stereo field.
A spectrogram of the kth separated source can then be
estimated from (6) using only the tensor slices associated
with the kth source. This spectrogram can then be inverted to
a time-domain waveform by reusing the phase information
of the original mixture signal, or by generating a set of
phase information using the technique proposed by Slaney
[37]. Alternatively, the recovered spectrogram can be used
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to generate a Wiener-type filter which can be applied to the
original complex short-time Fourier transform.

As noted previously, the mapping from log-frequency to
linear-frequency domains is an approximate mapping and
this can have an adverse effect on the sound quality of the
resynthesis. Various methods for performing this mapping
and obtaining an inverse CQT have been investigated [38,
39]. However, a simpler method of overcoming this problem
is to incorporate the mapping into the model. This can
be done by replacing T in (6) with 〈RT 〉{2,1}, where R
is an approximate map from log to linear domains. This
mapping can simply be the transpose of R, the mapping
used in (5). Shift invariance is still implemented in the log-
frequency domain, but the cost function is now measured in
the linear-frequency domain. This is similar to the method
proposed by O’Grady when using noise-to-mask ratio as
a cost function [21]. O’Grady included the mapping from
linear to Bark domain in his algorithm, as the cost function
needed to be measured in the Bark scale domain. It was
noted that this resulted in energy spreading in the magnitude
spectrogram domain. In the modified SNTF algorithm, the
opposite case applies, we wish to measure the cost function
in the linear magnitude spectrogram domain, as opposed
to a log-frequency domain, and the incorporation of the
mapping results in less energy spreading in the frequency
basis functions in the constant Q domain. It also has the
advantage of performing the optimisation in the domain
from which the final inversion to the time domain will take
place. Despite this, the use of an approximate mapping still
has adverse effects on the resynthesis quality.

In order to overcome these resynthesis problems,
Schmidt et al. proposed using the spectrograms recovered
to create masks which are then used to refilter the original
spectrogram [40]. Schmidt et al. used a binary masking
approach where bins were allocated to the source which
had the highest power at that bin. In this paper, we use a
refiltering method where the recovered source spectrogram
is multiplied by the original mixture spectrogram as it
was found that this gave better results than the previously
described method.

3. Sinusoidal Shifted 2D Nonnegative
Tensor Factorisation

While SNTF has been shown to be capable of separating
mixtures of harmonic pitched instruments [34], a potential
problem with the method is that there is no guarantee that
the basis functions will be harmonic. A form of harmonic
constraint, whereby the basis functions are only allowed
to have nonzero values at regions which correspond to a
perfectly harmonic sound, has been proposed by Virtanen
[13] and later by Raczynski et al. [11], who used it for
the purposes of multipitch estimation. However, with this
technique, there is no guarantee that values returned in
the harmonic regions of the basis functions will correspond
to the actual shape that a sinusoid would have if present.
It has also been noted by Raczynski that the structure
returned when using this constraint may not always be purely

Table 1: Summary of the tensors used, their dimensions, and func-
tion, in the various shift-invariant factorisation models included in
this paper. Tensors that occur in multiple models are not repeated.

SNTF

X r × n×m Signal spectrograms
̂X r × n×m Approximation of X

G r × K Instrument gains

T n× z × n Translation tensor (freq.)

A n× K × p Instrument basis functions

S z × K ×m Note activations

P m× p ×m Translation tensor (time)

SSNTF
H n× z × h Harmonic dictionary

W h× K × p Harmonic weights

SF-SSNTF F n× K × n Formant filters

SF-SSNTF + N

M r × L Noise instrument gains

B n× L× q Noise basis functions

C L×m Noise activations

Q m× q ×m Noise translation tensor

harmonic as it is possible for the peaks to occur at points that
are not at the centre of the harmonic regions.

An alternative approach to the problem of imposing
harmonicity constraints on the basis functions is to note
that the magnitude spectrum of a windowed sinusoid
can be calculated directly in closed-form as a shifted and
scaled version of the window’s frequency response [41]. For
example, using a Hann window, the magnitude spectrum of
a sinusoid of frequency f0 = h2π/ fs, where h is frequency in
Hz, fs is the sampling frequency in Hz, and N is the desired
FFT, is given by

X(x) = ∣∣0.5D(g) + 0.25
{

D1(g) +D2(g)
}∣

∣, (7)

where g = fx − f0, with fx = x2π/N being the centre
frequency of the xth FFT bin and where D is defined as

D(g) = sin(gN/2)
sin(g/2)

, (8)

with D1(g) = D(g − 2π/N) and D2(g) = D(g + 2π/N). It
is then proposed to use an additive synthesis type model,
where each note is modelled as a sum of sinusoids at integer
multiples of the fundamental frequency of the note, with the
relative strengths of the sinusoids giving the timbre of the
note played. This spectral domain approach has been used
previously to perform additive synthesis, in particular the
inverse FFT method of Freed et al. [42].

For a given pitch and a given number of harmonics, the
magnitude spectra of the individual sinusoids can be stored
in a matrix of size n × h, where n is the number of bins in
the spectrum, and h is the number of harmonics. This can be
repeated for each of the allowed z notes, resulting in a tensor
of size n × z × h. In effect, this tensor is a signal dictionary
consisting of the magnitude spectra of individual sinusoids
related to the partials of each allowable note. Again taking a
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Hann window as an example, the tensor can then be defined
as

H(x, i, j) = ∣∣0.5D
(

gxi j
)

+ 0.25
{

D1
(

gxi j
)

+D2
(

gxi j
)}∣

∣,
(9)

where gxi j = fx − fi, j with fi, j = h0βi−1 j2π/ fs, h0 is
the frequency in hertz of the lowest allowable note and β
is as previously defined in Section 2. This assumes equal-
tempered tuning, but other tuning systems can also be used.

It is also possible to take into account inharmonicity
in the positioning of the partials through the use of inhar-
monicity factors. For example, in the case of instruments
containing stretched strings, fi, j can be calculated as

fi, j = h0β
i−1 j2π

√

1 +
(

j2 − 1
)

α

fs
, (10)

where α is the inharmonicity factor for the instrument in
question [43]. In practice, the magnitude spectra will be close
to zero except in the regions around fi, j , and so it is usually
sufficient to calculate the values of T (x, i, j) for ten bins on
either side of fi, j and to leave the remaining bins at zero.
Further, the frequencies of the lowest partial of the lowest
note, and the highest partial of the highest note place limits
on the region of the spectrogram which will be modelled, and
so spectrogram frequency bins outside of these ranges can be
discarded. If a small number of harmonics are required, this
can considerably reduce the number of calculations required,
thereby speeding up the algorithm.

H contains sets of harmonic partials all of equal gain.
In order to approximate the timbres of different musical
instruments, these partials must be weighted in different
proportions. These weights can be stored in a tensor of size
h × K × p, where K is the number of instruments and p
is the number of translations across time, thereby allowing
the harmonic weights to vary with time. Labeling the weights
tensor as W , the model can be described as

X =
K
∑

k=1

〈

G:k

〈

〈

HW:k
〉

{3,1}
〈

S:kP
〉

{3,1}
〉

{2:4,1:3}

�

{2,2}
.

(11)

Using the generalised Kullback-Leibler divergence as a cost
function, multiplicative update equations can be derived as

G:k=G:k⊗
〈〈〈〈DH〉{2,1}W:k

〉

{4,1}S:k
〉

{3:4,1:2}P
〉

{2:4,3:1}
〈〈〈〈OH〉{2,1}W:k

〉

{4,1}S:k
〉

{3:4,1:2}P
〉

{2:4,3:1}
,

W:k=W:k⊗
〈〈(

G:k ◦H
)

D
〉

{[1,3],1:2}
〈

S:kP
〉

{3,1}
〉

{[1,2,4],[1,2,4]}
〈〈(

G:k ◦H
)

O
〉

{[1,3],1:2}
〈

S:kP
〉

{3,1}
〉

{[1,2,4],[1,2,4]}
,

S:k=S:k⊗
〈〈〈(

G:k ◦H
)

A:k
〉

{[2,5],[2,1]}D
〉

{1:2,1:2}P
〉

{2:3,[2,1]}
〈〈〈(

G:k ◦H
)

A:k
〉

{[2,5],[2,1]}O
〉

{1:2,1:2}P
〉

{2:3,[2,1]}
,

(12)

where D =X�̂X and O is an all-ones tensor with the same
dimensions as X, and all divisions are taken as elementwise.

These update equations are similar to those of SNTF, just
replacing T and A, with a sinusoidal signal dictionary H ,
and a set of harmonic weights W , respectively. It is proposed
to call this new algorithm sinusoidal shifted 2D nonnegative
tensor factorisation (SSNTF) as it explicitly models the
signal as the summation of weighted harmonically related
sinusoids, in effect incorporating an additive synthesis model
into the tensor factorisation framework. SSNTF can still be
considered as shift invariant in frequency, as the harmonic
weights are invariant to where in the frequency spectrum the
notes occur.

An advantage of SSNTF is that the separation problem is
now completely formulated in the linear-frequency domain,
thereby eliminating the need to use an approximate mapping
from log to linear frequency domains at any point in
the algorithm, which removes the potential for resynthesis
artifacts due to the mapping. Resynthesis of the separated
time-domain waveforms can be carried out in a similar
manner to that of SNTF, or alternatively, one can take
advantage of the use of the additive synthesis model to
reconstruct the separated signal using additive synthesis.

The SSNTF algorithm was implemented in Matlab
using the Tensor Toolbox available from [44], as were all
subsequent algorithms described in this paper. The cost
function was always observed to decrease with each iteration.
However, when running SSNTF, it was found that the best
results were obtained when the algorithm was given an
estimate of what frequency region each source was present in.
This was typically done by giving an estimate of the pitch of
the lowest note of each source. For score-assisted separation,
such as that proposed by [45], this information will be readily
available. The incorporation of this information has the
added benefit of fixing the ordering of the sources in most
cases. In cases where there is no score available, estimates
can be obtained by running SNTF first and determining the
pitch information from the recovered basis functions before
running SSNTF. At present, research is being undertaken on
devising alternate ways of overcoming this problem.

As an example of the improved reconstruction that
SSNTF can provide, Figure 1 shows the frequency spectrum
of a flute note separated from a single channel mixture of
flute and piano. SNTF and SSNTF were performed on this
example using 9 translations in frequency and 5 translations
in time. All other parameters were set as described later
in Section 6. The first spectrum is that of the flute note
taken from the original unmixed flute waveform, the second
spectrum is that of the recovered flute note using SNTF, with
the mapping from log to linear domains included in the
model, while the third spectrum is that returned by SSNTF.
It can be appreciated that the spectrum returned by SSNTF
is considerably closer to the original than that returned by
SNTF. This demonstrates the utility of using an approach
which is formulated in the linear frequency domain.

Figure 2 shows the original mixture spectrogram of
piano and flute, while Figure 3(a) shows the unmixed flute
spectrogram, with Figures 3(b), 3(c), and 3(d) showing
the SNTF-separated flute spectrogram, the SNTF-separated
flute spectrogram using refiltering, and the SSNTF-separated
spectrogram, respectively. Figure 4(a) shows the unmixed
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Figure 1: Spectra of flute note, original, SNTF, and SSNTF, respec-
tively.
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Figure 2: Spectrogram of piano and flute mixture.

piano spectrogram, with Figures 4(b), 4(c), and 4(d) show-
ing the SNTF-separated piano spectrogram, the SNTF-
separated piano spectrogram obtained using refiltering, and
the SSNTF-separated spectrogram, respectively. It can be
seen that the spectrograms recovered using SSNTF are
considerably closer to the original spectrograms than that
recovered directly from SNTF, where the smearing due to the
approximate mapping from log to linear domains is clearly
evident. Considerably improved recovery of the sources was
also noted on playback of the separated SSNTF signals in
comparison to those obtained using SNTF directly. The
spectrograms obtained using SNTF in conjunction with
refiltering can be also seen to be considerably closer to
the original spectrograms than any of the other methods.
However, on listening, the sound quality is still less than
that obtained using SSNTF. Further, as will be seen later,
the SNTF-based methods are not as robust as SSNTF-based
methods.
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Figure 3: Spectrogram of flute signal, (a) original unmixed, (b)
SNTF, (c) refiltered SNTF, (d) SSNTF, (e) source-filter SSNTF.

It should also be noted that the addition of harmonic
constraints imposes restrictions on the solutions that can be
returned by the factorisation algorithms. This is of consider-
able benefit when incorporating additional parameters into
the models, as will be seen in the following sections.

4. Source-Filter Modelling

As noted previously in Section 2, the use of a single shifted
instrument basis function to model different notes played by
an instrument is a simplification. In practice, the timbre of
notes played by a given instrument changes with pitch, and
this restricts the usefulness of shifted factorisation models.
Recently, Virtanen and Klapuri proposed the incorporation
of a source-filter model approach in the factorisation method
as a means of overcoming this problem [46]. In the source-
filter framework for sound production, the source is typically
a vibrating object, such as a violin string, and the filter
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Figure 4: Spectrogram of piano signal, (a) original unmixed, (b)
SNTF, (c) refiltered SNTF, (d) SSNTF, (e) source-filter SSNTF.
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Figure 5: Filter returned for flute when using source-filter SSNTF.

accounts for the resonant structure of the instrument,
such as the violin body, which alters and filters the sound
produced by the vibrating object. This approach had been
used previously in both sound synthesis and speech coding
[47, 48], but not in a factorisation framework.

When applied in the context of shifted instrument
basis functions, the instrument basis function represents a
harmonic excitation pattern which can be shifted up and
down in frequency to generate different pitches. A single
fixed filter is then applied to these translated excitation pat-
terns, with the filter representing the instrument’s resonant
structure. This results in a system where the instrument
timbre varies with pitch, resulting in a more realistic model.
The instrument formant filters can be incorporated into the
shifted tensor factorisation framework through a formant
filter tensor F of size n × K × n. In this case, the kth slice
of F is a diagonal matrix, with the instrument formant filter
coefficients contained on the diagonal.

Unfortunately, attempts to incorporate the source-filter
model into the SNTF framework were unsuccessful. The
resultant algorithm had too many parameters to optimise
and it was difficult to obtain good separation results.
However, the additional constraints imposed by SSNTF were
found to make the problem tractable. The resultant model
can then be described as

X ≈ ̂X =
K
∑

k=1

〈

G:k

〈

〈

R:kW:k
〉

{[2,4],[2,1]}V:k

〉

{2:4,[2,1,3]}

�

{2,2}
,

(13)

where R:k = 〈F:kH〉{3,1} and V:k = 〈S:kP 〉{3,1}.
Again using the generalised Kullback-Lieber divergence

as a cost function, the following update equations were
derived:

G:k=G:k⊗
〈〈

D
〈

R:kW:k
〉

{[2,4],[2,1]}
〉

{2,1}V:k
〉

{2:5,[4,2,1,3]}
〈〈

O
〈

R:kW:k
〉

{[2,4],[2,1]}
〉

{2,1}V:k
〉

{2:5,[4,2,1,3]}
,

F:k=F:k⊗
〈〈

G:kD
〉

{1,1}
〈〈

HW:k
〉

{3,1}V:k
〉

{2:4,1:3}
〉

{[1,3],2:3}
〈〈

G:kO
〉

{1,1}
〈〈

HW:k
〉

{3,1}V:k
〉

{2:4,1:3}
〉

{[1,3],2:3}
,

W:k=W:k⊗
〈〈〈

G:kR:k
〉

{2,2}D
〉

{[1,3],1:2}V:k
〉

{[1,2,4],[2,1,4]}
〈〈〈

G:kR:k
〉

{2,2}O
〉

{[1,3],1:2}V:k
〉

{[1,2,4],[2,1,4]}
,

S:k=S:k⊗
〈〈

G:k
〈

R:kW:k
〉

{[2,4],[2,1]}
〉

{2,2}〈DP 〉{3,1}
〉

{[1,3,5],1:3}
〈〈

G:k
〈

R:kW:k
〉

{[2,4],[2,1]}
〉

{2,2}〈OP 〉{3,1}
〉

{[1,3,5],1:3}
.

(14)

Figure 5 shows the filter recovered for the flute from the
example previously discussed in Section 3. It can be seen that
the recovered filter consists of a series of peaks as opposed to
a smooth formant-like filter. This is due to a combination of
two factors, firstly, the small number of different notes played
in the original signal, and secondly, the harmonic constraints
imposed by SSNTF. This results in a situation where large
portions of the spectrum will have little or no energy, and
accordingly the filter models these regions as having little or
no energy.

On listening to the resynthesis, there was a marked
improvement in the sound quality of the flute in comparison
with SSNTF, with less high-frequency energy present. The
resynthesis of the piano also improved, though less so than
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Figure 6: Spectrograms for (a) original flute spectrogram, (b) spec-
trogram recovered using source-filter SSNTF, and (c) spectrogram
recovered using SSNTF.
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Figure 7: Filter returned for solo flute example in Figure 6 when
using source-filter SSNTF.

that of the flute. Figures 3(e) and 4(e) show the spectrograms
recovered using source-filter SSNTF for the flute and piano,
respectively. It can be observed that the flute spectrogram
is closer to the original than either SNTF or SSNTF, with
no smearing and a reduced presence of higher harmonics
in comparison to SSNTF, which is in line with what was
observed on listening to the resynthesis. In comparison
to the SNTF and refiltering approach, source-filter SSNTF
has retained more high-frequency information than the
refiltered approach, and can be seen to be closer to the
original spectrogram. In the case of the piano, the refiltered
spectrogram contains more high-frequency information
than the source-filter SSNTF approach, which is closer to
the original piano spectrogram. On listening, the source-
filter SSNTF approach also outperforms the refiltered SNTF
approach.

As a further example of source-filter SSNTF, Figure 6(a)
shows the spectrogram of a flute signal consisting of 16 notes,

one semitone apart played in ascending order, while Figures
6(b) and 6(c) show the spectrogram recovered using source-
filter SSNTF and SSNTF, respectively. It can be seen that the
source-filter method has returned a spectrogram closer to the
original, with less high-frequency information than SSNTF.
Figure 7 shows the source-filter associated with Figure 6(b).
It can be seen that in this case, where 16 successive notes are
played, the source-filter is smoother, as would be expected for
a formant-like filter, but as the harmonics get further apart,
evidence of peakiness similar to that in Figure 5 becomes
more evident.

The above examples demonstrate the utility of using the
source-filter approach as a means of improving the accuracy
of the SSNTF model. This is bourn out in the improved
resynthesis of the separated sources.

5. Separation of Pitched and
Nonpitched Instruments

Musical signals, especially popular music, typically contain
unpitched instruments such as drum sounds in addition
to pitched instruments. While allowing shift invariance in
both frequency and time is suitable for separating mixtures
of pitched instruments, it is not suitable for dealing with
percussion instruments such as the snare and kick drums,
or other forms of noise in general. These percussion
instruments can be successfully captured by algorithms
which allow shift invariance in time only without the use
of frequency shift invariance. In order to deal with musical
signals containing both pitched and percussive instruments
or contain additional noise, it is necessary to have an
algorithm which handles both these cases. This can be
done by simply adding the two models together. This
has previously been done by Virtanen in the context of
matrix factorisation algorithms [13], who also noted that
the resulting model was too complex to obtain good results
without the addition of additional constraints. In particular,
the use of a harmonicity constraint was required, though in
this case it was based on zeroing instrument basis functions
in areas where no harmonic activity was expected, as opposed
to the additive synthesis-based technique proposed in this
paper.

Extending the concept to the case of tensor factorisation
techniques results in a generalised tensor factorisation model
for the separation of pitched and percussive instruments,
which still allows the use of a source-filter model for pitched
instruments. The model can be described by

X ≈ ̂X =
K
∑

k=1

〈

G:k
〈〈

R:kW:k
〉

{[2,4],[2,1]}V:k
〉

{2:4,[2,1,3]}

〉

{2,2}

+
L
∑

l=1

〈

M:l
〈

B:k
〈

C:lQ
〉

{2,1}
〉

{2:3,1:2}

〉

{2,2},

(15)

where M is a tensor of size r × L, which contains the
gains of each of the L percussive sources, B is a tensor
of size n × L × q, where q is the number of allowable
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time shifts for the percussive sources, C is a tensor of size
L × m, and Q is a translation tensor of size m × q × m.
Multiplicative update equations, based on the generalised
Kullback-Leibler divergence can then be derived for these
additional parameters, while update equations for all other
parameters are as given in Section 4. The additional update
equations are given by

M:l =M:l ⊗
〈

D
〈

B〈CQ〉{2,1}
〉

{2:3,1:2}
〉

{2:3,[1,3]}
〈

O
〈

B〈CQ〉{2,1}
〉

{2:3,1:2}
〉

{2:3,[1,3]}
,

B:l = B:l ⊗
〈〈

M:lD
〉

{1,1}〈CQ〉{2,1}
〉

{[1,3],[1,3]}
〈〈

M:lO
〉

{1,1}〈CQ〉{2,1}
〉

{[1,3],[1,3]}
,

C:l = C:l ⊗
〈〈

M:lB
〉

{2,2}〈DQ〉{3,3}
〉

{[1,3,4],[1,2,4]}
〈〈

M:lB
〉

{2,2}〈OQ〉{3,3}
〉

{[1,3,4],[1,2,4]}
.

(16)

The individual sources can be separated as before, but
the algorithm can also be used to separate the pitched
instruments from the unpitched percussive instruments or
vice-versa by resynthesising the relevant section of the model.
It can also be used as a means of eliminating noise from
mixtures of pitched instruments by acting as a type of
“garbage collector,” which can improve resynthesis quality
in some cases. It can also be viewed as being analogous
to the additive plus residual sinusoidal analysis techniques
described by Serra [49] in that it allows the pitched or
sinusoidal part of the signal to be resynthesised separately
from the noise part of the signal.

As an example of the use of the combined model,
Figure 8 shows the mixture spectrograms obtained from a
stereo mixture containing three pitched instruments, piano,
flute, and trumpet, and three percussion instruments, snare,
hi-hats, and kick drum, while Figure 9 shows the original
unmixed spectrograms for those sources, respectively. The
piano, snare, and kick drum were all panned to the center,
with the hi-hats and flute panned midleft and the trum-
pet midright. Figure 10 shows the separated spectrograms
obtained using the combined model. It can be seen that
the sources have been recovered well, with each individual
instrument identifiable, though traces of other sources can
be seen in the spectrograms. This is most evident where
traces of the hi-hats are visible in the snare spectrogram, but
the snare clearly predominates. On listening to the results,
traces of the flute can also be heard in the piano signal,
and the timbres of the instruments have been altered, but
are still recognisable as being the instrument in question.
The example also highlights another advantage of tensor
factorisation models in general, namely the ability to separate
instruments which have the same position in the stereo field.
This is in contrast to algorithms such as Adress and DUET,
which can only separate sources if they occupy different
positions in the stereo field [26, 50].

6. Performance Evaluation

The performances of SNTF, SNTF using refiltering, SSNTF,
source-filter SSNTF, and source-filter SSNTF with noise basis
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Figure 8: Mixture spectrograms of piano, flute, trumpet, snare, hi-
hats, and kick drum.

functions in the context of modelling mixtures of pitched
instruments were compared using a set of 40 test mixtures.
In the case of source-filter SSNTF with noise basis functions,
two noise basis functions were learned in order to aid the
elimination of noise and artifacts from the harmonic sources.
The 40 test signals were of 4 seconds duration and contained
mixtures of melodies played by different instruments and
created by using a large library of orchestral samples [51].
Samples from a total of 15 different orchestral instruments
were used. A wide range of pitches were covered, from
87 Hz to 1.5 kHz, and the melodies played by the individual
instruments in each test signal were in harmony. This was
done to ensure that the test signals contained extensive
overlapping of harmonics, as this occurs in most real world
musical signals. In many cases, the notes played by one
instrument overlapped notes played by another instrument
to test if the algorithms were capable of discriminating notes
of the same pitch played by different instruments.

The 40 test signals consisted of 20 single channel mixtures
of 2 instruments and 20 stereo mixtures of 3 instruments,
and these mixtures were created by linear mixing of individ-
ual single channel instrument signals. In the case of the single
channel mixtures, the source signals were mixed with unity
gain, and in the case of the stereo mixtures, mixing was done
according to

(

x1(t)

x2(t)

)

=
(

0.75 0.5 0.25

0.25 0.5 0.75

)

⎛

⎜

⎜

⎝

s1(t)

s2(t)

s3(t)

⎞

⎟

⎟

⎠

, (17)

where x1(t) and x2(t) are the left and right channels of the
stereo mixture and s1(t) represents the first single channel
instrument signal and so on.

Spectrograms were obtained for the mixtures, using a
short-time Fourier transform with a Hann window of 4096
samples, with a hopsize of 1024 samples between frames.
All variables were initialised randomly, with the exception
of the frequency basis functions for SNTF-based separation,
which were initialised with harmonic basis functions at the
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Figure 9: Original spectrograms of (a) piano, (b) flute, (c) trumpet,
(f) snare, (g) hi-hats, and (h) kick drum.

frequency of the lowest note played by each instrument in
each example. This was done to put SNTF on an equal
footing with the SSNTF-based algorithms, where the pitch of
the lowest note of each source was provided. The number of
allowable notes was set to the largest pitch range covered by
an instrument in the test signal and the number of harmonics
used in SSNTF was set to 12. The algorithms were run for
300 iterations, and the separated source spectrograms were
estimated by carrying out contracted tensor multiplication
on the tensor slices associated with an individual source.
The recovered source spectrograms were resynthesised using
the phase information from the mixture spectrograms. The
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Figure 10: Separated spectrograms of (a) piano, (b) flute, (c)
trumpet, (f) snare, (g) hi-hats and (h) kick drum.

phase of the channel where the source was strongest was used
in the case of the stereo mixtures.

Using the original source signals as a reference, the
performance of the different algorithms were evaluated using
commonly used metrics, namely the signal-to-distortion
ratio (SDR), which provides an overall measure of the sound
quality of the source separation, the signal-to-interference
ratio (SIR), which measures the presence of other sources in
the separated sounds, and the signal-to-artifacts ratio (SAR),
which measures the artifacts present in the recovered signal
due to separation and resynthesis. Details of these metrics
can be found in [52] and a Matlab toolbox to calculate
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Figure 11: Performance evaluation of SNTF (circle solid), refiltered
SNTF (diamond solid), SSNTF (square dash-dotted), source-filter
SSNTF (triangle solid), and source-filter SSNTF (star dashed) with
noise basis functions for various signal durations.

these measures is available from [53]. As noted previously
in Section 3, the provision of the lowest pitch note for
each source was sufficient to determine the correct source
ordering for all the SSNTF-based algorithms. In the case
of the SNTF-based algorithms, the ordering of the sources
was determined by associating a separated source with the
original source which resulted in the best SIR score. This
matching procedure was then checked manually to ensure no
errors had occurred.

A number of different tests were run to determine
the effect of signal duration on the performance of the
algorithms and to determine the effect of using different
numbers of allowable shifts in time. For the tests on signal
duration, the mixture signals were truncated to lengths of
1, 2, 3, and 4 seconds in length, the number of time shifts
was set to 5, and the performance of the algorithms was
evaluated. A summary of the results obtained are shown
in Figure 11. The results were obtained by averaging the
metrics obtained for each separated source to give an overall
score for each test mixture. The results for each mixture
were then averaged to yield the data shown in the figure.
It can be seen that the SSNTF-based algorithms all clearly
outperform SNTF-based methods in all cases, though the use
of refiltering does improve the performance of SNTF. It can
also be seen that signal duration does not have much effect on
the results obtained from SSNTF, with the results remaining
relatively constant with signal duration, showing that SSNTF
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Figure 12: Performance Evaluation of SNTF (circle solid), refiltered
SNTF (diamond solid), SSNTF (square dash-dotted), Source-Filter
SSNTF (triangle solid) and Source-Filter SSNTF (star dashed) with
noise basis functions for various allowable shifts in time.

can capture harmonic sources even at relatively short signal
durations.

In the case of the algorithms incorporating source filter-
ing, performance improved with increased signal duration.
This is particularly evident in the case of the SIR metric.
This demonstrates that longer signal durations are required
to properly capture filters for each instrument. This is to
be expected as increased numbers of notes played by each
instrument provide more information on which to learn
the filter, while the harmonic model with fewer parameters
does not require as much information for training. It should
be noted that this trend was less evident in the stereo
mixtures than in the mono mixtures, suggesting that the
spatial positioning of sources in the stereo field may effect the
ability to learn the source filters. This can possibly be tested
by measuring the separation of the sources while varying the
mixing coefficients and is an area for future investigation.
Nonetheless, it can be seen that at longer durations the
source-filter approaches outperform SSNTF, with the basic
source-filter model performing better in terms of SDR and
SAR, while the source-filter plus noise approach performs
better in terms of SIR.

The results from testing the effect of the number of
time shifts on the separation of the sources are shown in
Figure 12. These were obtained using the same procedure
used for the previous tests. The number of allowable shifts
ranged from 1 to 10, which corresponds to a maximum
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shift in time of approximately 0.2 second. Once again,
the SSNTF-based algorithms clearly outperform SNTF-
based approaches, regardless of the shift. However, it can
be seen that for both SSNTF and the source-filter plus
noise approach, performance is relatively constant with the
number of allowable shifts, there is a small improvement in
performance up until 7 shifts and beyond this performance
degrades slightly. In the case of source-filter SSNTF, there is a
noticeable improvement when going from one to two shifts,
but beyond this there is little or no variation in performance
with increased numbers of shifts. On investigating, this
was found to be mainly evident in the stereo mixtures,
with the performance of the mono mixtures remaining
relatively constant, again highlighting the need to investigate
the performance of the algorithms under different mixing
coefficients. Overall, it can be seen that the performance of
the algorithms is in line with that observed when varying
signal duration, with the source-filter plus noise approach
performing best in terms of SIR, while source-filter SSNTF
performs better in terms of SDR and SAR. Further, the results
suggest that in many cases, a single set of harmonic weights
can be used to characterise pitched instruments without the
need to incorporate timbral change with time.

On listening to the separated sources, the SSNTF-based
approaches clearly outperform SNTF. It should be noted
that in some cases, SNTF using refiltering resulted in
audio quality comparable to the SSNTF-based approaches,
however this was only in a small number of examples. In the
majority of cases the addition of the source-filter improves
on the results obtained by SSNTF. On comparing the source-
filter approach to the source-filter plus noise model, it was
observed that the results varied from mixture to mixture,
with a considerable improvement in resynthesis quality of
some sources and a reduction of quality in other cases,
while in a large number of tests no major differences could
be heard in the results. This shows that in many cases for
clean mixture signals of pitched instruments, there is no
need to incorporate noise basis functions. Nevertheless, the
use of noise basis functions is still useful in the presence
of noise or percussion instruments. It should also be noted
that in half of the test mixtures SNTF did not manage to
correctly separate the sources, which, in conjunction with
the distortion due to the smearing of the frequency bins
due to the mapping from log to linear frequency, goes a
long way towards explaining the negative SDR and SIR
scores. While SNTF using refiltering resulted in improved
resynthesis in the cases where the sources had been separated
correctly, it also suffered from the reliablity issues of the
underlying SNTF technique and this is reflected in the poor
scores for all metrics. This indicates that the SSNTF-based
techniques are considerably more robust than SNTF-based
techniques.

The separated sources can also be resynthesised via an
additive synthesis approach, and on listening, the results
obtained were comparable to those obtained from the
spectrogram-based resynthesis. However, as the additive
synthesis approach uses different phase information than the
spectrogram-based resynthesis, the results are not compara-
ble using the metrics used in this paper. This highlights the

need to develop a set of perceptually-based metrics for sound
source separation and is an area for future research.

Also investigated was the goodness of fit of the models
to the original spectrogram data, as measured by the cost
function. It was observed that the results obtained for SSNTF
were on average 64% smaller than those for SNTF, despite
the fact that SSNTF has a smaller number of free parameters,
as the number of harmonics was considerably smaller
than the number of frequency bins used in the constant
Q spectrogram for SNTF. This highlights the benefits of
using an approach solely formulated in the linear frequency
domain. Using source-filter SSNTF, with an additional K ×n
parameters over SSNTF, resulted in an average reduction in
the cost function of 76% in comparison to SNTF, and a
reduction of 33% in comparison to SSNTF.

Overall it can be seen that the methods proposed in
this paper offer a considerable improvement over previous
separation methods using SNTF. Large improvements can
be seen in the performance metrics over the previous SNTF
method, and it can also be seen that the proposed models
result in an improved fit to the original data.

7. Conclusions

The use of shift-invariant tensor factorisations for the pur-
poses of musical sound source separation, with a particular
emphasis on pitched instruments, has been discussed, and
problems with existing algorithms were highlighted. The
problem of grouping notes to sources can be overcome by
incorporating shift invariance in frequency into the factori-
sation framework, but comes at the price of requiring the use
of a log-frequency representation. This causes considerable
problems when attempting to resynthesise the separated
sources as there is no exact mapping available to map from
a log-frequency representation back to a linear-frequency
representation, which results in considerable degradation in
the sound quality of the separated sources. While refiltering
can overcome this problem to some extent, there are still
problems with resynthesis.

A further problem with existing techniques was also
highlighted, in particular the lack of a strict harmonic con-
straint on the recovered frequency basis functions. Previous
attempts to impose harmonicity used an ad hoc constraint
where the basis functions were zeroed in regions where no
harmonic activity was expected. While this does guarantee
that there will be no activity in these regions, it does not
guarantee that the basis functions recovered will have the
shape that a sinusoid would have if present in these regions.

Sinusoidal shifted 2D nonnegative tensor factorisation
was then proposed as a means of overcoming both of these
problems simultaneously. It takes advantage of the fact that a
closed form solution exists for calculating the spectrum of a
sinusoid of known frequency, and uses an additive-synthesis
inspired approach for modeling pitched instruments, where
each note played by an instrument is modelled as the sum of
a fixed number of weighted sinusoids in harmonic relation
to each other. These weights are considered to be invariant
to changes in the pitch, and so each note is modelled
using the same weights regardless of pitch. The frequency
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spectrum of the individual harmonics is calculated in the
linear frequency domain, eliminating the need to use a log-
frequency representation at any point in the algorithm, and
harmonicity constraints are imposed explicitly by using a
signal dictionary of harmonic sinusoid spectra. Results show
that using this signal model results in a better fit to the
original mixture spectrogram than algorithms involving the
use of a log-frequency representation, thereby demonstrating
the benefits of being able to perform the optimisation solely
in the linear-frequency domain.

However, it should be noted that the proposed model
is not without drawbacks. In particular, best results were
obtained if the pitch of the lowest note of each pitched
instrument was provided to the algorithm. In most cases this
information will not be readily available, and this necessitates
the use of the standard shifted 2D nonnegative tensor
factorisation algorithm to estimate these pitches before using
the sinusoidal model. Research is currently ongoing on other
methods to overcome this problem, but despite this, it is
felt that the advantages of the new algorithm more than
outweigh this drawback.

Using the same harmonic weights or instrument basis
function regardless of pitch is only an approximation to
the real world situation where the timbre of an instrument
does change with pitch. To overcome this limitation, the
incorporation of a source-filter model into the tensor factori-
sation framework had previously been proposed by others.
Unfortunately, in the context of sound source separation, it
was found that it was difficult to obtain good results using
this approach as there were too many parameters to optimise.
However, the addition of the strict harmonicity constraint
proposed in this paper was found to restrict the range of
solutions sufficiently to make the problem tractable.

It had previously been observed that the addition of
harmonic constraints was required to create a system which
could handle both pitched and percussive instrumentations
simultaneously. However, previous attempts at such systems
suffered due to the use of log-frequency representations and
the lack of a strict harmonic constraint. The combined model
presented here extends this earlier work from single channel
to multichannel signals, and overcomes these problems by
use of sinusoidal constraints applied in the linear-frequency
domain, as well as incorporating the source filter model into
the system, and so represents a more general model than
those previously proposed.

In testing using common source separation performance
metrics, the extended algorithms proposed were found
to considerably outperform existing tensor factorisation
algorithms, with considerably reduced signal distortion and
artifacts in the resynthesis. The extended algorithms were
also found to be more reliable than SNTF-based approaches.

In conclusion, it has been demonstrated that use of an
additive-synthesis based approach for modelling instruments
in a factorisation framework overcomes problems associated
with previous approaches, as well as allowing extensions
to existing models. Future work will concentrate on the
improvement of the proposed models, both in terms of
increased generality and in improved resynthesis of the
separated sources, as well as investigating the effects of

the mixing coefficients on the separations obtained. It is
also proposed to investigate the use of frequency domain
performance metrics as a means of increasing the perceptual
relevance of source separation metrics.
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