Sodium Caprate Enables the Blood Pressure-Lowering Effect of Ile- Pro-Pro and Leu-Lys-Pro in Spontaneously Hypertensive Rats by Indirectly Overcoming PepT1 Inhibition

John P. Gleeson, University College Dublin
Jesus Maria Frias, Dublin Institute of Technology
Sinead Ryan, University College Dublin
David J. Brayden, University College Dublin

April 2018, European Journal of Pharmaceutics and Biopharmaceutics, 128


The tripeptides, Ile-Pro-Pro (IPP) and Leu-Lys-Pro (LKP), inhibit angiotensin-converting enzyme (ACE) resulting in lowered blood pressure. Our hypothesis was that the medium chain fatty acid permeation enhancer, sodium caprate (C10), may prevent the decrease in permeability of the tripeptides when PepT1 is inhibited by glycyl-sarcosine (Gly-Sar), a situation that may occur in the presence of food hydrolysates. Using Caco-2 monolayers and isolated rat jejunal tissue, the apparent permeability coefficients (Papp) of [3H]-IPP and [3H]-LKP were assessed in the presence of Gly-Sar with and without C10. Gly-Sar decreased the Papp of both tripeptides across monolayers and isolated jejunal tissue, but C10 restored it. C10 likely increased the paracellular permeability of the tripeptides, as indicated by immunofluorescence changes in tight junction proteins in Caco-2 monolayers accompanied by a concentration-dependent decrease in transepithelial electrical resistance (TEER). [3H]-IPP and [3H]-LKP were orally-gavaged to normal rats with Gly-Sar, C10, or with a mixture. Plasma levels of both peptides were reduced by Gly-Sar to less than half that of the levels detected in its absence, but were restored when C10 was co-administered. In spontaneously hypertensive rats (SHRs), unlabelled IPP and LKP lowered blood pressure when delivered either by i.v. or oral routes. Oral gavage of Gly-Sar reduced the hypotensive action of peptides in SHRs, but the effect was restored in the presence of C10. In conclusion, there was a reduction in the hypotensive effects of IPP and LKP in SHRs when intestinal PepT1 was inhibited by Gly-Sar, but C10 may circumvent this by enhancing paracellular permeability.