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ABSTRACT Digital Earth (DE), a technology offering real-time visualisation of Earth's processes, has 

shown promising results in aiding decision-making for a sustainable world, raising awareness about 

individual impacts on our planet, and supporting the United Nations Sustainable Development Goals (UN 

SDGs) agenda. However, both DE and SDGs face a common obstacle: Data Quality (DQ). This review 

investigates the challenge of DQ in the context of DE for SDGs and explores how IoT can address this 

challenge and extend the reach of DE to support SDGs. Furthermore, the study discusses three core aspects; 

first, the potential of IoT as a data source that supplements satellite data for DE for SDGs, second, the DQ 

challenge that is specific to an IoT-enabled DE for SDGs illustrated through scenarios identified from the 

literature, and third, solutions and perspectives that address the DQ challenge. This study underscores the 

necessity of addressing the DQ challenge and discusses some potential solutions to foster effective 

interdisciplinary collaboration, knowledge sharing, and data reusability. The study provides a viewpoint for 

understanding and addressing the DQ challenge for an IoT-enabled DE for SDGs to support the UN SDGs 

agenda for a sustainable world by 2030. 

INDEX TERMS Digital earth, data quality, environmental monitoring, internet of things, sustainable 

development goals.

I. INTRODUCTION 

With the historic adoption of the Sustainable Development 

Goals (SDGs) [1], the global community acknowledged the 

significance of the year 2015 as a transition point in 

addressing the pressing and unparalleled worldwide issues 

that were shaping the twenty-first-century landscape [2]. As 

of 2023, halfway through the UN 2030 Agenda for a 

Sustainable World, SDGs continue to struggle to support the 

agenda for a sustainable world [3], [4], [5], [6]. The inability 

of member states to invest in statistical offices and promote 

SDGs progress reporting has led to the unavailability and 

inconsistency of geospatial data to inform decision-making 

[7], [8]. The twenty-first-century world faces unparalleled 

challenges, including climate change, natural disasters, 

resource depletion, pandemics, and socio-economic crises 

that are worse than ever before [9], [10], [11].  

     Digital Earth (DE), a technology introduced in [12] that 

can visualise the environmental processes of our planet in 

real-time, addresses the immediate need to understand the 

complex processes taking place within the Earth system by 

offering knowledge visualisation in real-time using 

geospatial data to inform decision-making for a better 

sustainable world [3], [13]. DE also addresses the need to 

inform the public about humankind’s impacts on the Earth as 

a system by providing a visualisation of socio-economic and 

environmental actions [14] for a common global struggle for 

a better world. Various DE applications have also shown 

promising results in contributing towards achieving SDGs 

ranging from poverty control [15] to climate change [16] and 

contributing to achieving sustainable cities and communities 

[17]. Although various studies have outlined DE capabilities 

to support sustainable development and its common synergy 

with SDGs, both DE and SDGs in general and DE for SDGs 
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in particular continue to face a common challenge: Data 

Quality (DQ) [18], [19]. DQ remains a major obstacle in 

achieving the full potential of DE and the SDGs [20], [21], 

[22]. DQ is described as the suitability of data to the 

objectives of the analysis [23], [24], the level to which a set 

of essential attributes fulfil the requirement [25], [26] as well 

as how well data complements the demands of its users [27]. 

     Technical concepts like Essential Variables (EVs) offer a 

holistic approach to capture the diverse aspects of Earth 

System, particularly of global sustainability, and efficiently 

describe socio-ecological systems, serving as a bridge 

between vast and heterogeneous datasets that help connect 

data with indicators [28], [29]. Essential Climate Variables 

(ECVs), Essential Biodiversity Variables (EBVs), and 

Essential Water Variables (EWVs) are examples of some of 

the essential EVs used for SDG monitoring [17]. A set of 

Essential SDGs Variables (ESDGVs) have been used for DE 

implementation in [17] to tackle the DQ challenge [30]. 

However, EVs are developed using data from diverse 

sources [31]. This gives rise to concerns surrounding the 

validity, accessibility, and traceability of data and whether 

the data used in the EVs is thoroughly validated with 

negligible (or zero) human errors [32]. When diverse 

environmental data is gathered and handled, data consistency 

remains a difficult feat to achieve [33]. Satellite data has 

contributed significantly to achieving DE for SDGs vision 

because of its availability at large scales across time and 

space [34], [35], [36], [37]. However, users also face data 

inconsistency, giving rise to a DQ challenge, when data is 

required at a finer granular (or detailed) level at a particular 

location where data from satellites often leads to mismatches 

in temporal and spatial scales [38]. With this requirement for 

more fine-grained geospatial data, the Internet of Things 

(IoT) emerged as a critical component capable of addressing 

the ever-growing data requirements at a fine granular level, 

enabling data-driven decision-making, complementing the 

satellite data to enhance its consistency, quality, and 

granularity, and extending the reach of DE to create a system 

of systems that particularly supports SDGs and their 

implementation monitoring [39], [40], [41]. 

     While IoT can enhance overall geospatial DQ by 

providing frequent data at a finer level [42], [43], it also adds 

its own (additional) DQ challenge [44], [45], [46]. This 

review aims to delve into the DQ challenge arising from an 

IoT-enabled DE for SDGs. This study has formalised and 

acknowledged various data challenges as DQ issues and has 

identified various DQ dimensions that affect the process of 

data sharing. This study has also proposed a system of 

systems which may address the DQ challenge. The DQ 

challenge hinders effective collaboration, knowledge 

sharing, and data reusability across diverse interdisciplinary 

fields. Hence, identifying and addressing this DQ challenge 

is of importance. The data discussed throughout this study 

pertains exclusively to geospatial data. To reach our aims, 

we intend to review literature and undertake a discussion 

based on the study themes outlined in Table 1. 

 

 
TABLE 1. Study themes and their motivations. 

 

Study Theme Motivation 

The DQ Challenge in 

IoT 

To provide context as well as awareness on 

various forms of the DQ challenge existing 

within IoT. 
 

IoT’s potential to 

become a data source 
for DE and SDGs in 

the presence of 

satellite data 
 

 

To provide context on the DQ challenge faced 

by satellite data to support DE for SDGs vision. 
Furthermore, to present an idea and potential 

solution using IoT to overcome the DQ 

challenges associated with satellite data, 
resulting in facilitating the implementation of 

DE for SDGs. 

 

DQ challenge in an 

IoT-enabled DE for 

SDGs 

 

To highlight and provide awareness of the DQ 

challenge arising from the potential solution to 

complement satellite data i.e., an IoT-enabled 
DE for SDGs. 

 

Solutions and 
perspectives for DQ 

challenge in an IoT-

enabled DE for 
SDGs and Earth 

Sciences 

 

 

To highlight and provide awareness as well as 
context of techniques that are being used to 

tackle the DQ challenge arising from 

complementing satellite data through IoT as 
well as IoT-enabled DE for SDGs. 

  

 

     Based on the above-mentioned study themes in Table 1, 

first, we discuss in section two the DQ data challenge faced by 

SDGs. Section three discusses and sheds light on defining DQ, 

DQ dimensions, and DQ dimensions in IoT. Section four 

discusses DE and its concept for the global good. Section five 

highlights the potential of IoT in overcoming the DQ 

challenge faced by DE for SDGs. Subsequently, in section six, 

we highlight the DQ issues arising at the intersection of an 

IoT-enabled DE for SDGs. Moreover, section seven discusses 

solutions to the DQ challenge and perspectives within the 

Earth sciences domain identified through the literature 

reviewed, and finally, in section eight, the study is concluded. 

 
II. Data Quality in Sustainable Development Goals Data 

Findings from the Voluntary National Reviews (VNRs) 

process [8], [47], [48] unveiled a recurring issue, particularly 

in developing countries: the lack of suitable data (or fit-for-

purpose data) to populate the SDGs indicators. Many 

countries, particularly developing ones, grapple with 

inadequacies in their statistical institutions, governance 

structures, data quality, and time series availability [49]. This 

often results in significant variations in data collection (DQ 

dimensions Accuracy, Granularity, Completeness, 

Timeliness) and presentation methodologies (DQ 

dimensions Consistency, Format, Interpretability, Ease of 

Understanding) over time and across regions [50], [51], 

hindering the access to suitable or fit-for-purpose data. DQ 

and DQ dimensions will be defined in detail in the following 

section. Global stakeholders are encountering the same 

challenge in achieving SDGs as they faced during the early 

stages of the Millennium Development Goals (MDGs) 
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FIGURE 1. SDGs Progress 2023 [52]. 

[53], [54]: a dearth of data quality for effective monitoring 

and implementation [8], [14], [55].  

     The United Nations in its ‘The Sustainable Development 

Goals 2023 Report’ [52] presents a comprehensive report on 

the state of SDGs – how they started to show promising 

results in their early years, and where they stand as of today. 

According to this report, an evaluation of approximately 140 

progress monitoring targets 

(https://unstats.un.org/sdgs/indicators/indicators-list), for 

which there is accessible trend data, reveals that roughly half 

of these targets are experiencing significant deviations from 

the intended trajectory as can be seen in Figure 1. 

Furthermore, over 30 percent of these targets have either 

shown no progress or have regressed below the baseline 

established in 2015. The cumulative impact of factors such 

as climate issues, deficient decision-making, and economic 

disparities is leaving many developing countries with limited 

avenues and even fewer resources to transform the SDGs 

into tangible outcomes. The lack of data consistency (DQ 

dimensions Consistency, Availability, Completeness, 

Trustworthiness, Validity) remains a great obstacle to 

achieving tangible outcomes through effective decision-

making [56], [57] as shown in Figure 1 (available global data 

and analysis can be accessed at: 

https://unstats.un.org/sdgs/dataportal/). 

     Figure 1 provides a very simple yet worrying visualisation 

of the DQ challenge faced by SDGs. Although the insufficient 

data problem varies for each SDG as seen in Figure 1, it is a 

reality for almost all the SDGs, particularly for those that 

require quantitative data. For instance, Sustainable Cities and 

Communities (SDG-11) which is pivotal to the enhancement 

of socio-economic development across the globe, is facing an 

alarming challenge because of insufficient data to decide (or 

act) upon. At this stage, one might ponder the substantial data 

being generated globally across various sectors and wonder 

why it remains underutilised. But the real question should be 

whether this data is suitable and fit-for-purpose (e.g., 

consistent) to complement SDGs transparently. This is the 

question that we will try to answer through this study. Having 

discussed the DQ challenge in the context of SDGs and before 

going into the details of whether the data, particularly in the 

Earth sciences domain, is suitable or fit-for-purpose, we 

define DQ as well as its dimensions in the context of IoT in 

the next section. 

 
III. Data Quality, Data Quality in Internet of Things, and 

Data Quality Dimensions in Internet of Things 

Data is the raw, unprocessed, and unstructured material that 

represents observations and/or facts, whereas information is 

the processed and structured form of data that provides 

context and meaning [58]. DQ is described as the suitability 

of data to the objectives of the analysis [23], [24], the level 

to which a set of essential attributes fulfil the requirement 

[25], [26] as well as how well data complements the demands 

of its users [27]. Furthermore, in an IoT-specific context, DQ 

refers to how suitable the collected data from smart things is 

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3478813

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://unstats.un.org/sdgs/indicators/indicators-list
https://unstats.un.org/sdgs/dataportal/


                                                                                               M.S.B. Syed et al.: Towards an IoT-Enabled Digital Earth for SDGs: The Data Challenge 

 

VOLUME XX, 2024  

 
TABLE 2. IoT DQ Dimensions [59]. 
 

DQ Dimension Definition 

 

 

Accuracy 

 

The extent to which data exhibits attributes that reflect the genuine value of the intended characteristic of a concept or occurrence 

within a specified context of application [60]. 
 

Availability 

 

The accessibility and readiness of data whenever it's needed for analysis, processing, or decision-making [61]. 

 
Believability 

 
The extent to which data is seen as reliable, truthful, and trustworthy [62]. 

 
Currency 

 
Currency refers to how users personally assess or perceive how current or up-to-date information is [63]. 

 
Completeness 

 
Completeness in an information a system means the information system has enough data to function properly and deliver accurate 

results. This involves ensuring it includes all the crucial details. [64]. 

 
Confidence 

 
It refers to data’s reliability based on measures of accuracy, correctness, and representativeness [65]. 

 

Ease of 
Understanding 

 

Measures how quickly and intuitively user can grasp the meaning of the data without needing deep analysis [66]. 

 

Ease of Access 

 

Ease of Access measures how readily and quickly a user can locate and obtain the data they need [67]. 
 

Format 

 

Refers to the way data is organised and presented which influences how users perceive its reliability and usefulness [68]. 

 
Frequency (temporal 

resolution) 

 
Frequency refers to the time periods between data acquisition, recording, and/or updates[69]. 

 
Granularity 

 
Granularity refers to the level of detail within the data, ranging from aggregated summaries to individual points [65]. 

 
Interpretability 

 
Interpretability reflects how clearly and effectively data is presented, using appropriate language, symbols, and units [70]. 

 

Objectivity 

 

The degree to which data remains neutral and avoids internal or external biases, maintaining impartiality [70]. 
 

Privacy 

 

The degree of measures taken to safeguard confidentiality and prevent unauthorised access, collection, use of data [71]. 

 
Reputation 

 
Reputation reflects the perceived trustworthiness and value of data, influenced by its source and the information it contains [70]. 

 

Relevance 

 

The significance and meaningfulness of collected data in alignment with the intended purpose and objectives of the system [70]. 
 

Security 

 

How well access to data is controlled and limited to avoid any unauthorised access [70]. 

 
Timeliness 

 
Timeliness refers to how current or recent the data is in relation to what is needed for a specific task [72]. 

 

Trustworthiness 

 

Trustworthiness pertains to the reliability, authenticity, and credibility of the data being collected, processed, and transmitted [65]. 
 

Usability 

 

Usability refers to the attribute of commonly acknowledged information and data models that enable expressing data in a connected 

and meaningful way to ensure data is more compatible across different systems and simpler to use, resulting in higher-quality data 

[73]. 

 

Validity 

 

The degree to which the data accurately represents or corresponds to the real-world objects, events, or conditions it is intended to 
describe or measure [74]. 

 

Volume 
(Throughput) 

 

A measure of the quantity or size of data generated, transmitted, processed, or stored within an IoT system over a specific period 
[75]. 

[76]. Smart things are any objects and/or devices that 

incorporate technology, sensors, and connectivity to enhance 

their functioning [77]. The diversity of the data sources and 

the volume of data collected from these smart things result 

in new difficulties in the DQ field, hence it is important to 

consider that practitioners and researchers aim to assess the 

fitness for use of their data sets [78], [79]. DQ criteria, also 

known as DQ Dimensions, are used to measure fitness for 

the use of data [80]. These DQ dimensions include, for 

example, Accuracy, Timeliness, Accessibility, and Reliability 

[81]. As our discussion in this study surrounds the DQ 

challenge in an IoT-enabled DE for SDGs, it is important to 

first identify DQ dimensions in the context of IoT. Mansouri 

et al. [59] conducted a systematic review and identified a 

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3478813

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



                                                                                               M.S.B. Syed et al.: Towards an IoT-Enabled Digital Earth for SDGs: The Data Challenge 

 

VOLUME XX, 2024  

 

FIGURE 2. The DE concept for the global good through knowledge visualisation for efficient decision-making.

comprehensive list of DQ dimensions in IoT as shown in 

Table 2. To increase the understanding of these DQ 

dimensions in IoT, we have added definitions of these DQ 

dimensions in Table 2 that were identified from the literature 

reviewed during this study. Although some of the DQ 

dimensions outlined in Table 2 may need a human review for 

for evaluation, some are quantitative (or computable) in 

nature, for instance, Volume, Frequency, and Timeliness [82]. 

These quantitative DQ dimensions tend to complement the 

qualitative DQ. 

DQ dimensions, for instance, the DQ dimension 

Accuracy complements Believability and Confidence [73]. IoT 

data, which is quantitative in nature, is also complemented by 

qualitative data [83]. DQ dimensions Accuracy, 

Completeness, Format, Timeliness, Believability, and 

Interpretability collectively contribute to the overall 

assessment of data consistency (DQ dimension Consistency) 

[84] which is crucial to enable information and knowledge 

sharing [85], particularly in a system of systems (e.g., an IoT-

enabled DE for SDGs) where semantic interoperability is 

highly important for knowledge exchange [86]. Having 

defined what data and information are previously, it would be 

beneficial for readers to also know what knowledge is. 

Knowledge is the understanding and/or comprehension of 

information incorporating experience and insights [58]. These 

concepts form a hierarchical progression, where data serves as 

the foundation for information, and information, in turn, 

provides the basis for knowledge [87]. The DQ dimensions 

identified and defined in Table 2 will be useful as we will refer 

to these throughout the study while discussing various DQ 

issues, particularly in the scenarios identified from the 

literature which are discussed later in section six. In our next 

section, we describe DE, a technology that can enhance 

decision-making and complement SDGs, in the light of the 

reviewed literature. 

 
IV. Digital Earth for Sustainable Development Goals 

DE can be described as a digital representation of our planet, 

offering a layered dataset with numerous dimensions and 

applications that are accessible to the public [13], [88]. DE 

functions as a digital framework aiming to enhance our 

collective interpretation and understanding of the intricate 

relationship between humankind and the environment, 

ultimately beneficial for the global good [18], [89], [90]. 

Additionally, it embodies the ambitious concept of a Digital 

Twin, combining (including but not limited to) the 

geological, atmospheric, hydrological, biological, and 

thermodynamic characteristics of Earth with various socio-

economic, political, and environmental aspects [91], [92]. 

This concept of DE supports the SDGs agenda as it plays a 

crucial role in bridging and connecting the physical as well 

as virtual realities of our world, with the overarching 

objective of enhancing the understanding and management 

of humankind’s impact on socio-economic, environmental, 

and economic aspects by allowing a deeper interpretation of 

global and local dynamics [93], [94], [95], as illustrated in 

Figure 2. 

     As seen in Figure 2, data acquired through satellite and IoT 

feeds into the DE from physical reality where knowledge 

generation, environmental monitoring, hazard mitigation, and 

informed decision-making take place through real-time ‘what  
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FIGURE 3. An IoT-enabled DE for SDGs where IoT complements the satellite data to overcome DQ challenge. 

if’ impact analysis using fit-for-purpose data [96]. From the 

perspective of DE for SDGs, the work done by [17], [97], [98], 

[99], [100], [101] has proved DE’s capability to support the 

implementation and monitoring of SDGs. However, DE, as a 

system of systems already, also, like the SDGs, faces DQ issues 

[3], [14]. In the next section, we discuss overcoming the DQ 

challenge in DE for SDGs (particularly the issues surrounding 

DQ dimensions like Consistency and Availability) through IoT 

to complement DE for SDGs as reviewed in the literature. 

 
V. Overcoming the Data Quality Challenge in Digital 

Earth for Sustainable Development Goals through 
Internet of Things 

Although satellite data has been a major source of data for 

DE functioning, at times it lacks detail at fine-grained 

spatiotemporal resolution levels, as seen in SDG-11 

Sustainable Cities and Communities (disaster management) 

[102], [103], SDG-13 Climate Change (fighting climate 

change) [104], [105], and SDG-14 Life Below Water 

(safeguarding life underwater) [106], [107], [108]. In this 

situation, IoT-enabled data can be important in covering the 

global need for fit-for-purpose data. Deployment of IoT 

systems has enabled efficient environmental monitoring, 

resulting in the generation of large amounts of in-situ 

monitoring data [109], [110], [111]. This IoT-enabled in-situ 

monitoring provides data at fine granular levels [112], [113], 

overcoming various DQ issues, particularly surrounding 

Consistency, Availability, Completeness, Currency, and 

Trustworthiness, highlighted in this study. In the context of 

DE since its inception, DQ has remained a significant issue, 

particularly the DQ dimensions like Consistency, 

Availability, and Trustworthiness [3], [95], [114], [115]. 

SDGs, especially those related to the Earth's surface, 

environment, and resources, exhibit significant scale and 

recurring transformations [16], [116]. By adopting a multi-

dimensional approach, primarily considering global, 

regional, national, and local levels, highly suitable (or fit-for-

purpose) data can be harnessed through a combination of 

satellite data and IoT data to support the realisation of the 

SDGs while creating a system of systems through an IoT-

enabled DE, as depicted in Figure 3.  

     One example of the DQ challenge with satellite data can be 

seen when accessing environmental data, using for example, 

the Copernicus portal 

(https://browser.dataspace.copernicus.eu/) and finding 

certain values are missing. We accessed cloud cover data for 

the Republic of Ireland for a particular day using this portal, 

as can be seen on the top left in Figure 4. This depicts the 

presence of a high density of cloud that day (blue color depicts 

being most dense as per Copernicus guideline). We then 

accessed data on gases (Carbon Monoxide, Nitrogen Dioxide 

and Sulphur Dioxide) for the same day, and as can be seen on 

the top right, bottom left and bottom right in Figure 4, the data 

is missing for these gases for the areas under a high density of 

cloud cover. This scenario highlights the issue of the 

Availability DQ dimension for these gases, presumably 

because of the cloud cover. A similar scenario is discussed in 

[117] outlining that cloud cover increases the concentrations 

of nitrogen oxide at ground level, compounding the data gaps, 

as interpolation or estimation models to fill cloud cover gaps  
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FIGURE 4. Sentinel-5P imagery of Republic of Ireland on 2.2.2024 showing data for Cloud Cover, Carbon Monoxide, Nitrogen 
Dioxide and Sulphur Dioxide. (Copernicus Sentinel Data 2024). 

do not necessarily take into account the blanket effect of cloud 

cover.  

     This gives rise to the question of how to overcome the   

missing satellite data (Availability DQ dimension) as a result 

of conditions such as cloud cover. The combination of satellite 

and IoT data has already proved useful to overcome data 

inconsistencies in the former and enhance the coverage area as 

reported in studies by Phan et al. [118] and Barbedo [119]. 

Groundtruthing satellite data with IoT data can also be seen as 

one of the examples of how the combination of satellite and 

IoT data sources can enhance the overall DQ of data and 

address the DQ challenge in the broader perspective [120]. 

     Although IoT has the potential to support DE 

implementation as shown in Figure 3 to overcome data gaps 

and cater to the DQ issues faced by DE, a substantial challenge 

arises when two system of systems (IoT and DE) combine to 

make a new system of systems (an IoT-enabled DE). IoT 

comes with its own DQ challenge, often lacking semantic 

interoperability and attaining information and/or knowledge 

exchange [121]. DQ dimensions like Format, Ease of 

Understanding, Interpretability, Relevance, Granularity, 

Reputation, and Usability as outlined in Table 2 need to be 

dealt with effectively to achieve data reusability and 

information utilisation as well as data sharing across domains 

and platforms [122], [123], [124]. Resultantly, this can help 

domain experts and eventually the decision-makers in 

attaining exchangeable knowledge between systems to 

support the sustainable development agenda. However, data 

reusability and information sharing can only be attained if 

system interoperability is achieved to the semantic level where 

knowledge is exchanged between systems rather than data 

[85]. Referring to the question raised in section two, we 

discuss in our next section whether the data available is 

suitable and fit-for-purpose to complement an IoT-enabled 

DE for SDGs transparently. 

 
VI. Data Quality Challenge in an Internet of Things-

Enabled Digital Earth for Sustainable Development 
Goals 

Attaining semantic interoperability is important for a system 

of systems to produce and exchange information and/or 

knowledge rather than the data, especially when it comes to 

supporting dynamic goals like SDGs as we have discussed 

previously and as observed in the literature. Establishing 

reproducible, replicable, and reliable information and/or 

knowledge is a critical prerequisite among decision-makers 

and the public to put their trust in data and the decisions 

associated with it. It is important to note that they are 

interdependent on one another [125]. This trust in data is 

particularly important for the SDGs agenda [126]. 

Reproducibility is defined as “obtaining results consistent 

with a prior study using the same materials, procedures, and 

conditions of analysis”, and Replicability is defined as 

“obtaining consistent findings across studies that aim to 

answer the same question but with each study collecting and 

using its data” [127], [128], [129], [130], whereas 

Reliability is defined as “the extent to which measurements 

can be replicated” [131].  

     This reproducible, replicable, and reliable information 

and knowledge could be harnessed to support decision-

making surrounding SDGs through an IoT-enabled DE if the 

system interoperability is achieved at the semantic level [89], 

[132], [133] as observed in the health domain where diverse 

systems exchange knowledge rather than data [134], [135], 

[136]. However, the current state of data and data model 

interoperability in Earth Sciences remains limited to the 

syntactic level, which only enables the access and processing 

of datasets without considering their contextual attributes or 
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standardised details of their content and contextual relevance 

[137]. This limitation to the syntactic level gives rise to the 

DQ challenge particularly surrounding the DQ dimensions 

like Consistency, Format, Ease of Understanding, 

Interpretability, Relevance, Granularity, Reputation, and 

Usability [138], [139], [140], [141] where data is not 

recorded in a unified way.  Consequently, the lack of 

semantic interoperability hinders the reusability of data as 

well as knowledge sharing across domains for research, 

development, and decision-making purposes, particularly 

surrounding SDGs [142], [143]. 

     Currently, information systems lack semantic 

interoperability as a result of which they cannot coherently 

trade information and/or knowledge with one another in 

most cases, and if the information and/or knowledge 

exchanges take place, they are often delayed [144]. System 

interoperability has the potential to address user expectations 

of accessing timely data [22]. Semantic interoperability 

within data and across information systems enables data 

handling from acquisition and quality assurance to data 

exchange, dissemination, and application usage [145]. 

Consistent standards for recording and representing data 

(DQ dimensions Format, Interpretability, Ease of 

Understanding, Ease of Access, Granularity, Consistency, 

Accuracy, and Completeness) are important for building user 

confidence in interoperable systems [146]. In general, 

standardisation is needed for the adoption of agreed-upon 

protocols and procedures between different observing 

platforms and their data management and product delivery 

systems [147], [148].  

     Without standardised (or consistent) metadata, it becomes 

difficult for different organisations or systems to exchange, 

understand, and use environmental data effectively [89], 

[133]. This also answers the question we raised in section two, 

and also answers the traceability concern in data used for 

developing EVs which we raised earlier. The amount of trust 

organisations or people may have in the data reduces when the 

data lacks consistency, contextual richness, and quality, 

particularly hindering the transparency of data as in whether 

the data processed is the same that was collected originally, or 

it has been changed during the processing stage. To give a 

better understanding of this DQ issue (or data inconsistency) 

at this point, we provide some scenarios from the literature to 

understand the state of data across domains representing data 

from three SDGs, in Earth Sciences, and the DQ issues that 

may arise. 

A. Scenario 1: Inadequate Rainfall Prediction and 
Satellite Data Limitations in Africa [149] – SDG11 
Climate Change 

The work by Dinku in [149] highlights that the meteorological 

observation network in Africa faces significant inadequacies, 

characterised by a decline in station numbers and subpar DQ, 

compounded by an uneven distribution of stations with a bias 

toward urban areas and major roads, resulting in poor rural 

coverage. Moreover, this shortfall hampers the provision of 

climate services where they are most vital [150]. [35], [151]. 

It also identifies that satellite-based precipitation estimates are 

increasingly used, offering extensive spatial coverage, 

improved temporal and spatial resolution, and near-real-time 

availability to mitigate these issues. But these satellite 

products have their limitations, including accuracy problems 

(DQ dimension Accuracy) at high temporal resolutions, coarse 

spatial resolution (DQ dimensions Precision, Usability), short 

data records (DQ dimensions Interpretability, Format, 

Reputation, Believability, Relevance), and temporal 

inconsistencies (DQ dimension Frequency) [152]. 

Overcoming these DQ issues requires a rigorous validation 

process against ground observations for more consistent data, 

yet the availability (DQ dimension Availability) and quality 

(DQ dimensions Accuracy, Precision, Completeness, 

Trustworthiness, Believability) of rain-gauge data in Africa 

are a hindrance [153]. 

B. Scenario 2: Varying Data Usage Objectives Impacting 
Data Quality and Reusability of Marine Data [154] – 
SDG14 Life Below Water 

Subsea mining, aquaculture, energy production, marine 

transport, and coastal tourism are significant marine sectors 

[155] with distinct needs for different types of in-water data 

sources and DQ levels. For instance, data related to the 

physical aspects of the ocean (like temperature and turbidity) 

and biogeochemical factors (such as pH and oxygen) are 

crucial for environmental and climate models [156]. It is also 

essential to have highly accurate temperature data of the ocean 

with minimal measurement uncertainties, around 0.002°C 

[157]. Conversely, in most aquaculture scenarios, a 

temperature sensor with an accuracy of ±0.5°C suffices [158], 

[159]. These varying requirements mean that data suitable for 

one purpose might not meet the quality standards of another 

(DQ dimensions Consistency, Interpretability, Usability, 

Relevance), leading to limited use of a particular in-situ marine 

data set, which was originally intended for multiple 

applications [160], [161]. In the marine field, data collection 

has primarily been guided by the needs of separate 

applications and usages of industry [154]. This means that data 

is often collected in isolation, without considering the 

potential usefulness for other applications (DQ dimensions 

Format, Ease of Understanding, Interpretability) [162]. Since 

collecting data in the marine environment can be quite 

expensive, it is crucial to make the most of in-situ marine data 

by using it for multiple purposes (DQ dimensions Format, 

Interpretability, Usability, Accuracy, Completeness) [163], 

[164] to share data and information across domains and 

platforms. 

C. Scenario 3: Unavailability of Reporting Formats for 
Leaf-Level Gas Exchange Data [165] – SDG15 Life on 
Land 

At present, most data repositories that house a variety of data 

tend to focus on providing general package-level details about 

the data, rather than offering specific information tailored to 

the type of data (DQ dimensions Format, Interpretability). 

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3478813

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



                                                                                               M.S.B. Syed et al.: Towards an IoT-Enabled Digital Earth for SDGs: The Data Challenge 

 

VOLUME XX, 2024  

Thus, hindering the usefulness of, searching for, and 

discovering long-tail data types [166]. Examination of existing 

data repositories and databases by [165] related to plant traits 

has shown that, when it comes to data on leaf-level gas 

exchange, the available information is often incomplete and 

inconsistent (DQ dimensions Completeness and Consistency), 

lacking the necessary metadata for proper interpretation and 

reuse. There is a recognised need for data standards in various 

fields, particularly in ecophysiology [166], [167], and the 

importance of establishing standards for collecting and storing 

plant trait data has been highlighted in several recent studies 

[168], [169], [170]. Furthermore, gas exchange instruments do 

not adhere to a common output format (DQ dimension 

Format), including file structure, variable names, and units, 

and often use non-machine-readable column headers, which 

ultimately limits the usability and lifespan of the data [165]. 

D. Scenario 4: Lack of Standardisation Framework for 
Bio-logging Data [171] – SDG14 Life Below Water 

Technologies like acoustic telemetry, light-based geolocation, 

and various data logging and transmission methods are 

generating data at unprecedented rates, opening up 

opportunities for synthetic studies [172], [173], [174], [175], 

[176], [177] that can address conservation issues stemming 

from global environmental changes [178], [179], [180] and 

extreme events [181], [182]. However, managing this data is 

quite challenging. Despite the emergence of numerous 

collaborative initiatives on regional and global scales aimed at 

consolidating existing biologging data [183], there is a lack of 

widely accepted data and metadata standards (DQ dimension 

Format) giving rise to data inconsistency (DQ dimension 

Consistency), hence most of the existing biologging data 

remains hidden and inaccessible [184]. The absence of 

universal and consistent standards for biologging datasets 

impedes progress in ecological research and places a 

significant burden on researchers due to technical and 

administrative obstacles when sharing and reusing data [185]. 

These problems span from immediate concerns regarding 

merging dissimilar datasets to the absence of an overarching 

framework that ensures (a) accurate use, (b) proper attribution 

and ownership, and (c) data preservation security [186]. 

 
VII. Discussion – Perspectives on Data Quality Solution, 

Data Reusability and Knowledge Sharing 

Data plays a significant role across various scientific and 

societal domains in understanding complex connections 

between different aspects of global sustainability and 

improving our ability to access and analyse it is crucial [187], 

[188]. However, to integrate data from diverse sources 

effectively, we need to address the DQ challenge as 

identified in this study, particularly related to inconsistent 

levels of data detail, incompatible data formats, and data 

completeness. As seen in the scenarios discussed in the 

 
1 https://knowledge-base.inspire.ec.europa.eu/index_en  
2 https://www.iso.org/standard/80275.html  

previous section, the lack of consistent data, agreed-upon 

standards for data, as well as metadata recording, limits data 

interoperability and reusability as well as knowledge 

sharing. All data levels generated through various sources or 

provided by various data providers need to be structured to 

ensure that data and metadata remain linked during data 

exchanges within or across domains [189], [190].  

A. Building Trust in Data 

One of the priorities for planetary intelligence for 

sustainability and/or sustainable development is ‘building 

trust’[191], [192], [193]. This ‘building trust’ is what we 

pointed out in the question we raised in section two, and it is 

answered in the previous section. Environmental data, which 

is readily available needs to be suitable, fit-for-purpose, 

consistent, and transparent to be trusted. For this, the use of 

IoT data can significantly increase consistency, 

completeness, timeliness, and transparency in environmental 

data particularly to very micro levels in an IoT-enabled DE 

for SDGs as suggested in this study based on evidence 

present in the literature. Combining satellite and IoT data to 

address the DQ challenge needs further investigation to fully 

exploit the potential of the proposed system of systems.  

     The priority of building trust in information and 

knowledge is important for DE as well as DE for SDGs and 

addressing the DQ challenge can significantly enhance the 

trust. To overcome the DQ challenge it is important to 

achieve data consistency and enable data reproducibility, 

replicability, and reusability for knowledge sharing. These 

elements are also critical to knowledge sharing in the Earth 

Sciences domain, where standardised (or common) practices 

need to be adopted by the wider Earth Sciences community.  

B. Standardisation as the Way Forward 

Standardisation plays a critical role in adoption of 

community-wide agreed methods on efficient data 

management which furthers the notion of accessing and 

reusing data. The EU INSPIRE Directive is a successful 

example of how adoption of data standards can ensure 

harmonised, accessible, and interoperable geospatial data 

across any country and borders [194]. The EU INSPIRE 

Directive1 is a regulatory framework aimed to support 

European environmental ambitions by making geographic 

information more consistent and readily available across 

sectors and borders. The International Standards 

Organisation (ISO) data standards such as ISO-191152 for 

metadata and Open Geospatial Consortium (OGC) data 

standards such as OGC Observations & Management 

(O&M)3 correspond with the EU INSPIRE Directive by 

providing critical guidelines that the Directive builds upon. 

O&M provides conceptual models to encode observations 

and measurements from sensors and has been adopted by 

consortia like Copernicus4.  

     While the process of standardisation through ISO might 

be slow due to their systematic procedures, other Standards 

3 https://www.ogc.org/standard/om/  
4 https://www.copernicus.eu/en  
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Developing Organisations like Open Geospatial Consortium 

(OGC) have proven to be more agile standards’ developers 

[195]. A number of OGC data standards have come to 

prominence in recent years and proven their efficiency. Web 

Processing Service (WPS), WaterML, SensorThings API, 

and Sensor Observation Service (SOS) by OGC are some of 

the examples of successful standards that have enabled 

accessing and reuse of data within the Earth Sciences domain 

[196], [197], [198]. WPS provides an interface to publish and 

search collections of metadata for data over internet5. 

WaterML allows the representation of water observation 

data with the intent of promoting the exchange of related 

datasets across information systems6. The SensorThings API 

provides a unified geospatial-enabled JSON-based way to 

interconnect and task IoT devices, data and applications over 

internet7.  

     The progression of standardisation through standards like 

ISO-19107 (Spatial Schema)8, ISO-19109 (Rules for 

Application Schema)9, ISO-19123 (Coverage Geometry and 

Functions)10, OGC Simple Feature Access (OGC-SFA)11, 

ISO-1911512, ISO-1911013, OGC O&M14, Simple 

Knowledge Organisation System (SKOS)15, Network 

Common Data Form (NetCDF)16, Hierarchical Data Format 

(HDF)17, and Geography Markup Language (GML)18 has 

enabled domain experts to define information models, 

terminologies and datatypes in a more accessible and 

standardised way in the Earth sciences domain. Such 

standardisation efforts have led a number of national and 

international organisations to adopt unified ways for good 

data management. Despite their potential, the adoption of 

these standards is still not mature within the Earth Sciences 

domain. 

     In the broader perspective, it is important to acknowledge 

that no dataset is any less important than other datasets as 

they contribute together to the pool of knowledge generation 

[199]. In the recent times, we have seen some well-curated 

specific purpose data repositories (such as GenBank19, 

Worldwide Protein Data Bank20) getting popularity. 

However, these do not capture every dataset or datatype 

because of their ‘specific purpose’ nature. In response to 

these repositories, a number of general-purpose repositories 

have emerged, such as Dataverse21, Zenodo22, DataHub23. 

Although these repositories accept a wide range of datasets, 

these datasets are different in their structural nature. Having 

no standardised dataset structure compounds to the problem 

of accessing, integrating, or reusing the data [200]. For 

instance, a machine may be able to determine the datatype of 

a certain dataset, but not capable of parsing it because of the 

 
5 https://www.ogc.org/standard/wps/  
6 https://www.ogc.org/standard/waterml/  
7 https://www.ogc.org/standard/sensorthings/  
8 https://www.iso.org/standard/66175.html  
9 https://www.iso.org/standard/59193.html  
10 https://www.iso.org/standard/70743.html  
11 https://www.ogc.org/standard/sfa/  
12 https://www.iso.org/standard/80275.html  
13 https://www.iso.org/standard/57303.html  
14 https://www.ogc.org/standard/om/  

format being unknown. Or it might be capable of processing 

data contained inside, but not capable of determining details 

concerning the retrieval and/or use of that data. Creating 

dedicated parsers in a number of languages for a range of 

datatypes might provide a short-term solution but it is not a 

sustainable solution and furthers the problem. The way 

forward to good data management remains the efficient 

adoption of community-wide agreed standards on 

information models, coding systems, and datatypes. 

C. Essential Variables as Agents for Data 
Reusability and Knowledge Sharing 

As highlighted earlier in the study, the development and 

usage of EVs, is a promising mechanism to utilise the data 

(reusability) and knowledge sharing for enhanced decision-

making surrounding sustainable development. The holistic 

approach of EVs to capture the diverse aspects of Earth 

Systems through the data complements, in particular, the 

Availability DQ dimension, which is highly important as 

nations across the globe continue to struggle with SDGs and 

the UN 2030 Agenda. Despite their potential for knowledge 

sharing and data reusability, EVs are not without their 

challenges and weaknesses either. Earth systems are 

interconnected and complex, therefore defining a set of EVs 

that capture their complexity entirely while remaining 

practicable for monitoring can be challenging [201], [202]. 

     On the other hand, ensuring the quality and consistency 

of satellite data across different observation platforms, which 

is reused and fed into the EVs for knowledge sharing, is a 

continuing challenge [203]. Variability in measurement 

techniques, calibration, and validation procedures can lead to 

inconsistencies in the data used in EVs [204], hence adding 

to the DQ challenge and creating doubt in the workflow 

and/or decision-making affiliated with the EVs. The addition 

of IoT data enhances DQ and thus increases the level of trust 

in the data that feeds into the EVs. This leads to an increased 

level of trust in EVs knowledge sharing during the decision-

making process. This aspect remains a promising future 

research direction in the Earth Sciences domain which needs 

to be further investigated to exploit the full usage of EVs.  

D. Two-Level Information Modelling as a Pathway 
towards Data Reusability and Knowledge Sharing 

Advanced-level semantic interoperability approaches [89], 

[205] used in other domains such as the use of two-level 

information modelling in the health domain, present a 

potential solution to overcome the DQ challenge by 

enhancing data reusability (Availability DQ dimension) as 

15 https://w3.org/2004/02/skos/  
16 https://www.unidata.ucar.edu/software/netcdf/  
17 https://www.hdfgroup.org/  
18 https://www.ogc.org/standard/gml/  
19 https://www.ncbi.nlm.nih.gov/genbank/  
20 https://www.wwpdb.org/  
21 https://dataverse.harvard.edu/  
22 https://zenodo.org/  
23 https://datahubproject.io/  
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well as knowledge sharing in the Earth Sciences domain 

[206]. It is often logistically and technically difficult for data 

producers and users with large information models for 

domains to agree on a common data model which makes 

automated processing and decision-support using 

observational data very difficult to achieve [207]. The 

application of two-level information modelling in health 

informatics by Thomas Beale [206] addresses this and 

demonstrates the significance of considering structural 

attributes when accessing and processing datasets [132], 

[206], [208] which we have observed are very important and 

apply to all datasets independent of their domain affiliation.  

     Beale's work emphasises the generation of data with 

secondary applications in mind, ensuring future utility 

(reusability) and enabling information systems to 

disseminate knowledge rather than raw data [209], [210]. 

The concept of 'archetypes' introduced by Beale promotes 

smooth data exchange (interoperability), especially when 

data is gathered by and exchanged across diverse systems or 

applications, enhancing semantic interoperability [211], 

[212], [213], [214], [215]. These archetypes are used to 

describe knowledge while ontology is used to describe 

information in a dynamic environment that exhibits constant 

change in data. Expanding further on Beale's foundational 

work, Stacey and Berry [89], [133] successfully extended 

two-level information modelling beyond health informatics 

to geospatial observational scenarios, fostering semantic 

interoperability and data reusability within Spatial Data 

Infrastructures (SDIs). Lezcano et. al [205] observed that 

utilising ‘emergency archetypes’ offers benefits such as 

seamless integration of semantic data and adaptability to 

incorporate new types of messages all while maintaining the 

capability for smooth communication between heterogenous 

Emergency Response Management systems. Diviacco and 

Leadbetter [216] emphasise that despite the difficulties in 

collaborative research enabling knowledge generation in the 

domain of sustainable development, particularly in Earth 

Sciences, there are opportunities through the exploitation of 

a careful balance of formalised knowledge and non-

formalised knowledge representation using two-level 

information modelling, particularly vocabularies like 

archetypes or ontologies. Referring to the research gap 

identified in the previous subsection, diverse IoT-based EV 

data can be merged using two-level information modelling 

to enhance overall DQ, as it supports a rigorous form of data 

source diversity that can be integrated. 

     We conclude the discussion with the observation of 

Wilkinson et al. [199] that the nuance of good data 

management is not a goal itself, but rather an important aspect 

that leads to knowledge generation, discovery, integration and 

reuse. Other than collecting the data and its archiving, good 

data management is the idea of long-term vision (or care) of 

data with the ultimate goal of data discovery and reuse either 

in its own fragments or in combination with new data. This 

approach addresses one of the big challenges of identifying, 

accessing, integrating and analysis of required data for any 

task at hand. Our study explored various viewpoints on DQ 

issues based on literature, particularly at the reasons that give 

birth to DQ issues – all of them (more or less) pointed towards 

the lack of standardisation and its adoption across the domain. 

Domain-based standardisation and its adoption can be an 

immediate as well as effective way to deal with DQ issues 

arising within the Earth Sciences domain. It may also open an 

effective way of using IoT-based data in DE, which in return 

could be used for decision-making surrounding SDGs. Data 

serves as a cornerstone to decision-making when it becomes 

information and contributes to the knowledge pool our science 

community needs. Eventually, this may also serve as one of 

the important steps towards achieving the Data-Information-

Knowledge-Wisdom pathway which is central to addressing 

the significant environmental issues our planet faces today 

with the future of our generations and the health of the planet 

at stake. 

 
VIII. Conclusion 

Today, just over halfway through the 2030 Agenda for a 

Sustainable World, the global community faces more critical 

issues than ever. Achieving a sustainable world, particularly 

the SDGs agenda, requires the utilisation of diverse data 

from fields like climate, water, ecology, agriculture, social 

sciences, and economics for enhanced decision-making and 

knowledge sharing. DE is essential for processing these 

broad, dynamic, and complex datasets, offering a real-time 

visual representation of knowledge and processes occurring 

within the Earth system. However, both DE and SDGs in 

general and DE for SDGs in particular face a dearth of DQ. 

This study identified the DQ challenge as one of the major 

obstacles in achieving efficient and effective functioning of 

DE to complement sustainable development as well as SDG 

implementation monitoring. It also identified the DQ 

challenge as a major hindrance in knowledge-sharing within 

the Earth Sciences domain.  

     To overcome the critical DQ issues, particularly 

Availability, Completeness and Consistency DQ dimensions, 

this study identified IoT as a provider of viable data sources 

that can complement satellite data, enhancing the granularity, 

consistency, and temporal resolution of data, hence giving 

birth to the idea of IoT-enabled DE for SDG, and helping to 

overcome the DQ challenge. However, IoT data also comes 

with its own DQ challenge as observed in various scenarios 

outlined in section VI. These challenges include lack (or 

adoption) of agreed-upon standards for data collection, 

processing, storing, and/or validation, continuing to hinder the 

DQ within the Earth Sciences domain. Data is often 

inconsistent – can be collected and distributed without 

sufficient metadata or context contributing to the DQ 

challenge and hindering researchers and scientists 

collaborating across various domains due to the lack of trust 

and transparency in data collection, processing, and/or 

validation. This results in barriers to data reusability, 

applicability, knowledge-sharing, and data reproducibility. It 

also leads to the inefficient duplication of data collection 

efforts which costs both time as well as resources.  
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     Finally, the study also identified standardisation as the way 

forward including some potential candidates as solutions for 

the enabling data reusability and knowledge sharing i.e., EVs 

and Two-level Information Modelling in the Earth Sciences 

domain, which remain open as promising future research 

directions. To unlock the full potential of an IoT-enabled DE 

for SDGs or the system of systems in general, ensuring DQ is 

critical and central to data reusability, information, and 

knowledge-sharing. Putting trust in the data is crucial, given 

the need for combined efforts from diverse fields with unique 

languages and data formats in addressing ever-changing 

global needs. 
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